TW201427057A - Photovoltaic cell and process of manufacture - Google Patents

Photovoltaic cell and process of manufacture Download PDF

Info

Publication number
TW201427057A
TW201427057A TW102119716A TW102119716A TW201427057A TW 201427057 A TW201427057 A TW 201427057A TW 102119716 A TW102119716 A TW 102119716A TW 102119716 A TW102119716 A TW 102119716A TW 201427057 A TW201427057 A TW 201427057A
Authority
TW
Taiwan
Prior art keywords
photovoltaic
single piece
semiconductor
semiconductor material
exposing
Prior art date
Application number
TW102119716A
Other languages
Chinese (zh)
Inventor
Yusuke Nishi
Jose Briceno
Koji Matsumaru
Original Assignee
Nusola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/844,686 external-priority patent/US20130255774A1/en
Priority claimed from US13/844,428 external-priority patent/US20130255773A1/en
Priority claimed from US13/844,747 external-priority patent/US20130255775A1/en
Priority claimed from US13/844,298 external-priority patent/US8952246B2/en
Priority claimed from US13/844,521 external-priority patent/US9099578B2/en
Priority claimed from PCT/US2013/035043 external-priority patent/WO2013152054A1/en
Application filed by Nusola Inc filed Critical Nusola Inc
Publication of TW201427057A publication Critical patent/TW201427057A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A material is manufactured from a single piece of semiconductor material. The semiconductor material can be an n-type semiconductor. Such a manufactured material may have a top layer with a crystalline structure, transitioning into a transition layer, further transitioning into an intermediate layer, and further transitioning to the bulk substrate layer. The orientation of the crystalline pores of the crystalline structure align in layers of the material. The transition layer or intermediate layer includes a material that is substantially equivalent to intrinsic semiconductor. Also described is a method for manufacturing a material from a single piece of semiconductor material by exposing a top surface to an energy source until the transformation of the top surface occurs, while the bulk of the material remains unaltered. The material may exhibit photovoltaic properties.

Description

光電伏打電池及其製造方法 Photovoltaic cell and manufacturing method thereof 相關申請案之交叉参考 Cross-reference to related applications

本申請案主張以下各項之權益:於2013年3月15日提出申請之第13/844,686號美國申請案(代理人案號44671-047(P7));於2013年2月6日提出申請之第61/761,342號美國臨時申請案(代理人案號44671-047(P7));於2012年4月2日提出申請之第61/619,410號美國臨時申請案(代理人案號44671-033(P2));於2012年11月5日提出申請之第61/722,693號美國臨時申請案(代理人案號44671-034(P3));於2012年6月4日提出申請之第61/655,449號美國臨時申請案(代理人案號44671-035(P4));於2012年12月17日提出申請之第61/738,375號美國臨時申請案(代理人案號44671-038(P5));於2012年10月17日提出申請之第61/715,283號美國臨時申請案(代理人案號44671-041(P12));於2012年10月18日提出申請之第61/715,286號美國臨時申請案(代理人案號44671-043(P13));於2012年10月18日提出申請之第61/715,287號美國臨時申請案(代理人案號44671-044(P14))。 This application claims the following: US Application No. 13/844,686, filed on March 15, 2013 (Attorney Docket No. 44671-047 (P7)); filed on February 6, 2013 US Provisional Application No. 61/761,342 (Attorney Docket No. 44671-047 (P7)); US Provisional Application No. 61/619,410, filed on April 2, 2012 (Attorney Docket No. 44671-033) (P2)); US Provisional Application No. 61/722,693, filed on November 5, 2012 (Attorney Docket No. 44671-034 (P3)); Application No. 61/ on June 4, 2012 U.S. Provisional Application No. 655,449 (Attorney Docket No. 44671-035 (P4)); US Provisional Application No. 61/738,375, filed on December 17, 2012 (Attorney Docket No. 44671-038 (P5)) US Provisional Application No. 61/715,283, filed on October 17, 2012 (Attorney's Case No. 44671-041 (P12)); US Provisional No. 61/715,286, filed on October 18, 2012 Application (Attorney Docket No. 44671-043 (P13)); U.S. Provisional Application No. 61/715,287 (Attorney Docket No. 44671-044 (P14)) filed on October 18, 2012.

本發明係關於光電伏打裝置,且特定而言,係關於具有經改良光電伏打性質及一經簡化製造方法之一光電伏打裝置結構。 This invention relates to photovoltaic devices and, in particular, to photovoltaic device structures having improved photovoltaic properties and a simplified manufacturing process.

用於製造光電伏打材料之習用方法通常需要至一半導體之某些添加劑。此等添加劑(包含砷化鎵(GaAs))可係高毒性且致癌的,且其 在光電伏打材料之製造方法中之使用可增加負面健康及環境效應之風險。高度期望具有其中減少使用添加劑之光電伏打材料之一製造方法。 Conventional methods for making photovoltaic materials typically require certain additives to a semiconductor. These additives, including gallium arsenide (GaAs), are highly toxic and carcinogenic, and their Use in the manufacture of photovoltaic materials can increase the risk of negative health and environmental effects. It is highly desirable to have a method of manufacturing one of the photovoltaic materials in which the additive is used.

用於製造光電伏打材料之習用方法亦需要一多步驟方法或不同方法,其中每一步驟可能發生於一不同設備處及不同時間,且需要其自身管理及資源。舉例而言,不同摻雜方法適用於製造不同半導體晶圓,且將不同類型之晶圓以一特定方式密封在一起以形成一光電伏打材料。摻雜方法及晶圓之裝配之目的係在晶圓之間形成p-n接面或p-i-n接面以達成經裝配材料之一總體光電伏打效應。此等製造階段中之每一者招致一費用。高度期望具有減少所需方法或步驟之數目之光電伏打材料之一製造方法以減少成本。 Conventional methods for fabricating photovoltaic materials also require a multi-step process or a different approach, each of which may occur at a different device and at different times, and requires its own management and resources. For example, different doping methods are suitable for fabricating different semiconductor wafers and sealing different types of wafers together in a particular manner to form a photovoltaic cell. The purpose of the doping method and wafer assembly is to form a p-n junction or a p-i-n junction between the wafers to achieve an overall photovoltaic effect of one of the assembled materials. Each of these manufacturing stages incurs a fee. It is highly desirable to have a method of manufacturing a photovoltaic material that reduces the number of methods or steps required to reduce cost.

此章節中所闡述之方法係可推行之方法,但未必係先前已構思或推行之方法。因此,除非另有指示,否則不應假設此章節中所闡述之方法中之任一者僅由於其包含於此章節中而視為先前技術。 The methods described in this section are methods that can be implemented, but are not necessarily methods that have been previously conceived or implemented. Therefore, unless otherwise indicated, it should not be assumed that any of the methods set forth in this section are considered prior art only because they are included in this section.

本發明之較佳實施例提供製造具有光電伏打性質之一新材料之一新穎方法。實施例包含使用一加熱方法來製造以在一半導體晶圓上形成一或多個光電伏打結構之方法,且提供低製造成本之優點。實施例進一步包含用於減小相對半導體晶圓上之一高電阻率表面之一表面之電阻率之方法。 The preferred embodiment of the present invention provides a novel method of making one of the novel materials having photovoltaic properties. Embodiments include the use of a heating method to fabricate a method of forming one or more photovoltaic structures on a semiconductor wafer, and providing the advantage of low manufacturing cost. Embodiments further include a method for reducing the resistivity of a surface of one of the high resistivity surfaces on a semiconductor wafer.

10‧‧‧半導體晶圓/經處理半導體晶圓/半導體 10‧‧‧Semiconductor Wafer/Processed Semiconductor Wafer/Semiconductor

12‧‧‧晶圓固持部件 12‧‧‧ wafer holding parts

14‧‧‧熱 14‧‧‧Hot

16‧‧‧光電伏打結構/光電伏打產生層 16‧‧‧Photovoltaic structure / photoelectric voltaic layer

18‧‧‧半導體塊體 18‧‧‧Semiconductor block

20‧‧‧光電伏打結構/光電伏打材料 20‧‧‧Photovoltaic structure/photovoltaic materials

22‧‧‧所得晶圓結構/晶圓結構 22‧‧‧Material Wafer Structure/Wafer Structure

24‧‧‧晶圓結構 24‧‧‧ Wafer structure

26‧‧‧矽化物層/層 26‧‧‧ Telluride layer/layer

28‧‧‧所得經離子植入光電伏打材料/所得光電伏打材料 28‧‧‧Improved ion-implanted photovoltaic materials/photovoltaic materials obtained

30‧‧‧經離子植入層 30‧‧‧Ion implantation layer

32‧‧‧n++上n矽晶圓 32‧‧‧n++on n矽 wafer

33‧‧‧n++型塊體 33‧‧‧n++ block

34‧‧‧所得光電伏打材料 34‧‧‧Photovoltaic materials obtained

36‧‧‧隔離層/保護膜 36‧‧‧Separation/protective film

39‧‧‧晶圓固持結構/爐底座/大質量晶圓固持器 39‧‧‧Wafer holding structure / furnace base / high quality wafer holder

40‧‧‧光電伏打結構 40‧‧‧Photovoltaic structure

42‧‧‧光電伏打材料 42‧‧‧Photovoltaic materials

44‧‧‧完成電池 44‧‧‧Complete battery

46‧‧‧頂部電極 46‧‧‧Top electrode

48‧‧‧底部電極 48‧‧‧ bottom electrode

800‧‧‧俯視圖 800‧‧‧Top view

802‧‧‧仰視圖 802‧‧ ‧ bottom view

在附圖之各圖中以實例方式而非限制方式圖解說明本發明之較佳實施例,且在附圖中相似元件符號指代類似元件,且在附圖中:圖1係根據本發明之某些實施例之圖解說明在製造方法之一加熱階段期間之一剖面之一視圖之圖式。 In each of the drawings FIG way of example and not limitation in the way of illustration preferred embodiments of the present invention, and in which like reference numerals refer to similar elements and in which: Figure 1 is according to the present invention Some embodiments illustrate a diagram of one of a section of a profile during one of the heating stages of the manufacturing process.

圖2係根據本發明之某些實施例之圖解說明在形成光電伏打結構 之後的製造方法之一個階段期間之光電伏打材料之一剖面之一視圖之一圖式。 2 is a diagram of one of a cross-sectional view of one of the photovoltaic materials during one stage of the fabrication process after forming the photovoltaic device, in accordance with certain embodiments of the present invention.

圖3係根據本發明之某些實施例之圖解說明在移除光電伏打結構中之一者之後的製造方法之一個階段期間之一剖面之一視圖之一圖式。 3 is a diagram of one of a cross-sectional views during one stage of a fabrication process after removal of one of the photovoltaic structures, in accordance with certain embodiments of the present invention.

圖4係根據本發明之某些實施例之圖解說明在形成一個矽化物層之後的製造方法之一個階段期間之一剖面之一視圖之一圖式。 4 is a diagram of one of a cross-sectional views during one stage of a fabrication process after forming a germanide layer, in accordance with some embodiments of the present invention.

圖5係根據本發明之某些實施例之圖解說明在離子植入及活化方法之後的製造方法之一個階段期間之一剖面之一視圖之一圖式。 5 is a diagram illustrating one of a cross-sectional views during one stage of a fabrication process after ion implantation and activation methods, in accordance with certain embodiments of the present invention.

圖6係根據本發明之某些實施例之圖解說明在一n++上n型半導體晶圓之製造方法之一加熱階段期間之一剖面之一視圖之一圖式。 6 is a diagram of one of a cross-sectional views during one of the heating stages of a method of fabricating an n-type semiconductor wafer on an n++, in accordance with some embodiments of the present invention.

圖7係根據本發明之某些實施例之圖解說明在一n++型層上形成一光電伏打結構之後的製造方法之一個階段期間之一剖面之一視圖之一圖式。 7 is a diagram of one of a cross-sectional views during one stage of a fabrication process after forming a photovoltaic structure on an n++ type layer, in accordance with some embodiments of the present invention.

圖8係根據本發明之某些實施例之圖解說明在製造方法之一加熱階段之前及之後具有一隔離層之一剖面之兩個視圖之一圖式。 Figure 8 is a diagram illustrating one of two views of a section of a barrier layer before and after a heating phase of a fabrication method, in accordance with some embodiments of the present invention.

圖9係根據本發明之某些實施例之圖解說明在藉助一大晶圓固持結構執行以防止在底部表面處形成一光電伏打層之製造方法之一加熱階段期間之一剖面之一視圖之一圖式。 9 is a view of one of the sections during a heating phase of a fabrication method performed by a large wafer holding structure to prevent formation of a photovoltaic layer at the bottom surface, in accordance with certain embodiments of the present invention. A picture.

圖10係根據本發明之某些實施例之圖解說明在一加熱階段之後的製造方法之一個階段期間之一剖面之一視圖之一圖式。 10 is a diagram illustrating one of a cross-sectional views during one stage of a manufacturing process after a heating stage, in accordance with certain embodiments of the present invention.

圖11係根據本發明之某些實施例之圖解說明裝配至一光電伏打裝置中之一光電伏打材料之一剖面之一視圖之一圖式。 Figure 11 is a diagram showing one of a cross-sectional view of one of the photovoltaic materials assembled into a photovoltaic device in accordance with some embodiments of the present invention.

圖12係根據本發明之某些實施例之圖解說明一方法之一實例之一流程圖,藉由該方法,一光電伏打材料自一半導體晶圓而製造且裝配至一光電伏打裝置中。 12 is a flow chart illustrating an example of a method in which a photovoltaic cell is fabricated from a semiconductor wafer and assembled into a photovoltaic device in accordance with some embodiments of the present invention. .

圖13係根據本發明之某些實施例之圖解說明經量測開路電壓與用於形成圖3中所展示之材料之加熱溫度之間的關係之一曲線圖。 Figure 13 is a graph illustrating the relationship between the measured open circuit voltage and the heating temperature used to form the material shown in Figure 3, in accordance with certain embodiments of the present invention.

在以下說明中,已陳述眾多特定細節以提供對本發明之實施例之一更透徹理解。然而,熟習此項技術者將瞭解,可在不具有此等特定細節之情況下或在具有針對此等細節之不同實施方案之情況下實踐本發明之實施例。另外,未詳細展示某些眾所周知之結構以避免使本發明不必要地模糊。 In the following description, numerous specific details are set forth to provide a It will be appreciated by those skilled in the art, however, that the embodiments of the invention may be practiced without the specific details. In addition, some well known structures are not shown in detail to avoid unnecessarily obscuring the invention.

用以形成光電伏打結構之加熱方法 Heating method for forming a photovoltaic structure

根據本發明之實施例,以一加熱方法來處理具有晶圓中之一摻雜劑元素之一半導體晶圓以製造具有光電伏打性質之一材料。該加熱方法誘發晶圓中之摻雜劑元素之擴散,從而導致半導體電阻率之一改變。藉由控制此加熱方法之技術性細節,諸如除下文進一步所闡述之其他參數之外,加熱速度、溫度、時間及冷卻速度,一光電伏打結構形成於半導體晶圓之表面處。 In accordance with an embodiment of the present invention, a semiconductor wafer having one of the dopant elements in the wafer is processed in a heating process to produce a material having photo-voltaic properties. This heating method induces diffusion of dopant elements in the wafer, resulting in a change in one of the semiconductor resistivities. A photovoltaic structure is formed at the surface of the semiconductor wafer by controlling the technical details of the heating method, such as heating parameters, temperature, time, and cooling rate, in addition to other parameters set forth further below.

根據本發明之較佳實施例,圖1係根據本發明之實施例之在製造方法之一初始加熱階段期間之晶圓固持部件12上之半導體晶圓10之一剖面之一圖式。在某些實施例中,將熱14施加至晶圓之頂部及底部。當晶圓之兩側皆經受臨限條件(包含加熱)時,光電伏打高電阻率層形成於曝露於熱源之晶圓之每一側中。 In accordance with a preferred embodiment of the present invention, FIG. 1 is a diagram of a cross-section of a semiconductor wafer 10 on a wafer holding member 12 during an initial heating phase of one of the fabrication methods in accordance with an embodiment of the present invention. In some embodiments, heat 14 is applied to the top and bottom of the wafer. When both sides of the wafer are subjected to a threshold condition (including heating), a photovoltaic high resistivity layer is formed in each side of the wafer exposed to the heat source.

根據本發明之某些實施例,半導體晶圓10包括一經摻雜單晶矽晶圓,諸如一n型矽晶圓。該矽晶圓具有高於10μm之一厚度。在一較佳實施例中,矽晶圓具有200μm之一厚度。在某些實施例中,半導體晶圓10包括矽(Si)、鍺(Ge)或任何其他IV族半導體中之任一者。在某些實施例中,半導體晶圓10在晶體定向之(100)面中具有1Ω.cm至5Ω.cm之一電阻率。 In accordance with certain embodiments of the present invention, semiconductor wafer 10 includes a doped single crystal germanium wafer, such as an n-type germanium wafer. The germanium wafer has a thickness greater than one of 10 μm. In a preferred embodiment, the germanium wafer has a thickness of one of 200 μm. In some embodiments, semiconductor wafer 10 includes any of germanium (Si), germanium (Ge), or any other group IV semiconductor. In some embodiments, the semiconductor wafer 10 has 1 Ω in the (100) plane of the crystal orientation. Cm to 5Ω. One of the resistivities of cm.

摻雜劑元素包括磷(P)、氮(N)、銻(Sb)、砷(As)或V族中之任何其他元素中之任一者。在一項實例中,矽晶圓中之磷含量高於0.01 ppb。在某些實施例中,作為標準n型矽晶圓製作之一結果,磷含量為存在於n型矽晶圓中之最小量之摻雜劑。對於一較高濃度,磷藉由諸如離子植入及化學擴散之方法而添加。 The dopant element includes any one of phosphorus (P), nitrogen (N), antimony (Sb), arsenic (As), or any other element of the V group. In one example, the phosphorus content in the germanium wafer is above 0.01 ppb. In some embodiments, as a result of one of the standard n-type germanium wafer fabrications, the phosphorus content is the minimum amount of dopant present in the n-type germanium wafer. For a higher concentration, phosphorus is added by methods such as ion implantation and chemical diffusion.

根據本發明之實施例,晶圓加熱以多種方法而執行,包含但不限於紅外線加熱、雷射加熱及熱壁爐加熱。在某些實施例中,用於處理半導體晶圓10之加熱方法影響由經處理半導體晶圓10構造之光電伏打電池之光電伏打效能。在某些實施例中,在加熱階段之後的冷卻速率係光電伏打電池製作之一關鍵因素,而加熱速率係光電伏打電池製作之一不太關鍵因素。 In accordance with embodiments of the present invention, wafer heating is performed in a variety of ways including, but not limited to, infrared heating, laser heating, and hot fireplace heating. In some embodiments, the heating method used to process the semiconductor wafer 10 affects the photovoltaic performance of the photovoltaic cell constructed from the processed semiconductor wafer 10. In some embodiments, the cooling rate after the heating phase is a key factor in the fabrication of photovoltaic cells, and the heating rate is one of the less critical factors in photovoltaic cell fabrication.

在一較佳實施例中,在以下條件下獲得最大光電伏打電池效能:加熱溫度高於1500 K、加熱時間高於5分鐘、約1x10-3Pa。表1提供根據本發明之實施例之在加熱半導體晶圓10中所使用之參數之一概述。 In a preferred embodiment, maximum photovoltaic cell performance is achieved under the following conditions: heating temperature above 1500 K, heating time above 5 minutes, and about 1 x 10 -3 Pa. Table 1 provides an overview of one of the parameters used in heating semiconductor wafer 10 in accordance with an embodiment of the present invention.

在完成加熱方法之後,半導體晶圓10變換為包含如圖2中之圖式中所圖解說明之分層式結構之一光電伏打半導體材料11。在如所展示之實施例中,加熱方法導致在半導體10內形成光電伏打結構16、半導體塊體18及光電伏打結構20以形成光電伏打半導體材料11。光電伏打結構16及20兩者在其中皆包含至少一高電阻率層。 After completion of the heating method, comprising a semiconductor wafer 10 as converted in the drawings as FIG. 2 explained the hierarchical structure of one of photovoltaics 11 illustrates a semiconductor material. In the embodiment as shown, the heating method results in the formation of the photovoltaic structure 16, the semiconductor bulk 18, and the photovoltaic structure 20 within the semiconductor 10 to form the photovoltaic alloy material 11. Both of the photovoltaic structures 16 and 20 include at least one high resistivity layer therein.

用於處理底部表面以降低其電阻率之方法 Method for treating the bottom surface to reduce its resistivity

根據本發明之某些實施例,在當兩個表面皆經受表1之條件時形成光電伏打結構16及20之加熱方法之後,光電伏打半導體晶圓11之底部表面經處理以在將材料製作成一光電伏打電池之前減小其電阻率。處理包含但不限於以下各項中之一或多者:實體移除底部表面層、在底部表面處形成矽化物及向底部表面層中進行離子植入。一底部表面處之電阻率之此降低自由光電伏打半導體晶圓11製作之一光電伏打電池產生一較大輸出。 According to some embodiments of the present invention, after the heating method of forming the photovoltaic devices 16 and 20 when both surfaces are subjected to the conditions of Table 1, the bottom surface of the photovoltaic wafer 11 is processed to Reduce the resistivity before making a photovoltaic cell. Treatment includes, but is not limited to, one or more of the following: the entity removes the bottom surface layer, forms a telluride at the bottom surface, and ion implants into the bottom surface layer. This reduction in resistivity at a bottom surface frees a photovoltaic cell to produce a larger output from one of the photovoltaic cells.

在某些實施例中,藉由移除光電伏打結構20中之某些結構或全部結構而實體移除一高電阻率層。圖3係根據本發明之較佳實施例之圖解說明在熱處理及移除之後的光電伏打半導體晶圓11之一圖式。在某些實施例中,藉由以下各項而達成光電伏打結構之消除:實體拋光晶圓表面、化學蝕刻或其他拋光方法。所得晶圓結構22包含光電伏打結構16及半導體塊體18,如圖3中所展示。 In some embodiments, a high resistivity layer is physically removed by removing some or all of the structures in the photovoltaic structure 20. 3 is a diagram illustrating a photovoltaic cell semiconductor wafer 11 after heat treatment and removal in accordance with a preferred embodiment of the present invention. In some embodiments, the elimination of the photovoltaic structure is achieved by solid polishing of the wafer surface, chemical etching, or other polishing methods. The resulting wafer structure 22 comprises a structure 16 photovoltaics and semiconductor body 18, as shown in FIG.

在某些實施例中,藉由用可拋光一矽基板之一研磨粒(諸如一金剛石膏、礬土或碳化矽)之拋光來達成實體拋光。由於熱處理條件可影響底部高電阻率層之深度,因此經移除層之厚度變化。在某些實施例中,將底部表面拋光至10μm之一深度。在某些實施例中,使用化學機械平坦化(CMP)技術來拋光光電伏打半導體晶圓11。在某些實施例中,使用實體拋光及CMP之一組合自光電伏打半導體晶圓11之底部表面移除材料。 In some embodiments, solid polishing is achieved by polishing with abrasive particles, such as a diamond paste, alumina or tantalum carbide, which can polish one of the substrates. Since the heat treatment conditions can affect the depth of the bottom high resistivity layer, the thickness of the removed layer varies. In certain embodiments, the bottom surface is polished to a depth of one of 10 [mu]m. In some embodiments, the photovoltaic wafer semiconductor wafer 11 is polished using a chemical mechanical planarization (CMP) technique. In some embodiments, the material is removed from the bottom surface of the photovoltaic cell wafer 11 using one of a combination of solid polishing and CMP.

在某些實施例中,半導體10之高電阻率底部表面藉由使用高輸出束之雷射剝蝕(包含但不限於YAG雷射、準分子雷射、氬離子雷射、固態綠雷射或電子束雷射)或藉由對後表面執行線掃描而移除。在某些實施例中,剝蝕經提供僅用於基板之中心以防止由已散射至光電伏打發電層上或至頂部表面上之透明導電膜上之在雷射剝蝕期間形 成之片段導致之半導體基板之故障或表面洩漏。在某些實施例中,一保護膜(諸如聚醯亞胺膜)在雷射剝蝕之前形成於底部表面上,且在雷射剝蝕之後藉由剝離及清潔而移除以使所散射片段最小化。 In some embodiments, the high resistivity bottom surface of semiconductor 10 is laser ablated by using a high output beam (including but not limited to YAG laser, excimer laser, argon ion laser, solid green laser or electron) Beam laser) or removed by performing a line scan on the back surface. In certain embodiments, the ablation is provided only for the center of the substrate to prevent deformation during laser ablation by the transparent conductive film that has been scattered onto the photovoltaic layer or onto the top surface A fragment of the semiconductor substrate is caused by a failure or surface leakage. In certain embodiments, a protective film, such as a polyimide film, is formed on the bottom surface prior to laser ablation and is removed by lift and clean after laser ablation to minimize scattering of the fragments .

在某些實施例中,使用化學蝕刻來自光電伏打半導體晶圓11移除底部高電阻率表面層。矽之一保護膜(諸如一SiN膜)形成於頂部表面處以遮蔽頂部表面以免與一蝕刻化學劑接觸。光電伏打半導體晶圓11之底側浸漬至蝕刻化學劑中以用於將底部表面蝕刻至約10μm之一深度。所使用之蝕刻化學劑之實例包含但不限於KOH、NaOH、硝酸與氫氟酸之混合溶液或其中用醋酸及水來稀釋此等材料之一蝕刻溶液。另一選擇為,可使用乾式蝕刻。在藉由蝕刻而移除底部表面之後,移除保護膜以曝露光電伏打半導體晶圓11之頂部表面。舉例而言,使用磷酸來移除SiN膜。 In some embodiments, the bottom high resistivity surface layer is removed from the photovoltaic cell wafer 11 using chemical etching. A protective film, such as a SiN film, is formed at the top surface to shield the top surface from contact with an etch chemistry. The bottom side of the photovoltaic cell wafer 11 is immersed in an etch chemistry for etching the bottom surface to a depth of about 10 [mu]m. Examples of the etching chemistry used include, but are not limited to, KOH, NaOH, a mixed solution of nitric acid and hydrofluoric acid, or an etching solution in which one of these materials is diluted with acetic acid and water. Alternatively, dry etching can be used. After the bottom surface is removed by etching, the protective film is removed to expose the top surface of the photovoltaic cell wafer 11. For example, phosphoric acid is used to remove the SiN film.

在某些實施例中,處理底部表面以用於降低底部表面之電阻率包含在加熱方法之後於光電伏打半導體晶圓11之後表面上形成矽化物。圖4圖解說明此晶圓結構24之一項實例,晶圓結構24包括光電伏打結構16、半導體塊體18、光電伏打結構20及矽化物層26。為在加熱方法之後形成矽化物,首先在底部表面上形成一初始金屬材料。此等金屬包含但不限於鎳、鈷、鎂、鉛、鉑、鐵、鉿、銠、錳、鋯、鈦、鉻、鉬及釩。將金屬材料形成至底部表面上可使用濺鍍方法,包含金屬有機化學汽相沈積(MOCVD)、真空蒸發、分子束磊晶(MBE)、脈衝雷射沈積(PLD)或其他塗佈方法。 In some embodiments, treating the bottom surface for reducing the resistivity of the bottom surface comprises forming a telluride on the surface behind the photovoltaic wafer 11 after the heating process. 4 illustrates an example of such a wafer structure 24 that includes a photovoltaic structure 16, a semiconductor body 18, a photovoltaic structure 20, and a germanide layer 26. To form a telluride after the heating process, an initial metallic material is first formed on the bottom surface. Such metals include, but are not limited to, nickel, cobalt, magnesium, lead, platinum, iron, ruthenium, osmium, manganese, zirconium, titanium, chromium, molybdenum, and vanadium. The formation of the metallic material onto the bottom surface can be performed using a sputtering process including metal organic chemical vapor deposition (MOCVD), vacuum evaporation, molecular beam epitaxy (MBE), pulsed laser deposition (PLD), or other coating methods.

在某些實施例中,一旦形成金屬材料,便將熱施加至表面以形成矽化物。加熱溫度取決於所使用之材料而變化。舉例而言,將Co形成至矽之一表面上需要620K或更高之熱處理以形成矽化物。 In certain embodiments, once a metallic material is formed, heat is applied to the surface to form a telluride. The heating temperature varies depending on the materials used. For example, forming Co onto one of the surfaces of the crucible requires a heat treatment of 620 K or higher to form a telluride.

降低底部表面處之高電阻率層之電阻率所需之矽化物之厚度取決於高電阻率層之厚度。用於層26之矽化物形成之一實例性範圍介於 約20nm至10μm之間。 The thickness of the telluride required to reduce the resistivity of the high resistivity layer at the bottom surface depends on the thickness of the high resistivity layer. An exemplary range of telluride formation for layer 26 is between It is between about 20 nm and 10 μm.

在某些實施例中,處理底部表面以用於降低底部表面之電阻率包含底部表面處之離子植入以將材料之一部分轉換成一n++型半導體。圖5圖解說明根據本發明之某些實施例之自光電伏打半導體材料11變換之所得經離子植入光電伏打材料28。在用以形成光電伏打半導體材料11之加熱方法之後,在底部表面處執行離子植入以增加材料中之摻雜劑之濃度。舉例而言,在其中光電伏打半導體材料11為用磷摻雜之一n型基板之某些實施例中,磷之離子植入係較佳的。在某些實施例中,一砷摻雜劑係較佳的。可使用劑量及植入能量之任何範圍以達成一所期望濃度。在某些實施例中,所期望濃度為1020(cm-3)。在某些實施例中,藉由一擴散爐中之一擴散方法而非藉由離子植入來完成磷摻雜。在某些實施例中,以100keV至300keV之一高能階執行離子植入,後續接著以約5keV至50keV之一低能階之額外植入。此一離子植入方法首先將離子較深地植入高電阻率層中,且接著在其之後增加至表面之濃度。在某些實施例中,在離子植入之後,在室溫下執行用於活化之摻雜劑活化處理,且舉例而言,在一擴散爐中執行活化退火。如圖5中所展示,所得光電伏打材料28包含光電伏打結構16、半導體塊體18、及變換為經離子植入層30之至少光電伏打材料20。 In some embodiments, treating the bottom surface for reducing the resistivity of the bottom surface comprises ion implantation at the bottom surface to partially convert one of the materials into an n++ type semiconductor. FIG. 5 illustrates the resulting ion implanted photovoltaic material 28 transformed from a photovoltaic cell material 11 in accordance with certain embodiments of the present invention. After the heating method used to form the photovoltaic cell material 11, ion implantation is performed at the bottom surface to increase the concentration of the dopant in the material. For example, in certain embodiments in which the photovoltaic alloy material 11 is an n-type substrate doped with phosphorus, ion implantation of phosphorus is preferred. In certain embodiments, an arsenic dopant is preferred. Any range of dosages and implant energies can be used to achieve a desired concentration. In certain embodiments, the desired concentration is 10 20 (cm -3 ). In some embodiments, phosphorus doping is accomplished by a diffusion method in a diffusion furnace rather than by ion implantation. In certain embodiments, ion implantation is performed at one of 100 keV to 300 keV high energy levels, followed by additional implantation at a low energy level of about 5 keV to 50 keV. This ion implantation method first implants ions deeper into the high resistivity layer and then increases to the concentration of the surface afterwards. In some embodiments, after ion implantation, a dopant activation process for activation is performed at room temperature, and for example, activation annealing is performed in a diffusion furnace. As shown in FIG. 5, the resulting material 28 comprises photovoltaics photovoltaics structure 16, the semiconductor blocks 18, 20 and the converted material is playing at least 30 of the ion-implanted layer photovoltaics.

用以降低底部表面之電阻率之預防性方法 Preventive method for reducing the resistivity of the bottom surface

在某些實施例中,可在加熱方法之前對半導體10執行一預防性方法以藉由防止(舉例而言)在光電伏打結構20中形成至少一個高電阻率層而減小底部表面之電阻率。在加熱之前所執行之預防性方法包含但不限於:使用防止在加熱後旋即形成一底部高電阻率層之一特定類型之半導體晶圓,諸如一n++上n矽基板;形成一保護膜以防止一底部表面在加熱後旋即形成為一高電阻率層;及藉由將加熱集中至一個表面或藉由將半導體10放置於一貯熱器上以遮蔽熱源而防止一個表面被 加熱至一充分溫度。 In some embodiments, a prophylactic method can be performed on the semiconductor 10 prior to the heating process to reduce the resistance of the bottom surface by preventing, for example, forming at least one high resistivity layer in the photovoltaic structure 20. rate. The prophylactic method performed prior to heating includes, but is not limited to, using a semiconductor wafer of a particular type that prevents formation of a bottom high resistivity layer upon heating, such as an n++ substrate; forming a protective film to prevent a bottom surface is formed as a high resistivity layer upon heating; and a surface is prevented by concentrating heat to a surface or by placing the semiconductor 10 on a heat reservoir to shield the heat source Heat to a sufficient temperature.

圖6圖解說明在半導體基板變換為一光電伏打材料時一n++上n矽晶圓32之加熱階段。在某些實施例中,一n++上n矽基板可藉由以下操作而形成:首先形成一n++型矽基板,且然後在n++型矽上方形成一n型矽。在某些實施例中,n++型矽基板藉由一Czochralski(CZ)方法而形成且具有約0.001Ω.cm之一電阻率。在某些實施例中,藉由在n++型矽上方磊晶生長所形成之n型矽具有約5Ω.cm之一電阻率且具有約5μm之一厚度。雖然在本說明中使用一n++型矽,但可在不背離本發明之精神之情況下於底部層處使用一n+型半導體晶圓或具有進一步較低電阻率之一基板。如圖6中所展示,在表1中所指定之條件下,加熱方法適用於此n++上n型矽基板以在頂部表面處形成一光電伏打產生層16而不在底部表面處形成一光電伏打層。圖7中展示包括一光電伏打結構16及一n++型塊體33之所得光電伏打材料34。 Figure 6 illustrates the heating phase of a n++ wafer 32 on a n++ substrate when the semiconductor substrate is converted to a photovoltaic material. In some embodiments, an n++ upper n-substrate can be formed by first forming an n++ type germanium substrate and then forming an n-type germanium over the n++ type germanium. In some embodiments, the n++ type germanium substrate is formed by a Czochralski (CZ) method and has about 0.001 Ω. One of the resistivities of cm. In some embodiments, the n-type germanium formed by epitaxial growth over the n++ type germanium has about 5 Ω. One of the resistivities of cm and has a thickness of about 5 μm. Although an n++ type germanium is used in the present description, an n+ type semiconductor wafer or a substrate having a further lower resistivity can be used at the bottom layer without departing from the spirit of the present invention. As 6 shown in FIG lower as designated in Table 1 conditions, the heating method is applicable thereto the n ++ n-type silicon substrate to form a photovoltaics at the top surface play generation layer 16 without forming a photovoltaics at the bottom surface Layering. Shown in Figure 7 comprises a photovoltaics structure 16 and an n ++ type block 33 of the material 34 resulting photovoltaics.

在某些實施例中,如圖8之俯視圖800中所展示,在加熱方法之前於半導體10之底部表面上形成一隔離層或保護膜36以防止高電阻率層在加熱方法期間形成於半導體10之底部表面上。保護膜36可包括藉由濺鍍而形成之以約20nm之一厚度之一SiN膜。在加熱步驟之後,僅在半導體晶圓10之頂部部分處形成高電阻率光電伏打結構16,如圖8之仰視圖802中所展示。在執行下一步驟之前移除隔離層或保護膜36以用於完成太陽能電池。雖然在此實例中,保護膜係SiN膜,但在不背離本發明之精神之情況下可使用其他材料,包含但不限於:矽系列無機膜,諸如SiC、SiO2、SiON及SiOC;金屬;金屬合金;有機材料;及具有等於或高於一溫度之一抗熱性之任何材料,在該溫度下,藉由參考圖1及表1所闡述之加熱方法而形成光電伏打層。 In certain embodiments, as 800 shown in FIG plan view 8, the forming an insulating layer on the bottom surface of the semiconductor 10 of the prior heating method or a protective film 36 to prevent the formation of the semiconductor 10 during the high-resistivity layer at the heating method On the bottom surface. The protective film 36 may include a SiN film formed by sputtering to have a thickness of about 20 nm. After the heating step, to form a high resistivity photovoltaics only at a top portion of the semiconductor wafer 10 play structure 16 as the bottom in FIG. 8 802 shown in FIG. The isolation layer or protective film 36 is removed for completion of the solar cell prior to performing the next step. Although the protective film is a SiN film in this example, other materials may be used without departing from the spirit of the invention, including but not limited to: bismuth series inorganic films such as SiC, SiO 2 , SiON and SiOC; metals; a metal alloy; an organic material; and any material having heat resistance equal to or higher than a temperature at which a photovoltaic layer is formed by a heating method as described with reference to FIG. 1 and Table 1.

在使用SiC作為隔離層36之某些實施例中,在將光電伏打材料形成為一光電伏打電池之前不移除該層,此乃因該層不負面地影響光電 伏打效能。舉例而言,當將一底部電極放置於由SiC製成之隔離層36上時,隔離層36形成一緩衝器以在半導體塊體18與一底部電極之間形成歐姆接觸。於---提出申請之第13/---號同在申請中之美國專利申請案中進一步闡述使用SiC以在半導體塊體18與一底部電極之間形成歐姆接觸之方法之細節,該美國專利申請案主張於2012年6月4日提出申請之第61/655,449號美國臨時申請案(代理人案號44671-035(P4))之優先權。 In certain embodiments in which SiC is used as the isolation layer 36, the layer is not removed prior to forming the photovoltaic material into a photovoltaic cell, since the layer does not negatively affect the photovoltaic Volta performance. For example, when a bottom electrode is placed on the isolation layer 36 made of SiC, the isolation layer 36 forms a buffer to form an ohmic contact between the semiconductor body 18 and a bottom electrode. Details of a method of using SiC to form an ohmic contact between a semiconductor block 18 and a bottom electrode is further set forth in the U.S. Patent Application Serial No. Serial No. Serial No.-----. The patent application claims priority to US Provisional Application No. 61/655,449 (Attorney Docket No. 44671-035 (P4)) filed on June 4, 2012.

在某些實施例中,如圖9中所展示,一預防性方法包含將半導體晶圓10放置於包括一冷卻材料、一熱耗散材料或用於加熱方法之一貯熱器之一晶圓固持結構或爐底座39上以防止底部表面被加熱至用於產生一光電伏打層之臨限溫度,諸如上文參考圖1及表1所闡述之方法及條件。舉例而言,雖然晶圓固持結構39將底部表面維持在約1100K之一溫度,但頂部表面達到約1500K之一所期望溫度。在某些實施例中,半導體晶圓10經放置與藉助鎢合金而組態之一晶圓固持結構39直接接觸。在某些實施例中,進一步用水冷卻晶圓固持結構之內側。在某些實施例中,用提供能夠在不具有水冷卻之情況下減小半導體10之底部表面之溫度之一大熱容之一材料或一形狀來組態晶圓固持結構39。可在不背離本發明之精神之情況下使用具有一相對大質量以充當一貯熱器及充當用於底部部分及表面對熱源之一遮蔽物之其他材料。舉例而言,可使用其他高熔點金屬,包含鉬、鉭及鈮,且可使用非金屬材料,諸如石英。在某些實施例中,將與半導體晶圓10接觸之一大質量晶圓固持器39之總成引入至一預加熱爐中。 In certain embodiments, as shown in FIG. 9, a prophylactic method comprising the semiconductor wafer 10 is placed comprises a coolant, a heat dissipation material, or one for one of the wafer heating means heat reservoir The structure or furnace base 39 is held to prevent the bottom surface from being heated to a threshold temperature for producing a photovoltaic layer, such as the methods and conditions set forth above with reference to Figures 1 and 1. For example, while the wafer holding structure 39 maintains the bottom surface at a temperature of about 1100 K, the top surface reaches a desired temperature of about 1500 K. In some embodiments, the semiconductor wafer 10 is placed in direct contact with one of the wafer holding structures 39 configured by means of a tungsten alloy. In some embodiments, the inside of the wafer holding structure is further cooled with water. In some embodiments, the wafer holding structure 39 is configured with a material or a shape that provides a large heat capacity capable of reducing the temperature of the bottom surface of the semiconductor 10 without water cooling. A material having a relatively large mass to act as a heat reservoir and as a shield for the bottom portion and surface to one of the heat sources can be used without departing from the spirit of the invention. For example, other high melting point metals, including molybdenum, niobium and tantalum, may be used, and non-metallic materials such as quartz may be used. In some embodiments, the assembly of one of the high quality wafer holders 39 in contact with the semiconductor wafer 10 is introduced into a preheating furnace.

根據某些實施例,使用如圖9中所展示之加熱方法,形成包括受熱處理影響之一頂部層及不受熱處理影響之一底部層之光電伏打結構40,如圖10中所展示。 According to certain embodiments, heating method as shown in FIG. 9, the forming comprises one of heat treatment on the photoelectric volts from a top layer and a bottom layer of one of the heat treatment on the play structure 40, as shown in Fig.

晶圓結構22中之頂部表面電阻率之一減小期望使光電伏打效能 最佳化。在一項實施例中,當光電伏打結構16與半導體塊體18之間的接面經定位相對接近於晶圓表面或在0.5微米及1.5微米內時,電池效率為高。當該接面太深入至塊體中或高於2微米時,由於至晶圓中之光之經減少穿透,電池效率開始降級。處理溫度、時間及處理壓力係可調整的以用於達成接面之一所期望位置。 One of the top surface resistivities in wafer structure 22 is reduced to the desired photovoltaic performance optimization. In one embodiment, the cell efficiency is high when the junction between the photovoltaic device 16 and the semiconductor body 18 is positioned relatively close to the wafer surface or within 0.5 microns and 1.5 microns. When the junction is too deep into the bulk or above 2 microns, cell efficiency begins to degrade due to reduced penetration of light into the wafer. The processing temperature, time, and process pressure are adjustable to achieve a desired location of one of the junctions.

光電伏打電池之形成 Formation of photovoltaic cells

圖11圖解說明使用如上述實例中之任一者中所闡述而產生之一光電伏打材料42變為一光電伏打電池之一實例。一完成電池44包含放置於光電伏打材料42之頂部表面上方之一頂部電極46。在較佳實施例中,任何透明導電氧化物(TCO)(諸如氧化銦錫(ITO)、ZnO、NiO)或任何其他類型之透明電極可用作一頂部電極。取決於光電伏打電池之效率目標及所期望成本,亦可使用半透明(Semi transparent or translucent)電極。可將一選用抗反射塗層放置於頂部表面上(TCO層之頂部上)以便改良光吸收及因此電池效能。 Figure 11 illustrates an example of the use of one of the photovoltaic cells 42 to become a photovoltaic cell, as set forth in any of the above examples. A completed battery 44 includes a top electrode 46 disposed above the top surface of the photovoltaic material 42. In a preferred embodiment, any transparent conductive oxide (TCO) such as indium tin oxide (ITO), ZnO, NiO, or any other type of transparent electrode can be used as a top electrode. Semi-transparent or translucent electrodes may also be used depending on the efficiency goal of the photovoltaic cell and the desired cost. An optional anti-reflective coating can be placed on the top surface (on top of the TCO layer) to improve light absorption and thus battery performance.

完成電池44包含底部電極48。在某些實施例中,一鋁層較佳用於底部電極48。底部電極之厚度可在1微米與800微米之間變化,通常為約400微米。可藉由物理汽相沈積(濺鍍)、網版印刷、噴墨印刷或其他標準印刷或金屬沈積技術來製作一底部鋁電極。底部電極48可直接放置於光電伏打材料42之底部表面上方或其之間的一緩衝器上方,如上文參考相關美國專利申請案13/---先前所闡述。 The completed battery 44 includes a bottom electrode 48. In some embodiments, an aluminum layer is preferred for the bottom electrode 48. The thickness of the bottom electrode can vary between 1 and 800 microns, typically about 400 microns. A bottom aluminum electrode can be fabricated by physical vapor deposition (sputtering), screen printing, ink jet printing, or other standard printing or metal deposition techniques. The bottom electrode 48 can be placed directly over a buffer on or near the bottom surface of the photovoltaic material 42, as previously described with reference to related U.S. Patent Application Serial No. 13/-.

用以減少結晶缺陷之較低溫度加熱方法 Lower temperature heating method for reducing crystal defects

在某些實施例中,使用上文參考圖1圖6圖8圖9所闡述之加熱方法而形成之一光電伏打材料可產生負面地影響由光電伏打材料製成之一光電伏打電池之光電伏打效能之晶體缺陷。在形成上文所闡述之各別光電伏打材料之後所應用之一較低溫度加熱方法可用於減少結晶缺陷以增加光電輸出。根據本發明之某些實施例,第二加熱方法 之溫度範圍包含高於650 K且低於1000 K之溫度。在一特定實例中,在惰性氣體環境中將具有870 K之溫度之一熱施加至光電伏打材料達一小時。可在將光電伏打材料裝配成一光電伏打電池之前或之後執行此較低溫度加熱方法。在裝配光電伏打電池之後執行較低溫度加熱提供藉由第二加熱自鋁底部電極移除任何黏結劑之優點。 In some embodiments, forming a photovoltaic material using the heating methods set forth above with reference to Figures 1 , 6 , 8, and 9 can negatively affect one of the photovoltaics made of photovoltaic material. Crystal defects in the photovoltaic performance of voltaic cells. One of the lower temperature heating methods applied after forming the respective photovoltaic materials described above can be used to reduce crystal defects to increase the photovoltaic output. According to some embodiments of the invention, the temperature range of the second heating method comprises a temperature above 650 K and below 1000 K. In a specific example, one of the temperatures of 870 K is applied to the photovoltaic material in an inert gas atmosphere for one hour. This lower temperature heating method can be performed before or after assembling the photovoltaic material into a photovoltaic cell. Performing lower temperature heating after assembly of the photovoltaic cell provides the advantage of removing any binder from the aluminum bottom electrode by the second heating.

用於製造光電伏打材料及電池之方法 Method for manufacturing photovoltaic materials and batteries

參考圖4中之一流程圖來闡述根據本發明之某些實施例之用於形成一光電伏打材料及電池之一方法1200之步驟。在步驟1202處,執行晶圓清潔。在某些實施例中,藉由以下操作來清潔矽晶圓:將晶圓浸漬至一氫氟酸溶液中,後續接著水清潔及空氣亁燥。此方法之主要目標係移除形成於晶圓表面上之自然氧化物膜。 Referring to FIG. 4 to illustrate a flowchart for one embodiment is formed of a material and one Photovoltaic cell 1200 of method steps in accordance with certain embodiments of the present invention. At step 1202, wafer cleaning is performed. In some embodiments, the tantalum wafer is cleaned by dipping the wafer into a hydrofluoric acid solution followed by water cleaning and air drying. The primary goal of this method is to remove the native oxide film formed on the surface of the wafer.

在步驟1204處,執行晶圓加熱。在上文表1中所闡述之條件下,將熱源施加至晶圓之頂部及底部。在步驟1206處,執行用於降低底部層之電阻率之方法。用於降低底部層之電阻率之方法包含但不限於實體移除底部表面層、在底部表面處形成矽化物及向底部表面層中進行離子植入以將材料之一部分轉換成一n++型半導體。在某些實施例中,在步驟1204之前執行步驟1206。用於在一加熱步驟之前降低底部層之電阻率之方法包含但不限於:使用防止在加熱後旋即形成一底部高電阻率層之一特定類型之半導體晶圓,諸如一n++上n矽基板;形成一保護膜以防止一底部表面在加熱後旋即形成為一高電阻率層;及藉由將加熱集中至一個表面或藉由將半導體放置於一貯熱器上以遮蔽熱源而防止一個表面被加熱至一充分溫度。 At step 1204, wafer heating is performed. Heat sources were applied to the top and bottom of the wafer under the conditions set forth in Table 1 above. At step 1206, a method for reducing the resistivity of the bottom layer is performed. Methods for reducing the resistivity of the bottom layer include, but are not limited to, physically removing the bottom surface layer, forming a telluride at the bottom surface, and ion implanting into the bottom surface layer to partially convert one of the materials into an n++ type semiconductor. In some embodiments, step 1206 is performed prior to step 1204. A method for reducing the resistivity of the bottom layer prior to a heating step includes, but is not limited to, using a semiconductor wafer of a particular type that prevents formation of a bottom high resistivity layer upon heating, such as an n++ substrate; Forming a protective film to prevent a bottom surface from being formed into a high resistivity layer immediately after heating; and preventing a surface from being blocked by concentrating heat to a surface or by placing a semiconductor on a heat reservoir to shield the heat source Heat to a sufficient temperature.

在步驟1208處,視情況執行晶圓清潔(若需要)。在步驟1210處,將一頂部電極放置於晶圓之光電伏打結構16上方。在較佳實施例中,任何透明導電氧化物(TCO)(諸如氧化銦錫(ITO)、ZnO、NiO)或任何其他類型之透明電極可用作一頂部電極。取決於光電伏打電池之效率 目標及所期望成本,亦可使用半透明電極。 At step 1208, wafer cleaning is performed as appropriate (if needed). At step 1210, a top electrode is placed over the photovoltaic structure 16 of the wafer. In a preferred embodiment, any transparent conductive oxide (TCO) such as indium tin oxide (ITO), ZnO, NiO, or any other type of transparent electrode can be used as a top electrode. Depending on the efficiency of the photovoltaic cell Translucent electrodes can also be used for the target and desired cost.

在步驟1212處,可將一選用抗反射塗層放置於頂部表面上(TCO層之頂部上)以便改良光吸收及因此電池效能。 At step 1212, an optional anti-reflective coating can be placed on the top surface (on top of the TCO layer) to improve light absorption and thus battery performance.

在步驟1214處,發生底部電極之放置。在某些實施例中,一鋁層較佳用於底部電極。底部電極之厚度可在1微米與800微米之間變化,通常為約400微米。可藉由物理汽相沈積(濺鍍)、網版印刷、噴墨印刷或其他標準印刷或金屬沈積技術來製作一底部鋁電極。在步驟1216處,可視情況執行電池測試以驗證光電伏打裝置及測試效能。 At step 1214, placement of the bottom electrode occurs. In some embodiments, an aluminum layer is preferred for the bottom electrode. The thickness of the bottom electrode can vary between 1 and 800 microns, typically about 400 microns. A bottom aluminum electrode can be fabricated by physical vapor deposition (sputtering), screen printing, ink jet printing, or other standard printing or metal deposition techniques. At step 1216, a battery test can be performed as appropriate to verify the photovoltaic device and test performance.

在一項實施例中,使用一開路電壓(Voc)之量測來測試電池之效能。圖13係展示用於根據上文所論述之技術形成一光電伏打晶圓結構之一特定加熱溫度之經量測Voc之一曲線圖。針對高於1350K之加熱溫度而展示經改良光電伏打電池效能。特定而言,Voc在1350K與曲線圖上所展示之最高溫度之間幾乎加倍。 In one embodiment, an open circuit voltage ( Voc ) measurement is used to test the performance of the battery. Figure 13 is a graph showing a measured Voc for forming a particular heating temperature for a photovoltaic cell structure in accordance with the techniques discussed above. Improved photovoltaic cell performance is demonstrated for heating temperatures above 1350K. In particular, Voc is almost doubled between 1350K and the highest temperature shown on the graph.

自對各圖及申請專利範圍之一審查可獲得本發明之其他特徵、態樣及目標。應理解,可開發本發明之其他實施例且該等實施例屬於本發明及申請專利範圍之精神及範疇內。 Other features, aspects, and objectives of the present invention are obtained from a review of the drawings and claims. It is to be understood that other embodiments of the invention can be developed and are within the spirit and scope of the invention and the scope of the invention.

已出於圖解及說明之目的提供對本發明之較佳實施例之前述說明。其並非意欲為窮盡性或將本發明限制於所揭示之精確形式。各種添加、刪除及修改係涵蓋為在其範疇內。因此,本發明之範疇係由隨附申請專利範圍而非前述說明來指示。此外,欲將可屬於申請專利範圍以及其要素及特徵之等效物之意義及範圍內之所有改變包羅於其範疇內。 The foregoing description of the preferred embodiments of the invention has in the It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Various additions, deletions, and modifications are covered as such. Therefore, the scope of the invention is indicated by the scope of the appended claims rather than the foregoing description. In addition, all changes that come within the meaning and range of the claims and the equivalents of the elements and features are intended to be included.

10‧‧‧半導體晶圓/經處理半導體晶圓/半導體 10‧‧‧Semiconductor Wafer/Processed Semiconductor Wafer/Semiconductor

16‧‧‧光電伏打結構/光電伏打產生層 16‧‧‧Photovoltaic structure / photoelectric voltaic layer

18‧‧‧半導體塊體 18‧‧‧Semiconductor block

20‧‧‧光電伏打結構/光電伏打材料 20‧‧‧Photovoltaic structure/photovoltaic materials

Claims (19)

一種光電伏打材料,其包括:一光電伏打半導體材料,其在一或多個表面處具有一或多個光電伏打結構,藉此藉由執行以下步驟而形成具有該一或多個光電伏打結構之該半導體材料:將一單件半導體材料曝露於一能源,藉此該能源致使加熱該單件半導體材料之一部分;及停止將該單件半導體材料曝露於一能源,藉此該曝露步驟及該停止步驟致使該單件半導體材料變換為在一或多個表面處具有一或多個光電伏打結構之該光電伏打半導體材料。 A photovoltaic device comprising: a photovoltaic cell material having one or more photovoltaic structures at one or more surfaces, whereby the one or more photovoltaics are formed by performing the following steps The semiconductor material of the voltaic structure: exposing a single piece of semiconductor material to an energy source, whereby the energy source causes heating of a portion of the single piece of semiconductor material; and stopping exposing the single piece of semiconductor material to an energy source, whereby the exposure The step and the stopping step cause the single piece of semiconductor material to be transformed into the photovoltaic material having one or more photovoltaic structures at one or more surfaces. 如請求項1之光電伏打材料,其藉由進一步執行以下步驟而形成:執行用於形成在該光電伏打半導體材料之一底部表面處具有降低之電阻率之一光電伏打材料之方法,藉此該降低之電阻率致使使用該光電伏打材料之一光電伏打電池產生比在不具有一降低之電阻率之情況下大之輸出。 A photovoltaic material according to claim 1, which is formed by further performing the steps of: forming a photovoltaic material having a reduced electrical resistivity at a bottom surface of one of the photovoltaic materials, Thereby the reduced resistivity results in the use of a photovoltaic cell using the photovoltaic device to produce a larger output than without a reduced resistivity. 如請求項1之光電伏打材料,其藉由進一步執行以下步驟而形成:藉由執行以下各項中之任一者而處理該光電伏打半導體材料之該底部表面:實體移除該底部表面層;在該底部表面層處形成矽化物;向該底部表面層中進行離子植入。 The photovoltaic material of claim 1, which is formed by further performing the process of: processing the bottom surface of the photovoltaic alloy material by performing any of: removing the bottom surface a layer; a telluride is formed at the bottom surface layer; ion implantation is performed into the bottom surface layer. 如請求項1之光電伏打材料,其藉由進一步執行以下步驟而形成: 藉由執行以下各項中之任一者而在該等曝露及停止步驟之前對該單件半導體材料執行預防性方法:在一底部表面上形成一保護膜以防止該單件半導體材料之該底部表面在加熱後旋即形成為一高電阻率層;將該能源之該曝露集中至單件半導體材料之一個表面,藉此該集中防止另一表面達到使另一表面變換為一光電伏打結構之一目標溫度;針對該曝露步驟將該單件半導體材料放置於一貯熱器上,藉此該放置防止另一表面達到使另一表面表面變換為一光電伏打結構之一目標溫度;對一n++矽基板執行該曝露步驟及該停止步驟,藉此該等曝露及停止步驟致使一n型矽形成於該n++矽基板上方以形成一n++上n光電伏打材料。 The photovoltaic material of claim 1, which is formed by further performing the following steps: Performing a prophylactic method on the single piece of semiconductor material prior to the exposing and stopping steps by performing any of: forming a protective film on a bottom surface to prevent the bottom of the single piece of semiconductor material The surface is formed as a high resistivity layer upon heating; the exposure of the energy source is concentrated to one surface of the single piece of semiconductor material, whereby the concentration prevents the other surface from transforming the other surface into a photovoltaic structure. a target temperature; the single piece of semiconductor material is placed on a heat reservoir for the exposing step, whereby the placing prevents the other surface from reaching a target temperature at which the other surface is transformed into a photovoltaic structure; The n++ substrate is subjected to the exposing step and the stopping step, whereby the exposing and stopping steps cause an n-type germanium to be formed over the n++ germanium substrate to form an n++ upper n-volt voltaic material. 如請求項4之光電伏打材料,其中該保護膜包含一SiC層,且在該曝露及該停止之後於該SiC層上形成一金屬底部電極以在一金屬對半導體界面中形成一歐姆接觸。 The photovoltaic material of claim 4, wherein the protective film comprises a SiC layer, and a metal bottom electrode is formed on the SiC layer after the exposing and stopping to form an ohmic contact in a metal-to-semiconductor interface. 如請求項1之光電伏打材料,其藉由進一步執行以下步驟而形成:以低於該曝露步驟中之加熱之一溫度來執行一第二加熱該光電伏打材料,藉此該第二加熱致使移除該一或多個光電伏打結構中之結晶缺陷。 A photovoltaic material according to claim 1, which is formed by further performing a second heating of the photovoltaic material at a temperature lower than a temperature of the heating in the exposure step, whereby the second heating The removal of crystalline defects in the one or more photovoltaic structures is caused. 如請求項1之光電伏打材料,其中該單件半導體材料之該部分被加熱至介於850 K與1700 K之間的一溫度。 The photovoltaic material of claim 1, wherein the portion of the single piece of semiconductor material is heated to a temperature between 850 K and 1700 K. 如請求項1之光電伏打材料,其中該等曝露及停止步驟在一真空中發生。 The photovoltaic material of claim 1, wherein the exposing and stopping steps occur in a vacuum. 如請求項1之光電伏打材料,其中該部分之該加熱發生達1分鐘 至600分鐘之一持續時間。 The photovoltaic material of claim 1, wherein the heating of the portion occurs for 1 minute One to a duration of 600 minutes. 如請求項1之光電伏打材料,其中該單件半導體材料係一n型矽,該n型矽具有磷之一雜質。 The photovoltaic material of claim 1, wherein the single piece of semiconductor material is an n-type germanium, the n-type germanium having one of phosphorus impurities. 如請求項1之光電伏打材料,其中該一或多個光電伏打結構在其中包含一高電阻率層。 The photovoltaic material of claim 1, wherein the one or more photovoltaic structures comprise a high resistivity layer therein. 如請求項1之光電伏打材料,其中該單件半導體材料包括鍺或其他IV族半導體中之任一者。 The photovoltaic material of claim 1 wherein the single piece of semiconductor material comprises any of tantalum or other Group IV semiconductors. 如請求項1之光電伏打材料,其中該單件半導體材料包括鍺或其他IV族半導體中之任一者,且具有磷、氮、銻、砷或其他V族元素中之任一者之一雜質。 The photovoltaic material of claim 1, wherein the single piece of semiconductor material comprises any one of germanium or other Group IV semiconductors and has one of phosphorus, nitrogen, antimony, arsenic or other V group elements Impurities. 如請求項1之光電伏打材料,其中該單件半導體材料在晶體定向之(100)面中具有1Ω.cm至5Ω.cm之一電阻率。 The photovoltaic material of claim 1, wherein the single piece of semiconductor material has 1 Ω in the (100) plane of the crystal orientation. Cm to 5Ω. One of the resistivities of cm. 如請求項1之光電伏打材料,其中該單件半導體材料具有至少10μm之一厚度。 The photovoltaic material of claim 1 wherein the single piece of semiconductor material has a thickness of at least 10 μm. 如請求項1之光電伏打材料,其中該單件光電伏打材料在曝露於光時產生光電伏打效應。 The photovoltaic material of claim 1, wherein the single piece of photovoltaic material produces a photovoltaic effect when exposed to light. 一種使用如請求項1之單件光電伏打材料之光電伏打裝置,該光電伏打裝置包括:該單件光電伏打材料;一底部電極,其提供於該單件光電伏打材料下方;及一頂部電極,其提供於該單件光電伏打材料上方。 A photovoltaic device using a single piece of photovoltaic material as claimed in claim 1, the photovoltaic device comprising: the single piece of photovoltaic material; a bottom electrode provided under the single piece of photovoltaic material; And a top electrode provided over the single piece of photovoltaic material. 一種用於製造一光電伏打材料之方法,其包括執行以下步驟:將一單件半導體材料曝露於一能源,藉此該能源致使加熱該單件半導體材料之一部分;及停止將該單件半導體材料曝露於一能源,藉此該曝露步驟及該停止步驟致使該單件半導體材料變換為在一或多個表面處具 有一或多個光電伏打結構之光電伏打半導體材料。 A method for fabricating a photovoltaic cell comprising the steps of: exposing a single piece of semiconductor material to an energy source, whereby the energy source causes a portion of the single piece of semiconductor material to be heated; and stopping the single piece of semiconductor Exposing the material to an energy source whereby the exposing step and the stopping step cause the single piece of semiconductor material to be transformed into one or more surfaces A photovoltaic cell material having one or more photovoltaic structures. 一種光電伏打材料,其包括:一光電伏打半導體材料,其在一或多個表面處具有一或多個光電伏打結構,藉此藉由執行以下步驟而形成具有該一或多個光電伏打結構之該半導體材料:將一n型矽晶圓曝露於一能源,藉此該能源致使加熱該n型矽晶圓之一部分;及停止將該n型矽晶圓曝露於一能源,藉此該曝露步驟及該停止步驟致使單件半導體材料變換為在一或多個表面處具有一或多個光電伏打結構之該光電伏打半導體材料,該一或多個光電伏打結構在其中具有一高電阻率層;在一底部表面上形成SiC層之一保護膜以防止該單件半導體材料之該底部表面在加熱後旋即形成為一高電阻率層;及將一金屬底部電極放置於該SiC層上方,藉此該金屬底部電極與該n型矽晶圓之間的金屬對半導體界面形成一歐姆接觸。 A photovoltaic device comprising: a photovoltaic cell material having one or more photovoltaic structures at one or more surfaces, whereby the one or more photovoltaics are formed by performing the following steps The semiconductor material of the voltaic structure: exposing an n-type germanium wafer to an energy source, whereby the energy source heats a portion of the n-type germanium wafer; and stopping exposing the n-type germanium wafer to an energy source The exposing step and the stopping step cause the single piece of semiconductor material to be transformed into the photovoltaic material having one or more photovoltaic structures at one or more surfaces, the one or more photovoltaic structures being Having a high-resistivity layer; forming a protective film of a SiC layer on a bottom surface to prevent the bottom surface of the single-piece semiconductor material from being formed into a high-resistivity layer upon heating; and placing a metal bottom electrode Above the SiC layer, thereby forming an ohmic contact between the metal bottom electrode and the metal-to-semiconductor interface between the n-type germanium wafers.
TW102119716A 2012-10-17 2013-06-04 Photovoltaic cell and process of manufacture TW201427057A (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US201261715283P 2012-10-17 2012-10-17
US201261715287P 2012-10-18 2012-10-18
US201261715286P 2012-10-18 2012-10-18
US201261722693P 2012-11-05 2012-11-05
US201261738375P 2012-12-17 2012-12-17
US201361761342P 2013-02-06 2013-02-06
US13/844,686 US20130255774A1 (en) 2012-04-02 2013-03-15 Photovoltaic cell and process of manufacture
US13/844,428 US20130255773A1 (en) 2012-04-02 2013-03-15 Photovoltaic cell and methods for manufacture
US13/844,747 US20130255775A1 (en) 2012-04-02 2013-03-15 Wide band gap photovoltaic device and process of manufacture
US13/844,298 US8952246B2 (en) 2012-04-02 2013-03-15 Single-piece photovoltaic structure
US13/844,521 US9099578B2 (en) 2012-06-04 2013-03-15 Structure for creating ohmic contact in semiconductor devices and methods for manufacture
PCT/US2013/035043 WO2013152054A1 (en) 2012-04-02 2013-04-02 Photovoltaic cell and process of manufacture

Publications (1)

Publication Number Publication Date
TW201427057A true TW201427057A (en) 2014-07-01

Family

ID=51725696

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102119716A TW201427057A (en) 2012-10-17 2013-06-04 Photovoltaic cell and process of manufacture

Country Status (1)

Country Link
TW (1) TW201427057A (en)

Similar Documents

Publication Publication Date Title
KR101313387B1 (en) Fabrication method of single crystal silicon solar battery and single crystal silicon solar battery
KR101579854B1 (en) Ion implanted selective emitter solar cells with in situ surface passivation
KR101648440B1 (en) Selective emitter solar cells formed by a hybrid diffusion and ion implantation process
KR101313346B1 (en) Fabrication method of single crystal silicon solar battery and single crystal silicon solar battery
JP5090716B2 (en) Method for producing single crystal silicon solar cell
KR101512785B1 (en) Method for manufacturing photoelectric conversion device
US8129612B2 (en) Method for manufacturing single-crystal silicon solar cell and single-crystal silicon solar cell
KR101341199B1 (en) Fabrication method of single crystal silicon solar battery and single crystal silicon solar battery
KR101747395B1 (en) Molybdenum substrates for cigs photovoltaic devices
TWI647863B (en) Preparation of solar cell emitter region using self-aligned implant and cover
JP5830143B1 (en) Method for manufacturing solar battery cell
TW201440235A (en) Back junction solar cell with enhanced emitter layer
US20130255774A1 (en) Photovoltaic cell and process of manufacture
US8148189B2 (en) Formed ceramic receiver element adhered to a semiconductor lamina
TW201427057A (en) Photovoltaic cell and process of manufacture
JP4955367B2 (en) Method for producing single crystal silicon solar cell
WO2013152054A1 (en) Photovoltaic cell and process of manufacture
JP2015519729A (en) Photoelectric conversion element and manufacturing method thereof
US20130255775A1 (en) Wide band gap photovoltaic device and process of manufacture
US20130255773A1 (en) Photovoltaic cell and methods for manufacture
JP2013074038A (en) Method of manufacturing photoelectric conversion device and photoelectric conversion device
TW201411869A (en) Photovoltaic cell and methods for manufacture
TW201427052A (en) Wide band gap photovoltaic device and process of manufacture