TW201424224A - Soft-start circuits and power suppliers using the same - Google Patents

Soft-start circuits and power suppliers using the same Download PDF

Info

Publication number
TW201424224A
TW201424224A TW102131623A TW102131623A TW201424224A TW 201424224 A TW201424224 A TW 201424224A TW 102131623 A TW102131623 A TW 102131623A TW 102131623 A TW102131623 A TW 102131623A TW 201424224 A TW201424224 A TW 201424224A
Authority
TW
Taiwan
Prior art keywords
voltage
level
output voltage
transistor
current source
Prior art date
Application number
TW102131623A
Other languages
Chinese (zh)
Inventor
Yu-Chung Wei
Original Assignee
Via Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Via Tech Inc filed Critical Via Tech Inc
Priority to CN201310444676.5A priority Critical patent/CN103488231A/en
Priority to US14/091,579 priority patent/US20140167714A1/en
Publication of TW201424224A publication Critical patent/TW201424224A/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

A soft-start circuit is provided for generating an output voltage at an output terminal. The soft-start circuit comprises a transistor, a capacitor, and a current source. The transistor has a first terminal receiving an input voltage, a second terminal coupled to the output voltage, and a control terminal. The capacitor is coupled between the second terminal and the control terminal of the transistor. The current source is coupled between the control terminal of the transistor and a ground terminal. A driving voltage at the control terminal of the transistor is modulated according to the output voltage to performing a soft-start operation to the output voltage.

Description

軟啟動電路以及電壓供應器 Soft start circuit and voltage supply

本發明係有關於一種軟啟動電路,其透過輸出電壓的回授控制來實現對輸出電壓的軟啟動操作。 The present invention relates to a soft start circuit that achieves a soft start operation on an output voltage by feedback control of an output voltage.

在現有的電子電路中,有些電子電路需要根據由外部提供的參考電壓來操作。舉例來說,直流對直流轉換器(DC-DC converter)以及低壓降線性穩壓器(low drop regulator,LDO)都需要一個參考電壓,且根據此參考電壓來產生一固定的輸出電壓。根據電子電路的運作,所接收的參考電壓必須緩慢地由0V上升至目標電壓。而參考電壓緩慢地由0V上升至目標電壓的過程則稱為軟啟動。因此,已知具有軟啟動電路,其能產生緩慢地由0V上升至目標電壓的參考電壓。然而,在這些已知的軟啟動電路中,其參考電壓的上升時間或斜率會隨著負載等效電容或負載等效電阻的不同而不同,這導致軟啟動電路無法產生具有穩定性的參考電壓。此外,這些已知的軟啟動電路還會佔用較大的電路面積。 In existing electronic circuits, some electronic circuits need to operate in accordance with a reference voltage supplied from the outside. For example, both DC-DC converters and low drop regulators (LDOs) require a reference voltage from which a fixed output voltage is generated. According to the operation of the electronic circuit, the received reference voltage must slowly rise from 0V to the target voltage. The process in which the reference voltage slowly rises from 0V to the target voltage is called soft start. Therefore, it is known to have a soft start circuit capable of generating a reference voltage that slowly rises from 0 V to a target voltage. However, in these known soft-start circuits, the rise time or slope of the reference voltage varies with the load equivalent capacitance or the load equivalent resistance, which causes the soft-start circuit to fail to generate a stable reference voltage. . In addition, these known soft-start circuits also occupy a large circuit area.

因此,本發明提出一種軟啟動電路,其能產生具有軟啟動狀態的輸出電壓,且輸出電壓的上升時間(rising time)不會受到不同的負載等效電容或等效電組所影響。 Accordingly, the present invention provides a soft-start circuit capable of generating an output voltage having a soft-start state, and the rising time of the output voltage is not affected by different load equivalent capacitances or equivalent power groups.

本發明提供一種軟啟動電路,用以於輸出端上產生輸出電壓。此軟啟動電路包括電晶體、電容器、以及電流源。電晶體具有接收輸入電壓的第一端、耦接輸出端之第二端、以及控制端。電容器耦接於電晶體的第二端與控制端之間。電流源耦接於電晶體的控制端與接地端之間。電容器及電流源藉由調整控制端上的一驅動電壓而調整輸出電壓,使輸出電壓執行一軟啟動操作。 The present invention provides a soft start circuit for generating an output voltage at an output. This soft start circuit includes a transistor, a capacitor, and a current source. The transistor has a first end that receives an input voltage, a second end that couples the output, and a control end. The capacitor is coupled between the second end of the transistor and the control end. The current source is coupled between the control end of the transistor and the ground. The capacitor and the current source adjust the output voltage by adjusting a driving voltage on the control terminal to cause the output voltage to perform a soft start operation.

本發明提供一種電壓供應器,用以產生供應電壓。此電壓供應器包括電壓產生電路以及軟啟動電路。電壓產生電路接收輸出電壓,且根據輸出電壓來產生該供電壓。軟啟動電路於輸出端上產生輸出電壓。軟啟動電路包括電晶體、電容器、以及電流源。電晶體具有接收輸入電壓的第一端、耦接輸出端之第二端、以及控制端。電容器耦接於電晶體的第二端與控制端之間。電流源耦接於電晶體的控制端與接地端之間。電容器及電流源藉由調整控制端上的一驅動電壓而調整輸出電壓,使輸出電壓執行一軟啟動操作。 The present invention provides a voltage supply for generating a supply voltage. This voltage supply includes a voltage generating circuit and a soft start circuit. The voltage generating circuit receives the output voltage and generates the supply voltage according to the output voltage. The soft start circuit produces an output voltage at the output. The soft start circuit includes a transistor, a capacitor, and a current source. The transistor has a first end that receives an input voltage, a second end that couples the output, and a control end. The capacitor is coupled between the second end of the transistor and the control end. The current source is coupled between the control end of the transistor and the ground. The capacitor and the current source adjust the output voltage by adjusting a driving voltage on the control terminal to cause the output voltage to perform a soft start operation.

1‧‧‧軟啟動電路 1‧‧‧Soft start circuit

6‧‧‧電源供應器 6‧‧‧Power supply

10‧‧‧PMOS電晶體 10‧‧‧ PMOS transistor

11‧‧‧電容器 11‧‧‧ capacitor

12‧‧‧電流源 12‧‧‧current source

13‧‧‧開關 13‧‧‧ switch

20‧‧‧定電流源 20‧‧‧Constant current source

40…45‧‧‧曲線 40...45‧‧‧ Curve

50…55‧‧‧曲線 50...55‧‧‧ curve

60‧‧‧電壓產生電路 60‧‧‧Voltage generation circuit

70‧‧‧帶隙參考電路 70‧‧‧ Bandgap reference circuit

80、81‧‧‧曲線 80, 81‧‧‧ Curve

90‧‧‧電阻器 90‧‧‧Resistors

110‧‧‧電阻器 110‧‧‧Resistors

600‧‧‧放大器 600‧‧ amp amplifier

601‧‧‧預驅動器 601‧‧‧Pre-driver

602‧‧‧PMOS電晶體 602‧‧‧ PMOS transistor

603‧‧‧NMOS電晶體 603‧‧‧NMOS transistor

604‧‧‧電感器 604‧‧‧Inductors

605、606‧‧‧電阻器 605, 606‧‧‧ resistors

607‧‧‧電容器 607‧‧‧ capacitor

608‧‧‧放大器 608‧‧‧Amplifier

609‧‧‧PMOS電晶體 609‧‧‧ PMOS transistor

610、611‧‧‧電阻器 610, 611‧‧‧ resistors

GND‧‧‧接地端 GND‧‧‧ ground terminal

N10‧‧‧節點 N10‧‧‧ node

S10‧‧‧控制信號 S10‧‧‧ control signal

TOUT‧‧‧輸出端 T OUT ‧‧‧ output

Vdrv‧‧‧驅動信號 Vdrv‧‧‧ drive signal

VIN‧‧‧輸入電壓 V IN ‧‧‧ input voltage

VOUT‧‧‧輸出電壓 V OUT ‧‧‧ output voltage

第1圖表示根據本發明一實施例的軟啟動電路;第2圖表示根據本發明另一實施例的軟啟動電路;第3圖表示本案軟啟動電路的驅動電壓以及輸出電壓的位準變化;第4圖表示當軟啟動電路的PMOS電晶體作為一功率開關時,在不同的後端電路的等效電容下,驅動電路以及輸出 電壓的位準變化;第5圖表示當軟啟動電路的PMOS電晶體作為一功率開關時,在不同的後端電路的等效電阻下,驅動電路以及輸出電壓的位準變化;第6圖表示根據本發明一實施例的電源供應器;第7圖表示根據本發明另一實施例的電源供應器;第8圖表示當軟啟動電路的PMOS電晶體具有小尺寸時,驅動電路以及輸出電壓的位準變化;第9圖表示根據本發明又一實施例的軟啟動電路;第10圖表示第9圖的軟啟動電路的驅動電路以及輸出電壓的位準變化;第11圖表示根據本發明另一實施例的軟啟動電路。 1 is a soft start circuit according to an embodiment of the present invention; FIG. 2 is a soft start circuit according to another embodiment of the present invention; and FIG. 3 is a view showing a level change of a driving voltage and an output voltage of the soft start circuit of the present invention; Figure 4 shows the driving circuit and output under the equivalent capacitance of different back-end circuits when the PMOS transistor of the soft-start circuit is used as a power switch. The level change of the voltage; Figure 5 shows the level change of the drive circuit and the output voltage under the equivalent resistance of different back-end circuits when the PMOS transistor of the soft-start circuit is used as a power switch; Figure 6 shows A power supply according to an embodiment of the present invention; FIG. 7 shows a power supply according to another embodiment of the present invention; and FIG. 8 shows a driving circuit and an output voltage when the PMOS transistor of the soft start circuit has a small size Level change; FIG. 9 shows a soft start circuit according to still another embodiment of the present invention; FIG. 10 shows a drive circuit of the soft start circuit of FIG. 9 and a level change of an output voltage; and FIG. 11 shows another according to the present invention. A soft start circuit of an embodiment.

為使本發明之上述目的、特徵和優點能更明顯易懂,下文特舉一較佳實施例,並配合所附圖式,作詳細說明如下。 The above described objects, features and advantages of the present invention will become more apparent from the description of the appended claims.

第1圖係表示根據本發明一實施例的軟啟動電路。參閱第1圖,軟啟動電路1在其輸出端TOUT上產生輸出電壓VOUT,且軟啟動電路1包括電晶體10、電容器11、電流源12、以及開關13。在第1圖的實施例中,電晶體10係以P型金氧半(P-type Metal-Oxide Semiconductor,PMOS)電晶體來實現。PMOS電晶體10的源極(第一端)耦接輸入電壓VIN,其汲極(第二端)耦接輸出端TOUT,且其閘極(控制端)耦接節點N10。電容器11耦接於PMOS電晶體10的閘極(即節點N10)與汲極端 (即輸出端TOUT)之間。開關13耦接於PMOS電晶體10的閘極以及電流源12之間。電流源12耦接於開關13的與接地端GND之間。開關13可接收控制信號S10,且根據控制信號S10而選擇性地導通或斷開該開關13。如第1圖所示,當開關13導通時,可將電流源12耦接至節點N10。第2圖表示根據本發明另一實施例的軟啟動電路。與第1圖之軟啟動電路相較,其差異在於第2圖的電流源12係由定電流源20來實現。定電流源20耦接於開關13的第二端與接地端GND之間。其餘部份皆為相同,就不在此贅述。 Figure 1 is a diagram showing a soft start circuit in accordance with an embodiment of the present invention. Referring to FIG. 1, the soft start circuit 1 produces an output voltage V OUT at its output terminal T OUT , and the soft start circuit 1 includes a transistor 10, a capacitor 11, a current source 12, and a switch 13. In the embodiment of Fig. 1, the transistor 10 is implemented as a P-type Metal-Oxide Semiconductor (PMOS) transistor. The source (first end) of the PMOS transistor 10 is coupled to the input voltage V IN , the drain (second end) of the PMOS transistor 10 is coupled to the output terminal T OUT , and the gate (control terminal) thereof is coupled to the node N10. The capacitor 11 is coupled between the gate of the PMOS transistor 10 (ie, node N10) and the drain terminal (ie, the output terminal T OUT ). The switch 13 is coupled between the gate of the PMOS transistor 10 and the current source 12 . The current source 12 is coupled between the switch 13 and the ground GND. The switch 13 can receive the control signal S10 and selectively turn the switch 13 on or off in accordance with the control signal S10. As shown in FIG. 1, when the switch 13 is turned on, the current source 12 can be coupled to the node N10. Figure 2 shows a soft start circuit in accordance with another embodiment of the present invention. The difference from the soft start circuit of Fig. 1 is that the current source 12 of Fig. 2 is realized by the constant current source 20. The constant current source 20 is coupled between the second end of the switch 13 and the ground GND. The rest are the same and will not be repeated here.

請參閱第2圖,在軟啟動電路1執行軟啟動操作之 前,節點N10上的驅動電壓Vdrv(即PMOS電晶體10的閘極電壓)的位準初始設定為等於輸入電壓VIN的位準,以關閉或禁能PMOS電晶體10。此時,開關13根據控制信號S10處於斷開狀態。在一實施例中,在電晶體10的閘極電壓被設定為等於輸入電壓VIN的位準時,輸出電壓VOUT的位準則被設定為0V位準。 當軟啟動電路1欲執行軟啟動操作時,開關13根據控制信號S10而由斷開狀態變為導通狀態。當開關13將電流源12耦接至節點N10時,電流源12中的電流開始放電。也就是說,當開關13由斷開狀態變為導通狀態時,節點N10上的驅動電壓Vdrv由初始設定的位準(即輸入電壓VIN的位準)開始下降。驅動電壓Vdrv下降的程度與電流源12中的電流值成正比。如第2圖的實施例中,電流源12為一定電流。因此,驅動電壓Vdrv會由初始設定位準(即輸入電壓VIN的位準)線性下降,如第3圖中驅動電壓Vdrv由0微秒(us)至300微秒(us)時間間格中的波形所示。在一 實施例中,驅動電壓Vdrv在此時間間格中以一第一斜率由初始設定位準(即輸入電壓VIN的位準)下降。 Referring to FIG. 2, before the soft start circuit 1 performs the soft start operation, the level of the driving voltage Vdrv (ie, the gate voltage of the PMOS transistor 10) on the node N10 is initially set to be equal to the level of the input voltage V IN . To turn off or disable the PMOS transistor 10. At this time, the switch 13 is in an off state in accordance with the control signal S10. In one embodiment, when the gate voltage of the transistor 10 is set equal to the level of the input voltage V IN , the bit criterion of the output voltage V OUT is set to the 0V level. When the soft start circuit 1 is to perform a soft start operation, the switch 13 is changed from the off state to the on state according to the control signal S10. When switch 13 couples current source 12 to node N10, the current in current source 12 begins to discharge. That is, when the switch 13 is changed from the off state to the on state, the driving voltage Vdrv on the node N10 starts to fall from the initially set level (i.e., the level of the input voltage V IN ). The extent to which the drive voltage Vdrv drops is proportional to the value of the current in the current source 12. In the embodiment of Figure 2, current source 12 is a constant current. Therefore, the driving voltage Vdrv will linearly decrease from the initial setting level (ie, the level of the input voltage V IN ), as in the driving voltage Vdrv in FIG. 3 from 0 microseconds (us) to 300 microseconds (us) in the time interval. The waveform is shown. In one embodiment, the drive voltage Vdrv drops from the initial set level (ie, the level of the input voltage V IN ) by a first slope during this time interval.

由於驅動電壓Vdrv的位準下降,導致PMOS電晶體 10的閘極與源極之間的電壓差逐漸地增加。當閘極與源極之間的電壓差逐漸增加至一特定值時(請注意,該特定值小於電晶體10的門檻電壓),會使電晶體10操作在次門檻區域(Subthreshold Region)而產生流經電晶體10的次門檻電流。 此時,輸出端TOUT以及電容器11被次門檻電流充電,使得輸出電壓VOUT的位準開始上升。透過電容器11的耦合效應,可將位準上升的輸出電壓VOUT耦合至節點N10(即電晶體10的閘極),使得驅動電壓Vdrv的位準具有上升的趨勢。然而,驅動電壓Vdrv的位準由於定電流源20放電而具有下降趨勢。因此,電晶體10操作在次門檻區域時,驅動電壓Vdrv的位準下降幅度相較於0微秒(us)至300微秒(us)時間間格會趨緩,如第3圖中輸出電壓VOUT由300微秒(us)至350微秒(us)時間間格中的波形所示。 As the level of the driving voltage Vdrv drops, the voltage difference between the gate and the source of the PMOS transistor 10 gradually increases. When the voltage difference between the gate and the source gradually increases to a specific value (note that the specific value is smaller than the threshold voltage of the transistor 10), the transistor 10 is operated in the Subthreshold Region. The secondary threshold current flowing through the transistor 10. At this time, the output terminal T OUT and the capacitor 11 are charged by the secondary threshold current, so that the level of the output voltage V OUT starts to rise. Through the coupling effect of the capacitor 11, the level-up output voltage V OUT can be coupled to the node N10 (ie, the gate of the transistor 10) such that the level of the driving voltage Vdrv has a tendency to rise. However, the level of the driving voltage Vdrv has a downward trend due to the discharge of the constant current source 20. Therefore, when the transistor 10 is operated in the sub-threshold region, the level of the driving voltage Vdrv decreases by a period of time from 0 microseconds (us) to 300 microseconds (us), as in the output voltage of FIG. V OUT is shown by the waveform in the interval between 300 microseconds (us) and 350 microseconds (us).

當電晶體10操作在次門檻區域時,閘極與源極之 間的電壓差逐漸地增加。當閘極與源極之間的電壓差增加至大於電晶體10的門檻電壓時,會使電晶體10改為操作在飽和區域(Saturation Region)而產生流經電晶體10的飽和電流。電晶體10即以此飽和電流對輸出端TOUT以及電容器11充電,使輸出電壓VOUT的位準上升。與前述次門檻區域相似,透過電容器11將位準上升的輸出電壓VOUT耦合至節點N10使得驅動電壓Vdrv的位準具有上升的趨勢。詳細來說,當電晶體10操作在飽和區域時,驅動電壓Vdrv的位準被兩個因素所影響:(1)定電流源20 放電所導致的下降趨勢;以及(2)輸出電壓VOUT的位準的上升所導致的上升趨勢。此外,操作在飽和區域時,電晶體10可等效為一定電流源而輸出固定的飽和電流。因此,驅動電壓Vdrv的位準受到定電流源20以及固定的飽和電流影響,而緩慢地線性下降並且大致維持在一固定位準區間,如第3圖中驅動電壓Vdrv由350微秒(us)至2.3毫秒(ms)時間間格中的波形所示。在一實施例中,驅動電壓Vdrv的位準在此時間間格中以一第二斜率下降。換句話說,在電晶體10未導通且尚未操作在次門檻區域時,驅動電壓Vdrv的位準僅受電流源12放電的影響而線性下降(如前述實施例中,以第一斜率下降)。當電晶體10操作在飽和區域時,受到了輸出電壓VOUT位準上升的影響,驅動電壓Vdrv減緩了下降的趨勢,不再以第一斜率下降,而是被調整得以緩慢地線性下降並且大致維持在一固定位準區間(如前述實施例中,以第二斜率下降)。驅動電壓Vdrv維持在一固定位準區間,可以使得電晶體10維持在飽和區域,從而使輸出電壓VOUT的位準線性且平滑地上升。綜上所述,當開關13導通時,驅動電壓Vdrv的位準以所述第一斜率下降,直到輸出電壓VOUT的位準開始上升為止。進入飽和區域後,PMOS電晶體10的閘極上的驅動電壓Vdrv緩慢地下降(如以第二斜率下降)並且大致維持在一固定位準區間,使得輸出電壓VOUT的位準持續緩慢線性地由0V朝向輸入電壓VIN的位準上升。參閱第3圖,當輸出電壓VOUT的位準上升至接近輸入電壓VIN的電壓位準時,輸出電壓VOUT的位準將不再上升。此時,使得對驅動電壓Vdrv的位準的上升趨勢消除(即輸出電壓VOUT的位準的上升所導致 的上升趨勢)。一旦上升趨勢消除,驅動電壓Vdrv的位準則以一第三斜率下降,且最終下降至0V位準。 When the transistor 10 operates in the secondary threshold region, the voltage difference between the gate and the source gradually increases. When the voltage difference between the gate and the source increases to be greater than the threshold voltage of the transistor 10, the transistor 10 is instead operated in a saturation region to generate a saturation current flowing through the transistor 10. The transistor 10 charges the output terminal T OUT and the capacitor 11 with this saturation current to raise the level of the output voltage V OUT . Similar to the aforementioned threshold region, the output voltage V OUT of the level rising through the capacitor 11 is coupled to the node N10 so that the level of the driving voltage Vdrv has a tendency to rise. In detail, when the transistor 10 is operated in the saturation region, the level of the driving voltage Vdrv is affected by two factors: (1) a downward trend caused by the discharge of the constant current source 20; and (2) an output voltage V OUT The upward trend caused by the rise in the level. In addition, when operating in a saturated region, the transistor 10 can be equivalent to a constant current source to output a fixed saturation current. Therefore, the level of the driving voltage Vdrv is affected by the constant current source 20 and the fixed saturation current, and slowly decreases linearly and is maintained substantially at a fixed level interval, as in FIG. 3, the driving voltage Vdrv is 350 microseconds (us). The waveform in the grid is shown up to 2.3 milliseconds (ms). In one embodiment, the level of the drive voltage Vdrv drops by a second slope during this time interval. In other words, when the transistor 10 is not turned on and has not been operated in the sub-threshold region, the level of the driving voltage Vdrv is linearly decreased only by the discharge of the current source 12 (as in the foregoing embodiment, the first slope is decreased). When the transistor 10 operates in the saturation region, it is affected by the rise of the output voltage V OUT , and the driving voltage Vdrv slows down the trend, no longer drops with the first slope, but is adjusted to slowly decrease linearly and roughly Maintained at a fixed level interval (as in the previous embodiment, decreased with a second slope). The driving voltage Vdrv is maintained at a fixed level interval, so that the transistor 10 can be maintained in a saturated region, so that the level of the output voltage V OUT rises linearly and smoothly. In summary, when the switch 13 is turned on, the level of the driving voltage Vdrv drops at the first slope until the level of the output voltage V OUT starts to rise. After entering the saturation region, the driving voltage Vdrv on the gate of the PMOS transistor 10 slowly drops (as decreased by the second slope) and is maintained substantially at a fixed level interval, so that the level of the output voltage V OUT continues to be slowly and linearly 0V rises toward the level of the input voltage V IN . Referring to Figure 3, when the level of the output voltage V OUT rises to a voltage level close to the input voltage V IN , the level of the output voltage V OUT will no longer rise. At this time, the rising tendency of the level of the driving voltage Vdrv is eliminated (that is, the rising tendency caused by the rise of the level of the output voltage V OUT ). Once the uptrend is removed, the bit criterion of the drive voltage Vdrv drops by a third slope and eventually drops to the 0V level.

根據上述,輸出電壓VOUT的位準一開始設定在0V 位準。接著在驅動電壓Vdrv的位準緩慢地線性下降並且大致維持在一固定位準區間的同時,輸出電壓VOUT的位準線性且平滑地逐漸地上升。最後,輸出電壓VOUT的位準到達並維持在輸入電壓VIN的電壓位準。如此一來,便實現了對輸出電壓VOUT的軟啟動操作。此外,根據上述,本案的軟啟動操作係由PMOS電晶體10、電容器11、以及定電流源20的物理行為來實現。尤其是,當輸出電壓VOUT的位準逐漸地上升時,PMOS電晶體10的閘極上的驅動電壓Vdrv可透過耦接於PMOS電晶體10的閘極與汲極之間的電容器11而自動地調整。 According to the above, the level of the output voltage V OUT is initially set to the 0V level. Then, while the level of the driving voltage Vdrv slowly decreases linearly and remains substantially at a fixed level interval, the level of the output voltage V OUT rises linearly and smoothly. Finally, the level of the output voltage V OUT reaches and maintains the voltage level at the input voltage V IN . In this way, a soft start operation on the output voltage V OUT is achieved. Further, according to the above, the soft start operation of the present invention is realized by the physical behavior of the PMOS transistor 10, the capacitor 11, and the constant current source 20. In particular, when the level of the output voltage V OUT gradually rises, the driving voltage Vdrv on the gate of the PMOS transistor 10 can be automatically transmitted through the capacitor 11 coupled between the gate and the drain of the PMOS transistor 10. Adjustment.

參閱第3圖,在輸出電壓VOUT的位準由0V朝向輸入 電壓VIN的位準上升的過程中(即350微秒(us)至2.3毫秒(ms)時間間格中),輸出電壓VOUT的位準係以線性方式上升。此外,根據第2圖的實施例,第一斜率等於第三斜率。在驅動電壓Vdrv的位準根據上述下降趨勢以及上升趨勢而開始以第二斜率緩慢地下降的情況下,此第二斜率小於第一斜率,並且小於第三斜率。 Referring to Figure 3, during the rise of the level of the output voltage V OUT from 0V towards the level of the input voltage V IN (ie, between 350 microseconds (us) and 2.3 milliseconds (ms)), the output voltage V The level of OUT rises in a linear fashion. Furthermore, according to the embodiment of Fig. 2, the first slope is equal to the third slope. In the case where the level of the driving voltage Vdrv starts to slowly decrease with the second slope according to the above-described falling tendency and the rising trend, the second slope is smaller than the first slope and smaller than the third slope.

在一些實施例中,軟啟動電路1的PMOS電晶體10 可具有較大尺寸,以作為一功率開關。此時,具有大尺寸PMOS電晶體10的軟啟動電路1可配置在電路系統中的功率電路級(power stage),並提供輸出電壓VOUT給後端電路。第4圖係表示當PMOS電晶體10作為一功率開關時,在不同的後端電路的 等效電容下,驅動電路Vdrv以及輸出電壓VOUT的位準變化。由於PMOS電晶體10具有大尺寸,因此,輸入電壓VIN可以是5V電壓。在第4圖中,曲線40係當不存在後端電路的等效電容時(即等效電容等於0)的驅動電壓Vdrv。曲線41與42係當後端電路的等效電容分別等於0.1微法拉(micro Farad,uF)與10uF時的驅動電壓Vdrv。曲線43係當不存在後端電路的等效電容時的輸出電壓VOUT。曲線44與45係當後端電路的等效電容分別等於0.1uF與10uF時的輸出電壓VOUTIn some embodiments, the PMOS transistor 10 of the soft start circuit 1 can be of a larger size to function as a power switch. At this time, the soft start circuit 1 having the large size PMOS transistor 10 can be configured in a power stage in the circuit system and provides an output voltage V OUT to the back end circuit. Figure 4 is a diagram showing the level change of the drive circuit Vdrv and the output voltage V OUT under the equivalent capacitance of different back-end circuits when the PMOS transistor 10 is used as a power switch. Since the PMOS transistor 10 has a large size, the input voltage V IN may be a 5V voltage. In Fig. 4, the curve 40 is the driving voltage Vdrv when there is no equivalent capacitance of the back-end circuit (i.e., the equivalent capacitance is equal to 0). Curves 41 and 42 are the drive voltages Vdrv when the equivalent capacitance of the back-end circuit is equal to 0.1 microfarad (uF) and 10uF, respectively. Curve 43 is the output voltage V OUT when there is no equivalent capacitance of the back end circuit. Curves 44 and 45 are output voltages V OUT when the equivalent capacitance of the back-end circuit is equal to 0.1 uF and 10 uF, respectively.

參閱第4圖的曲線40與43,當不存在後端電路的等 效電容時,驅動電壓Vdrv的位準在開關13導通後的100微秒(100 micro second,100us)內由5V(初始設定的位準)下降至4.9V,且接著在100us至2.1毫秒(2.1 mini second,2.1ms)的期間中,緩慢地線性下降並且大致維持在一固定位準區間。 在此100us至2.1ms的期間中,輸出電壓VOUT的位準係以線性且平滑的方式由0V上升至5V。因此可得知,在不存在後端電路的等效電容的情況下,對於輸出電壓VOUT的軟啟動操作的時間為2ms。參閱第4圖的曲線41與44,當後端電路的等效電容等於0.1uF時,輸出電壓VOUT的位準在開關13導通後的300us至2.3ms的期間中以線性且平滑的方式由0V上升至5V。因此,在後端電路的等效電容等於0.1uF的情況下,對於輸出電壓VOUT的軟啟動操作的時間也為2ms。又參閱第4圖的曲線42與45,當後端電路的等效電容等於10uF時,輸出電壓VOUT的位準在開關13導通後的600us至2.6ms的期間中以線性且平滑的方式由0V上升至5V。因此,在後端電路的等效電容等於10uF的情況下,對 於輸出電壓VOUT的軟啟動操作的時間也為2ms。根據上述,不論後端電路的等效電容的大小,輸出電壓VOUT的位準0V上升至5V皆為2ms。此外,根據曲線43~45可得知,輸出電壓VOUT的位準由0V上升至5V的上升曲線的斜率幾近相同。因此,輸出電壓VOUT的軟啟動的上升時間(rising time)以及曲線斜率不受後端電路的等效電容所影響。 Referring to curves 40 and 43 of FIG. 4, when there is no equivalent capacitance of the back-end circuit, the level of the driving voltage Vdrv is set by 5V within 100 microseconds (100 microseconds, 100 us) after the switch 13 is turned on (initial setting) The level of the drop is 4.9V, and then slowly decreases linearly during the period of 100us to 2.1 milliseconds (2.1 mini second, 2.1ms) and is maintained substantially at a fixed level interval. During this period of 100us to 2.1ms, the level of the output voltage V OUT rises from 0V to 5V in a linear and smooth manner. Therefore, it can be known that the time of the soft start operation for the output voltage V OUT is 2 ms in the absence of the equivalent capacitance of the back end circuit. Referring to curves 41 and 44 of FIG. 4, when the equivalent capacitance of the back-end circuit is equal to 0.1 uF, the level of the output voltage V OUT is linearly and smoothly in a period of 300 us to 2.3 ms after the switch 13 is turned on. 0V rises to 5V. Therefore, in the case where the equivalent capacitance of the back-end circuit is equal to 0.1 uF, the time for the soft-start operation of the output voltage V OUT is also 2 ms. Referring also to curves 42 and 45 of FIG. 4, when the equivalent capacitance of the back-end circuit is equal to 10 uF, the level of the output voltage V OUT is linearly and smoothly in a period of 600 us to 2.6 ms after the switch 13 is turned on. 0V rises to 5V. Therefore, in the case where the equivalent capacitance of the back-end circuit is equal to 10 uF, the time for the soft-start operation of the output voltage V OUT is also 2 ms. According to the above, regardless of the equivalent capacitance of the back-end circuit, the level 0V of the output voltage V OUT rises to 5V for 2 ms. In addition, according to the curves 43 to 45, the slope of the rising curve of the output voltage V OUT rising from 0 V to 5 V is almost the same. Therefore, the rising time of the soft start of the output voltage V OUT and the slope of the curve are not affected by the equivalent capacitance of the back end circuit.

第5圖係表示當PMOS電晶體10作為一功率開關 時,在不同的後端電路的等效電阻下,驅動電路Vdrv以及輸出電壓VOUT的位準變化。由於PMOS電晶體10具有大尺寸,因此,輸入電壓VIN可以是5V電壓。在第5圖中,曲線50係當不存在後端電路的等效電阻(即等效電阻等於0)時的驅動電壓Vdrv。 曲線51與52係當後端電路的等效電阻分別等於100歐姆(100ohm)與10ohm時的驅動電壓Vdrv。曲線53係當不存在後端電路的等效電容時的輸出電壓VOUT。曲線54與55係當後端電路的等效電容分別等於100ohm與10ohm時的輸出電壓VOUTFigure 5 is a diagram showing the level change of the drive circuit Vdrv and the output voltage V OUT under the equivalent resistance of different back-end circuits when the PMOS transistor 10 is used as a power switch. Since the PMOS transistor 10 has a large size, the input voltage V IN may be a 5V voltage. In Fig. 5, the curve 50 is the driving voltage Vdrv when there is no equivalent resistance of the back-end circuit (i.e., the equivalent resistance is equal to 0). Curves 51 and 52 are the drive resistances Vdrv when the equivalent resistance of the back-end circuit is equal to 100 ohms (100 ohms) and 10 ohms, respectively. Curve 53 is the output voltage V OUT when there is no equivalent capacitance of the back end circuit. Curves 54 and 55 are output voltages V OUT when the equivalent capacitance of the back end circuit is equal to 100 ohms and 10 ohms, respectively.

參閱第5圖的曲線50與53,當不存在後端電路的等 效電阻時,驅動電壓Vdrv的位準在開關13導通後的100us內由5V(初始設定的位準)下降至4.9V,且接著在100us至2.1ms的期間中,緩慢地線性下降並且大致維持在一固定位準區間。 在此100us至2.1ms的期間中,輸出電壓VOUT的位準係以線性且平滑的方式由0V上升至5V。因此可得知,在不存在後端電路的等效電阻的情況下,對於輸出電壓VOUT的軟啟動操作的時間為2ms(毫秒)。參閱第5圖的曲線51與54,當後端電路的等效電阻等於100ohm時,輸出電壓VOUT的位準在開關13導通後的 400us至2.5ms的期間中以線性且平滑的方式由0V上升至5V。因此,在後端電路的等效電阻等於100ohm的情況下,輸出電壓VOUT的軟啟動操的時間為2.1ms。又參閱第5圖的曲線52與55,當後端電路的等效電阻等於10ohm時,輸出電壓VOUT的位準在開關13導通後的600us至2.8ms的期間中以線性且平滑的方式由0V上升至5V。因此,在後端電路的等效電阻等於10ohm的情況下,輸出電壓VOUT的軟啟動操作的時間為2.2ms。根據上述,後端電路的等效電阻的大小對於輸出電壓VOUT的位準由0V上升至5V的時間影響很小。 Referring to curves 50 and 53 of FIG. 5, when there is no equivalent resistance of the back-end circuit, the level of the driving voltage Vdrv drops from 5 V (initial set level) to 4.9 V within 100 us after the switch 13 is turned on. And then during the period of 100us to 2.1ms, it slowly decreases linearly and is maintained substantially at a fixed level interval. During this period of 100us to 2.1ms, the level of the output voltage V OUT rises from 0V to 5V in a linear and smooth manner. Therefore, it can be known that the time of the soft start operation for the output voltage V OUT is 2 ms (millisecond) in the absence of the equivalent resistance of the back end circuit. Referring to curves 51 and 54 of FIG. 5, when the equivalent resistance of the back-end circuit is equal to 100 ohms, the level of the output voltage V OUT is linearly and smoothly from 0 V during the period of 400 us to 2.5 ms after the switch 13 is turned on. Rise to 5V. Therefore, in the case where the equivalent resistance of the back-end circuit is equal to 100 ohms, the soft-start operation time of the output voltage V OUT is 2.1 ms. Referring also to curves 52 and 55 of FIG. 5, when the equivalent resistance of the back-end circuit is equal to 10 ohms, the level of the output voltage V OUT is linearly and smoothly in a period of 600 us to 2.8 ms after the switch 13 is turned on. 0V rises to 5V. Therefore, in the case where the equivalent resistance of the back-end circuit is equal to 10 ohms, the soft-start operation time of the output voltage V OUT is 2.2 ms. According to the above, the magnitude of the equivalent resistance of the back-end circuit has little effect on the time when the level of the output voltage V OUT rises from 0 V to 5 V.

在另一些實施例中,軟啟動電路1可適用於一電源 供應器,以提供輸出電壓VOUT作為電源供應器中的參考電壓,使得電源供應器能根據輸出電壓VOUT來產生一固定的供應電壓。在這些實施例中,PMOS電晶體10可具有較小尺寸。參閱第6圖,電源供應器6包括第1圖的軟啟動電路1以及電壓產生電路60。在此實施例中,電壓產生電路60係以直流對直流轉換器(DC-DC converter)來實現。電壓產生電路60包括放大器600、預驅動器601、PMOS電晶體602、N型金氧半(P-type Metal-Oxide Semiconductor,NMOS)電晶體603、電感器604、電阻器605與606、以及電容器607。放大器600接收來自軟啟動電路1的輸出電壓VOUT以作為其參考電壓。電阻器605與電阻器606分壓供應電壓V60後回授給放大器600,放大器600可根據此分壓後的供應電壓V60及作為參考電壓的VOUT來產生一信號,以透過預驅動器601來控制PMOS電晶體602與NMOS電晶體603的切換,藉以產生固定的供應電壓V60。在第6圖之實施例中, 作為直流對直流轉換器的電壓產生電路60的電路架構僅唯一示範例,不以此為限制。在其他實施例中,電壓產生電路60可具有其他的電路架構來實現直流對直流轉換。 In other embodiments, the soft start circuit 1 can be applied to a power supply to provide an output voltage V OUT as a reference voltage in the power supply such that the power supply can generate a fixed supply based on the output voltage V OUT . Voltage. In these embodiments, the PMOS transistor 10 can have a smaller size. Referring to Fig. 6, the power supply 6 includes the soft start circuit 1 and the voltage generating circuit 60 of Fig. 1. In this embodiment, the voltage generating circuit 60 is implemented as a DC-DC converter. The voltage generating circuit 60 includes an amplifier 600, a pre-driver 601, a PMOS transistor 602, a P-type Metal-Oxide Semiconductor (NMOS) transistor 603, an inductor 604, resistors 605 and 606, and a capacitor 607. . The amplifier 600 receives the output voltage V OUT from the soft start circuit 1 as its reference voltage. The resistor 605 and the resistor 606 are divided and supplied with a voltage V60, and then fed back to the amplifier 600. The amplifier 600 can generate a signal according to the divided supply voltage V60 and V OUT as a reference voltage to be controlled by the pre-driver 601. The switching of the PMOS transistor 602 and the NMOS transistor 603 generates a fixed supply voltage V60. In the embodiment of Fig. 6, the circuit architecture of the voltage generating circuit 60 as the DC-to-DC converter is only the only exemplary embodiment and is not limited thereto. In other embodiments, voltage generation circuit 60 may have other circuit architectures to implement DC to DC conversion.

此外,在又一些實施例中,電壓產生電路60可以 低壓降線性穩壓器(low drop regulator,LDO)來實現,如第7圖所示。在此實施例中,電壓產生電路60包括放大器608、PMOS電晶體609、以及電阻器610與611。放大器608接收來自軟啟動電路1的輸出電壓VOUT以作為其參考電壓。電阻器610與電阻器611分壓供應電壓V60後回授給放大器608,放大器608可根據此分壓後的供應電壓V60及作為參考電壓的VOUT來產生一信號來控制PMOS電晶體609,藉以產生固定的供應電壓V60。在第7圖之實施例中,電源供應器6另外包括帶隙(bandgap)參考電路70,其產生的帶隙電壓V70係作為軟啟動電路1的輸入電壓VIN。帶隙參考電路70所產生的帶隙電壓V70不受溫度以及製程變異所影響,因此帶隙電壓為一穩定的電壓。因此,帶隙電壓V70較為準確。在第7圖之實施例中,作為低壓降線性穩壓器的電壓產生電路60的電路架構僅唯一示範例,不以此為限制。在其他實施例中,電壓產生電路60可具有其他的電路架構來實現低壓降穩壓操作。此外,在第7圖之實施例中,帶隙參考電路70的可具有任何已知的電路架構或者具有任何可產生不受溫度以及製程變異所影響的帶隙電壓的電路架構。 Moreover, in still other embodiments, voltage generation circuit 60 can be implemented as a low drop regulator (LDO), as shown in FIG. In this embodiment, voltage generating circuit 60 includes an amplifier 608, a PMOS transistor 609, and resistors 610 and 611. The amplifier 608 receives the output voltage V OUT from the soft start circuit 1 as its reference voltage. The resistor 610 and the resistor 611 are divided and supplied with a voltage V60, and then fed back to the amplifier 608. The amplifier 608 can generate a signal according to the divided supply voltage V60 and V OUT as a reference voltage to control the PMOS transistor 609. A fixed supply voltage V60 is produced. In the embodiment of Fig. 7, the power supply 6 additionally includes a bandgap reference circuit 70 which generates a bandgap voltage V70 as the input voltage V IN of the soft start circuit 1. The bandgap voltage V70 generated by the bandgap reference circuit 70 is not affected by temperature and process variations, so the bandgap voltage is a stable voltage. Therefore, the bandgap voltage V70 is relatively accurate. In the embodiment of Fig. 7, the circuit architecture of the voltage generating circuit 60 as the low dropout linear regulator is only a singular example and is not limited thereto. In other embodiments, voltage generation circuit 60 may have other circuit architectures to implement low dropout regulated operation. Moreover, in the embodiment of Figure 7, the bandgap reference circuit 70 can have any known circuit architecture or have any circuit architecture that can produce bandgap voltages that are unaffected by temperature and process variations.

在第6與7圖實施例中,PMOS電晶體10具有較小尺 寸而可將電源供應器6的各元件封裝於一晶片中。第8圖係表示當PMOS電晶體10具有小尺寸時,驅動電路Vdrv以及輸出電壓 VOUT的位準變化。由於PMOS電晶體10具有小尺寸而可將電源供應器6的各元件封裝於一晶片中,此電源供應器6的的輸入電壓VIN通常是小於1.2V電壓。參閱第8圖,曲線80係當不存在後端電路的等效電容(即等效電容等於0)時、或當後端電路的等效電容等於1皮法拉(1 pico farad,pF)或10pF時的驅動電壓Vdrv。曲線81係當不存在後端電路的等效電容時、或當後端電路的等效電容等於1pF或10pF時的輸出電壓VOUT。根據本發明實施例,在無論等效電容值的的電容值為0、1pF或10pF,對應的驅動電壓Vdrv的曲線均相同(即曲線80),且對應的輸出電壓VOUT的曲線也均相同(即曲線81)。參閱第8圖,當PMOS電晶體10導通的瞬間,驅動電壓Vdrv的位準快速地下降(如1.2V下降至0.84V)。由於驅動電壓Vdrv的快速下降,透過電容器11的耦合效應使得輸出電壓VOUT的位準也快速地下降至-0.3V。之後,輸出電壓VOUT的位準在開關13導通後的0s至1.6ms的期間中以線性方式由0V上升至1.2V。 In the sixth and seventh embodiments, the PMOS transistor 10 has a small size to package the components of the power supply 6 in a wafer. Fig. 8 shows the level change of the drive circuit Vdrv and the output voltage V OUT when the PMOS transistor 10 has a small size. Since the PMOS transistor 10 has a small size, the components of the power supply 6 can be packaged in a wafer, and the input voltage V IN of the power supply 6 is typically less than 1.2V. Referring to Figure 8, curve 80 is when there is no equivalent capacitance of the back-end circuit (ie, the equivalent capacitance is equal to 0), or when the equivalent capacitance of the back-end circuit is equal to 1 picofarad (pF) or 10pF The driving voltage Vdrv at the time. Curve 81 is the output voltage V OUT when there is no equivalent capacitance of the back end circuit, or when the equivalent capacitance of the back end circuit is equal to 1 pF or 10 pF. According to an embodiment of the invention, the curve of the corresponding driving voltage Vdrv is the same (ie, curve 80), and the corresponding output voltage V OUT has the same curve, regardless of the capacitance value of the equivalent capacitance value of 0, 1 pF or 10 pF. (ie curve 81). Referring to Fig. 8, when the PMOS transistor 10 is turned on, the level of the driving voltage Vdrv drops rapidly (e.g., 1.2V drops to 0.84V). Due to the rapid drop of the driving voltage Vdrv, the coupling effect of the transmission capacitor 11 causes the level of the output voltage V OUT to rapidly drop to -0.3V. Thereafter, the level of the output voltage V OUT rises from 0 V to 1.2 V in a linear manner during a period from 0 s to 1.6 ms after the switch 13 is turned on.

在一些實施例中,當PMOS電晶體10採用小尺寸電 晶體時,軟啟動電路1可更包括一電阻器,以消除上述輸出電壓VOUT的初始負電壓降。如第9圖所示,軟啟動電路1更包括一電阻器90,耦接於輸出端TOUT與接地端GND之間。第10圖係表示當PMOS電晶體10具有小尺寸且在輸出端TOUT加上一電阻器90時,驅動電路Vdrv以及輸出電壓VOUT的位準變化。在此實施例中,電阻器90的電阻值為100K ohm。參閱第9圖與第10圖,當PMOS電晶體10導通的瞬間,由於電阻器90提供了一電壓至輸出端TOUT,使得輸出電壓VOUT的位準處於0V或些微下降至 -0.2V。如此一來,當PMOS電晶體10導通的瞬間,藉由將電阻器90耦接於輸出端TOUT可消除輸出電壓VOUT的上述初始負電壓降。 In some embodiments, when the PMOS transistor 10 employs a small-sized transistor, the soft-start circuit 1 may further include a resistor to eliminate the initial negative voltage drop of the output voltage V OUT described above. As shown in FIG. 9, the soft start circuit 1 further includes a resistor 90 coupled between the output terminal T OUT and the ground GND. Fig. 10 shows the level change of the drive circuit Vdrv and the output voltage V OUT when the PMOS transistor 10 has a small size and a resistor 90 is applied to the output terminal T OUT . In this embodiment, resistor 90 has a resistance value of 100K ohms. Referring to FIGS. 9 and 10, when the PMOS transistor 10 is turned on, since the resistor 90 supplies a voltage to the output terminal T OUT , the level of the output voltage V OUT is at 0 V or slightly decreased to -0.2 V. In this way, when the PMOS transistor 10 is turned on, the initial negative voltage drop of the output voltage V OUT can be eliminated by coupling the resistor 90 to the output terminal T OUT .

在上述實施例中,電流源12係以一定電流源20來實現。而在其他實施例中,電流源12可以一變電流源來實現。參閱第11圖,電流源12包括電阻器110,耦接於開關13的第二端與接地端GND之間。PMOS電晶體10、電容器11、電流源12、開關13、以及電阻器110係配置在同一晶片內。 In the above embodiment, the current source 12 is implemented with a constant current source 20. In other embodiments, current source 12 can be implemented as a variable current source. Referring to FIG. 11 , the current source 12 includes a resistor 110 coupled between the second end of the switch 13 and the ground GND. The PMOS transistor 10, the capacitor 11, the current source 12, the switch 13, and the resistor 110 are disposed in the same wafer.

參閱第11圖,在軟啟動電路1執行軟啟動操作之前,節點N10上的驅動電壓Vdrv的位準初始設定為等於輸入電壓VIN的位準,且輸出電壓VOUT的位準設定為0V位準。當軟啟動電路1欲執行軟啟動操作時,開關13根據控制信號S10而由斷開狀態變為導通狀態。此時,驅動電壓Vdrv的位準透過電阻器110所形成的放電路徑進行放電而開始由初始設定位準快速下降。由於驅動電壓Vdrv的位準下降,導致PMOS電晶體的閘極與源極之間的電壓差逐漸地增加。當閘極與源極之間的電壓差逐漸增加至一特定值時(請注意,該特定值小於電晶體10的門檻電壓),會使電晶體10則操作在次門檻區域(Subthreshold Region)而產生流經電晶體10的次門檻電流。此時,輸出端TOUT以及電容器11被次門檻電流充電,使得輸出電壓VOUT的位準開始上升。透過電容器11的耦合效應,可將位準上升的輸出電壓VOUT耦合至節點N10(即電晶體10的閘極),使得驅動電壓Vdrv的位準具有上升的趨勢。然而,驅動電壓Vdrv的位準由於電阻器110放電而同時具有下降趨勢。當電晶體10操作在次門檻區 域時,閘極與源極之間的電壓差逐漸地增加。當閘極與源極之間的電壓差增加至大於電晶體10的門檻電壓時,會使電晶體改為操作在飽和區域(Saturation Region)而產生流經電晶體10的飽和電流。電晶體10即以此飽和電流對輸出端TOUT以及電容器11充電,使輸出電壓的位準上升。操作在飽和區域時,電晶體10可等效為一定電流源而輸出固定的飽和電流。因此,驅動電壓Vdrv的位準開始緩慢地線性下降並且大致維持在一固定位準區間。由於PMOS電晶體10的閘極上的驅動電壓Vdrv緩慢地線性下降並且大致維持在一固定位準區間,使得輸出電壓VOUT的位準持續朝向輸入電壓VIN的位準上升。驅動電壓Vdrv維持在一固定位準區間,可以使得電晶體10維持在飽和區域,從而使輸出電壓VOUT的位準線性且平滑地上升。當輸出電壓VOUT的位準上升至接近輸入電壓VIN的電壓位準時,輸出電壓VOUT的位準將不再上升,使得電容器11的耦合效應對驅動電壓Vdrv的位準的上升趨勢消除。一旦上升趨勢消除,驅動電壓Vdrv的位準快速下降,且最終下降至0V位準。 Referring to FIG. 11, before the soft start circuit 1 performs the soft start operation, the level of the driving voltage Vdrv on the node N10 is initially set to be equal to the level of the input voltage V IN , and the level of the output voltage V OUT is set to 0 V bits. quasi. When the soft start circuit 1 is to perform a soft start operation, the switch 13 is changed from the off state to the on state according to the control signal S10. At this time, the level of the driving voltage Vdrv is discharged through the discharge path formed by the resistor 110, and starts to rapidly fall from the initial setting level. As the level of the driving voltage Vdrv drops, the voltage difference between the gate and the source of the PMOS transistor gradually increases. When the voltage difference between the gate and the source gradually increases to a specific value (note that the specific value is less than the threshold voltage of the transistor 10), the transistor 10 is operated in the Subthreshold Region. A secondary threshold current flowing through the transistor 10 is generated. At this time, the output terminal T OUT and the capacitor 11 are charged by the secondary threshold current, so that the level of the output voltage V OUT starts to rise. Through the coupling effect of the capacitor 11, the level-up output voltage V OUT can be coupled to the node N10 (ie, the gate of the transistor 10) such that the level of the driving voltage Vdrv has a tendency to rise. However, the level of the driving voltage Vdrv has a downward trend due to the discharge of the resistor 110. When the transistor 10 operates in the secondary threshold region, the voltage difference between the gate and the source gradually increases. When the voltage difference between the gate and the source is increased to be greater than the threshold voltage of the transistor 10, the transistor is caused to operate in a saturation region to generate a saturation current flowing through the transistor 10. The transistor 10 charges the output terminal T OUT and the capacitor 11 with this saturation current to raise the level of the output voltage. When operating in a saturated region, the transistor 10 can be equivalent to a constant current source to output a fixed saturation current. Therefore, the level of the driving voltage Vdrv starts to slowly decrease linearly and is maintained substantially at a fixed level interval. Since the driving voltage Vdrv on the gate of the PMOS transistor 10 slowly decreases linearly and is maintained substantially at a fixed level interval, the level of the output voltage V OUT continues to rise toward the level of the input voltage V IN . The driving voltage Vdrv is maintained at a fixed level interval, so that the transistor 10 can be maintained in a saturated region, so that the level of the output voltage V OUT rises linearly and smoothly. When the level of the output voltage V OUT rises to a voltage level close to the input voltage V IN , the level of the output voltage V OUT will no longer rise, so that the coupling effect of the capacitor 11 is eliminated from the rising trend of the level of the driving voltage Vdrv. Once the uptrend is removed, the level of the drive voltage Vdrv drops rapidly and eventually drops to the 0V level.

根據上述,本發明的軟啟動電路1可透過電容器11 的回授調控來控制驅動電壓Vdrv的位準,使得輸出電壓VOUT實現軟啟動操作。本發明實現軟啟動的電路(PMOS電晶體10、電容器11及電流源12等元件)均可與電源供應器封裝在同一晶片內,以減小電路面積。此外,本發明之輸出電壓VOUT的上升時間幾乎完全不會受到不同的負載等效電容或等效電阻所影響。 According to the above, the soft start circuit 1 of the present invention can control the level of the driving voltage Vdrv through the feedback regulation of the capacitor 11, so that the output voltage V OUT realizes a soft start operation. The circuit for realizing the soft start (the PMOS transistor 10, the capacitor 11 and the current source 12 and the like) can be packaged in the same wafer as the power supply to reduce the circuit area. In addition, the rise time of the output voltage V OUT of the present invention is almost completely unaffected by different load equivalent capacitances or equivalent resistances.

本發明雖以較佳實施例揭露如上,然其並非用以 限定本發明的範圍,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可做些許的更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed above in the preferred embodiment, it is not The scope of the present invention is defined by those skilled in the art, and the scope of the invention is intended to be modified and modified. The definition is final.

1‧‧‧軟啟動電路 1‧‧‧Soft start circuit

10‧‧‧PMOS電晶體 10‧‧‧ PMOS transistor

11‧‧‧電容器 11‧‧‧ capacitor

12‧‧‧電流源 12‧‧‧current source

13‧‧‧開關 13‧‧‧ switch

GND‧‧‧接地端 GND‧‧‧ ground terminal

N10‧‧‧節點 N10‧‧‧ node

S10‧‧‧控制信號 S10‧‧‧ control signal

TOUT‧‧‧輸出端 T OUT ‧‧‧ output

Vdrv‧‧‧驅動信號 Vdrv‧‧‧ drive signal

VIN‧‧‧輸入電壓 V IN ‧‧‧ input voltage

VOUT‧‧‧輸出電壓 V OUT ‧‧‧ output voltage

Claims (20)

一種軟啟動電路,用以於一輸出端上產生一輸出電壓,包括:一電晶體,具有接收一輸入電壓的一第一端、耦接該輸出端之一第二端、以及一控制端;一電容器,耦接於該電晶體的該第二端與該控制端之間;以及一電流源,耦接於該電晶體的該控制端與一接地端之間;其中,該電容器及該電流源藉由調整該控制端上的一驅動電壓而調整該輸出電壓,使該輸出電壓執行一軟啟動操作。 A soft start circuit for generating an output voltage on an output terminal, comprising: a transistor having a first end receiving an input voltage, a second end coupled to the output end, and a control end; a capacitor coupled between the second end of the transistor and the control terminal; and a current source coupled between the control terminal and the ground terminal of the transistor; wherein the capacitor and the current The source adjusts the output voltage by adjusting a driving voltage on the control terminal to cause the output voltage to perform a soft start operation. 如申請專利範圍第1項所述之軟啟動電路,更包括:一電阻器,耦接於該輸出端與該接地端之間;其中,該電晶體、該電容器、該電流源、以及該電阻器係配置在一晶片內。 The soft start circuit of claim 1, further comprising: a resistor coupled between the output terminal and the ground; wherein the transistor, the capacitor, the current source, and the resistor The device is configured in a wafer. 如申請專利範圍第1項所述之軟啟動電路,更包括:一開關,耦接於該電晶體的該控制端與該電流源之間;其中,當該開關導通時,該電流源進行一放電操作使該驅動電壓的位準下降。 The soft start circuit of claim 1, further comprising: a switch coupled between the control end of the transistor and the current source; wherein, when the switch is turned on, the current source performs a The discharge operation causes the level of the drive voltage to drop. 如申請專利範圍第3項所述之軟啟動電路,其中,當該輸出電壓的位準開始上升時,該電容器根據該放電操作以及該輸出電壓的位準調整該驅動電壓的位準。 The soft start circuit of claim 3, wherein when the level of the output voltage begins to rise, the capacitor adjusts the level of the driving voltage according to the discharging operation and the level of the output voltage. 如申請專利範圍第4項所述之軟啟動電路,其中,在該電容器在根據該放電操作以及該輸出電壓的位準調整該驅動電壓的位準的期間,該驅動電壓的位準緩慢地線性下降並且 維持在一固定位準區間。 The soft start circuit of claim 4, wherein the level of the driving voltage is slowly linear during a period in which the capacitor adjusts the level of the driving voltage according to the discharging operation and the level of the output voltage. Drop and Maintain a fixed level interval. 如申請專利範圍第4項所述之軟啟動電路,其中,在該電容器在根據該放電操作以及該輸出電壓的位準調整該驅動電壓的位準的期間,該輸出電壓的位準朝向該輸入電壓的位準線性上升,以實現該輸出電壓的該軟啟動操作。 The soft start circuit of claim 4, wherein the level of the output voltage faces the input while the capacitor adjusts the level of the driving voltage according to the discharging operation and the level of the output voltage. The level of the voltage rises linearly to achieve this soft-start operation of the output voltage. 如申請專利範圍第4項所述之軟啟動電路,其中,當該輸出電壓的位準上升至接近該輸入電壓的位準時,該驅動電壓的位準開始朝向該接地端的位準下降。 The soft start circuit of claim 4, wherein when the level of the output voltage rises to a level close to the input voltage, the level of the driving voltage begins to decrease toward the level of the ground. 如申請專利範圍第1項所述之軟啟動電路,其中,當該電容器根據該電流源的一放電操作以及該輸出電壓的位準而調整該驅動電壓的位準的期間,該電晶體操作在一飽和區域。 The soft start circuit of claim 1, wherein the transistor operates during a period in which the capacitor adjusts a level of the driving voltage according to a discharge operation of the current source and a level of the output voltage. A saturated area. 如申請專利範圍第1項所述之軟啟動電路,其中,該電流源以一定電流源來實現。 The soft start circuit of claim 1, wherein the current source is implemented by a constant current source. 一種電壓供應器,用以產生一供應電壓,包括:一電壓產生電路,接收一輸出電壓,且根據該輸出電壓來產生該供應電壓;以及一軟啟動電路,於一輸出端上產生該輸出電壓,其中,該軟啟動電路包括:一電晶體,具有接收一輸入電壓的一第一端、耦接該輸出端之一第二端、以及一控制端;一電容器,耦接於該電晶體的該第二端與該控制端之間;以及一電流源,耦接於該電晶體的該控制端與一接地端之間;其中,該電容器及該電流源藉由調整該控制端上的一驅動 電壓而調整該輸出電壓,使該輸出電壓動執行一軟啟動操作。 A voltage supply for generating a supply voltage, comprising: a voltage generating circuit that receives an output voltage and generates the supply voltage according to the output voltage; and a soft start circuit that generates the output voltage at an output end The soft start circuit includes: a transistor having a first end receiving an input voltage, a second end coupled to the output end, and a control end; a capacitor coupled to the transistor Between the second end and the control terminal; and a current source coupled between the control terminal and the ground terminal of the transistor; wherein the capacitor and the current source are adjusted by one on the control terminal drive The output voltage is adjusted by the voltage to cause the output voltage to perform a soft start operation. 如申請專利範圍第10項所述之電壓供應器,更包括:一電阻器,耦接於該輸出端與該接地端之間;其中,該電晶體、該電容器、該電流源、以及該電阻器係配置在一晶片內。 The voltage supply of claim 10, further comprising: a resistor coupled between the output terminal and the ground; wherein the transistor, the capacitor, the current source, and the resistor The device is configured in a wafer. 如申請專利範圍第10項所述之電壓供應器,更包括:一開關,耦接於該電晶體的該控制端與該電流源之間;其中,當該開關導通時,該電流源進行一放電操作使該驅動電壓的位準下降。 The voltage supply device of claim 10, further comprising: a switch coupled between the control terminal of the transistor and the current source; wherein, when the switch is turned on, the current source performs a The discharge operation causes the level of the drive voltage to drop. 如申請專利範圍第12項所述之電壓供應器,其中,當該輸出電壓的位準開始上升時,該電容器根據該放電操作以及該輸出電壓的位準調整該驅動電壓的位準。 The voltage supply of claim 12, wherein when the level of the output voltage begins to rise, the capacitor adjusts the level of the driving voltage according to the discharging operation and the level of the output voltage. 如申請專利範圍第13項所述之電壓供應器,其中,該電容器在根據該放電操作以及該輸出電壓的位準調整該驅動電壓的位準的期間,該驅動電壓的位準線性下降並且維持在一固定位準區間。 The voltage supply device of claim 13, wherein the capacitor linearly drops and maintains a level of the driving voltage during a period in which the driving voltage is adjusted according to the discharging operation and the level of the output voltage. In a fixed level interval. 如申請專利範圍第13項所述之電壓供應器,其中,該電容器在根據該放電操作以及該輸出電壓的位準調整該驅動電壓的位準的期間,該輸出電壓的位準朝向該輸入電壓的位準線性上升,以實現該輸出電壓的該軟啟動操作。 The voltage supply device of claim 13, wherein the capacitor is oriented toward the input voltage during a period in which the level of the driving voltage is adjusted according to the discharging operation and the level of the output voltage. The level of the line rises linearly to achieve the soft start operation of the output voltage. 如申請專利範圍第13項所述之電壓供應器,其中,當該輸出電壓的位準上升至接近該輸入電壓的位準時,該驅動電壓的位準開始朝向該接地端的位準下降。 The voltage supply of claim 13, wherein when the level of the output voltage rises to a level close to the input voltage, the level of the driving voltage begins to decrease toward the level of the ground. 如申請專利範圍第10項所述之電壓供應器,其中,當該電容器根據該電流源的一放電操作以及該輸出電壓的位準而調整該驅動電壓的位準的期間,該電晶體操作在一飽合區域。 The voltage supply of claim 10, wherein the transistor operates during a period in which the capacitor adjusts a level of the driving voltage according to a discharging operation of the current source and a level of the output voltage A saturated area. 如申請專利範圍第10項所述之電壓供應器,其中,該電壓產生電路為一直流對直流轉換器或一低壓降線性穩壓器,且該直流對直流轉換器或該低壓降線性穩壓器內的一放大器接收該輸出電壓作為一參考電壓。 The voltage supply device of claim 10, wherein the voltage generating circuit is a DC-to-DC converter or a low-dropout linear regulator, and the DC-to-DC converter or the low-dropout linear regulator An amplifier in the device receives the output voltage as a reference voltage. 如申請專利範圍第10項所述之電壓供應器,更包括:一帶隙參考電路,用以產一帶隙電壓至該軟啟動電路,以作為該輸入電壓。 The voltage supply device of claim 10, further comprising: a bandgap reference circuit for generating a bandgap voltage to the soft start circuit as the input voltage. 如申請專利範圍第10項所述之電壓供應器,其中,該電流源以一定電流源來實現。 The voltage supply of claim 10, wherein the current source is implemented with a constant current source.
TW102131623A 2012-12-14 2013-09-03 Soft-start circuits and power suppliers using the same TW201424224A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201310444676.5A CN103488231A (en) 2012-12-14 2013-09-26 Soft start circuit and voltage supplier
US14/091,579 US20140167714A1 (en) 2012-12-14 2013-11-27 Soft-start circuits and power suppliers using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201261737364P 2012-12-14 2012-12-14

Publications (1)

Publication Number Publication Date
TW201424224A true TW201424224A (en) 2014-06-16

Family

ID=51394206

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102131623A TW201424224A (en) 2012-12-14 2013-09-03 Soft-start circuits and power suppliers using the same

Country Status (1)

Country Link
TW (1) TW201424224A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI563783B (en) * 2015-07-06 2016-12-21 Ultrachip Inc Boost converter for reducing inductor current and driving method thereof
TWI686039B (en) * 2018-12-27 2020-02-21 大陸商北京集創北方科技股份有限公司 Constant current soft start control circuit and power management chip using the same
CN113765353A (en) * 2020-06-02 2021-12-07 晶豪科技股份有限公司 Control circuit for facilitating inrush current reduction for a voltage regulator and voltage regulating device with inrush current reduction

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI563783B (en) * 2015-07-06 2016-12-21 Ultrachip Inc Boost converter for reducing inductor current and driving method thereof
TWI686039B (en) * 2018-12-27 2020-02-21 大陸商北京集創北方科技股份有限公司 Constant current soft start control circuit and power management chip using the same
CN113765353A (en) * 2020-06-02 2021-12-07 晶豪科技股份有限公司 Control circuit for facilitating inrush current reduction for a voltage regulator and voltage regulating device with inrush current reduction
CN113765353B (en) * 2020-06-02 2024-04-12 晶豪科技股份有限公司 Control circuit for facilitating surge current reduction of a voltage regulator and voltage regulating device having the same

Similar Documents

Publication Publication Date Title
JP7170861B2 (en) LDO regulator using NMOS transistors
TWI486740B (en) Circuits, apparatus and methods for providing a reference signal and computer readable medium
KR101409736B1 (en) Low Dropout Circuit Enabling Controlled Start-up And Method For Controlling Thereof
TWI626521B (en) Low dropout regulating device and operatig method thereof
CN108255228B (en) Circuit for reducing negative pulse signal of output end in voltage stabilizer and voltage stabilizing method thereof
US9606556B2 (en) Semiconductor integrated circuit for regulator
US20140167714A1 (en) Soft-start circuits and power suppliers using the same
TWI669585B (en) Circuit and method for supplying a regulated voltage to a target circuit characterized by fast changes in current loading
CN108021177B (en) NMOS-based voltage regulator
JP2019530409A (en) Device and method for stabilizing supply voltage
US10001794B2 (en) Soft start circuit and method for DC-DC voltage regulator
KR20150015411A (en) Low drop-out voltage regulator
JP2015089134A (en) Body bias control circuit
TW202225894A (en) High-speed low-impedance boosting low-dropout regulator
JP2017054253A (en) Voltage Regulator Circuit
KR20120003242A (en) Voltage regulation circuit
CN116360535A (en) Integrated user-programmable slew rate controlled soft starter for LDO
TW201424224A (en) Soft-start circuits and power suppliers using the same
KR101432494B1 (en) Low drop out voltage regulator
CN108459644B (en) Low-dropout voltage regulator and method of operating the same
JP5821497B2 (en) Semiconductor integrated circuit for regulator
KR20170038158A (en) Voltage regulator
KR20150080102A (en) Semiconductor apparatus
JP2021047674A (en) Voltage regulator
WO2019164736A1 (en) Circuits and methods for slew rate control of switched capacitor regulators