TWI626521B - Low dropout regulating device and operatig method thereof - Google Patents
Low dropout regulating device and operatig method thereof Download PDFInfo
- Publication number
- TWI626521B TWI626521B TW106105340A TW106105340A TWI626521B TW I626521 B TWI626521 B TW I626521B TW 106105340 A TW106105340 A TW 106105340A TW 106105340 A TW106105340 A TW 106105340A TW I626521 B TWI626521 B TW I626521B
- Authority
- TW
- Taiwan
- Prior art keywords
- voltage
- feedback
- node
- voltage regulator
- output
- Prior art date
Links
Landscapes
- Continuous-Control Power Sources That Use Transistors (AREA)
Abstract
一種低壓差穩壓裝置,包括穩壓器以及預充器。穩壓器用以依據第一參考電壓與回授節點上的回授電壓之間的壓差調節提供至輸出節點的輸出電壓,其中該回授節點耦接該輸出節點。預充器電性連接該穩壓器,該預充器與該回授節點電性連接以進行電荷分享。 A low dropout voltage regulator includes a voltage regulator and a precharger. The voltage regulator is configured to adjust an output voltage provided to the output node according to a voltage difference between the first reference voltage and a feedback voltage on the feedback node, wherein the feedback node is coupled to the output node. The precharger is electrically connected to the voltage regulator, and the precharger is electrically connected to the feedback node for charge sharing.
Description
本發明是有關於一種低壓差穩壓裝置及其操作方法。 The invention relates to a low-dropout voltage regulator device and an operation method thereof.
低壓差(low dropout,LDO)穩壓器(regulator)因具有低雜訊、低成本等優點,目前已廣泛地應用在各種電子產品中。低壓差穩壓裝置可提供穩定的輸出電壓以作為電源電路。舉例來說,低壓差穩壓裝置可用來提供記憶體晶片操作時的直流電源。 Low dropout (LDO) regulators have been widely used in various electronic products due to their low noise and low cost. The low dropout regulator provides a stable output voltage for use as a power supply circuit. For example, a low dropout regulator can be used to provide a DC power supply for memory chip operation.
然而,低壓差穩壓裝置可能在電路操作狀態轉換時產生不穩定、不可預測的輸出電壓,使得負載電路運作出現異常。因此,如何提出一種改良的低壓差穩壓裝置及其操作方法以解決上述問題,乃本領域所致力的課題之一。 However, the low dropout regulator may generate an unstable, unpredictable output voltage during circuit operation state transitions, causing abnormal operation of the load circuit. Therefore, how to propose an improved low-dropout voltage regulator device and its operation method to solve the above problems is one of the subjects of the field.
本發明係有關於一種低壓差穩壓裝置及其操作方法,可加速低壓差穩壓裝置的啟動速度(startup speed),以縮短低壓差穩壓裝置進入正常操作所需的時間。 The invention relates to a low-dropout voltage regulator device and an operation method thereof, which can accelerate the startup speed of the low-dropout voltage regulator device, so as to shorten the time required for the low-dropout voltage regulator device to enter normal operation.
根據本發明一實施例,提出一種低壓差穩壓裝置, 其包括穩壓器以及預充器。穩壓器用以依據第一參考電壓與回授節點上的回授電壓之間的壓差調節提供至輸出節點的輸出電壓,其中該回授節點耦接該輸出節點,該穩壓器包括比較電路以及輸出電晶體。比較電路用以接收該第一參考電壓以及該回授電壓,並依據該第一參考電壓以及該回授電壓間的壓差在控制節點上產生控制電壓。輸出電晶體具有耦接該控制節點的控制端、耦接供電電壓的第一端以及耦接該輸出節點的第二端,該輸出電晶體響應於該控制電壓,以藉由該第二端產生該輸出電壓。預充器電性連接該穩壓器,該預充器與該回授節點電性連接以進行電荷分享。 According to an embodiment of the invention, a low-dropout voltage regulator device is provided. It includes a voltage regulator and a precharger. The voltage regulator is configured to adjust an output voltage provided to the output node according to a voltage difference between the first reference voltage and a feedback voltage on the feedback node, wherein the feedback node is coupled to the output node, and the voltage regulator includes a comparison circuit And an output transistor. The comparison circuit is configured to receive the first reference voltage and the feedback voltage, and generate a control voltage on the control node according to the first reference voltage and a voltage difference between the feedback voltages. The output transistor has a control end coupled to the control node, a first end coupled to the supply voltage, and a second end coupled to the output node, the output transistor being responsive to the control voltage to generate by the second end The output voltage. The precharger is electrically connected to the voltage regulator, and the precharger is electrically connected to the feedback node for charge sharing.
根據本發明另一實施例,提出一種低壓差穩壓裝置的操作方法,該操作方法包括步驟如下:配置一穩壓器,以依據一第一參考電壓與一回授節點上的一回授電壓之間的壓差調節提供至一輸出節點的一輸出電壓;配置一預充器,以在該穩壓器處於一關閉狀態時與該回授節點電性隔離以累積電荷;以及電性連接該預充器與該回授節點以進行電荷分享。 According to another embodiment of the present invention, a method for operating a low dropout voltage regulator device is provided. The method includes the following steps: configuring a voltage regulator to apply a feedback voltage to a feedback voltage node according to a first reference voltage The differential pressure adjustment provides an output voltage to an output node; a precharger is configured to electrically isolate the feedback node from the feedback node to accumulate charge when the regulator is in a closed state; and electrically connect the The precharger and the feedback node perform charge sharing.
為了對本發明之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: In order to better understand the above and other aspects of the present invention, the preferred embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:
10、10’、30、30’、40、40’‧‧‧低壓差穩壓裝置 10, 10', 30, 30', 40, 40' ‧ ‧ low dropout regulator
102、302、302’、402、402’‧‧‧穩壓器 102, 302, 302', 402, 402' ‧ ‧ voltage regulator
1022‧‧‧比較電路 1022‧‧‧Comparative circuit
1024‧‧‧回授電路 1024‧‧‧ feedback circuit
104‧‧‧預充器 104‧‧‧Prefiller
1042‧‧‧預充電源 1042‧‧‧Precharge source
106‧‧‧保持電路 106‧‧‧keeping circuit
1062‧‧‧待命電源 1062‧‧‧ Standby power supply
108‧‧‧偏壓電源 108‧‧‧ bias power supply
M1‧‧‧輸出電晶體 M1‧‧‧ output transistor
SWc‧‧‧控制開關 SWc‧‧‧ control switch
Vref1‧‧‧第一參考電壓 Vref1‧‧‧ first reference voltage
Vref2‧‧‧第二參考電壓 Vref2‧‧‧second reference voltage
Vref3‧‧‧第三參考電壓 Vref3‧‧‧ third reference voltage
Vfb‧‧‧回授電壓 Vfb‧‧‧ feedback voltage
Vc‧‧‧控制電壓 Vc‧‧‧ control voltage
Vout‧‧‧輸出電壓 Vout‧‧‧ output voltage
SET‧‧‧設定電壓 SET‧‧‧Set voltage
Nfb‧‧‧回授節點 Nfb‧‧‧Feedback node
Nc‧‧‧控制節點 Nc‧‧‧ control node
Nout‧‧‧輸出節點 Nout‧‧‧ output node
VDD‧‧‧供電電壓 VDD‧‧‧ supply voltage
R1‧‧‧第一阻抗元件 R1‧‧‧first impedance component
R2‧‧‧第二阻抗元件 R2‧‧‧second impedance element
EN‧‧‧開關訊號 EN‧‧‧Switch signal
ENB‧‧‧開關訊號的反相訊號 Inverted signal of ENB‧‧‧ switching signal
SWf‧‧‧回授開關 SWf‧‧‧Return switch
SWa‧‧‧取樣開關 SWa‧‧ sampling switch
SWb‧‧‧分享開關 SWb‧‧‧Share switch
SWt‧‧‧待命開關 SWt‧‧‧ Standby switch
BST‧‧‧偏壓訊號 BST‧‧‧ bias signal
Toff‧‧‧穩壓器處於關閉狀態的期間 During the period when the Toff‧‧ voltage regulator is off
Ton‧‧‧穩壓器處於開啟狀態的期間 Ton‧‧‧ voltage regulator is on
S1‧‧‧取樣訊號 S1‧‧‧Sampling signal
S2‧‧‧分享訊號 S2‧‧‧Shared signal
T1‧‧‧第一期間 The first period of T1‧‧
T2‧‧‧第二期間 Second period of T2‧‧
Csas‧‧‧預充電容 Csas‧‧‧Precharge capacity
Cf‧‧‧回授電容 Cf‧‧‧ feedback capacitor
602、604、606‧‧‧步驟 602, 604, 606‧‧ steps
V1、V2、V1’、V2’‧‧‧電位 V1, V2, V1', V2'‧‧‧ potential
第1A圖繪示依據本發明之一實施例之低壓差穩壓裝置之電路圖。 FIG. 1A is a circuit diagram of a low dropout voltage regulator according to an embodiment of the invention.
第1B圖繪示依據本發明之另一實施例之低壓差穩壓裝置之電路圖。 FIG. 1B is a circuit diagram of a low dropout voltage regulator according to another embodiment of the present invention.
第2A圖繪示低壓差穩壓裝置之相關訊號的波形圖。 Figure 2A shows the waveform diagram of the relevant signal of the low dropout voltage regulator.
第2B圖繪示低壓差穩壓裝置之另一例相關訊號的波形圖。 FIG. 2B is a waveform diagram showing another example of a related signal of the low-dropout voltage regulator.
第3A圖繪示依據本發明之一實施例之低壓差穩壓裝置之電路圖。 FIG. 3A is a circuit diagram of a low dropout voltage regulator according to an embodiment of the invention.
第3B圖繪示依據本發明之一實施例之低壓差穩壓裝置之電路圖。 FIG. 3B is a circuit diagram of a low dropout voltage regulator according to an embodiment of the invention.
第4A圖繪示依據本發明之又一實施例之低壓差穩壓裝置之電路圖。 4A is a circuit diagram of a low dropout voltage regulator according to still another embodiment of the present invention.
第4B圖繪示依據本發明之又一實施例之低壓差穩壓裝置之電路圖。 FIG. 4B is a circuit diagram of a low dropout voltage regulator according to still another embodiment of the present invention.
第5A圖繪示低壓差穩壓裝置之相關訊號的一例波形圖 FIG. 5A is a diagram showing an example of a waveform of a related signal of a low-dropout voltage regulator device.
第5B圖繪示低壓差穩壓裝置之相關訊號的另一例波形圖。 FIG. 5B is a diagram showing another example of waveforms of related signals of the low-dropout voltage regulator.
第6圖繪示依據本發明之一實施例之低壓差穩壓裝置之操作方法流程圖。 FIG. 6 is a flow chart showing the operation method of the low-dropout voltage stabilizing device according to an embodiment of the present invention.
以下係提出實施例進行詳細說明,實施例僅用以作為範例說明,並不會限縮本揭露欲保護之範圍。此外,實施例中之圖式係省略不必要之元件,以清楚顯示本揭露之技術特點。 The following is a detailed description of the embodiments, which are intended to be illustrative only and not to limit the scope of the disclosure. In addition, the drawings in the embodiments omit unnecessary elements to clearly show the technical features of the disclosure.
第1A圖繪示依據本發明之一實施例之低壓差穩壓裝置10之電路圖。低壓差穩壓裝置10可提供穩壓後的輸出電壓 Vout至輸出節點Nout,像是NOR快閃記憶體、NAND快閃記憶體、動態隨機存取記憶體(dynamic random-access memory,DRAM)或是靜態隨機存取記憶體(static random-access memory,SRAM)。 FIG. 1A is a circuit diagram of a low-dropout voltage regulator device 10 in accordance with an embodiment of the present invention. Low-dropout regulator 10 provides regulated output voltage Vout to the output node Nout, such as NOR flash memory, NAND flash memory, dynamic random-access memory (DRAM) or static random-access memory (static random-access memory, SRAM).
低壓差穩壓裝置10包括穩壓器102以及預充器104,更可選擇性地包括保持電路106以及偏壓電源108。 The low dropout voltage regulator device 10 includes a voltage regulator 102 and a precharger 104, and more selectively includes a hold circuit 106 and a bias power supply 108.
穩壓器102用以依據第一參考電壓Vref1與回授電壓Vfb之間的壓差調節提供至輸出節點Nout的輸出電壓Vout。 The regulator 102 is configured to adjust the output voltage Vout provided to the output node Nout according to a voltage difference between the first reference voltage Vref1 and the feedback voltage Vfb.
穩壓器102包括比較電路1022、輸出電晶體M1以及回授電路1024。在此實施例中,輸出電晶體M1例如以P型電晶體來實現,如PMOS。 The voltage regulator 102 includes a comparison circuit 1022, an output transistor M1, and a feedback circuit 1024. In this embodiment, the output transistor M1 is implemented, for example, as a P-type transistor, such as a PMOS.
比較電路1022例如是一操作放大器(Operational Amplifier,OPA)。比較電路1022可接收第一參考電壓Vref1以及回授電壓Vfb,並依據第一參考電壓Vref1以及回授電壓Vfb間的壓差在控制節點Nc上產生控制電壓Vc。 The comparison circuit 1022 is, for example, an Operational Amplifier (OPA). The comparison circuit 1022 can receive the first reference voltage Vref1 and the feedback voltage Vfb, and generate the control voltage Vc on the control node Nc according to the voltage difference between the first reference voltage Vref1 and the feedback voltage Vfb.
輸出電晶體M1可回應控制電壓Vc而導通,以對輸出節點Nout提供輸出電壓Vout。如第1A圖所示,輸出電晶體M1具有耦接控制節點Nc的控制端(如閘極)、耦接供電電壓VDD的第一端(如源/汲極)以及耦接輸出節點Nout的第二端(如汲/源極)。當輸出電晶體M1導通,供電電壓VDD將被傳遞至輸出節點Nout以作為輸出電壓Vout。 The output transistor M1 is turned on in response to the control voltage Vc to provide an output voltage Vout to the output node Nout. As shown in FIG. 1A, the output transistor M1 has a control end (such as a gate) coupled to the control node Nc, a first end (such as a source/drain) coupled to the supply voltage VDD, and a first coupled output node Nout. Two ends (such as 汲 / source). When the output transistor M1 is turned on, the supply voltage VDD will be delivered to the output node Nout as the output voltage Vout.
回授電路1024耦接在輸出節點Nout與比較電路1022之間,用以提供一分壓路徑以形成回授節點Nfb,並將回授 節點Nfb上的回授電壓Vfb提供至比較電路1022。 The feedback circuit 1024 is coupled between the output node Nout and the comparison circuit 1022 to provide a voltage dividing path to form a feedback node Nfb, and is to be fed back The feedback voltage Vfb on the node Nfb is supplied to the comparison circuit 1022.
如第1A圖所示,回授電路1024包括第一阻抗元件R1以及第二阻抗元件R2以形成對輸出電壓Vout的分壓路徑。第一阻抗元件R1與第二阻抗元件R2相串聯,兩者間的相連處係形成回授節點Nfb。第一阻抗元件R1與第二阻抗元件R2可以是電阻,或是其他任何可等效成電阻的電路元件。 As shown in FIG. 1A, the feedback circuit 1024 includes a first impedance element R1 and a second impedance element R2 to form a voltage dividing path to the output voltage Vout. The first impedance element R1 and the second impedance element R2 are connected in series, and the junction between the two forms a feedback node Nfb. The first impedance element R1 and the second impedance element R2 may be resistors or any other circuit element equivalent to resistance.
在低壓差穩壓裝置10工作的期間,若輸出電壓Vout發生變動,回授電壓Vfb將連帶地改變,此時比較電路1022將回應回授電壓Vfb的變化來調節比較電路1022的控制電壓Vc,更進一步藉由調節後的控制電壓Vc改變輸出電晶體M1流出的電流,以維持輸出電壓Vout在一預定的位準。 During the operation of the low-dropout regulator 10, if the output voltage Vout fluctuates, the feedback voltage Vfb will change in conjunction. At this time, the comparison circuit 1022 will adjust the control voltage Vc of the comparison circuit 1022 in response to the change of the feedback voltage Vfb. Further, the current flowing out of the output transistor M1 is changed by the adjusted control voltage Vc to maintain the output voltage Vout at a predetermined level.
穩壓器102可受開關訊號EN的控制而開啟或關閉。當開關訊號EN為致能,穩壓器102處於開啟狀態;當開關訊號EN為禁能,穩壓器102處於關閉狀態。如第1A圖所示,比較電路1022係受控於開關訊號EN而開啟或關閉。 The voltage regulator 102 can be turned on or off under the control of the switching signal EN. When the switching signal EN is enabled, the voltage regulator 102 is in an on state; when the switching signal EN is disabled, the voltage regulator 102 is in an off state. As shown in FIG. 1A, the comparison circuit 1022 is turned on or off controlled by the switching signal EN.
穩壓器102可更包括控制開關SWc。控制開關SWc耦接在設定電壓SET和控制節點Nc之間,其例如受控於開關訊號EN。當穩壓器102處於開啟狀態,致能該開關訊號EN,控制開關SWc被關閉(Turn OFF),使設定電壓SET(可以是供電電壓)與控制節點Nc電性隔離;當穩壓器102處於關閉狀態,禁能該開關訊號EN,此時控制開關SWc被開啟(Turn ON),使設定電壓SET傳遞至控制節點Nc以關閉輸出電晶體M1。 The voltage regulator 102 can further include a control switch SWc. The control switch SWc is coupled between the set voltage SET and the control node Nc, which is controlled, for example, by the switching signal EN. When the voltage regulator 102 is in the on state, the switching signal EN is enabled, and the control switch SWc is turned off (Turn OFF), so that the set voltage SET (which may be the power supply voltage) is electrically isolated from the control node Nc; when the voltage regulator 102 is at In the off state, the switching signal EN is disabled, and the control switch SWc is turned on (Turn ON), and the set voltage SET is transmitted to the control node Nc to turn off the output transistor M1.
在一實施例中,穩壓器102更包括一受控於開關訊號EN的回授開關SWf。回授開關SWf設置於回授電路1024與輸出節點Nout之間。當開關訊號EN為致能,也就是穩壓器102處於開啟狀態,回授開關SWf將閉合(Turn ON)以耦接輸出節點Nout與回授電路1024。反之,當開關訊號EN為禁能,也就是穩壓器102處於關閉狀態,回授開關SWf將打開(Turn OFF)以電性隔離輸出節點Nout與回授電路1024。 In an embodiment, the voltage regulator 102 further includes a feedback switch SWf controlled by the switching signal EN. The feedback switch SWf is disposed between the feedback circuit 1024 and the output node Nout. When the switching signal EN is enabled, that is, the regulator 102 is in the on state, the feedback switch SWf will be turned on (Turn ON) to couple the output node Nout with the feedback circuit 1024. Conversely, when the switching signal EN is disabled, that is, the regulator 102 is in the off state, the feedback switch SWf will be turned on (Turn OFF) to electrically isolate the output node Nout from the feedback circuit 1024.
在一實施例中,預充器104用以對回授節點Nfb上的回授電壓Vfb進行預充電到一個預定電壓。 In an embodiment, the precharger 104 is configured to precharge the feedback voltage Vfb on the feedback node Nfb to a predetermined voltage.
預充器104可在穩壓器102處於關閉狀態時與回授節點Nfb電性隔離並累積電荷,並在穩壓器102切換至開啟狀態時與回授節點Nfb暫時地電性連接以進行電荷分享。 The precharger 104 can be electrically isolated from the feedback node Nfb and accumulate charge when the voltage regulator 102 is in the off state, and temporarily electrically connected to the feedback node Nfb to perform charge when the voltage regulator 102 is switched to the on state. share it.
一般來說,若沒有預充器104的設計,當穩壓器102從關閉狀態切換至開啟狀態,回授節點Nfb上的回授電壓Vfb往往需花費一定時間才能提升至適合進行穩壓操作的電壓位準。然而,該段時間將嚴重影響低壓差穩壓裝置10的「啟動速度」。為加快低壓差穩壓裝置10的啟動速度,當穩壓器102從進入開啟狀態,預充器104可分享其所累積的電荷至回授節點Nfb,以快速提升回授電壓Vfb的位準。 Generally, without the design of the precharger 104, when the voltage regulator 102 is switched from the off state to the on state, the feedback voltage Vfb on the feedback node Nfb often takes a certain time to be upgraded to be suitable for the voltage stabilization operation. Voltage level. However, this period of time will seriously affect the "starting speed" of the low-dropout regulator 10. To speed up the startup speed of the low dropout regulator 10, when the regulator 102 is turned on, the precharger 104 can share its accumulated charge to the feedback node Nfb to quickly raise the level of the feedback voltage Vfb.
在一實施例中,預充器104包括預充電源1042、預充電容Csas、取樣開關SWa以及分享開關SWb,以共同組成一電荷分享電路組態。預充電源1042用以提供第二參考電壓Vref2。 取樣開關SWa耦接在預充電容Csas與預充電源1042之間,以允許預充電源1042對預充電容Csas進行充電。分享開關SWb耦接在預充電容Csas與回授節點Nfb之間,以允許預充電容Csas與回授節點Nfb進行電荷分享。 In one embodiment, the precharger 104 includes a precharge source 1042, a precharge capacitor Csas, a sampling switch SWa, and a sharing switch SWb to collectively form a charge sharing circuit configuration. The precharge source 1042 is configured to provide a second reference voltage Vref2. The sampling switch SWa is coupled between the pre-charging capacitor Csas and the pre-charging source 1042 to allow the pre-charging source 1042 to charge the pre-charging capacitor Csas. The sharing switch SWb is coupled between the pre-charging capacitor Csas and the feedback node Nfb to allow the pre-charging capacitor Csas to perform charge sharing with the feedback node Nfb.
舉例來說,當穩壓器102處於關閉狀態,取樣開關SWa係閉合(Turn ON),使預充電容Csas耦接至預充電源1042,且分享開關SWb係打開(Turn OFF),使預充電容Csas與回授節點Nfb電性隔離。此時,預充電源1042將以第二參考電壓Vref2對預充電容Csas進行充電。 For example, when the voltage regulator 102 is in the off state, the sampling switch SWa is turned off (Turn ON), the pre-charging capacitor Csas is coupled to the pre-charging source 1042, and the sharing switch SWb is turned on (Turn OFF), so that the pre-charging is performed. The Csas is electrically isolated from the feedback node Nfb. At this time, the precharge source 1042 will charge the precharge capacity Csas with the second reference voltage Vref2.
當穩壓器102切換至開啟狀態,取樣開關SWa將於第一期間將預充電容Csas與預充電源1042電性隔離,且分享開關SWb將於第一期間內的一第二期間將預充電容Csas電性連接至回授節點Nfb。此時,預充電容Csas上所累積的電荷將與回授節點Nfb上的寄生電容進行電荷分享,使得回授電壓Vfb快速提升。由於回授節點Nfb上的寄生電容的電容值往往遠小於預充電容Csas的電容值,故藉由適當地設計預充電容Csas,即可決定電荷分享後回授電壓Vfb的一預定值,該預定值係界於該回授電壓Vfb的一最低電位與一穩態電位之間。 When the voltage regulator 102 is switched to the on state, the sampling switch SWa will electrically isolate the precharge capacity Csas from the precharge source 1042 during the first period, and the sharing switch SWb will be precharged during a second period in the first period. The Csas is electrically connected to the feedback node Nfb. At this time, the charge accumulated on the precharge capacity Csas will be charge-shared with the parasitic capacitance on the feedback node Nfb, so that the feedback voltage Vfb is rapidly increased. Since the capacitance value of the parasitic capacitance on the feedback node Nfb is often much smaller than the capacitance value of the precharge capacity Csas, a predetermined value of the feedback voltage Vfb after the charge sharing can be determined by appropriately designing the precharge capacity Csas. The predetermined value is bounded between a lowest potential and a steady state potential of the feedback voltage Vfb.
在一實施例中,低壓差穩壓裝置10更包括一保持電路106。保持電路106可在穩壓器102處於關閉狀態時對輸出節點Nout進行供電。 In an embodiment, the low dropout voltage regulator device 10 further includes a hold circuit 106. The hold circuit 106 can supply power to the output node Nout when the regulator 102 is in the off state.
保持電路106例如包括待命電源1062以及待命開關 SWt。待命電源1062可由另一低壓差穩壓裝置來實現,用以提供第三參考電壓Vref3。待命開關SWt設置在待命電源1062與輸出節點Nout之間,並受控於開關訊號EN的反相訊號ENB。待命開關SWt可允許待命電源1062在穩壓器102處於關閉狀態時以第三參考電壓Vref3對輸出節點Nout進行供電。 The hold circuit 106 includes, for example, a standby power supply 1062 and a standby switch SWt. Standby power supply 1062 can be implemented by another low dropout voltage regulator to provide a third reference voltage Vref3. The standby switch SWt is disposed between the standby power supply 1062 and the output node Nout, and is controlled by the inverted signal ENB of the switching signal EN. The standby switch SWt may allow the standby power supply 1062 to supply the output node Nout with the third reference voltage Vref3 when the voltage regulator 102 is in the off state.
舉例來說,當穩壓器102處於開啟狀態,待命開關SWt打開(Turn OFF),使輸出節點Nout與待命電源1062電性隔離。反之,當穩壓器102處於關閉狀態,待命開關SWt閉合,使待命電源1062耦接至輸出節點Nout進行供電。 For example, when the voltage regulator 102 is in the on state, the standby switch SWt is turned on (Turn OFF) to electrically isolate the output node Nout from the standby power source 1062. On the contrary, when the voltage regulator 102 is in the off state, the standby switch SWt is closed, and the standby power source 1062 is coupled to the output node Nout for power supply.
透過保持電路106,輸出節點Nout上的輸出電壓Vout在穩壓器102關閉時仍能保持在一定的位準,故可進一步縮短啟動低壓差穩壓裝置10所需的時間。 Through the holding circuit 106, the output voltage Vout on the output node Nout can be maintained at a certain level when the regulator 102 is turned off, so that the time required to start the low-dropout voltage regulator device 10 can be further shortened.
在一實施例中,可將預充器104中的預充電源1042與保持電路106中的待命電源1062整合在一起,此時,第二參考電壓Vref2與第三參考電壓Vref3相同。 In an embodiment, the pre-charge source 1042 in the precharger 104 can be integrated with the standby power source 1062 in the hold circuit 106. At this time, the second reference voltage Vref2 is the same as the third reference voltage Vref3.
低壓差穩壓裝置10可更包括耦接比較電路1022的偏壓電源108。偏壓電源108可例如由電流鏡電路及/或電阻來實現。當穩壓器102開啟時,偏壓電源108可提供一偏壓訊號BST至比較電路1022以增加其偏壓電流,藉此加速在控制節點Nc的啟動速度。 The low dropout voltage regulator device 10 can further include a bias power supply 108 coupled to the comparison circuit 1022. Bias power supply 108 can be implemented, for example, by a current mirror circuit and/or a resistor. When the regulator 102 is turned on, the bias power supply 108 can provide a bias signal BST to the comparison circuit 1022 to increase its bias current, thereby accelerating the startup speed at the control node Nc.
第1B圖繪示依據本發明之另一實施例之低壓差穩壓裝置10’之電路圖。相較於低壓差穩壓裝置10,低壓差穩壓裝 置10’不包括回授電路1024,輸出電晶體M1的一端直接經由回授開關SWf(選擇性地)而耦接至比較電路1022的一輸入端(如負(-)輸入端)。可理解的是,本發明各實施例亦可套用如低壓差穩壓裝置10’之電路配置而不包括回授電路1024。此時,回授節點Nfb係定義在輸出電晶體M1的一端和比較電路1022的輸入端的相接處。 Fig. 1B is a circuit diagram showing a low dropout voltage stabilizing device 10' according to another embodiment of the present invention. Compared with the low dropout regulator 10, low dropout regulator The input 10' does not include the feedback circuit 1024, and one end of the output transistor M1 is directly coupled to an input terminal (such as a negative (-) input terminal) of the comparison circuit 1022 via a feedback switch SWf (optionally). It will be appreciated that embodiments of the present invention may also employ a circuit configuration such as a low dropout voltage regulator 10' without including a feedback circuit 1024. At this time, the feedback node Nfb is defined at the junction of one end of the output transistor M1 and the input terminal of the comparison circuit 1022.
第2A圖繪示低壓差穩壓裝置10之相關訊號的波形圖。 FIG. 2A is a waveform diagram showing related signals of the low-dropout voltage regulator device 10.
在期間Toff,開關訊號EN為禁能(例如,具有低訊號位準)以關閉穩壓器102,而開關訊號的反向訊號ENB為致能(例如,具有高訊號位準)使待命電源1062對輸出節點Nout進行充電。此外,取樣訊號S1為致能以控制取樣開關SWa閉合,以允許第二參考電壓Vref2對預充電容Csas進行充電。分享訊號S2則為禁能以控制分享開關SWb打開,以電性隔離預充電容Csas與回授節點Nfb。 During the period Toff, the switching signal EN is disabled (for example, with a low signal level) to turn off the voltage regulator 102, and the reverse signal ENB of the switching signal is enabled (for example, with a high signal level) to enable the standby power supply 1062. The output node Nout is charged. In addition, the sampling signal S1 is enabled to control the sampling switch SWa to be closed to allow the second reference voltage Vref2 to charge the pre-charging capacitor Csas. The sharing signal S2 is disabled to control the sharing switch SWb to open to electrically isolate the pre-charging capacitor Csas from the feedback node Nfb.
在期間Ton,開關訊號EN為致能以開啟穩壓器102,開關訊號EN的反向訊號ENB則為禁能,使待命電源1062與輸出節點Nout電性隔離。在期間Ton的起始,取樣訊號S1在一第一期間T1為禁能以打開取樣開關SWa,使預充電容Csas與第二參考電壓Vref2電性隔離。在第一期間T1內的一第二期間T2,分享開關SWb回應致能的分享訊號S2而閉合,使預充電容Csas電性連接回授節點Nfb以進行電荷分享。 During the period Ton, the switching signal EN is enabled to turn on the voltage regulator 102, and the reverse signal ENB of the switching signal EN is disabled, so that the standby power supply 1062 is electrically isolated from the output node Nout. During the beginning of the period Ton, the sampling signal S1 is disabled during a first period T1 to turn on the sampling switch SWa to electrically isolate the pre-charging capacitor Csas from the second reference voltage Vref2. During a second period T2 in the first period T1, the sharing switch SWb is closed in response to the enabled sharing signal S2, so that the pre-charging capacitor Csas is electrically connected to the feedback node Nfb for charge sharing.
在一實施例中,為確保在進行電荷分享時沒有額外的電荷(例如來自預充電源1042的電荷)流入回授節點Nfb,使回授電壓Vfb為可預測,第二期間T2係較第一期間T2短,亦即分享訊號S2的正緣(Raising edge)會晚於取樣訊號S1的負緣(Falling edge);而分享訊號S2的負緣(Falling edge)會早於取樣訊號S1的正緣(Raising edge),如第2A圖所示。 In an embodiment, to ensure that no additional charge (eg, charge from the pre-charge source 1042) flows into the feedback node Nfb during charge sharing, the feedback voltage Vfb is predictable, and the second period T2 is first The period T2 is short, that is, the Raising edge of the shared signal S2 is later than the falling edge of the sampling signal S1; and the falling edge of the shared signal S2 is earlier than the positive edge of the sampled signal S1. (Raising edge), as shown in Figure 2A.
在完成電荷分享後,取樣開關SWa與分享開關SWb將分別恢復至閉合以及打開的狀態,直至下一次低壓差穩壓裝置10再度從關閉狀態切換至開啟狀態。如第2A圖所示,每當穩壓器102從關閉狀態切換至開啟狀態,預充器104將對回授節點Nfb作一次性的電荷分享,以於穩壓器102開啟初期適當地設定回授電壓Vfb。 After the charge sharing is completed, the sampling switch SWa and the sharing switch SWb will return to the closed and open states, respectively, until the next low-dropout voltage stabilizing device 10 is switched from the off state to the on state again. As shown in FIG. 2A, each time the regulator 102 is switched from the off state to the on state, the precharger 104 will perform a one-time charge sharing on the feedback node Nfb to properly set back the regulator 102 when it is turned on. Grant voltage Vfb.
在第2A圖的例子中,偏壓訊號BST係取樣訊號S1的反相訊號。也就是說,偏壓電源108可於第一期間T1增加比較電路1022的偏壓電流,以進一步加速控制節點Nc的啟動速度。 In the example of Fig. 2A, the bias signal BST is the inverted signal of the sample signal S1. That is, the bias power supply 108 can increase the bias current of the comparison circuit 1022 during the first period T1 to further accelerate the startup speed of the control node Nc.
第2B圖繪示低壓差穩壓裝置10之另一例相關訊號的波形圖。相較於第2A圖所示的實施例,本實施例中預充器104在穩壓器102被開啟前(也就是處於關閉狀態時)即電性連接至回授節點Nfb以對回授節點Nfb進行預充電。如第2B圖所示,取樣訊號S1被禁能的第一期間T1以及分享訊號S2被致能的第二期間T2皆落在開關訊號EN被禁能、反相訊號ENB被致能的期 間內(即期間Toff)。可理解,類似於第2A圖所示的操作波形,第2B圖中的操作波形亦適用於本揭露的各實施例。 FIG. 2B is a waveform diagram showing another example of the related signal of the low-dropout voltage regulator device 10. Compared with the embodiment shown in FIG. 2A, in the embodiment, the pre-charger 104 is electrically connected to the feedback node Nfb before the voltage regulator 102 is turned on (that is, when it is in the off state) to feedback the node. Nfb is precharged. As shown in FIG. 2B, the first period T1 during which the sampling signal S1 is disabled and the second period T2 when the sharing signal S2 is enabled fall during the period when the switching signal EN is disabled and the inverted signal ENB is enabled. In-between (ie, period Toff). It will be appreciated that similar to the operational waveforms shown in FIG. 2A, the operational waveforms in FIG. 2B are also applicable to the various embodiments of the present disclosure.
第3A圖繪示依據本發明之一實施例之低壓差穩壓裝置30之電路圖。低壓差穩壓裝置30的訊號操作亦如第2A圖所示。在此例中,低壓差穩壓裝置30的穩壓器302的輸出電晶體M1以及控制開關SWc皆由P型電晶體來實現,如PMOS。此外,在此實施例中,耦接至控制開關SWc的設定電壓SET係具有高電壓位準,例如供電電壓VDD,且控制開關SWc係受控於開關訊號EN。 FIG. 3A is a circuit diagram of a low dropout voltage regulator device 30 in accordance with an embodiment of the present invention. The signal operation of the low dropout regulator 30 is also shown in Figure 2A. In this example, the output transistor M1 of the regulator 302 of the low dropout regulator 30 and the control switch SWc are all implemented by a P-type transistor, such as a PMOS. Moreover, in this embodiment, the set voltage SET coupled to the control switch SWc has a high voltage level, such as the supply voltage VDD, and the control switch SWc is controlled by the switching signal EN.
第3B圖繪示依據本發明之另一實施例之低壓差穩壓裝置30之電路圖。低壓差穩壓裝置30’的訊號操作亦如第2A圖所示。在此例中,低壓差穩壓裝置30’的穩壓器302’的輸出電晶體M1以及控制開關SWc皆由N型電晶體來實現,如NMOS。此外,在此實施例中,耦接至控制開關SWc的設定電壓SET係具有低電壓位準,例如接地,且控制開關SWc係受控於開關訊號EN的反相訊號ENB。 FIG. 3B is a circuit diagram of a low dropout voltage regulator device 30 in accordance with another embodiment of the present invention. The signal operation of the low dropout voltage regulator 30' is also shown in Fig. 2A. In this example, the output transistor M1 of the regulator 302' of the low-dropout regulator 30' and the control switch SWc are all implemented by an N-type transistor, such as an NMOS. In addition, in this embodiment, the set voltage SET coupled to the control switch SWc has a low voltage level, such as ground, and the control switch SWc is controlled by the inverted signal ENB of the switching signal EN.
第4A圖繪示依據本發明之又一實施例之低壓差穩壓裝置40之電路圖。低壓差穩壓裝置40的訊號操作亦如第2A圖所示,與第3A圖之低壓差穩壓裝置30的主要差別在於,低壓差穩壓裝置40的穩壓器402更包括回授電容Cf。回授電容Cf耦接在輸出節點Nout與回授節點Nfb之間。在預充電容Csas電性電接至回授節點Nfb的期間(如第2A圖所示的第二期間T2),預 充電容Csas將與回授電容Cf進行電荷分享,以決定回授電壓Vfb的大小。 FIG. 4A is a circuit diagram of a low dropout voltage regulator 40 according to still another embodiment of the present invention. The signal operation of the low-dropout voltage regulator 40 is also as shown in FIG. 2A. The main difference from the low-dropout voltage regulator 30 of FIG. 3A is that the regulator 402 of the low-dropout regulator 40 further includes a feedback capacitor Cf. . The feedback capacitor Cf is coupled between the output node Nout and the feedback node Nfb. During the period during which the precharge capacity Csas is electrically connected to the feedback node Nfb (as in the second period T2 shown in FIG. 2A), The charging capacity Csas will perform charge sharing with the feedback capacitor Cf to determine the magnitude of the feedback voltage Vfb.
由於在許多應用中輸出節點Nout上的電容負載皆相當大,故電荷分享後,可估計回授電壓Vfb的大小為:
其中C_Csas表示預充電容Csas的電容值,C_Cf表示回授電容Cf的電容值,C_Cpar表示回授節點Nfb的寄生電容的電容值。 Where C_Csas represents the capacitance value of the precharge capacity Csas, C_Cf represents the capacitance value of the feedback capacitor Cf, and C_Cpar represents the capacitance value of the parasitic capacitance of the feedback node Nfb.
若C_Cpar遠小於C_Csas和C_Cf,則可進一步將回授電壓Vfb簡化為:
透過此方式,只要適當地選擇預充電容Csas和回授電容Cf,即可將電荷分享後的回授電壓Vfb設定至所需的位準。 In this way, the charge sharing voltage Vfb can be set to a desired level as long as the precharge capacity Csas and the feedback capacitor Cf are appropriately selected.
第4B圖繪示依據本發明之又一實施例之低壓差穩壓裝置40’之電路圖。低壓差穩壓裝置40’的訊號操作亦如第2A圖所示,與第4A圖之低壓差穩壓裝置40的主要差別在於,低壓差穩壓裝置40’的穩壓器402’的輸出電晶體M1以及控制開關SWc皆由N型電晶體來實現,如NMOS。此外,在此實施例中,耦接至控制開關SWc的設定電壓SET係具有低電壓位準,例如接地,且控制開關SWc係受控於開關訊號EN的反相訊號ENB。 Fig. 4B is a circuit diagram showing a low dropout voltage regulator 40' according to still another embodiment of the present invention. The signal operation of the low-dropout regulator device 40' is also shown in FIG. 2A. The main difference from the low-dropout regulator device 40 of FIG. 4A is that the output of the regulator 402' of the low-dropout regulator device 40' is Both the crystal M1 and the control switch SWc are implemented by an N-type transistor, such as an NMOS. In addition, in this embodiment, the set voltage SET coupled to the control switch SWc has a low voltage level, such as ground, and the control switch SWc is controlled by the inverted signal ENB of the switching signal EN.
第5A圖繪示低壓差穩壓裝置40之相關訊號的一例波形圖,其中開關訊號EN、取樣訊號S1、分享訊號S2的訊號波
形和第2A圖所示之訊號波形相同。在此例中,係設計預充電容Csas與回授電容Cf的比值,使得下式得以滿足:
當(式1)被滿足,即回授電壓Vfb小於第一參考電壓Vref1,此時輸出電壓Vout在期間Ton的初期會呈現過充(overshoot)現象。 When (Equation 1) is satisfied, that is, the feedback voltage Vfb is smaller than the first reference voltage Vref1, the output voltage Vout may exhibit an overshoot phenomenon at the beginning of the period Ton.
如第5A圖所示,在第一期間T1的起始(如取樣訊號S1的負緣),取樣訊號S1為禁能以打開(Turn OFF)取樣開關SWa,使預充電容Csas與第二參考電壓Vref2電性隔離,並使輸出電壓Vout暫時地高於最終的穩定值(過充)。 As shown in FIG. 5A, at the beginning of the first period T1 (such as the negative edge of the sampling signal S1), the sampling signal S1 is disabled to turn the (Turn OFF) sampling switch SWa to make the pre-charging capacitor Csas and the second reference. The voltage Vref2 is electrically isolated and the output voltage Vout is temporarily higher than the final stable value (overcharge).
在第二期間T2的起始(如分享訊號S2的正緣),分享開關SWb回應致能的分享訊號S2而閉合,使預充電容Csas電性連接回授節點Nfb以進行電荷分享。此時回授電壓Vfb因電荷分享而推升(boost)至小於第一參考電壓Vref1的位準,以驅使比較電路1022增加對輸出電晶體M1的過驅動(overdrive)。在第一期間結束時(如取樣訊號S1的正緣),回授電壓Vfb被預充到一預定電位V1,該預定電位V1已經非常的接近穩態的電位V2,因此,可以縮短回授電壓Vfb由低電位(例如0V)到穩態電位V2的充電時間。反之,本發明若無預充器104的設計,可想而知,回授電壓Vfb由低電位(例如0V)到穩態電位V2的充電時間只能靠穩壓器102自身的回授路徑來充電,即電阻-電容的充電模式。此一方式相較於預充器104利用電荷分享的方式,會耗費更多的 充電時間。 During the start of the second period T2 (such as the positive edge of the shared signal S2), the sharing switch SWb is closed in response to the enabled sharing signal S2, so that the pre-charging capacitor Csas is electrically connected to the feedback node Nfb for charge sharing. At this time, the feedback voltage Vfb is boosted by the charge sharing to a level smaller than the first reference voltage Vref1 to drive the comparison circuit 1022 to increase the overdrive of the output transistor M1. At the end of the first period (such as the positive edge of the sampling signal S1), the feedback voltage Vfb is precharged to a predetermined potential V1, which is already very close to the steady-state potential V2, so that the feedback voltage can be shortened The charging time of Vfb from a low potential (for example, 0V) to a steady-state potential V2. On the contrary, if the present invention does not have the design of the precharger 104, it can be imagined that the charging time of the feedback voltage Vfb from the low potential (for example, 0V) to the steady state potential V2 can only depend on the feedback path of the regulator 102 itself. Charging, ie the resistance-capacitor charging mode. This method consumes more than the precharger 104 utilizes charge sharing. Charging time.
第5B圖繪示低壓差穩壓裝置40之相關訊號的另一例波形圖。與第5A圖實施例的主要差別在於,在此例中,係設計預充電容Csas與回授電容Cf的比值,使得下式得以滿足:
當(式2)被滿足,即回授電壓Vfb大於參考電壓Vref1,此時輸出電壓Vout在期間Ton的初期會呈現下充(undershoot)現象。 When (Equation 2) is satisfied, that is, the feedback voltage Vfb is greater than the reference voltage Vref1, the output voltage Vout may exhibit an undershoot phenomenon at the beginning of the period Ton.
如第5B圖所示,在第一期間T1的起始,取樣訊號S1為禁能以打開取樣開關SWa,使預充電容Csas與第二參考電壓Vref2電性隔離,並使輸出電壓Vout暫時地低於最終的穩定值(下充)。 As shown in FIG. 5B, at the beginning of the first period T1, the sampling signal S1 is disabled to turn on the sampling switch SWa, the pre-charging capacitor Csas is electrically isolated from the second reference voltage Vref2, and the output voltage Vout is temporarily Below the final stable value (under charge).
在第二期間T2的起始,分享開關SWb回應致能的分享訊號S2而閉合(Turn ON),使預充電容Csas電性連接回授節點Nfb以進行電荷分享。此時回授電壓Vfb將因電荷分享而推升至大於第一參考電壓Vref1的位準,以驅使比較電路1022減少對輸出電晶體M1的過驅動。在取樣訊號S1結束時,回授電壓Vfb被預充到一預定電位V1’,該預定電位V1’已經非常的接近穩態的電位V2’,因此,可以縮短回授電壓Vfb由低電位(例如0V)到穩態電位V2’的充電時間。 At the beginning of the second period T2, the sharing switch SWb is turned on (Turn ON) in response to the enabled sharing signal S2, so that the pre-charging capacitor Csas is electrically connected to the feedback node Nfb for charge sharing. At this time, the feedback voltage Vfb will be boosted to a level greater than the first reference voltage Vref1 due to charge sharing to drive the comparison circuit 1022 to reduce overdriving of the output transistor M1. At the end of the sampling signal S1, the feedback voltage Vfb is precharged to a predetermined potential V1', which is already very close to the steady-state potential V2', so that the feedback voltage Vfb can be shortened from a low potential (for example 0V) Charging time to the steady state potential V2'.
在電路設計上,考量到穩壓器102啟動時,周邊其它電路負載會分享穩壓器102的電流,造成輸出波形在短瞬間下 降的問題,因此,在假設電容Csas與Cf已設定為一定值的情況下,通常會令第二參考電壓Vref2大於第一參考電壓Vref1,以便過充該輸出電晶體M1,進行電流的補償,如此,能更快速的將輸出波形穩定在穩態電壓。 In the circuit design, when the regulator 102 starts, the other circuit load will share the current of the regulator 102, causing the output waveform to be in a short time. The problem of the drop, therefore, in the case that the capacitors Csas and Cf have been set to a certain value, the second reference voltage Vref2 is usually made larger than the first reference voltage Vref1, so as to overcharge the output transistor M1 and perform current compensation. In this way, the output waveform can be stabilized at a steady state voltage more quickly.
第6圖繪示依據本發明之一實施例之低壓差穩壓裝置之操作方法。基於說明目的,此處所述之操作方法係參照第1A圖之LDO穩壓器10作說明。然本發明並不以此為限。所述之操作方法可適用於前述各實施例之低壓差穩壓裝置。 FIG. 6 is a diagram showing the operation method of the low-dropout voltage stabilizing device according to an embodiment of the present invention. For the purposes of illustration, the method of operation described herein is described with reference to LDO regulator 10 of FIG. 1A. However, the invention is not limited thereto. The method of operation described above can be applied to the low dropout voltage regulator of the foregoing embodiments.
在步驟602,穩壓器102被配置為依據第一參考電壓Vref1與回授節點Nfb上的回授電壓Vfb之間的壓差調節提供至輸出節點Nout的輸出電壓Vout。 At step 602, the voltage regulator 102 is configured to adjust the output voltage Vout provided to the output node Nout in accordance with a voltage difference between the first reference voltage Vref1 and the feedback voltage Vfb on the feedback node Nfb.
在步驟604,預充器104被配置為在穩壓器102處於關閉狀態時與回授節點Nfb電性隔離以累積電荷。 At step 604, the precharger 104 is configured to be electrically isolated from the feedback node Nfb to accumulate charge when the voltage regulator 102 is in the off state.
在步驟606,預充器104電性連接回授節點Nfb以進行電荷分享。 At step 606, the pre-charger 104 is electrically coupled to the feedback node Nfb for charge sharing.
透過所提出之操作方法,回授電壓Vfb可在很短的時間內提升至合適的位準,故可有效縮短LDO穩壓器所需的啟動時間。 Through the proposed operation method, the feedback voltage Vfb can be raised to a suitable level in a short time, so that the startup time required for the LDO regulator can be effectively shortened.
雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the invention has been described above in the preferred embodiments, it is not intended to limit the invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106105340A TWI626521B (en) | 2017-02-17 | 2017-02-17 | Low dropout regulating device and operatig method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW106105340A TWI626521B (en) | 2017-02-17 | 2017-02-17 | Low dropout regulating device and operatig method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI626521B true TWI626521B (en) | 2018-06-11 |
TW201832039A TW201832039A (en) | 2018-09-01 |
Family
ID=63256043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW106105340A TWI626521B (en) | 2017-02-17 | 2017-02-17 | Low dropout regulating device and operatig method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI626521B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113900470A (en) * | 2021-11-02 | 2022-01-07 | 无锡中微爱芯电子有限公司 | Method and circuit for solving slow response of feedback loop of linear voltage regulator |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110168311B (en) | 2016-11-29 | 2021-12-17 | 布莱克莫尔传感器和分析有限责任公司 | Method and system for classifying objects in a point cloud data set |
CN117310731B (en) | 2016-11-30 | 2024-09-27 | 欧若拉运营公司 | Method and system for automatic real-time adaptive scanning by utilizing optical ranging system |
EP3548926B1 (en) | 2016-11-30 | 2024-05-29 | Aurora Operations, Inc. | Method and system for adaptive scanning with optical ranging systems |
WO2018160240A2 (en) | 2016-11-30 | 2018-09-07 | Blackmore Sensors and Analytics Inc. | Method and system for doppler detection and doppler correction of optical chirped range detection |
US10422880B2 (en) | 2017-02-03 | 2019-09-24 | Blackmore Sensors and Analytics Inc. | Method and system for doppler detection and doppler correction of optical phase-encoded range detection |
US10401495B2 (en) | 2017-07-10 | 2019-09-03 | Blackmore Sensors and Analytics Inc. | Method and system for time separated quadrature detection of doppler effects in optical range measurements |
CN115079195A (en) | 2018-04-23 | 2022-09-20 | 布莱克莫尔传感器和分析有限责任公司 | Method and system for controlling autonomous vehicle with coherent range-doppler optical sensor |
US10848138B2 (en) * | 2018-09-21 | 2020-11-24 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method and apparatus for precision phase skew generation |
US10928447B2 (en) | 2018-10-31 | 2021-02-23 | Taiwan Semiconductor Manufacturing Co., Ltd. | Built-in self test circuit for measuring phase noise of a phase locked loop |
US11822010B2 (en) | 2019-01-04 | 2023-11-21 | Blackmore Sensors & Analytics, Llc | LIDAR system |
JP6793772B2 (en) | 2019-03-13 | 2020-12-02 | 華邦電子股▲ふん▼有限公司Winbond Electronics Corp. | Voltage generator |
US11137785B2 (en) * | 2020-02-11 | 2021-10-05 | Taiwan Semiconductor Manufacturing Company Limited | On-chip power regulation system for MRAM operation |
US12130363B2 (en) | 2022-02-03 | 2024-10-29 | Aurora Operations, Inc. | LIDAR system |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020089317A1 (en) * | 2000-11-08 | 2002-07-11 | Stmicroelectronics S.R.I. | Voltage regulator for low-consumption circuits |
US6617833B1 (en) * | 2002-04-01 | 2003-09-09 | Texas Instruments Incorporated | Self-initialized soft start for Miller compensated regulators |
EP2778823A1 (en) * | 2013-03-15 | 2014-09-17 | Dialog Semiconductor GmbH | Method to limit the inrush current in large output capacitance LDOs |
TW201437784A (en) * | 2013-03-21 | 2014-10-01 | Silicon Motion Inc | Low-dropout voltage regulator apparatus and method used in low-dropout voltage regulator apparatus |
CN105474118A (en) * | 2013-08-21 | 2016-04-06 | 桑迪士克科技股份有限公司 | Active regulator wake-up time improvement by capacitive regulation |
CN106292816A (en) * | 2015-06-11 | 2017-01-04 | 京微雅格(北京)科技有限公司 | A kind of LDO circuit and method of supplying power to, fpga chip |
-
2017
- 2017-02-17 TW TW106105340A patent/TWI626521B/en active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020089317A1 (en) * | 2000-11-08 | 2002-07-11 | Stmicroelectronics S.R.I. | Voltage regulator for low-consumption circuits |
US6617833B1 (en) * | 2002-04-01 | 2003-09-09 | Texas Instruments Incorporated | Self-initialized soft start for Miller compensated regulators |
EP2778823A1 (en) * | 2013-03-15 | 2014-09-17 | Dialog Semiconductor GmbH | Method to limit the inrush current in large output capacitance LDOs |
TW201437784A (en) * | 2013-03-21 | 2014-10-01 | Silicon Motion Inc | Low-dropout voltage regulator apparatus and method used in low-dropout voltage regulator apparatus |
CN105474118A (en) * | 2013-08-21 | 2016-04-06 | 桑迪士克科技股份有限公司 | Active regulator wake-up time improvement by capacitive regulation |
CN106292816A (en) * | 2015-06-11 | 2017-01-04 | 京微雅格(北京)科技有限公司 | A kind of LDO circuit and method of supplying power to, fpga chip |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113900470A (en) * | 2021-11-02 | 2022-01-07 | 无锡中微爱芯电子有限公司 | Method and circuit for solving slow response of feedback loop of linear voltage regulator |
CN113900470B (en) * | 2021-11-02 | 2024-01-23 | 无锡中微爱芯电子有限公司 | Method and circuit for solving slow response of feedback loop of linear voltage stabilizer |
Also Published As
Publication number | Publication date |
---|---|
TW201832039A (en) | 2018-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI626521B (en) | Low dropout regulating device and operatig method thereof | |
TWI672573B (en) | LDO regulator using NMOS transistor | |
CN108919872B (en) | Low dropout linear regulator and voltage stabilizing method thereof | |
KR100414319B1 (en) | Internal voltage generating circuit | |
TWI656425B (en) | Semiconductor structures for enhanced transient response in low dropout (ldo) voltage regulators | |
US7893671B2 (en) | Regulator with improved load regulation | |
US8519692B2 (en) | Voltage regulator | |
US9891643B2 (en) | Circuit to improve load transient behavior of voltage regulators and load switches | |
KR100818105B1 (en) | Inner vortage genertion circuit | |
US7969127B1 (en) | Start-up circuit for a shunt regulator | |
US10768646B2 (en) | Low dropout regulating device and operating method thereof | |
US5990671A (en) | Constant power voltage generator with current mirror amplifier optimized by level shifters | |
TWI774467B (en) | Amplifier circuit and method for reducing output voltage overshoot in amplifier circuit | |
CN110446992B (en) | Low dropout voltage regulator with reduced regulated output voltage spikes | |
JP2002230975A (en) | Semiconductor memory | |
US9081402B2 (en) | Semiconductor device having a complementary field effect transistor | |
CN108459644B (en) | Low-dropout voltage regulator and method of operating the same | |
TWI773214B (en) | Electronic oscillator and semiconductor integrated circuit | |
US7023276B2 (en) | Differential amplifier circuit | |
CN110582137A (en) | Constant current driving circuit | |
TWI787656B (en) | Voltage regulator circuit and method of providing supply voltage | |
CN109387768B (en) | Test system and test method of reference voltage circuit | |
US8222952B2 (en) | Semiconductor device having a complementary field effect transistor | |
TW201823908A (en) | Voltage dividers | |
JP2008152433A (en) | Voltage regulator |