TW201427251A - DC-DC controller and control method thereof - Google Patents
DC-DC controller and control method thereof Download PDFInfo
- Publication number
- TW201427251A TW201427251A TW101148806A TW101148806A TW201427251A TW 201427251 A TW201427251 A TW 201427251A TW 101148806 A TW101148806 A TW 101148806A TW 101148806 A TW101148806 A TW 101148806A TW 201427251 A TW201427251 A TW 201427251A
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- ramp
- valley
- slope
- comparison result
- Prior art date
Links
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
本發明是有關於一種直流轉直流控制器,且特別是有關於一種直流轉直流控制器及其控制方法。 The invention relates to a DC-to-DC controller, and in particular to a DC-DC controller and a control method thereof.
圖1為現有直流轉直流轉換器(DC-DC converter)的電路方塊圖。此直流轉直流轉換器100在卸載有一明顯的現象,即在負載的輸出電流IOUT1由重載(heavy load)或中載(medium load)變為輕載(light load)時發生輸出電壓VOUT1因振盪過大而有反應超越量(overshoot)的現象(如圖7B在時刻TB繪示的VOUT1)。直流轉直流轉換器100因卸載關係,輸出電流IOUT1將往下降而輸出電壓VOUT1往上升。理想上,電壓的調節方式應使輸出電壓VOUT1的振盪越小越好,但是習知技術因反應超越量而不容易維持在較小的上/下限值的振盪範圍。 1 is a circuit block diagram of a conventional DC-DC converter. The DC-to-DC converter 100 has a significant phenomenon in the unloading, that is, the output voltage V OUT1 occurs when the output current I OUT1 of the load changes from a heavy load or a medium load to a light load. due to too large oscillating phenomenon reactive than the amount (overshoot) of the (at time T B in FIG. 7B illustrates the V OUT1). Due to the unloading relationship of the DC-to-DC converter 100, the output current I OUT1 will fall and the output voltage V OUT1 will rise. Ideally, the voltage should be adjusted in such a way that the oscillation of the output voltage V OUT1 is as small as possible, but conventional techniques are not easily maintained at a small upper/lower limit oscillation range due to the reaction overshoot.
由於習知的直流轉直流轉換器100通常在部件150是以積體電路的方式呈現給用戶來使用,使得使用該積體電路的系統設計者不容易探究在輸出電流IOUT1卸載時,為何會使輸出電壓VOUT1產生過大的上下振盪。這種不明原因所導致的反應超越量,使得在設計系統與電壓控制上,面臨較多不可預期的問題。 Since the conventional DC-to-DC converter 100 is typically presented to the user in the form of an integrated circuit, the system designer using the integrated circuit does not readily investigate why the output current I OUT1 is unloaded. The output voltage V OUT1 is caused to generate excessive up and down oscillations. The amount of reaction caused by this unexplained cause makes it more unpredictable in designing systems and voltage control.
有鑑於此,本發明提出一種直流轉直流控制器及其控制方法,藉以解決先前技術所述及的問題。 In view of this, the present invention provides a DC-to-DC controller and a control method thereof, thereby solving the problems described in the prior art.
本發明提出一種直流轉直流控制器,用以提供脈寬調變訊號給後級電路來調整輸出電壓,此直流轉直流控制器包括斜坡產生器、動態斜坡谷值控制器、誤差放大器、第一比較器以及脈寬調變波形產生器。斜坡產生器用以提供斜坡訊號。動態斜坡谷值控制器耦接斜坡產生器,接收斜坡訊號,且反應於至少一工作參數,以產生斜坡谷值訊號。誤差放大器接收參考電壓與輸出電壓相關之輸出回授電壓,以提供誤差訊號。第一比較器耦接動態斜坡谷值控制器與誤差放大器。第一比較器接收斜坡谷值訊號與誤差訊號,以提供第一比較結果。脈寬調變波形產生器耦接第一比較器,並且反應於第一比較結果,以提供脈寬調變訊號。 The invention provides a DC-to-DC controller for providing a pulse width modulation signal to a subsequent stage circuit for adjusting an output voltage. The DC-to-DC controller includes a ramp generator, a dynamic ramp valley controller, an error amplifier, and a first Comparator and pulse width modulation waveform generator. A ramp generator is used to provide a ramp signal. The dynamic ramp valley controller is coupled to the ramp generator to receive the ramp signal and to react to at least one operating parameter to generate a ramp valley signal. The error amplifier receives the output feedback voltage associated with the reference voltage and the output voltage to provide an error signal. The first comparator is coupled to the dynamic ramp valley controller and the error amplifier. The first comparator receives the ramp valley signal and the error signal to provide a first comparison result. The pulse width modulation waveform generator is coupled to the first comparator and is responsive to the first comparison result to provide a pulse width modulation signal.
在本發明的一實施例中,直流轉直流控制器更包括補償電路。補償電路耦接於誤差放大器的輸出與接地之間。 In an embodiment of the invention, the DC to DC controller further includes a compensation circuit. The compensation circuit is coupled between the output of the error amplifier and ground.
在本發明的一實施例中,直流轉直流控制器中的動態斜坡谷值控制器包括取樣及保持單元、第二比較器以及斜坡谷值控制單元。取樣及保持單元耦接斜坡產生器,接收斜坡訊號,並且以第一比較結果作為工作參數。取樣及保持單元耦接斜坡產生器用以對斜坡訊號與第一比較結果中一已取樣及保持過後的直流交越電壓進行轉換,以提供交越值。第二比較器耦接斜坡產生器與取樣及保持單元,接收斜坡訊號與交越值,以提供第二比較結果。斜坡谷值控 制單元耦接斜坡產生器與第二比較器,接收斜坡訊號與第二比較結果,用以產生及改變斜坡谷值訊號的斜坡底部偏移量,並且輸出斜坡谷值訊號。 In an embodiment of the invention, the dynamic ramp valley controller in the DC to DC controller includes a sample and hold unit, a second comparator, and a ramp valley control unit. The sampling and holding unit is coupled to the ramp generator, receives the ramp signal, and uses the first comparison result as an operating parameter. The sampling and holding unit is coupled to the ramp generator for converting the ramp signal and a sampled and held DC crossover voltage in the first comparison result to provide a crossover value. The second comparator is coupled to the ramp generator and the sample and hold unit to receive the ramp signal and the crossover value to provide a second comparison result. Slope valley control The system is coupled to the ramp generator and the second comparator to receive the ramp signal and the second comparison result for generating and changing the slope bottom offset of the slope valley signal, and outputting the slope valley signal.
在本發明的一實施例中,直流轉直流控制器中的所述至少一工作參數為輸入電壓、輸出電壓、輸出電流或第一比較結果。 In an embodiment of the invention, the at least one operating parameter in the DC-to-DC controller is an input voltage, an output voltage, an output current, or a first comparison result.
在本發明的一實施例中,直流轉直流控制器中的脈寬調變波形產生器為恆定導通時間產生器。 In an embodiment of the invention, the pulse width modulation waveform generator in the DC to DC controller is a constant on time generator.
從另一觀點來看,本發明提出一種直流轉直流控制方法,用以提供脈寬調變訊號給後級電路來調整輸出電壓,直流轉直流控制方法包括:依據斜坡訊號且反應於至少一工作參數,以產生斜坡谷值訊號;依據參考電壓與輸出電壓,以提供誤差訊號;依據斜坡谷值訊號與誤差訊號,以提供第一比較結果;以及反應於第一比較結果,以提供脈寬調變訊號。 From another point of view, the present invention provides a DC-to-DC control method for providing a pulse width modulation signal to a subsequent stage circuit for adjusting an output voltage. The DC to DC control method includes: reacting to at least one operation according to a slope signal Parameters for generating a ramp valley signal; providing an error signal based on the reference voltage and the output voltage; providing a first comparison result based on the slope valley signal and the error signal; and reacting to the first comparison result to provide pulse width modulation Change signal.
在本發明的一實施例中,直流轉直流控制方法中的所述至少一工作參數為輸入電壓、輸出電壓、輸出電流或第一比較結果。 In an embodiment of the invention, the at least one operating parameter in the DC-to-DC control method is an input voltage, an output voltage, an output current, or a first comparison result.
在本發明的一實施例中,依據斜坡訊號且反應於至少一工作參數的步驟包括:接收斜坡訊號,並且以第一比較結果作為工作參數,用以對斜坡訊號與第一比較結果中一已取樣及保持過後的直流交越電壓進行轉換,以提供交越值;接收斜坡訊號與交越值,以提供第二比較結果;以及接收斜坡訊號與第二比較結果,用以產生及改變斜坡谷值 訊號的斜坡底部偏移量,並且輸出斜坡谷值訊號。 In an embodiment of the invention, the step of reacting to the at least one operating parameter according to the ramp signal comprises: receiving the ramp signal, and using the first comparison result as an operating parameter, for using one of the slope signal and the first comparison result Sampling and maintaining the DC crossover voltage for conversion to provide a crossover value; receiving the ramp signal and the crossover value to provide a second comparison result; and receiving the ramp signal and the second comparison result for generating and changing the slope valley value The bottom of the slope of the signal is offset and the ramp valley signal is output.
基於上述,本發明採用可修正的斜坡底部偏移量來調整斜坡谷值訊號,而用於修正的斜坡底部偏移量的產生方式可隨著低變遷的工作參數的條件而有所不一樣,可達成在卸載發生的過程中有效地避免非預期的脈衝。另一方面,所產生的斜坡谷值訊號與誤差訊號進行比較,而脈寬調變波形產生器可根據比較結果來提供脈寬調變訊號給後級電路進行輸出電壓的調整。 Based on the above, the present invention uses a correctable slope bottom offset to adjust the slope valley signal, and the modified slope bottom offset can be generated in accordance with the conditions of the low transition operating parameters. It is achieved that unintended pulses are effectively avoided during the unloading process. On the other hand, the generated ramp valley signal is compared with the error signal, and the pulse width modulation waveform generator can provide a pulse width modulation signal to the subsequent stage circuit for adjusting the output voltage according to the comparison result.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.
現將詳細參考本發明之實施例,並在附圖中說明所述實施例之實例。另外,在圖式及實施方式中使用相同或類似標號的元件/構件代表相同或類似部分。 Reference will now be made in detail be made to the embodiments of the invention In addition, the same or similar reference numerals are used in the drawings and the embodiments to represent the same or the like.
為了探究現有直流轉直流轉換器(DC-DC converter)100在輸出電流IOUT1卸載時所發生之輸出電壓VOUT1因振盪過大而有反應超越量(overshoot)的問題。圖2是直流轉直流轉換器100的輸出電壓、輸出電流與脈衝訊號的波形圖。請同時參閱圖1和圖2。在圖2中,輸出電壓VOUT1在時刻T1~T4的各點為其電壓值交越到第一數值VCROS1,且脈寬調變波形產生器140在時刻T1~T4的各點輸出一個脈衝訊號LX1。而在時刻T5發生輸出電流IOUT1卸載,輸出電壓VOUT1開始上升且輸出電流IOUT1下降,而 在時刻T6時輸出電壓VOUT1的電壓值並未交越到第一數值VCROS1,但是脈寬調變波形產生器140卻也輸出脈衝訊號LX1。所以此時刻T6的脈衝訊號LX1為非預期的,也是造成調節輸出電壓VOUT1會有反應超越量的原因。 In order to investigate the problem that the output voltage V OUT1 which occurs when the output current I OUT1 is unloaded by the conventional DC-DC converter 100 is over-reacted due to excessive oscillation. 2 is a waveform diagram of output voltage, output current, and pulse signal of the DC-to-DC converter 100. Please also refer to Figure 1 and Figure 2. In FIG. 2, the output voltage V OUT1 crosses its voltage value to the first value V CROS1 at each point from time T1 to T4, and the pulse width modulation waveform generator 140 outputs a pulse at each point of time T1 to T4. Signal L X1 . At time T5, the output current I OUT1 is unloaded, the output voltage V OUT1 starts to rise and the output current I OUT1 falls, and at time T6, the voltage value of the output voltage V OUT1 does not cross to the first value V CROS1 , but the pulse width The modulated waveform generator 140 also outputs a pulse signal L X1 . Therefore, the pulse signal L X1 of T6 is unpredictable at this time, which is also the cause of the reaction output voltage V OUT1 having a reaction overshoot.
以下將對反應超越量的成因做更詳細的分析。圖3A是直流轉直流轉換器100的脈衝訊號LX1的波形圖。圖3B是直流轉直流轉換器100的輸出電流IOUT1的波形圖。圖3C是直流轉直流轉換器100的斜坡訊號VRAMP1與誤差訊號VCOMP1的波形圖。圖3D是直流轉直流轉換器100的輸出電壓VOUT1的波形圖。請同時參閱圖1、圖3A至圖3D。首先,斜坡產生器110輸出斜坡訊號VRAMP1,誤差放大器120根據參考電壓VREF1與反饋的輸出電壓VOUT1提供誤差訊號VCOMP1。接著,比較器130根據斜坡谷值訊號VRAMP1與誤差訊號VCOMP1進行比較,脈寬調變波形產生器140根據比較結果輸出脈衝訊號LX1。在時刻T3、T4,斜坡谷值訊號VRAMP1與誤差訊號VCOMP1因相交越在第二數值VCROS2,使得脈寬調變波形產生器140輸出脈衝訊號LX。 The following is a more detailed analysis of the cause of the reaction excess. FIG. 3A is a waveform diagram of the pulse signal L X1 of the DC-to-DC converter 100. FIG. 3B is a waveform diagram of the output current I OUT1 of the DC-to-DC converter 100. FIG. 3C is a waveform diagram of the ramp signal V RAMP1 and the error signal V COMP1 of the DC-to-DC converter 100. FIG. 3D is a waveform diagram of the output voltage V OUT1 of the DC-to-DC converter 100. Please also refer to Figure 1, Figure 3A to Figure 3D. First, the ramp generator 110 outputs a ramp signal V RAMP1 , and the error amplifier 120 provides an error signal V COMP1 according to the reference voltage V REF1 and the feedback output voltage V OUT1 . Next, the comparator 130 compares the slope valley signal V RAMP1 with the error signal V COMP1 , and the pulse width modulation waveform generator 140 outputs the pulse signal L X1 according to the comparison result. At time T3, T4, the slope valley signal V RAMP1 and the error signal V COMP1 intersect at the second value V CROS2 , so that the pulse width modulation waveform generator 140 outputs the pulse signal L X .
承上述,在時刻T5發生輸出電流IOUT1卸載,輸出電壓VOUT1開始上升且輸出電流IOUT1下降,並且斜坡谷值訊號VRAMP1下降。斜坡谷值訊號VRAMP1在時刻T5_1下降到達第二數值VCROS2,但此刻未與誤差訊號VCOMP1相交越,而在時刻T6,斜坡谷值訊號VRAMP1與誤差訊號VCOMP1相交越在第三數值VCROS3,其中第三數值VCROS3低於第二數值VCROS2。於是在時刻T6,脈寬調變波形產生器140根據 比較結果又輸出一個脈衝訊號LX1,這也是造成習知直流轉直流轉換器100的運作會使輸出電壓VOUT1產生過大振盪的主要原因。 In the above, the output current I OUT1 is unloaded at time T5, the output voltage V OUT1 starts to rise and the output current I OUT1 falls, and the ramp valley signal V RAMP1 falls. The ramp valley signal V RAMP1 drops to the second value V CROS2 at time T5_1 , but does not intersect the error signal V COMP1 at the moment, and at time T6, the slope valley signal V RAMP1 intersects the error signal V COMP1 at the third value. V CROS3 , wherein the third value V CROS3 is lower than the second value V CROS2 . Then, at time T6, the pulse width modulation waveform generator 140 outputs a pulse signal L X1 according to the comparison result, which is also the main cause of the operation of the conventional DC-to-DC converter 100 to cause excessive oscillation of the output voltage V OUT1 .
圖4A是依照本發明一實施例之直流轉直流轉換器的電路圖。請參閱圖4A。直流轉直流轉換器(DC-DC converter)400A包括直流轉直流控制器410以及輸出模組480,其中直流轉直流控制器410耦接輸出模組480。直流轉直流控制器410用以提供脈寬調變訊號SPWM給後級電路(輸出模組480)來調整輸出電壓VOUT。 4A is a circuit diagram of a DC to DC converter in accordance with an embodiment of the present invention. Please refer to Figure 4A. The DC-DC converter 400A includes a DC-to-DC controller 410 and an output module 480. The DC-DC controller 410 is coupled to the output module 480. The DC-to-DC controller 410 is configured to provide a pulse width modulation signal S PWM to the subsequent stage circuit (output module 480) to adjust the output voltage V OUT .
直流轉直流控制器480包括斜坡產生器(ramp generator)420、動態斜坡谷值控制器(dynamic ramp valley controller)430、誤差放大器(error amplifier)440、第一比較器(first comparator)450以及脈寬調變波形產生器(pulse width modulation waveform generator,PWM waveform generator)460。動態斜坡谷值控制器430耦接斜坡產生器420。第一比較器450耦接動態斜坡谷值控制器430與誤差放大器440。而脈寬調變波形產生器460耦接第一比較器450與輸出模組480。 The DC-to-DC controller 480 includes a ramp generator 420, a dynamic ramp valley controller 430, an error amplifier 440, a first comparator 450, and a pulse width. A pulse width modulation waveform generator (PWM waveform generator) 460. The dynamic ramp valley controller 430 is coupled to the ramp generator 420. The first comparator 450 is coupled to the dynamic ramp valley controller 430 and the error amplifier 440. The pulse width modulation waveform generator 460 is coupled to the first comparator 450 and the output module 480.
斜坡產生器420用以產生並提供一斜坡訊號VRAMP。動態斜坡谷值控制器430接收斜坡訊號VRAMP,且反應於至少一工作參數432,以產生斜坡谷值訊號VRAMP-VALLEY,其中所述至少一工作參數432可以為輸入電壓VIN或輸出電壓VOUT或輸出電流IOUT或第一比較結果VCMP1或是頻率。斜坡谷值訊號VRAMP-VALLEY可表示為M值+offset 值,而offset值=f(VIN,VOUT,IOUT,VCMP1,…),其中M值為前一刻的固定值,而offset值為斜坡底部偏移量,且offset值可以是關於VIN、VOUT、IOUT、VCMP1等工作參數的函數式。 The ramp generator 420 is configured to generate and provide a ramp signal V RAMP . The dynamic ramp valley controller 430 receives the ramp signal V RAMP and is responsive to at least one operating parameter 432 to generate a ramp valley signal V RAMP-VALLEY , wherein the at least one operating parameter 432 can be an input voltage V IN or an output voltage V OUT or output current I OUT or first comparison result V CMP1 or frequency. The slope valley signal V RAMP-VALLEY can be expressed as an M value + offset value, and the offset value = f (V IN , V OUT , I OUT , V CMP1 , ...), where M is a fixed value of the previous moment, and offset The value is the bottom offset of the ramp, and the offset value can be a functional formula for operating parameters such as V IN , V OUT , I OUT , V CMP1 .
在本實施例中,此動態斜坡谷值控制器430採用了至少一工作參數來修正斜坡底部偏移量,進而調整斜坡谷值訊號VRAMP-VALLEY,從而避免習知技術的固定斜坡谷值影響到低變遷(low transition)的表現。此外,可隨低變遷時的工作參數的變化,而產生不一樣的斜坡底部偏移量。請注意,本發明並不特別限制工作參數的數量,而且動態斜坡谷值控制器430根據工作參數的調整方式可以是任意方法,一切端視實際設計需求而論。另外,目的之一在於卸載發生的過程中,動態斜坡谷值控制器430可有效地避免因間接地而產生非預期的脈衝。 In this embodiment, the dynamic ramp valley controller 430 uses at least one operating parameter to correct the slope bottom offset and adjust the slope valley signal V RAMP-VALLEY to avoid the fixed slope value of the prior art. To the performance of low transitions. In addition, different slope bottom offsets can be produced as the operating parameters change during low transitions. Please note that the present invention does not particularly limit the number of operating parameters, and the manner in which the dynamic ramp valley controller 430 adjusts according to the operating parameters may be any method, all depending on the actual design requirements. Additionally, one of the purposes is that the dynamic ramp valley controller 430 can effectively avoid inadvertently generating unintended pulses during the unloading process.
再者,誤差放大器440的非反相輸入端接收參考電壓VREF,而其反相輸入端接收與輸出電壓VOUT相關之輸出回授電壓。且誤差放大器440用以產生及提供誤差訊號VCOMP。第一比較器450的反相輸入端接收斜坡谷值訊號VRAMP-VALLEY,其非反相輸入端接收誤差訊號VCOMP,並且第一比較器450產生及提供第一比較結果VCMP1至脈寬調變波形產生器460。脈寬調變波形產生器460反應於第一比較結果VCMP1,並提供脈寬調變訊號SPWM至輸出模組480。輸出模組480接收直流的輸入電壓VIN且反應於脈寬調變訊號SPWM,從而可以提供一穩定的直流輸出電壓 VOUT,且在卸載時此輸出電壓VOUT的振盪可以維持在較小的上/下限值的振盪範圍(如圖7B在時刻TB繪示的VOUT)。 Furthermore, the non-inverting input of error amplifier 440 receives the reference voltage V REF and its inverting input receives the output feedback voltage associated with output voltage V OUT . The error amplifier 440 is used to generate and provide an error signal V COMP . The inverting input of the first comparator 450 receives the ramp valley signal V RAMP-VALLEY , the non-inverting input receives the error signal V COMP , and the first comparator 450 generates and provides the first comparison result V CMP1 to the pulse width Modulation waveform generator 460. The pulse width modulation waveform generator 460 is responsive to the first comparison result V CMP1 and provides a pulse width modulation signal S PWM to the output module 480. The output module 480 receives the DC input voltage V IN and is responsive to the pulse width modulation signal S PWM , so that a stable DC output voltage V OUT can be provided, and the oscillation of the output voltage V OUT can be maintained at a small time during unloading. upper / lower limit value of the range of oscillation (FIG. 7B at time T V OUT B is shown).
在又一實施例,直流轉直流控制器410可更包括補償電路470。此補償電路470包括串接的電阻R1與電容C1。補償電路470耦接於誤差放大器的輸出與接地GND之間。 In yet another embodiment, the DC to DC controller 410 can further include a compensation circuit 470. The compensation circuit 470 includes a series connected resistor R1 and a capacitor C1. The compensation circuit 470 is coupled between the output of the error amplifier and the ground GND.
另外,脈寬調變波形產生器460可以為恆定導通時間產生器(constant on time generator)。輸出模組480可以包括電感L1、驅動單元482以及切換單元484。切換單元484耦接至電感L1的第二端、直流的輸入電壓VIN與接地GND。驅動單元482耦接脈寬調變波形產生器460,依據脈寬調變訊號SPWM控制切換單元484切換輸入電壓VIN以及接地GND,進而於電感L1的第一端輸出一輸出電壓VOUT。 Additionally, the pulse width modulation waveform generator 460 can be a constant on time generator. The output module 480 can include an inductor L1, a driving unit 482, and a switching unit 484. The switching unit 484 is coupled to the second end of the inductor L1, the DC input voltage V IN and the ground GND. The driving unit 482 is coupled to the pulse width modulation waveform generator 460, and controls the switching unit 484 to switch the input voltage V IN and the ground GND according to the pulse width modulation signal S PWM , and further outputs an output voltage V OUT at the first end of the inductor L1.
舉例來說,切換單元484可包括第一電晶體M1以及第二電晶體M2。第二電晶體M2與第一電晶體M1串接於輸入電壓VIN與接地GND之間。第一電晶體M1與第二電晶體M2之閘極耦接驅動單元482,第一電晶體M1與第二電晶體M2之共同接點耦接電感L1的第二端,第一電晶體M1與第二電晶體M1的導通狀態受控於驅動單元482的驅動訊號UG、LG。另外,輸出模組480可更包括補償電路486,此補償電路486包括串接的電阻R2與電容C2。補償電路486耦接於電感L1的第一端與接地GND之間。 For example, the switching unit 484 can include a first transistor M1 and a second transistor M2. The second transistor M2 is connected in series with the first transistor M1 between the input voltage V IN and the ground GND. The gate of the first transistor M1 and the second transistor M2 are coupled to the driving unit 482, and the common contact of the first transistor M1 and the second transistor M2 is coupled to the second end of the inductor L1, and the first transistor M1 is The conduction state of the second transistor M1 is controlled by the driving signals UG, LG of the driving unit 482. In addition, the output module 480 can further include a compensation circuit 486 including a series connected resistor R2 and a capacitor C2. The compensation circuit 486 is coupled between the first end of the inductor L1 and the ground GND.
圖4B是依照本發明另一實施例之直流轉直流轉換器 的電路圖。請參閱圖4B。圖4B的電路架構是基於圖4A而進行的,主要差異是用在動態斜坡谷值控制器430A的工作參數。在圖4B,工作參數可以採用第一比較結果VCMP1,而動態斜坡谷值控制器430A根據所接收到的斜坡訊號VRAMP與第一比較結果VCMP1調整斜坡谷值訊號VRAMP-VALLEY。 4B is a circuit diagram of a DC to DC converter in accordance with another embodiment of the present invention. Please refer to Figure 4B. The circuit architecture of Figure 4B is based on Figure 4A with the main difference being the operating parameters used by the dynamic ramp valley controller 430A. In FIG. 4B, the operating parameter may take the first comparison result V CMP1 , and the dynamic ramp valley controller 430A adjusts the slope valley signal V RAMP-VALLEY according to the received ramp signal V RAMP and the first comparison result V CMP1 .
圖5是依照本發明一實施例之動態斜坡谷值控制器430A的詳細電路圖。請參閱圖5。動態斜坡谷值控制器430A包括取樣及保持單元(sample and hold unit)510、第二比較器(second comparator)520以及斜坡谷值控制單元(ramp valley control unit)530。取樣及保持單元510耦接斜坡產生器420、第二比較器520與斜坡谷值控制單元530。第二比較器520耦接斜坡產生器420、取樣及保持單元510與斜坡谷值控制單元530。取樣及保持單元510接收斜坡訊號VRAMP,並且以第一比較結果VCMP1作為工作參數,用以取樣及保持前一刻的直流交越電壓,並且對斜坡訊號VRAMP與第一比較結果VCMP1中的已取樣及保持過後的直流交越電壓進行轉換,以提供交越值VRAMP-SH。第二比較器520的反相輸入端接收斜坡訊號VRAMP,其非反相輸入端接收交越值VRAMP-SH,且第二比較器520提供第二比較結果VCMP2。其中,在一般正常操作,第二比較結果VCMP2為0,而當發生低變遷,由於斜坡訊號VRAMP下降,使得第二比較結果VCMP2轉態變成1。斜坡谷值控制單元530接收斜坡訊號VRAMP與第二比較結果VCMP2,用 以產生及改變斜坡谷值訊號的斜坡底部偏移量,並且輸出斜坡谷值訊號VRAMP-VALLEY。 FIG. 5 is a detailed circuit diagram of a dynamic ramp valley controller 430A in accordance with an embodiment of the present invention. Please refer to Figure 5. The dynamic ramp valley controller 430A includes a sample and hold unit 510, a second comparator 520, and a ramp valley control unit 530. The sample and hold unit 510 is coupled to the ramp generator 420, the second comparator 520, and the ramp valley control unit 530. The second comparator 520 is coupled to the ramp generator 420, the sample and hold unit 510, and the ramp valley value control unit 530. The sampling and holding unit 510 receives the ramp signal V RAMP and uses the first comparison result V CMP1 as an operating parameter for sampling and maintaining the DC balance voltage of the previous moment, and the slope signal V RAMP and the first comparison result V CMP1 The sampled and maintained DC crossover voltage is converted to provide the crossover value V RAMP-SH . The inverting input of the second comparator 520 receives the ramp signal V RAMP , its non-inverting input receives the crossover value V RAMP-SH , and the second comparator 520 provides the second comparison result V CMP2 . Wherein, in normal normal operation, the second comparison result V CMP2 is 0, and when a low transition occurs, the second comparison result V CMP2 transitions to 1 due to the falling of the ramp signal V RAMP . The ramp bottom value control unit 530 receives the ramp signal V RAMP and the second comparison result V CMP2 for generating and changing the slope bottom offset of the slope valley signal, and outputs the ramp valley signal V RAMP-VALLEY .
圖6A是脈寬調變波形產生器460的脈寬調變訊號SPWM的波形圖。圖6B是直流轉直流轉換器400B的輸出電流IOUT1的波形圖。圖6C是斜坡谷值訊號VRAMP-VALLEY與誤差訊號VCOMP的波形圖。圖6D是直流轉直流轉換器400B的輸出電壓VOUT的波形圖。請同時參閱圖4B、圖5、圖6A至圖6D。於本實施例中,在時刻T4_1、T4_2,斜坡谷值訊號VRAMP-VALLEY與誤差訊號VCOM1因相交越在第一位準值VLEV1,使得脈寬調變波形產生器460輸出脈寬調變訊號SPWM,以其中脈寬調變訊號SPWM以脈衝來呈現。當在時刻T5_2發生輸出電流IOUT卸載時,輸出電壓VOUT開始上升且輸出電流IOUT下降,並且斜坡谷值訊號VRAMP-VALLEY下降直到時刻T5_3變為固定值,而且固定在第一位準值VLEV1與第二位準值VLEV2之間的一數值。因此,在過了時刻T5_3,斜坡谷值訊號VRAMP-VALLEY的數值不會無止盡地往下降而與誤差訊號VCOM1相交越,故脈寬調變波形產生器460不會輸出非期望的脈衝,從而所產生的輸出電壓VOUT1沒有過大振盪的問題。 FIG. 6A is a waveform diagram of the pulse width modulation signal S PWM of the pulse width modulation waveform generator 460. Fig. 6B is a waveform diagram of the output current I OUT1 of the DC-to-DC converter 400B. 6C is a waveform diagram of the ramp valley signal V RAMP-VALLEY and the error signal V COMP . Fig. 6D is a waveform diagram of the output voltage V OUT of the DC-to-DC converter 400B. Please refer to FIG. 4B, FIG. 5, and FIG. 6A to FIG. 6D at the same time. In this embodiment, at time T4_1, T4_2, the slope valley signal V RAMP-VALLEY and the error signal V COM1 intersect at the first level value V LEV1 , so that the pulse width modulation waveform generator 460 outputs the pulse width adjustment. The variable signal S PWM is represented by a pulse width modulation signal S PWM in pulses. When the output current I OUT is unloaded at time T5_2, the output voltage V OUT starts to rise and the output current I OUT drops, and the ramp valley signal V RAMP-VALLEY falls until the time T5_3 becomes a fixed value, and is fixed at the first level. A value between the value V LEV1 and the second level value V LEV2 . Therefore, after the elapse of time T5_3, the value of the ramp valley signal V RAMP-VALLEY does not endlessly fall and intersects with the error signal V COM1 , so the pulse width modulation waveform generator 460 does not output an undesired The pulse, so that the resulting output voltage V OUT1 does not have excessive oscillations.
圖7A與圖7B是本發明實施例與習知技術的波形比較示意圖。為了方便比較,如圖7A的繪示,將本發明實施例的輸出電流IOUT與習知技術的輸出電流IOUT1進行正規化(normalization);如圖7B的繪示,將本發明實施例的輸出電壓VOUT與習知技術的輸出電壓VOUT1進行正規化。 在時刻TA,輸出電流由輕載變為重載,兩個輸出電壓的振盪相似,然而在時刻TB,輸出電流由重載變為輕載,則可以明顯看到習知的輸出電壓VOUT1產生過大的振盪,而本發明實施例的輸出電壓VOUT在相較之下為小很多。 7A and 7B are schematic diagrams showing waveform comparisons between an embodiment of the present invention and a prior art. For convenience of comparison, as shown in FIG. 7A, the output current I OUT of the embodiment of the present invention is normalized with the output current I OUT1 of the prior art; as shown in FIG. 7B, the embodiment of the present invention is The output voltage V OUT is normalized with the output voltage V OUT1 of the prior art. At time T A , the output current changes from light load to heavy load, and the oscillations of the two output voltages are similar. However, at time T B , the output current changes from heavy load to light load, and the known output voltage V can be clearly seen. OUT1 produces an excessive oscillation, and the output voltage V OUT of the embodiment of the present invention is much smaller in comparison.
基於上述,由於本發明採用可修正的斜坡底部偏移量來調整斜坡谷值訊號,因此在卸載發生的過程中可以有效地避免非預期的脈衝來影響到輸出電壓,有效地改善低變遷的反應超越量。 Based on the above, since the present invention uses the correctable slope bottom offset to adjust the slope valley signal, it is possible to effectively prevent unintended pulses from affecting the output voltage during the unloading process, and effectively improve the low transition response. Exceeding the amount.
基於上述實施例所揭示的內容,可以彙整出一種通用的直流轉直流控制方法。更清楚來說,圖8繪示為本發明一實施例之直流轉直流控制方法的流程圖。為了方便說明,請合併參閱圖4A和圖8,本實施例之直流轉直流控制方法可以包括以下步驟: 如步驟S801所示,依據斜坡訊號(VRAMP)且反應於至少一工作參數(432),以產生斜坡谷值訊號(VRAMP-VALLEY)。 Based on the content disclosed in the above embodiments, a general DC to DC control method can be integrated. More specifically, FIG. 8 is a flow chart of a DC-to-DC control method according to an embodiment of the present invention. For convenience of description, please refer to FIG. 4A and FIG. 8 together. The DC-to-DC control method of this embodiment may include the following steps: as shown in step S801, according to the ramp signal (V RAMP ) and reacting to at least one operating parameter (432) To generate a ramp valley signal (V RAMP-VALLEY ).
其次,如步驟S803所示,依據參考電壓(VREF)與輸出電壓(VOUT)相關之輸出回授電壓,以提供誤差訊號(VCOMP)。 Next, as shown in step S803, the output feedback voltage associated with the output voltage (V OUT ) is referenced according to the reference voltage (V REF ) to provide an error signal (V COMP ).
接著,如步驟S805所示,依據斜坡谷值訊號(VRAMP-VALLEY)與誤差訊號(VCOMP),以提供第一比較結果(VCMP1)。 Next, as shown in step S805, the slope comparison signal (V RAMP-VALLEY ) and the error signal (V COMP ) are used to provide a first comparison result (V CMP1 ).
接著,如步驟S807所示,反應於第一比較結果(VCMP1),以提供脈寬調變訊號(SPWM)。 Next, as shown in step S807, the first comparison result (V CMP1 ) is reacted to provide a pulse width modulation signal (S PWM ).
然後,如步驟S809所示,接收輸入電壓(VIN)且反應於脈寬調變訊號(SPWM),以提供輸出電壓(VOUT)。 Then, as shown in step S809, the input voltage (V IN ) is received and reacted to a pulse width modulation signal (S PWM ) to provide an output voltage (V OUT ).
綜上所述,本發明採用可修正的斜坡底部偏移量來調整斜坡谷值訊號,而用於修正的斜坡底部偏移量的產生方式可隨著低變遷的工作參數的條件而有所不一樣,可達成在卸載發生的過程中有效地避免非預期的脈衝。另一方面,所產生的斜坡谷值訊號與誤差訊號進行比較,而脈寬調變波形產生器可根據比較結果來提供脈寬調變訊號給後級電路進行輸出電壓的調整。 In summary, the present invention uses a correctable slope bottom offset to adjust the slope valley signal, and the modified slope bottom offset can be generated in accordance with the conditions of the low transition operating parameters. As such, it is achieved that unintended pulses are effectively avoided during the unloading process. On the other hand, the generated ramp valley signal is compared with the error signal, and the pulse width modulation waveform generator can provide a pulse width modulation signal to the subsequent stage circuit for adjusting the output voltage according to the comparison result.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and those skilled in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
100‧‧‧直流轉直流轉換器 100‧‧‧DC to DC converter
110‧‧‧斜坡產生器 110‧‧‧Slope generator
120‧‧‧誤差放大器 120‧‧‧Error amplifier
130‧‧‧比較器 130‧‧‧ comparator
140‧‧‧脈寬調變波形產生器 140‧‧‧ Pulse Width Modulation Waveform Generator
150‧‧‧部件 150‧‧‧ parts
400A、400B‧‧‧直流轉直流轉換器 400A, 400B‧‧‧DC to DC Converter
410‧‧‧直流轉直流控制器 410‧‧‧DC to DC controller
420‧‧‧斜坡產生器 420‧‧‧Slope generator
430、430A‧‧‧動態斜坡谷值控制器 430, 430A‧‧‧ Dynamic Slope Valley Controller
432‧‧‧至少一工作參數 432‧‧‧ at least one working parameter
440‧‧‧誤差放大器 440‧‧‧Error amplifier
450‧‧‧第一比較器 450‧‧‧First comparator
460‧‧‧脈寬調變波形產生器 460‧‧‧ Pulse width modulation waveform generator
470、486‧‧‧補償電路 470, 486‧‧‧ compensation circuit
480‧‧‧輸出模組 480‧‧‧Output module
482‧‧‧驅動單元 482‧‧‧ drive unit
484‧‧‧切換單元 484‧‧‧Switch unit
510‧‧‧取樣及保持單元 510‧‧‧Sampling and holding unit
520‧‧‧第二比較器 520‧‧‧Second comparator
530‧‧‧斜坡谷值控制單元 530‧‧‧Slope Valley Control Unit
C1、C2‧‧‧電容 C1, C2‧‧‧ capacitor
GND‧‧‧接地 GND‧‧‧ Grounding
L1‧‧‧電感 L1‧‧‧Inductance
LG、UG‧‧‧驅動訊號 LG, UG‧‧‧ drive signals
M1‧‧‧第一電晶體 M1‧‧‧first transistor
M2‧‧‧第二電晶體 M2‧‧‧second transistor
R1、R2‧‧‧電阻 R1, R2‧‧‧ resistance
T1~T6、T4_1、T4_2、T5_1~T5_3‧‧‧時刻 T1~T6, T4_1, T4_2, T5_1~T5_3‧‧‧
IOUT、IOUT1‧‧‧輸出電流 I OUT , I OUT1 ‧‧‧Output current
LX1‧‧‧脈衝訊號 L X1 ‧‧‧pulse signal
SPWM‧‧‧脈寬調變訊號 S PWM ‧‧‧ pulse width modulation signal
VIN‧‧‧輸入電壓 V IN ‧‧‧ input voltage
VCMP1‧‧‧第一比較結果 V CMP1 ‧‧‧ first comparison result
VCMP2‧‧‧第二比較結果 V CMP2 ‧‧‧ second comparison result
VCOMP、VCOMP1‧‧‧誤差訊號 V COMP , V COMP1 ‧‧‧ error signal
VCROS1‧‧‧第一數值 V CROS1 ‧‧‧ first value
VCROS2‧‧‧第二數值 V CROS2 ‧‧‧ second value
VCROS3‧‧‧第三數值 V CROS3 ‧‧‧ third value
VLEV1‧‧‧第一位準值 V LEV1 ‧‧‧ first priority
VLEV2‧‧‧第二位準值 V LEV2 ‧‧‧ second value
VOUT、VOUT1‧‧‧輸出電壓 V OUT , V OUT1 ‧‧‧ output voltage
VRAMP‧‧‧斜坡訊號 V RAMP ‧‧‧Slope Signal
VRAMP-SH‧‧‧交越值 V RAMP-SH ‧‧‧crossover value
VRAMP1‧‧‧斜坡谷值訊號 V RAMP1 ‧‧‧Slope Valley Signal
VRAMP-VALLEY‧‧‧斜坡谷值訊號 V RAMP-VALLEY ‧‧‧Slope Valley Signal
VREF、VREF1‧‧‧參考電壓 V REF , V REF1 ‧‧‧reference voltage
S801~S809‧‧‧本發明一實施例之直流轉直流轉換方法的各步驟 S801~S809‧‧‧ steps of a DC-to-DC conversion method according to an embodiment of the present invention
下面的所附圖式是本發明的說明書的一部分,繪示了本發明的示例實施例,所附圖式與說明書的描述一起說明本發明的原理。 The following drawings are a part of the specification of the invention, and illustrate the embodiments of the invention
圖1為現有直流轉直流轉換器的電路方塊圖。 1 is a circuit block diagram of a conventional DC to DC converter.
圖2是直流轉直流轉換器100的輸出電壓、輸出電流與脈衝訊號的波形圖。 2 is a waveform diagram of output voltage, output current, and pulse signal of the DC-to-DC converter 100.
圖3A是直流轉直流轉換器100的脈衝訊號LX1的波形圖。 FIG. 3A is a waveform diagram of the pulse signal L X1 of the DC-to-DC converter 100.
圖3B是直流轉直流轉換器100的輸出電流IOUT1的波 形圖。 FIG. 3B is a waveform diagram of the output current I OUT1 of the DC-to-DC converter 100.
圖3C是直流轉直流轉換器100的斜坡訊號VRAMP1與誤差訊號VCOMP1的波形圖。 FIG. 3C is a waveform diagram of the ramp signal V RAMP1 and the error signal V COMP1 of the DC-to-DC converter 100.
圖3D是直流轉直流轉換器100的輸出電壓VOUT1的波形圖。 FIG. 3D is a waveform diagram of the output voltage V OUT1 of the DC-to-DC converter 100.
圖4A是依照本發明一實施例之直流轉直流轉換器的電路圖。 4A is a circuit diagram of a DC to DC converter in accordance with an embodiment of the present invention.
圖4B是依照本發明另一實施例之直流轉直流轉換器的電路圖。 4B is a circuit diagram of a DC to DC converter in accordance with another embodiment of the present invention.
圖5是依照本發明一實施例之動態斜坡谷值控制器430A的詳細電路圖。 FIG. 5 is a detailed circuit diagram of a dynamic ramp valley controller 430A in accordance with an embodiment of the present invention.
圖6A是脈寬調變波形產生器460的脈寬調變訊號SPWM的波形圖。 FIG. 6A is a waveform diagram of the pulse width modulation signal S PWM of the pulse width modulation waveform generator 460.
圖6B是直流轉直流轉換器400B的輸出電流IOUT1的波形圖。 Fig. 6B is a waveform diagram of the output current I OUT1 of the DC-to-DC converter 400B.
圖6C是斜坡谷值訊號VRAMP-VALLEY與誤差訊號VCOMP的波形圖。 6C is a waveform diagram of the ramp valley signal V RAMP-VALLEY and the error signal V COMP .
圖6D是直流轉直流轉換器400B的輸出電壓VOUT的波形圖。 Fig. 6D is a waveform diagram of the output voltage V OUT of the DC-to-DC converter 400B.
圖7A與圖7B是本發明實施例與習知技術的波形比較示意圖。 7A and 7B are schematic diagrams showing waveform comparisons between an embodiment of the present invention and a prior art.
圖8繪示為本發明一實施例之直流轉直流控制方法的流程圖。 FIG. 8 is a flow chart of a DC-to-DC control method according to an embodiment of the present invention.
400A‧‧‧直流轉直流轉換器 400A‧‧‧DC to DC Converter
410‧‧‧直流轉直流控制器 410‧‧‧DC to DC controller
420‧‧‧斜坡產生器 420‧‧‧Slope generator
430‧‧‧動態斜坡谷值控制器 430‧‧‧Dynamic Slope Valley Controller
432‧‧‧至少一工作參數 432‧‧‧ at least one working parameter
440‧‧‧誤差放大器 440‧‧‧Error amplifier
450‧‧‧第一比較器 450‧‧‧First comparator
460‧‧‧脈寬調變波形產生器 460‧‧‧ Pulse width modulation waveform generator
470、486‧‧‧補償電路 470, 486‧‧‧ compensation circuit
480‧‧‧輸出模組 480‧‧‧Output module
482‧‧‧驅動單元 482‧‧‧ drive unit
484‧‧‧切換單元 484‧‧‧Switch unit
C1、C2‧‧‧電容 C1, C2‧‧‧ capacitor
GND‧‧‧接地 GND‧‧‧ Grounding
L1‧‧‧電感 L1‧‧‧Inductance
LG、UG‧‧‧驅動訊號 LG, UG‧‧‧ drive signals
M1‧‧‧第一電晶體 M1‧‧‧first transistor
M2‧‧‧第二電晶體 M2‧‧‧second transistor
R1、R2‧‧‧電阻 R1, R2‧‧‧ resistance
IOUT‧‧‧輸出電流 I OUT ‧‧‧Output current
SPWM‧‧‧脈寬調變訊號 S PWM ‧‧‧ pulse width modulation signal
VCMP1‧‧‧第一比較結果 V CMP1 ‧‧‧ first comparison result
VCOMP‧‧‧誤差訊號 V COMP ‧‧‧ error signal
VIN‧‧‧輸入電壓 V IN ‧‧‧ input voltage
VOUT‧‧‧輸出電壓 V OUT ‧‧‧ output voltage
VRAMP‧‧‧斜坡訊號 V RAMP ‧‧‧Slope Signal
VRAMP-VALLEY‧‧‧斜坡谷值訊號 V RAMP-VALLEY ‧‧‧Slope Valley Signal
VREF‧‧‧參考電壓 V REF ‧‧‧reference voltage
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101148806A TWI462453B (en) | 2012-12-20 | 2012-12-20 | Dc-dc controller and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101148806A TWI462453B (en) | 2012-12-20 | 2012-12-20 | Dc-dc controller and control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201427251A true TW201427251A (en) | 2014-07-01 |
TWI462453B TWI462453B (en) | 2014-11-21 |
Family
ID=51725759
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101148806A TWI462453B (en) | 2012-12-20 | 2012-12-20 | Dc-dc controller and control method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI462453B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111355907A (en) * | 2020-03-12 | 2020-06-30 | 西安微电子技术研究所 | Column-level ADC (analog to digital converter) for CMOS (complementary metal oxide semiconductor) image sensor and implementation method thereof |
CN111480296A (en) * | 2017-10-13 | 2020-07-31 | 大陆泰密克微电子有限责任公司 | Method, control device and apparatus for controlling a semiconductor bridge of an electrically operable motor |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7355368B2 (en) * | 2004-08-12 | 2008-04-08 | International Rectifier Corporation | Efficient in-rush current limiting circuit with dual gated bidirectional hemts |
US7498793B2 (en) * | 2007-03-09 | 2009-03-03 | O2Micro International Ltd. | Current-mode DC-to-DC-converter |
GB0912745D0 (en) * | 2009-07-22 | 2009-08-26 | Wolfson Microelectronics Plc | Improvements relating to DC-DC converters |
TWI442688B (en) * | 2009-12-20 | 2014-06-21 | Microsemi Corp | A power converter and a method of controlling a power converter |
US8587276B2 (en) * | 2010-08-02 | 2013-11-19 | O2Micro, Inc. | Controllers for controlling output signals of power converters |
US8334683B2 (en) * | 2010-08-24 | 2012-12-18 | Intersil Americas Inc. | System and method for current limiting a DC-DC converter |
TWM414763U (en) * | 2011-05-09 | 2011-10-21 | Richtek Technology Corp | Switching regulator and control circuit thereof |
-
2012
- 2012-12-20 TW TW101148806A patent/TWI462453B/en not_active IP Right Cessation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111480296A (en) * | 2017-10-13 | 2020-07-31 | 大陆泰密克微电子有限责任公司 | Method, control device and apparatus for controlling a semiconductor bridge of an electrically operable motor |
CN111480296B (en) * | 2017-10-13 | 2023-10-31 | 大陆泰密克微电子有限责任公司 | Method, control device and apparatus for controlling semiconductor bridge of electrically operable motor |
CN111355907A (en) * | 2020-03-12 | 2020-06-30 | 西安微电子技术研究所 | Column-level ADC (analog to digital converter) for CMOS (complementary metal oxide semiconductor) image sensor and implementation method thereof |
CN111355907B (en) * | 2020-03-12 | 2022-02-11 | 西安微电子技术研究所 | Column-level ADC (analog to digital converter) for CMOS (complementary metal oxide semiconductor) image sensor and implementation method thereof |
Also Published As
Publication number | Publication date |
---|---|
TWI462453B (en) | 2014-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI496387B (en) | Switching regulator and control circuit and control method thereof | |
US11381167B2 (en) | Power converter with slope compensation | |
TWI470392B (en) | Dc-dc controller and operation method thereof | |
JP5723578B2 (en) | Switching power supply | |
TWI466424B (en) | Dc-dc controller and dc-dc converter | |
TWI474146B (en) | Apparatus, controller, system and method for generating pwm control signal | |
TWI419453B (en) | Voltage converters and voltage generating methods | |
US20130043849A1 (en) | Voltage Converter Including Variable Mode Switching Regulator And Related Method | |
US9966849B1 (en) | Current mode voltage converter having fast transient response | |
KR20130036065A (en) | Buck switch-mode power converter large signal transient response optimizer | |
JP2009219240A (en) | Dc-dc converter | |
TWI591949B (en) | Switching Regulator with Ripple-Based Constant ON-Time (RBCOT) and Control Circuit and Control Method Thereof | |
US20150077080A1 (en) | Time signal generator and time signal generating method | |
US9467044B2 (en) | Timing generator and timing signal generation method for power converter | |
US10727743B2 (en) | Systems and methods for enhancing dynamic response of power conversion systems | |
TW201427254A (en) | DC-DC converter, time generating circuit, and operating method thereof | |
US8076917B2 (en) | Buck switching regulator with improved mode transition and control method thereof | |
TWM454670U (en) | DC-DC converter | |
TWI462453B (en) | Dc-dc controller and control method thereof | |
JP2005018311A (en) | Power circuit | |
US8018207B2 (en) | Switching regulator | |
TWI425755B (en) | Pwm buck converter with surge reduction and related method | |
CN110120627B (en) | Light emitting element drive circuit | |
WO2020146970A1 (en) | Power converter with multi-mode timing control | |
JP2008099362A (en) | DeltaSigma MODULATION CIRCUIT AND SWITCHING POWER SUPPLY EQUIPPED WITH THE DeltaSigma MODULATION CIRCUIT |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |