TW201428832A - Method and device for cleaning a brush surface having a contamination - Google Patents

Method and device for cleaning a brush surface having a contamination Download PDF

Info

Publication number
TW201428832A
TW201428832A TW102122165A TW102122165A TW201428832A TW 201428832 A TW201428832 A TW 201428832A TW 102122165 A TW102122165 A TW 102122165A TW 102122165 A TW102122165 A TW 102122165A TW 201428832 A TW201428832 A TW 201428832A
Authority
TW
Taiwan
Prior art keywords
brush
surface charge
cleaning
particle
charge
Prior art date
Application number
TW102122165A
Other languages
Chinese (zh)
Other versions
TWI529789B (en
Inventor
Jiann-Kih Wu
James Jeng-Jyi Hwang
Soon-Kang Huang
Chi-Ming Yang
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Publication of TW201428832A publication Critical patent/TW201428832A/en
Application granted granted Critical
Publication of TWI529789B publication Critical patent/TWI529789B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A46BRUSHWARE
    • A46BBRUSHES
    • A46B17/00Accessories for brushes
    • A46B17/06Devices for cleaning brushes after use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

A method for cleaning a brush surface having a contamination is provided. The method includes steps of: providing a mechanical wave; and stripping off the contamination from the brush surface by the mechanical wave.

Description

用於清洗具有污染物的刷子表面之方法及裝置Method and apparatus for cleaning a brush surface having contaminants

本揭露內容有關一種清洗方法及裝置,更特別的是有關一種用於清洗具有污染物的刷子表面的方法及裝置。
The present disclosure relates to a cleaning method and apparatus, and more particularly to a method and apparatus for cleaning a brush surface having contaminants.

現今化學機械拋光(CMP)製程已被廣泛地使用在半導體晶圓製程中。傳統的CMP工具包括CMP後清洗模組,該CMP後清洗模組包括滾筒清洗器(例如滾筒類型的刷子)、筆狀清洗器(例如筆狀類型的刷子)與乾燥器。經過拋光後的晶圓被傳送至滾筒清洗器與筆狀清洗器,以將泥漿殘餘物從晶圓表面擦洗掉,然後傳送至乾燥器以乾燥該晶圓。在使用滾筒清洗器與筆狀清洗器清洗的過程中,在刷子表面上產生並累積許多副產物(例如污染微粒),該些副產物可能在清洗過程中刮傷晶圓表面。因此,傳統的CMP後清洗模組進一步包括去離子化(DI)潤洗過程與石英擦洗器,以清洗那些刷子。然而,去離子化(DI)潤洗過程與石英擦洗器的清洗效率不夠好到可以移除形成在刷子表面上的污染微粒,且當晶圓的大小變得大於450mm時,該刷子的負載變得更大而縮短該刷子的壽命。
因此,因為先前技術中的缺陷,有需要解決上述的問題。

Today's chemical mechanical polishing (CMP) processes have been widely used in semiconductor wafer processes. Conventional CMP tools include a post-CMP cleaning module that includes a roller cleaner (such as a roller type brush), a pen-like cleaner (such as a pen-type brush), and a dryer. The polished wafer is transferred to a drum washer and a pen washer to scrub the mud residue from the wafer surface and then transferred to a dryer to dry the wafer. During the cleaning using the drum cleaner and the pen washer, many by-products (e.g., contaminating particles) are generated and accumulated on the surface of the brush, which may scratch the surface of the wafer during the cleaning process. Therefore, the conventional post-CMP cleaning module further includes a deionization (DI) rinsing process and a quartz scrubber to clean those brushes. However, the cleaning efficiency of the deionization (DI) rinsing process and the quartz scrubber is not good enough to remove the contaminating particles formed on the surface of the brush, and when the size of the wafer becomes larger than 450 mm, the load of the brush becomes variable. It is bigger and shortens the life of the brush.
Therefore, there is a need to solve the above problems because of defects in the prior art.

依照本揭露內容的一方面,提供了一種用於清洗刷子表面的裝置,該刷子表面具有第一表面電荷與具有微粒表面的污染微粒,該微粒表面具有第二表面電荷,其中該第一表面電荷具有與該第二表面電荷相同的電極性。該裝置包括一清洗模組,該清洗模組被配置成用以增強該微粒表面上的該第二表面電荷,使得該污染微粒從該刷子表面排斥。
In accordance with an aspect of the present disclosure, a device for cleaning a brush surface having a first surface charge and contaminating particles having a particle surface having a second surface charge, wherein the first surface charge is provided It has the same electrode polarity as the second surface charge. The apparatus includes a cleaning module configured to enhance the second surface charge on the surface of the particle such that the contaminating particles repel from the brush surface.

100...裝置100. . . Device

102...清洗模組102. . . Cleaning module

104...第一清洗子模組104. . . First cleaning submodule

106...第二清洗子模組106. . . Second cleaning submodule

108...浴槽108. . . Bath

110...超音波裝置110. . . Ultrasonic device

112...排放單元112. . . Discharge unit

114...水池區域114. . . Pool area

116...底部區域116. . . Bottom area

118...入口區域118. . . Entrance area

120...第一壁120. . . First wall

122...溢流區域122. . . Overflow area

124...第二壁124. . . Second wall

126...出口區域126. . . Export area

128...偵測器128. . . Detector

202...刷子表面202. . . Brush surface

204...污染物204. . . Contaminant

206...污染微粒206. . . Contaminated particles

208...微粒表面208. . . Particle surface

210...第一表面電荷210. . . First surface charge

212...第二表面電荷212. . . Second surface charge

600...方法600. . . method

CMP...化學機械拋光CMP. . . Chemical mechanical polishing

pH...氫電勢pH. . . Hydrogen potential

UPW w/o MS...沒有超音波過程的超純水UPW w/o MS. . . Ultrapure water without ultrasonic process

UPW+MS...超純水加上超音波過程UPW+MS. . . Ultrapure water plus ultrasonic process

H2-UPW w/o MS...H2水加上超純水而無超音波過程H2-UPW w/o MS. . . H 2 water plus ultrapure water without ultrasonic process

H2-UPW+MS...H2水加上超純水加上超音波過程H2-UPW+MS. . . H 2 water plus ultrapure water plus ultrasonic process

ORP...個別氧化/還原電位ORP. . . Individual oxidation/reduction potential

當與伴隨圖式一起閱讀時,從下述的詳細描述中最能了解本揭露內容。要強調的是,依照產業中的標準慣例,不按比例示出各種特徵,且僅用於示例的目的。事實上,為了清楚地討論,可任意地增加或減少各種特徵的尺寸。

第1A圖依照本揭露內容的一個具體實施例而示出了一種用於清洗刷子表面的裝置。

第1B圖示例了第1A圖中所示出的裝置的俯視圖。

第2圖依照本揭露內容的另一個具體實施例而示例了具有第一表面電荷以及具有第二表面電荷的污染物的刷子表面。

第3圖示出了氫電勢(PH)與界達電位之間的相關性。

第4圖示出了具有污染微粒的刷子表面的示意圖。

第5A圖示出了第一組清洗過程的污染微粒剩餘量的實驗結果。

第5B圖示出了第二組清洗過程的污染微粒剩餘量的實驗結果。
第6圖依照本揭露內容的另一個具體實施例而示例了用於清洗具有污染物的刷子表面的流程圖。


The disclosure will be best understood from the following detailed description when read in conjunction with the accompanying drawings. It is emphasized that various features are not shown to scale, and are used for the purpose of illustration only. In fact, the dimensions of the various features may be arbitrarily increased or decreased for clarity of discussion.

Figure 1A shows a device for cleaning the surface of a brush in accordance with an embodiment of the present disclosure.

Figure 1B illustrates a top view of the device shown in Figure 1A.

Figure 2 illustrates a brush surface having a first surface charge and a contaminant having a second surface charge in accordance with another embodiment of the present disclosure.

Figure 3 shows the correlation between hydrogen potential (PH) and the bound potential.

Figure 4 shows a schematic of the brush surface with contaminating particles.

Figure 5A shows the experimental results of the remaining amount of contaminating particles in the first set of cleaning processes.

Figure 5B shows the experimental results of the remaining amount of contaminating particles in the second set of cleaning processes.
Figure 6 illustrates a flow chart for cleaning a brush surface having contaminants in accordance with another embodiment of the present disclosure.


將關於特定的具體實施例並參照特定圖式來描述本揭露內容,但本揭露內容不限於此,但只限於申請專利範圍。所描述的圖式僅為示意性且非限制性。在圖式中,為了示例性的目的,可能誇大且不按比例繪示一些元件的大小。尺寸以及相對尺寸不一定相應於用以實施的實際縮小。

此外,在描述以及在申請專利範圍中的用語第一、第二以及諸如此類是用於在相似的元件之間區別,且不一定用於描述時間上、空間上、等級上或任何其他方式的順序。要了解的是,如此使用的用語在適當的情況下是可交換的,且本文中所描述的具體實施例能夠以本文中所描述或示例之外的其他順序來操作。

要注意到的是,申請專利範圍中所使用的用語「包含」不應被理解為限制於其後所列出的手段;它不排除其他的元件或步驟。因此它應被理解為具體說明如同所提及的聲明特徵、整體、步驟或組件的存在,但不排除一或更多個其他特徵、整體、步驟或組件或其群組的存在或加入。因此,表述「包含裝置A以及B的裝置」的範圍不應限於只由組件A以及B所構成的裝置。

整個此說明書中關於「一個具體實施例」或「一具體實施例」的提及意指所描述與該具體實施例有關的特定特徵、結構或特性被包括在至少一個具體實施例中。因此,在整個此說明書各處中的措辭「在一個具體實施例中」或「在一(a)具體實施例中」或「在一(an)具體實施例中」.的出現不一定全都意指相同的具體實施例,但可能是。此外,從此揭露內容,如同對於本領域具一般技藝的技術人員而言為顯而易見的是,在一或更多個具體實施例中,可使用任何適合的方式來結合特定的特徵、結構或特性。
相似地,應領略的是,在示範性具體實施例的描述中,為了簡化本揭露內容並幫助了解一或更多個各種具創造性的方面的目的,有時將各種特徵聚集在一起於單一的具體實施例、圖式或其描述中。然而揭露內容的此方法不被理解為反映所主張的發明需要比每個申請專利範圍中所明確列舉的還多的特徵的意圖。更確切而言,如同下述申請專利範圍所反映的,具創造性方面在於少於單一前述所揭露的具體實施例的所有特徵。因此,在詳細描述之後的申請專利範圍於此明確地併入於此詳細描述中,每個申請專利範圍依據其本身為分開的具體實施例。
此外,雖然本文中所描述的一些具體實施例包括一些但無包括在其他具體實施例中的其他特徵,不同具體實施例的特徵組合意欲在本發明的範圍內,且如同本領域的技術人員將了解的是,形成不同的具體實施例。例如,在下述申請專利範圍中,可以任何的組合來使用任何所主張的具體實施例。
在本文中所提供的描述中,提出了許多特定的細節。然而,要了解的是,可沒有這些細節而實施具體實施例。在其他的例子中,為了不模糊此描述的了解,未詳細示出熟知的方法、結構以及技術。

將藉由數個具體實施例的詳細描述來描述本揭露內容。很清楚的是,可根據本領域技術人員的知識來配置其他的具體實施例,而不悖離本揭露內容的真實技術教導,所主張的發明僅限於所附帶的申請專利範圍。
此後,將參照伴隨的圖式來詳細地解釋本發明的具體實施例。



請參照第1A、1B與2圖。第1A圖依照本揭露內容的一個具體實施例而示出了一種用於清洗刷子表面202的裝置100,第1B圖示例了第1A圖中所示出的該裝置100的俯視圖,而第2圖依照本揭露內容的另一個具體實施例而示例了具有第一表面電荷210與具有第二表面電荷212的污染物204的刷子表面202。在CMP後清洗時期,有許多副產物產生並累積在該刷子表面202上,其包括該污染物204。然而,在該刷子表面202上的該污染物204可能會在該CMP後清洗期間刮傷該晶圓表面。因此,第1A圖中所示出的該裝置100是用以從該刷子表面202清洗掉該污染物204。參照第2圖,該污染物204包括具有微粒表面208的污染微粒206,該刷子表面202上具有第一表面電荷210,該微粒表面208上具有第二表面電荷212,且該第一表面電荷210具有與該第二表面電荷212相同的電極性。在一個具體實施例中,該裝置100更包括用於偵測該第一與第二表面電荷210與212其中之一的電極性的偵測器128。在另一個具體實施例中,如第2圖中所示,該電極性為負。為了清洗該刷子表面202,設計了一種從該刷子表面202斥離該污染微粒206的清洗方法,並進一步防止該污染微粒206再黏附至該刷子表面202上。該裝置100被配置成用以實施上述清洗方法,以清洗該刷子表面202。
請參照第1A圖,其示例了上述用於清洗刷子表面202的裝置100,其中該裝置100包括一清洗模組102,該清洗模組102被配置成用以增強微粒表面208上的第二表面電荷212,以從該刷子表面202排斥污染微粒206。在一個具體實施例中,第一表面電荷210具有第一電荷量,第二表面電荷212具有第二電荷量,其中該第一電荷量可大於、等於或小於該第二電荷量。該清洗模組102被配置成用以增強該第二表面電荷212,以具有第三電荷量,其中該第三電荷量大於該第二電量。因此,可增強該第一表面電荷210與該第二表面電荷212之間的排斥力,該污染微粒206可進一步從該刷子表面202排斥。也就是說,所排斥的(脫離的)污染微粒206可不再黏附至該刷子表面202。在一個具體實施例中,該清洗模組102更包括第一清洗子模組104與第二清洗子模組106,以實施上述清洗方法。

在一個具體實施例中,裝置100更包括浴槽108、超音波裝置110與排放單元112,其中該浴槽108包括水池區域114、底部區域116、入口區域118與第一壁120。將要清洗的刷子(未示出)設置在該水池區域114中,並具有該刷子表面202,且該超音波裝置110配置於該底部區域116中。該排放單元112包括溢流區域122、第二壁124與出口區域126,其中該溢流區域122圍繞該第一壁120,該第二壁124圍繞該溢流區域122,如第1B圖中所示。請參照第1A圖,該清洗模組104包括該浴槽108與該排放單元112。每個該第一清洗子模組104與該第二清洗子模組106包括該浴槽108和該排放單元112,該第一清洗子模組104進行功能水過程,以降低氧化/還原電位,而該第二清洗子模組106進行化學過程,以降低界達電位。應領略的是,進行該功能水過程與該化學過程的效果是相同的,如下面所解釋的,試圖增強污染微粒206上的第二表面電荷212。
請參照第1A圖,當將要清洗的刷子設置於水池區域114中時,經由入口區域118提供流體至該水池區域114。在一個具體實施例中,控制該入口區域118以根據該刷子與該水池區域114之間的位置關係來提供該流體至該水池區域114。該流體可包括功能水與鹼性溶液的至少其中之一。在一方面中,為了藉由第一清洗子模組104進行功能水過程,該流體被配置成包括該功能水,其被加入至該水池區域114中以形成第一溶液系統。例如,該功能水可包括H2水,其被加入至該水池區域114中以形成該第一溶液系統,以降低該第一溶液系統的氧化/還原電位,其中該第一溶液系統包括污染微粒206、刷子表面202和該H2水。在另一方面中,為了藉由第二清洗子模組106進行化學過程,該流體被配置成包括該鹼性溶液,其被加入至該水池區域114,以形成第二溶液系統。例如,該鹼性溶液可包括NH4溶液,其被加入至該水池區域114中,以降低該污染微粒206的界達電位,其中該第二溶液系統包括該污染微粒206、該刷子表面202與該NH4溶液。加入該鹼性溶液是用以幫助官能基從該污染微粒206分離。在一個具體實施例中,該污染微粒206是選自PSi、Si3N4、SiO2、Al2O3及其組合所組成的群組的其中之一。在一個具體實施例中,將該功能水加入至該水池區域114中,以降低該污染微粒206的氧化/還原電位,以增強該污染微粒206的該第二表面電荷212。
請參照第3圖,其示出了氫電勢(PH)與界達電位之間的相關性。在第3圖中,x軸代表PH,而y軸代表界達電位(mV)。根據PH與界達電位之間的相關性,當氫電勢(PH)增加時,污染微粒206的官能基的解離隨著氫電勢的增加而增加,且該污染微粒206的界達電位降低。因此,該污染微粒206的第二表面電荷212被增強至具有第三電荷量。在該第二表面電荷212被增強至具有該第三電荷量的情況下,刷子表面202與該污染顆粒206之間的排斥力增強,藉此防止該污染微粒206再次黏附至該刷子表面202。在另一個具體實施例中,流體做為超音波裝置110的介質,以將機械波提供至該刷子表面202斥離該污染微粒206。
請參照第1A以及4圖,其中第4圖示出了具有污染微粒206的刷子表面202的示意圖。當開始清洗該刷子時,經由入口區域118將流體提供至水池區域114,以在該水池區域114中形成第三溶液系統,該第三溶液系統包括該流體、該污染微粒206與該刷子表面202。超音波裝置110設置於底部區域116,並提供機械波至該刷子表面202。如第4圖所示,該機械波形成物理力以將該污染微粒206從該刷子表面202提離或剝離,其中該機械波是經由該流體傳導至該刷子表面202。在一個具體實施例中,該機械波是超音波。例如,該超音波典型地具有範圍為0.8至2.0 MHz的頻率。該超音波將該污染微粒206從該刷子表面202上斥離。為了防止該污染微粒206再次黏附至該刷子表面202,經由該入口區域118將功能水(例如H2水)與鹼性溶液(例如該NH4溶液)的至少其中之一提供至該水池區域114,以形成該第三溶液系統。當將該功能水提供至該刷子表面202時,該功能水降低了該第三溶液系統的氧化/還原電位,而當將該鹼性溶液提供至該刷子表面202時,該鹼性溶液降低了該污染微粒206的界達電位。例如,該功能水降低了該污染微粒206的氧化/還原電位。在一個具體實施例中,當該流體包括該功能水,並被提供至該刷子表面202時,第一清洗子模組104進行功能水過程,以降低該污染微粒206的氧化/還原電位。當該流體包括該鹼性溶液,並被提供至該水池區域114時,第二清洗子模組106進行化學過程,以降低界達電位。在一個具體實施例中,該刷子表面202可被轉動,以清洗將要被清洗的刷子的每個刷子表面202。
在另一個具體實施例中,當水池區域114溢流時,該流體的溢流部分流進溢流區域122中,並經由該溢流區域122與出口區域126排出。在另一個具體實施例中,可推斷的是,如第1B圖中所示,裝置100的輪廓是圓形。在更另一個具體實施例中,該裝置100的輪廓可為長方形。

請參照第5A與5B圖,第5A圖示例了第一組清洗過程的污染微粒206剩餘量的實驗結果,而第5B圖示例了第二組清洗過程的污染微粒206剩餘量的實驗結果。如第5A圖中所示,x軸代表在刷子表面202上進行的清洗過程的類型,其中該第一組清洗過程被表示在該x軸中,包括CMP後清洗過程(在CMP之後),沒有超音波過程的超純水(UPW w/o MS)、超純水加上超音波過程(UPW + MS)、H2水加上超純水而無超音波過程(H2-UPW w/o MS)以及H2水加上超純水加上超音波過程(H2-UPW + MS)。y軸代表在進行上述每個過程之後的污染微粒206剩餘量。根據第5A圖中的實驗結果,在該CMP後清洗過程之後,有多於20,000個污染微粒留在該刷子表面202上。在藉由應用沒有超音波過程的超純水的過程來清洗該刷子表面202之後,仍有5,500個污染微粒留在該刷子表面202上。相對於其,在藉由應用具有超純水與超音波過程來清洗該刷子表面202之後,只有680個污染微粒留在該刷子表面上。可看到的是,藉由應用超音波過程來清洗該刷子表面202可得到較好的清洗效能;也就是說,藉由應用超音波過程來清洗該刷子可比僅使用超純水來清洗該刷子斥離更多的污染微粒。另一方面,在藉由應用功能水過程(例如H2加上超純水)而無超音波過程來清洗該刷子表面202之後,有2,600個污染微粒留在該刷子表面上;相對於其,在藉由應用功能水洗過程(例如H2加上超純水)與超音波過程來清洗該刷子表面202之後,僅有少於200個污染微粒留在該刷子表面上;也就是說,藉由應用該超音波過程來清洗該刷子可比僅使用H2加上超純水來清洗該刷子斥離更多的污染微粒。根據上述的實驗數據,可得知藉由結合超音波過程與功能水洗過程來清洗該刷子表面202的方法提供了最佳的效能。
如第5B圖中所示,x軸代表進行該化學過程所使用的流體類型,其中第二組清洗過程被表示在x軸中,包括CMP後清洗過程與分別藉由使用陽極水、傳統水、NH4溶液以及NH4溶液加上H2水來進行的化學過程。y軸代表留在刷子表面上的污染微粒量。第5B圖亦示出了溶液系統(例如第一溶液系統、第二溶液系統或第三溶液系統)的各自氫電勢(PH)以及每個化學過程的污染微粒的個別氧化/還原電位(ORP)。根據第5B圖中的實驗結果,在CMP後清洗過程(刷子清洗過程之前),有超過20,000個污染微粒206留在該刷子表面上202。而在藉由使用該陽極水來清洗該刷子表面202之後,污染微粒206的剩餘量下降至大約1,500個,其中該溶液系統具有等於2.0的第一pH值,且該污染微粒的氧化/還原電位等於1.35V。在藉由使用該傳統超純水來清洗該刷子表面202之後,該污染微粒206的剩餘量下降至大約500個,該溶液系統具有等於7.0的第二pH值,且該污染微粒206的氧化/還原電位等於0.49V。在藉由使用該NH4溶液來清洗該刷子表面202之後,該污染微粒206的剩餘量下降至少於500個,該溶液系統具有等於8.5的第三pH值,且該污染微粒206的氧化/還原電位等於0.31V。此外,在藉由使用該NH4溶液加上該H2水來清洗該刷子表面202之後,該污染微粒206的剩餘量下降至少於100個,該溶液系統具有等於8.5的第四pH值,且該污染微粒206的氧化/還原電位等於-0.49V。其於上述實驗數據,藉由結合功能水過程與化學過程來清洗該刷子表面202的方法提供了極佳的效能。
請參照第6圖,其依照本揭露內容的一個具體實施例而示例了一種用於清洗具有污染物204的刷子表面202的方法600的流程圖。在步驟602中,超音波裝置110提供了機械波。在步驟604中,該機械波從該刷子表面202剝離了該污染物204。在一個具體實施例中,污染物204包括具有微粒表面208的污染微粒206,該刷子表面202上具有第一表面電荷210,該微粒表面208上具有第二表面電荷212,且該第一表面電荷210具有與該第二表面電荷212相同的電極性。為了避免脫離的污染微粒206附著回該刷子表面202,該方法600更包括步驟606以增強在該微粒表面208上的該第二表面電荷212,以增強該第一表面電荷210與該第二表面電荷212之間的排斥力。在步驟608中,使該刷子表面202具有一運動。在一個具體實施例中,該運動為轉動。
依照本揭露內容的具體實施例,提供了一種用於清洗具有污染物的刷子表面的方法。該方法包括提供機械波;以及藉由該機械波而從該刷子表面剝離該污染物的步驟。
在各種實施中,污染物包括具有微粒表面的污染微粒,刷子表面上具有第一表面電荷,該微粒表面上具有第二表面電荷,該第一表面電荷具有與該第二表面電荷相同的電極性,該方法包括下述步驟:增強該第二表面電荷,使得該污染微粒從該刷子表面被排斥;以及使該刷子表面具有一運動,其中該電極性為負的,且該運動包括轉動。在一方面中,增強該微粒表面上該第二表面電荷的步驟是藉由功能水過程來進行。在另一方面中,增強該微粒表面上該第二表面電荷的步驟是藉由化學過程來進行。該機械波是超音波,且經由流體而被施加至該刷子表面,該流體包括功能水與鹼性溶液的其中之一,該刷子表面是用於在化學機械平坦化製程中來清洗晶圓。
依照本揭露內容的具體實施例,提供了一種用於清洗刷子表面的方法,該刷子表面具有第一表面電荷以及具有微粒表面的污染微粒,該微粒表面具有第二表面,其中該第一表面電荷具有與該第二表面電荷相同的電極性。該方法包括下述步驟:使該第二表面電荷增強,使得該污染微粒從該刷子表面被排斥。在一方面中,該電極性為負的。在另一方面中,增強該第二表面電荷的步驟是藉由功能水過程來進行。在更另一方面中,該功能水過程是藉由加入H2水以形成溶液系統來進行,用於降低該溶液系統的氧化/還原電位。在更另一方面中,用於增強該第二表面電荷的步驟是藉由化學過程來進行。在更另一方面中,該化學過程是藉由加入鹼性溶液以降低該污染微粒的界達電位來進行。在更另一方面中,該化學過程是用以幫助官能基從該污染微粒解離。
依照本揭露內容的一些具體實施例,提供了一種用於清洗刷子表面的裝置,該刷子表面具有第一表面電荷與具有微粒表面的污染微粒,該微粒表面具有第二表面電荷,其中該第一表面電荷具有與該第二表面電荷相同的電極性。該裝置包括一清洗模組,該清洗模組被配置成用以增強該微粒表面上的該第二表面電荷,使得該污染微粒從該刷子表面被排斥。在一方面中,該裝置更包括浴槽、超音波裝置與排放單元。該浴槽包括水池區域、底部區域、入口區域和配置在該入口區域上的第一壁,其中經由該入口區域將流體提供至該水池區域,且該流體包括功能水與鹼性溶液的至少其中之一。該超音波裝置設置於該底部區域中,並提供機械波。該排放單元包括圍繞該第一壁的溢流區域、圍繞該溢流區域的第二壁與出口區域,其中當該水池區域溢流時,該流體的溢流部分經由該溢流區域與該出口區域被排出。在另一方面中,該機械波是超音波。在更另一方面中,該清洗模組進行功能水過程以降低該流體的氧化/還原電位。在更另一方面中,該清洗模組進行化學過程以降低該污染微粒的界達電位,且該污染微粒是選自PSi、Si3N4、SiO2、Al2O3及其組合所組成的群組的至少其中之一。在更另一方面中,該裝置更包括用於偵測該第一與第二表面電荷的其中之一的電極性的偵測器。
雖然已關於目前視為最實際且較佳的具體實施例來描述本發明,要了解的是,本發明不需要受限於所揭露的具體實施例。因此,意欲涵蓋各種修飾以及包括在申請專利範圍的精神與範圍內的類似配置,其以最廣義的釋意來依照,以包含所有這種修飾以及類似的結構。
The disclosure will be described with respect to specific embodiments and with reference to specific drawings, but the disclosure is not limited thereto, but is limited to the scope of the patent application. The drawings described are only schematic and are non-limiting. In the figures, the size of some of the elements may be exaggerated and not to scale. The dimensions and relative dimensions do not necessarily correspond to the actual reductions used to implement.

In addition, the terms first, second, and the like in the description and in the claims are used to distinguish between similar elements and are not necessarily used to describe the order of time, space, level, or any other manner. . It will be appreciated that the terms so used are interchangeable under appropriate circumstances and that the specific embodiments described herein can operate in other sequences than those described or illustrated herein.

It is to be understood that the term "comprising", used in the claims, is not to be construed as limited to the It is intended that the following description be regarded as a s 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 Therefore, the scope of the expression "means including devices A and B" should not be limited to devices composed of only components A and B.

References to "a particular embodiment" or "an embodiment" in this specification are intended to mean that the particular features, structures, or characteristics described in connection with the particular embodiments are included in at least one particular embodiment. Therefore, the appearances of the phrase "in a particular embodiment" or "in a (a) embodiment" or "in an embodiment" Refers to the same specific embodiment, but may be. In addition, it will be apparent to those skilled in the art that the present invention may be employed in any suitable manner.
Similarly, it will be appreciated that in the description of the exemplary embodiments, various features are sometimes grouped together in a single one in order to simplify the present disclosure and to facilitate the understanding of one or more various inventive aspects. Specific embodiments, figures, or descriptions thereof. However, this method of revealing the content is not to be construed as reflecting that the claimed invention requires more features than those specifically recited in the scope of each application. Rather, as the scope of the following claims, the inventive aspects are less than all of the features of the specific embodiments disclosed herein. Therefore, the scope of the appended claims is hereby expressly incorporated by reference herein
In addition, although some of the specific embodiments described herein include some but not other features included in other specific embodiments, combinations of features of different specific embodiments are intended to be within the scope of the present invention, and as will be It is understood that different specific embodiments are formed. For example, any of the claimed specific embodiments can be used in any combination, in the scope of the following claims.
In the description provided herein, numerous specific details are set forth. However, it is to be understood that the specific embodiments may be practiced without these details. In other instances, well known methods, structures, and techniques have not been shown in detail in order not to obscure the description.

The disclosure will be described in detail by the detailed description of several specific embodiments. It is to be understood that the invention may be embodied in other specific embodiments without departing from the scope of the invention.
Hereinafter, specific embodiments of the present invention will be explained in detail with reference to the accompanying drawings.



Please refer to Figures 1A, 1B and 2. 1A shows an apparatus 100 for cleaning a brush surface 202 in accordance with an embodiment of the present disclosure, and FIG. 1B illustrates a top view of the apparatus 100 shown in FIG. 1A, and FIG. The brush surface 202 having a first surface charge 210 and a contaminant 204 having a second surface charge 212 is illustrated in accordance with another embodiment of the present disclosure. During the post-CMP cleaning period, a number of by-products are produced and accumulated on the brush surface 202, which includes the contaminants 204. However, the contaminant 204 on the brush surface 202 may scratch the wafer surface during the post-CMP cleaning. Accordingly, the apparatus 100 illustrated in FIG. 1A is for cleaning the contaminant 204 from the brush surface 202. Referring to FIG. 2, the contaminant 204 includes contaminant particles 206 having a particle surface 208 having a first surface charge 210 having a second surface charge 212 thereon and the first surface charge 210. It has the same electrode polarity as the second surface charge 212. In a specific embodiment, the device 100 further includes a detector 128 for detecting the polarity of one of the first and second surface charges 210 and 212. In another embodiment, as shown in Figure 2, the polarity is negative. To clean the brush surface 202, a cleaning method is provided that repels the contaminating particles 206 from the brush surface 202 and further prevents the contaminating particles 206 from adhering to the brush surface 202. The apparatus 100 is configured to perform the cleaning method described above to clean the brush surface 202.
Referring to FIG. 1A, the apparatus 100 for cleaning the brush surface 202 is illustrated. The apparatus 100 includes a cleaning module 102 configured to enhance a second surface on the surface 208 of the particle. Charge 212 is applied to repel contaminating particles 206 from the brush surface 202. In a specific embodiment, the first surface charge 210 has a first amount of charge and the second surface charge 212 has a second amount of charge, wherein the first amount of charge can be greater than, equal to, or less than the second amount of charge. The cleaning module 102 is configured to enhance the second surface charge 212 to have a third amount of charge, wherein the third amount of charge is greater than the second amount of charge. Accordingly, the repulsive force between the first surface charge 210 and the second surface charge 212 can be enhanced, and the contaminating particles 206 can be further repelled from the brush surface 202. That is, the repelled (disengaged) contaminating particles 206 may no longer adhere to the brush surface 202. In a specific embodiment, the cleaning module 102 further includes a first cleaning sub-module 104 and a second cleaning sub-module 106 to implement the cleaning method.

In a specific embodiment, the apparatus 100 further includes a bath 108, an ultrasonic device 110, and a discharge unit 112, wherein the bath 108 includes a pool area 114, a bottom area 116, an inlet area 118, and a first wall 120. A brush (not shown) to be cleaned is disposed in the pool area 114 and has the brush surface 202, and the ultrasonic device 110 is disposed in the bottom region 116. The discharge unit 112 includes an overflow region 122, a second wall 124 and an outlet region 126, wherein the overflow region 122 surrounds the first wall 120, the second wall 124 surrounding the overflow region 122, as in Figure 1B Show. Referring to FIG. 1A , the cleaning module 104 includes the bath 108 and the discharge unit 112 . Each of the first cleaning sub-module 104 and the second cleaning sub-module 106 includes the bath 108 and the discharging unit 112, and the first cleaning sub-module 104 performs a functional water process to reduce the oxidation/reduction potential. The second cleaning sub-module 106 performs a chemical process to reduce the boundary potential. It should be appreciated that performing the functional water process is the same as the chemical process, as explained below, attempting to enhance the second surface charge 212 on the contaminating particles 206.
Referring to FIG. 1A, fluid is provided to the pool region 114 via the inlet region 118 when the brush to be cleaned is disposed in the pool region 114. In a specific embodiment, the inlet region 118 is controlled to provide the fluid to the pool region 114 based on the positional relationship between the brush and the pool region 114. The fluid can include at least one of functional water and an alkaline solution. In one aspect, to perform a functional water process by the first cleaning sub-module 104, the fluid is configured to include the functional water that is added to the pool region 114 to form a first solution system. For example, the functional water can include H 2 water that is added to the pool region 114 to form the first solution system to reduce the oxidation/reduction potential of the first solution system, wherein the first solution system includes contaminating particles 206, brush surface 202 and the H 2 water. In another aspect, to perform a chemical process by the second cleaning sub-module 106, the fluid is configured to include the alkaline solution that is added to the pool region 114 to form a second solution system. For example, the alkaline solution may comprise a solution of NH 4, which is added to the pool region 114, 206 to reduce the particulate contamination of zeta potential, wherein the second solvent system comprises the contaminant particles 206, the surface 202 of the brush The NH 4 solution. The alkaline solution is added to aid in the separation of functional groups from the contaminating particles 206. In a specific embodiment, the contaminating particles 206 are one selected from the group consisting of PSi, Si 3 N 4 , SiO 2 , Al 2 O 3 , and combinations thereof. In a specific embodiment, the functional water is added to the pool region 114 to reduce the oxidation/reduction potential of the contaminating particles 206 to enhance the second surface charge 212 of the contaminating particles 206.
Please refer to FIG. 3, which shows the correlation between the hydrogen potential (PH) and the boundary potential. In Fig. 3, the x-axis represents PH and the y-axis represents the boundary potential (mV). According to the correlation between the pH and the boundary potential, as the hydrogen potential (PH) increases, the dissociation of the functional groups of the contaminating particles 206 increases as the hydrogen potential increases, and the boundary potential of the contaminating particles 206 decreases. Therefore, the second surface charge 212 of the contaminating particles 206 is enhanced to have a third amount of charge. In the event that the second surface charge 212 is enhanced to have the third amount of charge, the repulsive force between the brush surface 202 and the contaminating particles 206 is enhanced, thereby preventing the contaminating particles 206 from adhering again to the brush surface 202. In another embodiment, the fluid acts as a medium for the ultrasonic device 110 to provide mechanical waves to the brush surface 202 to repel the contaminating particles 206.
Please refer to FIGS. 1A and 4, wherein FIG. 4 shows a schematic view of the brush surface 202 with contaminating particles 206. When the brush is initially washed, fluid is provided to the pool region 114 via the inlet region 118 to form a third solution system in the pool region 114, the third solution system including the fluid, the contaminating particles 206, and the brush surface 202 . Ultrasonic device 110 is disposed in bottom region 116 and provides mechanical waves to the brush surface 202. As shown in FIG. 4, the mechanical waves form a physical force to lift or peel the contaminating particles 206 from the brush surface 202, wherein the mechanical waves are conducted to the brush surface 202 via the fluid. In a specific embodiment, the mechanical wave is an ultrasonic wave. For example, the ultrasound typically has a frequency in the range of 0.8 to 2.0 MHz. The ultrasonic waves repel the contaminating particles 206 from the brush surface 202. To prevent the contaminating particles 206 from adhering again to the brush surface 202, at least one of functional water (eg, H 2 water) and an alkaline solution (eg, the NH 4 solution) is provided to the pool region 114 via the inlet region 118. To form the third solution system. The functional water reduces the oxidation/reduction potential of the third solution system when the functional water is supplied to the brush surface 202, and the alkaline solution is lowered when the alkaline solution is supplied to the brush surface 202. The boundary of the contaminating particles 206 reaches a potential. For example, the functional water reduces the oxidation/reduction potential of the contaminating particles 206. In one embodiment, when the fluid includes the functional water and is provided to the brush surface 202, the first cleaning sub-module 104 performs a functional water process to reduce the oxidation/reduction potential of the contaminating particles 206. When the fluid includes the alkaline solution and is provided to the basin region 114, the second cleaning sub-module 106 performs a chemical process to reduce the boundary potential. In a particular embodiment, the brush surface 202 can be rotated to clean each brush surface 202 of the brush to be cleaned.
In another embodiment, when the pool region 114 overflows, the overflow portion of the fluid flows into the overflow region 122 and exits the outlet region 126 via the overflow region 122. In another embodiment, it can be inferred that the outline of the device 100 is circular as shown in FIG. 1B. In still another embodiment, the outline of the device 100 can be rectangular.

Please refer to Figures 5A and 5B. Figure 5A illustrates the experimental results of the remaining amount of contaminating particles 206 of the first group of cleaning processes, and Figure 5B illustrates the experimental results of the remaining amount of contaminating particles 206 of the second group of cleaning processes. . As shown in Figure 5A, the x-axis represents the type of cleaning process performed on the brush surface 202, wherein the first set of cleaning processes are represented in the x-axis, including the post-CMP cleaning process (after CMP), without Ultra-pure water (UPW w/o MS), ultrapure water plus ultrasonic process (UPW + MS), H 2 water plus ultrapure water without ultrasonic process (H2-UPW w/o MS ) and H 2 water plus ultrapure water plus ultrasonic process (H2-UPW + MS). The y-axis represents the remaining amount of contaminating particles 206 after each of the above processes. According to the experimental results in Fig. 5A, after the post-CMP cleaning process, more than 20,000 contaminating particles remain on the brush surface 202. After cleaning the brush surface 202 by applying a process of ultrapure water without an ultrasonic process, there are still 5,500 contaminating particles remaining on the brush surface 202. In contrast to this, after cleaning the brush surface 202 by applying an ultrapure water and ultrasonic process, only 680 contaminating particles remain on the brush surface. It can be seen that cleaning the brush surface 202 by applying an ultrasonic process can achieve better cleaning performance; that is, cleaning the brush by applying an ultrasonic process can clean the brush by using only ultrapure water. Repel more contaminated particles. On the other hand, in the functional water by applying the procedure (e.g. H 2 plus ultra pure water) without ultrasonic cleaning process after the surface 202 of the brush, there are 2,600 contaminant particles remaining on the brush surface; relative thereto, After cleaning the brush surface 202 by applying a functional water washing process (eg, H 2 plus ultrapure water) and an ultrasonic process, only less than 200 contaminating particles remain on the brush surface; that is, by application of the ultrasonic cleaning process using only the brush than the H 2 plus ultra pure water to wash away the brush repellent more contaminant particles. Based on the experimental data described above, it is known that the method of cleaning the brush surface 202 by combining the ultrasonic process with the functional water washing process provides optimum performance.
As shown in Figure 5B, the x-axis represents the type of fluid used to carry out the chemical process, wherein a second set of cleaning processes is represented in the x-axis, including post-CMP cleaning processes and by using anodized water, conventional water, respectively. A chemical process carried out with NH 4 solution and NH 4 solution plus H 2 water. The y-axis represents the amount of contaminating particles remaining on the surface of the brush. Figure 5B also shows the respective hydrogen potential (PH) of the solution system (e.g., the first solution system, the second solution system, or the third solution system) and the individual oxidation/reduction potential (ORP) of the contaminating particles for each chemical process. . According to the experimental results in Figure 5B, more than 20,000 contaminating particles 206 remain on the brush surface 202 during the post-CMP cleaning process (before the brush cleaning process). After the brush surface 202 is cleaned by using the anode water, the remaining amount of the contaminating particles 206 is reduced to about 1,500, wherein the solution system has a first pH equal to 2.0, and the oxidation/reduction potential of the contaminating particles Is equal to 1.35V. After cleaning the brush surface 202 by using the conventional ultrapure water, the remaining amount of the contaminating particles 206 is reduced to about 500, the solution system has a second pH equal to 7.0, and the oxidation of the contaminating particles 206/ The reduction potential is equal to 0.49V. After cleaning the brush surface 202 by using the NH 4 solution, the remaining amount of the contaminating particles 206 is reduced by at least 500, the solution system has a third pH equal to 8.5, and the oxidation/reduction of the contaminating particles 206 The potential is equal to 0.31V. Further, after cleaning the brush surface 202 by using the NH 4 solution plus the H 2 water, the remaining amount of the contaminating particles 206 is reduced by at least 100, and the solution system has a fourth pH equal to 8.5, and The oxidation/reduction potential of the contaminating particles 206 is equal to -0.49V. In the above experimental data, the method of cleaning the brush surface 202 by combining functional water processes and chemical processes provides excellent performance.
Referring to Figure 6, a flow diagram of a method 600 for cleaning a brush surface 202 having contaminants 204 is illustrated in accordance with a particular embodiment of the present disclosure. In step 602, the ultrasonic device 110 provides a mechanical wave. In step 604, the mechanical wave strips the contaminant 204 from the brush surface 202. In a specific embodiment, the contaminant 204 includes a contaminant particle 206 having a particle surface 208 having a first surface charge 210 having a second surface charge 212 thereon and the first surface charge 210 has the same polarity as the second surface charge 212. To prevent detached contaminating particles 206 from attaching back to the brush surface 202, the method 600 further includes a step 606 to enhance the second surface charge 212 on the surface 208 of the particle to enhance the first surface charge 210 and the second surface. The repulsive force between the charges 212. In step 608, the brush surface 202 is caused to have a motion. In a specific embodiment, the motion is a rotation.
In accordance with a specific embodiment of the present disclosure, a method for cleaning a brush surface having contaminants is provided. The method includes providing a mechanical wave; and the step of stripping the contaminant from the surface of the brush by the mechanical wave.
In various implementations, the contaminant comprises contaminant particles having a surface of the particle having a first surface charge on the surface of the brush, the surface of the particle having a second surface charge having the same polarity as the second surface charge The method includes the steps of: enhancing the second surface charge such that the contaminating particles are repelled from the brush surface; and causing the brush surface to have a motion wherein the polarity is negative and the motion comprises rotation. In one aspect, the step of enhancing the second surface charge on the surface of the particle is performed by a functional water process. In another aspect, the step of enhancing the second surface charge on the surface of the particle is performed by a chemical process. The mechanical wave is an ultrasonic wave and is applied to the brush surface via a fluid comprising one of functional water and an alkaline solution for cleaning the wafer in a chemical mechanical planarization process.
In accordance with a particular embodiment of the present disclosure, a method for cleaning a brush surface having a first surface charge and contaminating particles having a surface of a particle having a second surface, wherein the first surface charge is provided It has the same electrode polarity as the second surface charge. The method includes the step of enhancing the second surface charge such that the contaminating particles are repelled from the brush surface. In one aspect, the polarity is negative. In another aspect, the step of enhancing the second surface charge is performed by a functional water process. In further another aspect, the functional water is the process water by addition of H 2 to the system to form a solution, the solution system for reducing the oxidation / reduction potential. In still another aspect, the step of enhancing the second surface charge is performed by a chemical process. In still another aspect, the chemical process is carried out by adding an alkaline solution to reduce the boundary potential of the contaminating particles. In still another aspect, the chemical process is to aid in the dissociation of functional groups from the contaminating particles.
In accordance with some embodiments of the present disclosure, a device for cleaning a brush surface having a first surface charge and contaminating particles having a surface of a particle having a second surface charge, wherein the first surface is provided The surface charge has the same electrode polarity as the second surface charge. The apparatus includes a cleaning module configured to enhance the second surface charge on the surface of the particle such that the contaminating particles are repelled from the surface of the brush. In one aspect, the apparatus further includes a bath, an ultrasonic device, and a discharge unit. The bath includes a pool area, a bottom area, an inlet area, and a first wall disposed on the inlet area, wherein fluid is provided to the pool area via the inlet area, and the fluid includes at least one of functional water and an alkaline solution One. The ultrasonic device is disposed in the bottom region and provides a mechanical wave. The discharge unit includes an overflow region surrounding the first wall, a second wall and an outlet region surrounding the overflow region, wherein when the pool region overflows, an overflow portion of the fluid passes through the overflow region and the outlet The area is discharged. In another aspect, the mechanical wave is an ultrasonic wave. In still another aspect, the cleaning module performs a functional water process to reduce the oxidation/reduction potential of the fluid. In further another aspect, the chemical cleaning process module to reduce the zeta potential of contaminant particles, and the contaminant particles are selected PSi, Si 3 N 4, SiO 2, Al2O 3 and combinations group consisting of At least one of the groups. In still another aspect, the apparatus further includes an electrode detector for detecting one of the first and second surface charges.
While the invention has been described with respect to the embodiments of the present invention, it is understood that the invention is not limited to the specific embodiments disclosed. Accordingly, various modifications are intended to be included within the spirit and scope of the invention, and are intended to

100...裝置100. . . Device

102...清洗模組102. . . Cleaning module

104...第一清洗子模組104. . . First cleaning submodule

106...第二清洗子模組106. . . Second cleaning submodule

108...浴槽108. . . Bath

110...超音波裝置110. . . Ultrasonic device

112...排放單元112. . . Discharge unit

114...水池區域114. . . Pool area

116...底部區域116. . . Bottom area

118...入口區域118. . . Entrance area

120...第一壁120. . . First wall

122...溢流區域122. . . Overflow area

124...第二壁124. . . Second wall

126...出口區域126. . . Export area

128...偵測器128. . . Detector

Claims (10)

一種用於清洗具有一污染物的一刷子表面的方法,包含下述步驟:
提供一機械波;以及
藉由該機械波從該刷子表面剝離該污染物。
A method for cleaning a brush surface having a contaminant comprising the steps of:
Providing a mechanical wave; and peeling the contaminant from the surface of the brush by the mechanical wave.
如申請專利範圍第1項所述的方法,其中該污染物包括具有一微粒表面的一污染微粒,該刷子表面上具有一第一表面電荷,該微粒表面上具有一第二表面電荷,該第一表面電荷具有與該第二表面電荷相同的一電極性,以及該方法更包含下述步驟:
增強該第二表面電荷,使得該污染微粒從該刷子表面被排斥;以及
使該刷子表面具有一運動。
The method of claim 1, wherein the contaminant comprises a contaminant particle having a surface of the particle, the brush having a first surface charge on the surface and a second surface charge on the surface of the particle, the A surface charge has the same polarity as the second surface charge, and the method further comprises the steps of:
The second surface charge is enhanced such that the contaminating particles are repelled from the brush surface; and the brush surface has a motion.
如申請專利範圍第2項所述的方法,其中:
該電極性是負的;以及
該運動包括一轉動。
The method of claim 2, wherein:
The polarity is negative; and the motion includes a rotation.
如申請專利範圍第1項所述的方法,其中:
該機械波是一超音波,並經由一流體而被施加至該刷子表面;
該流體包括一功能水和一鹼性溶液的其中之一;以及
該刷子表面是用以在一化學機械平坦化製程中清洗一晶圓。
The method of claim 1, wherein:
The mechanical wave is an ultrasonic wave and is applied to the brush surface via a fluid;
The fluid includes one of a functional water and an alkaline solution; and the brush surface is used to clean a wafer in a chemical mechanical planarization process.
一種用於清洗一刷子表面的方法,該刷子表面具有一第一表面電荷與一污染微粒,該污染微粒具有一微粒表面,該微粒表面具有一第二表面電荷,其中該第一表面電荷具有與該第二表面電荷相同的一電極性,包含下述步驟:
使該第二表面電荷被增強,使得該污染微粒從該刷子表面被排斥。
A method for cleaning a brush surface, the brush surface having a first surface charge and a contaminating particle, the contaminating particle having a particle surface having a second surface charge, wherein the first surface charge has a The second electrode having the same surface charge has the following steps:
The second surface charge is enhanced such that the contaminating particles are repelled from the brush surface.
如申請專利範圍第5項所述的方法,其中增強該第二表面電荷的該步驟是藉由一功能水過程來進行,該功能水過程是藉由加入一H2水以形成一溶液系統來進行,用於降低該溶液系統的一氧化/還原電位。The method of claim 5, wherein the step of enhancing the second surface charge is performed by a functional water process by adding a H 2 water to form a solution system. Performed to reduce the oxidation/reduction potential of the solution system. 如申請專利範圍第5項所述的方法,其中增強該第二表面電荷的該步驟是藉由一化學過程來進行,該化學過程是藉由加入一鹼性溶液以降低該污染微粒的一界達電位來進行。The method of claim 5, wherein the step of enhancing the second surface charge is performed by a chemical process of reducing the boundary of the contaminated particles by adding an alkaline solution. The potential is reached. 如申請專利範圍第7項所述的方法,其中該化學過程是用於幫助一官能基從該污染微粒解離,該污染微粒是選自PSi、Si3N4、SiO2、Al2O3及其組合所組成的群組的其中之一。The method of claim 7, wherein the chemical process is for assisting in the dissociation of a functional group from the contaminating particles selected from the group consisting of PSi, Si 3 N 4 , SiO 2 , Al 2 O 3 and One of the groups consisting of its combination. 一種用於清洗一刷子表面的裝置,該刷子表面具有一第一表面電荷與一污染微粒,該污染微粒具有一微粒表面,該微粒表面具有一第二表面電荷,其中該第一表面電荷具有與該第二表面電荷相同的一電極性,包含:
一清洗模組,配置成用以增強該微粒表面上的該第二表面電荷,使得該污染微粒從該刷子表面被排斥,其中該清洗模組進行至少一功能水過程與一化學過程。
A device for cleaning a brush surface, the brush surface having a first surface charge and a contaminating particle, the contaminating particle having a particle surface having a second surface charge, wherein the first surface charge has a The second electrode having the same surface charge includes:
A cleaning module configured to enhance the second surface charge on the surface of the particle such that the contaminating particles are repelled from the surface of the brush, wherein the cleaning module performs at least one functional water process and a chemical process.
如申請專利範圍第9項所述的裝置,更包含:
一浴槽,包括一水池區域、一底部區域、一入口區域與配置在該入口區域之上的一第一壁,其中經由該入口區域將一流體提供至該水池區域,該流體包括一功能水與一鹼性溶液的至少其中之一;
一超音波裝置,配置在該底部區域中,並提供一機械波;
一排放單元,包括圍繞該第一壁的一溢流區域、圍繞該溢流區域的一第二壁、與一出口區域,其中當該水池區域溢流時,該流體的一溢流部分經由該溢流區域與該出口區域被排出;以及
一偵測器,偵測該第一與第二表面電荷其中之一的一電極性。

The device according to claim 9 of the patent application, further comprising:
a bath comprising a pool area, a bottom area, an inlet area and a first wall disposed above the inlet area, wherein a fluid is provided to the pool area via the inlet area, the fluid comprising a functional water and At least one of an alkaline solution;
An ultrasonic device disposed in the bottom region and providing a mechanical wave;
a discharge unit comprising an overflow region surrounding the first wall, a second wall surrounding the overflow region, and an outlet region, wherein when the pool region overflows, an overflow portion of the fluid passes through the The overflow area and the exit area are discharged; and a detector detects an polarity of one of the first and second surface charges.

TW102122165A 2013-01-11 2013-06-21 Method and device for cleaning a brush surface having a contamination TWI529789B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/740,128 US20140196744A1 (en) 2013-01-11 2013-01-11 Method and device for cleaning a brush surface having a contamination

Publications (2)

Publication Number Publication Date
TW201428832A true TW201428832A (en) 2014-07-16
TWI529789B TWI529789B (en) 2016-04-11

Family

ID=51164241

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102122165A TWI529789B (en) 2013-01-11 2013-06-21 Method and device for cleaning a brush surface having a contamination

Country Status (3)

Country Link
US (1) US20140196744A1 (en)
KR (2) KR20140091438A (en)
TW (1) TWI529789B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024580A (en) * 2015-03-31 2016-10-12 台湾积体电路制造股份有限公司 Method and system for cleansing wafer in cmp process of semiconductor manufacturing fabrication

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10410936B2 (en) * 2017-05-19 2019-09-10 Illinois Tool Works Inc. Methods and apparatuses for effluent monitoring for brush conditioning
JP7222721B2 (en) * 2019-01-17 2023-02-15 株式会社ディスコ cleaning mechanism

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0869352A1 (en) * 1997-04-03 1998-10-07 Applied Materials, Inc. Method for detecting metallic contaminants in submicron silicon surface layers of a semiconductor wafer
US6415803B1 (en) * 1999-10-06 2002-07-09 Z Cap, L.L.C. Method and apparatus for semiconductor wafer cleaning with reuse of chemicals
JP2001246331A (en) * 2000-03-08 2001-09-11 Sharp Corp Cleaning device
JP4752117B2 (en) * 2001-02-08 2011-08-17 日本テキサス・インスツルメンツ株式会社 Method for removing particles on a semiconductor wafer
KR100421171B1 (en) * 2001-05-30 2004-03-03 주식회사 코미코 Method for removing particulate contaminant on the surface of substrate and Apparatus for removing thereof
CN1918698B (en) * 2004-02-09 2010-04-07 三菱化学株式会社 Cleaning liquid for substrate for semiconductor device and cleaning method
US20070068558A1 (en) * 2005-09-06 2007-03-29 Applied Materials, Inc. Apparatus and methods for mask cleaning
JP5072025B2 (en) * 2006-02-01 2012-11-14 国立大学法人東北大学 Manufacturing method of semiconductor device
JP4999338B2 (en) * 2006-03-15 2012-08-15 東京エレクトロン株式会社 Substrate cleaning method, substrate cleaning apparatus, program, and recording medium
JP4936793B2 (en) * 2006-05-26 2012-05-23 東京エレクトロン株式会社 Cleaning apparatus and cleaning method, and computer-readable storage medium
US8252119B2 (en) * 2008-08-20 2012-08-28 Micron Technology, Inc. Microelectronic substrate cleaning systems with polyelectrolyte and associated methods
JP2010267340A (en) * 2009-05-15 2010-11-25 Showa Denko Kk Flow-through washing method and flow-through washing apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024580A (en) * 2015-03-31 2016-10-12 台湾积体电路制造股份有限公司 Method and system for cleansing wafer in cmp process of semiconductor manufacturing fabrication
US9610615B2 (en) 2015-03-31 2017-04-04 Taiwan Semiconductor Manufacturing Co., Ltd Method and system for cleansing wafer in CMP process of semiconductor manufacturing fabrication
TWI581872B (en) * 2015-03-31 2017-05-11 台灣積體電路製造股份有限公司 A method for processing a semiconductor wafer, a method for cleaning a semiconductor wafer after a cmp process, and a system for performing a cmp process
US10864557B2 (en) 2015-03-31 2020-12-15 Taiwan Semiconductor Manufacturing Co., Ltd. System for cleaning wafer in CMP process of semiconductor manufacturing fabrication
US11446712B2 (en) 2015-03-31 2022-09-20 Taiwan Semiconductor Manufacturing Company, Ltd. System for cleaning wafer in CMP process of semiconductor manufacturing fabrication

Also Published As

Publication number Publication date
TWI529789B (en) 2016-04-11
KR20140091438A (en) 2014-07-21
KR102051635B1 (en) 2019-12-04
KR20160028437A (en) 2016-03-11
US20140196744A1 (en) 2014-07-17

Similar Documents

Publication Publication Date Title
JP4709346B2 (en) Wafer edge cleaning equipment
TWI409862B (en) Cleaning method and solution for cleaning a wafer in a single wafer process
TW419399B (en) Post-lapping cleaning process for silicon wafers
JP2006278392A (en) Substrate cleaning method and substrate cleaning device
CN102446755B (en) Method for reducing particle defects after chemically mechanical polishing
TWI529789B (en) Method and device for cleaning a brush surface having a contamination
KR101442405B1 (en) Apparatus, method, and composition for far edge wafer cleaning
US20160083676A1 (en) Method and apparatus for high efficiency post cmp clean using engineered viscous fluid
US20150027489A1 (en) Mechanisms for cleaning wafer and scrubber
EP1088337A1 (en) Semiconductor wafer cleaning apparatus and method
JP2010021457A (en) Method of cleaning brush
KR20010021348A (en) Method and apparatus for cleaning a surface of a semiconductor wafer
CN103962345B (en) Method for removing debris of wafer
CN102626704A (en) Cleaning method used after chemical mechanical polishing and chemical mechanical polishing method
JP7020507B2 (en) Cleaning method for semiconductor wafers
JP2011151282A (en) Ultrasonic cleaning method
KR100677034B1 (en) Methods and apparatus for cleaning semiconductor devices
KR100825528B1 (en) A polishing method and a polishing device of silicon wafer
JP2006080138A (en) Polishing device and polishing method of semiconductor wafer
KR100633997B1 (en) Method for cleaning brush of CMP apparatus
KR100906043B1 (en) Method for cleaning a semiconductor device
JP2009275265A (en) Cleaning device of implement for film deposition
CN203993512U (en) Cmp brush and chemical mechanical polishing device
JP2000208462A (en) Conditioning method for wafer cleaning brush
KR20080002855U (en) Ultrasonic cleaner for manufacturing a cmos image sensor