TW201422823A - A multicomponent-alloy material layer and a solar cell comprising the same - Google Patents

A multicomponent-alloy material layer and a solar cell comprising the same Download PDF

Info

Publication number
TW201422823A
TW201422823A TW101147410A TW101147410A TW201422823A TW 201422823 A TW201422823 A TW 201422823A TW 101147410 A TW101147410 A TW 101147410A TW 101147410 A TW101147410 A TW 101147410A TW 201422823 A TW201422823 A TW 201422823A
Authority
TW
Taiwan
Prior art keywords
alloy material
material layer
layer
solar cell
thin film
Prior art date
Application number
TW101147410A
Other languages
Chinese (zh)
Other versions
TWI476284B (en
Inventor
Chun-Jung Lin
Tzu-Wen Wang
Kun-Ming Chen
Original Assignee
Solar Applied Mat Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solar Applied Mat Tech Corp filed Critical Solar Applied Mat Tech Corp
Priority to TW101147410A priority Critical patent/TWI476284B/en
Publication of TW201422823A publication Critical patent/TW201422823A/en
Application granted granted Critical
Publication of TWI476284B publication Critical patent/TWI476284B/en

Links

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

A multicomponent-alloy material layer is provided, which is for back contacts of thin film solar cells. The multicomponent-alloy material layer is amorphous and includes at least two major metal elements, wherein the melting point of the at least one of a major metal element of the at least two major metal elements is higher than 1800 DEG C. The atomic percent of the major metal elements whose melting point is higher is more than 45 at% based on the overall atomic percent of the multicomponent-alloy material layer. A thin film solar cell is also provided, which includes a substrate, a back contact formed on the substrate and an absorber layer formed on the back contact, wherein the back contact is the multicomponent-alloy material layer. Due to the multicomponent-alloy material layer is amorphous, the structure of the multicomponent-alloy material layer is continuous, uniform and nearly without any pores or gaps. Thus, the adhesion between the substrate and the multicomponent-alloy material layer increases.

Description

多元合金材料層及包含其之太陽能電池 Multi-layer alloy material layer and solar cell containing same

本發明係提供一種用於薄膜太陽能電池之材料層,尤指一種用於薄膜太陽能電池之背電極層的多元合金材料層。本發明亦提供一種薄膜太陽能電池,其係包含前述多元合金材料所形成之背電極層。 The present invention provides a material layer for a thin film solar cell, and more particularly a layer of a multi-element alloy material for a back electrode layer of a thin film solar cell. The present invention also provides a thin film solar cell comprising the back electrode layer formed of the foregoing multi-alloy material.

現有技術製作薄膜太陽能電池(例如:銅銦鎵硒(copper indium gallium diselenide,CIGS)薄膜太陽能電池)之方法包括下述步驟:在一基板上濺鍍一背電極層;圖案化該背電極層;在該圖案化後的背電極層上成長一銅銦鎵前驅物層(CuGa/In precursor layer);硒化該銅銦鎵前驅物層,藉以形成P型CIGS半導體吸收層;在該CIGS P型半導體吸收層上形成一n型半導體緩衝層;在該n型半導體緩衝層上沉積一窗層;在該窗層上沉積一前電極;以及在該前電極上鍍製金屬接觸。其中,由於鉬金屬具有低電阻以及在低濺鍍壓力時具有較高壓縮應力等特性,故現有技術中最常使用鉬金屬作為背電極層的材料。 A method for fabricating a thin film solar cell (for example, a copper indium gallium diselenide (CIGS) thin film solar cell) includes the steps of: sputtering a back electrode layer on a substrate; patterning the back electrode layer; A CuGa/In precursor layer is grown on the patterned back electrode layer; the copper indium gallium precursor layer is selenized to form a P-type CIGS semiconductor absorber layer; and the CIGS P type is formed Forming an n-type semiconductor buffer layer on the semiconductor absorber layer; depositing a window layer on the n-type semiconductor buffer layer; depositing a front electrode on the window layer; and plating a metal contact on the front electrode. Among them, molybdenum metal is most commonly used as a material of the back electrode layer in the prior art because of its low electrical resistance and high compressive stress at low sputtering pressure.

然而,於現有技術硒化CuGa/In前驅物層之步驟中,背電極層的鉬金屬硒化後容易生成二硒化鉬(MoSe2),雖然厚度小於50奈米(nm)的MoSe2可以作為歐姆接觸層,進而降低薄膜太陽能電池的接觸電阻值;但是要控制厚度小於50 nm的MoSe2,卻必須經由精準控制硒化該CuGa/In前驅物層的時間才能達成。若硒化時間太短,P型CIGS半導體吸收層之成分不均勻,進而劣化製成之太陽能電池的轉換效 率;若硒化時間太長,MoSe2的厚度太厚,反而會增加薄膜太陽能電池的接觸電阻。因此,使用鉬金屬作為背電極層的材料容易影響薄膜太陽能電池之光電特性。 However, the prior art selenide CuGa / In precursor layer of the step, the metal back electrode layer is molybdenum selenide, after easily formed of molybdenum diselenide (MoSe 2), MoSe although the thickness is less than 50 nanometers (nm), 2 may be as the ohmic contact layer, thereby reducing the contact resistance value of the thin film solar cell; however, to control the thickness of less than 50 nm MoSe 2, but must be precisely controlled via the selenide CuGa / in precursor layer of time to reach. If the selenization time is too short, the composition of the P-type CIGS semiconductor absorption layer is not uniform, thereby degrading the conversion efficiency of the fabricated solar cell; if the selenization time is too long, the thickness of the MoSe 2 is too thick, and the thin film solar cell is increased. Contact resistance. Therefore, the use of molybdenum metal as the material of the back electrode layer easily affects the photoelectric characteristics of the thin film solar cell.

此外,當薄膜太陽能電池使用鉬金屬作為背電極層的材料時,形成於基板上的鉬金屬容易受到應力影響而無法於基板上獲得所需之附著性,進而劣化薄膜太陽能電池之轉換效率。 Further, when a thin film solar cell uses molybdenum metal as a material of the back electrode layer, the molybdenum metal formed on the substrate is susceptible to stress and cannot obtain desired adhesion on the substrate, thereby deteriorating the conversion efficiency of the thin film solar cell.

因此,現有技術為了解決上述問題,需十分謹慎地控制製程參數,例如:製程壓力以及濺鍍速率等,才能改善由於鉬金屬薄膜之應力而導致與基板之附著力不佳的問題。然而,此種解決方法卻會使薄膜太陽能電池的製作方法受到諸多限制,倘若稍有製程參數控制不佳的情形,便會明顯降低薄膜太陽能電池的光電轉換效率。 Therefore, in order to solve the above problems, the prior art requires very careful control of process parameters, such as process pressure and sputtering rate, in order to improve the adhesion to the substrate due to the stress of the molybdenum metal film. However, such a solution may impose limitations on the fabrication method of the thin film solar cell. If the process parameters are not well controlled, the photoelectric conversion efficiency of the thin film solar cell will be significantly reduced.

本發明之主要目的係為了解決現有之鉬金屬薄膜形成於基板上時,易由於鉬金屬薄膜之應力之影響而導致鉬金屬薄膜與基板間的附著性不佳的問題。 The main object of the present invention is to solve the problem that the adhesion of the molybdenum metal film to the substrate is unfavorable due to the influence of the stress of the molybdenum metal film when the conventional molybdenum metal film is formed on the substrate.

為了符合上述目的,本發明提供一種多元合金材料層,其係用於薄膜太陽能電池之背電極層,其係為非晶(amorphous)結構,其成分係包含至少二主要金屬元素,且該至少二主要金屬元素中至少一主要金屬元素之熔點係大於1800℃,以該多元合金材料層之總含量為基準,該熔點大於1800℃之主要金屬元素之含量總合係大於45原子百分比(at%)。 In order to meet the above object, the present invention provides a multi-alloy material layer for a back electrode layer of a thin film solar cell, which is an amorphous structure, the composition of which comprises at least two main metal elements, and the at least two The melting point of at least one of the main metal elements is greater than 1800 ° C, based on the total content of the multi-alloy material layer, the total metal element content of the melting point greater than 1800 ° C is greater than 45 atomic percent (at %) .

依據本發明,本發明所述之熔點大於1800℃之主要金 屬元素係例如但不限於鋯、鈮、鉬、鉭、鎢或錸等。 According to the present invention, the main gold having a melting point greater than 1800 ° C according to the present invention The genus elements are, for example but not limited to, zirconium, hafnium, molybdenum, niobium, tungsten or tantalum.

依據本發明,本發明所述之多元合金材料層,其係利用至少二主要金屬元素中至少一主要金屬元素之熔點係大於1800℃且以該多元合金材料層之總含量為基準,該等主要金屬元素之含量係大於45原子百分比(at%)之技術特徵,使該等主要金屬元素經由任何製程藉以形成係為非晶(amorphous)結構之多元合金材料層,該製程係例如但不限於濺鍍或蒸發沉積等。 According to the present invention, the multi-alloy material layer of the present invention utilizes at least one of the main metal elements to have a melting point of more than 1800 ° C and based on the total content of the multi-alloy material layer. The metal element content is a technical feature of greater than 45 atomic percent (at%), such that the major metal elements are formed by any process to form a multi-alloy material layer that is an amorphous structure, such as, but not limited to, a splash. Plating or evaporation deposition, etc.

依據本發明,本發明所述之背電極層係指於薄膜太陽能電池中介於基板以及吸收層之間的層狀結構,其具有提高光的使用率之功用,使穿透吸收層但未被吸收層吸收的光,經由該背電極層反射後,再被吸收層吸收。 According to the present invention, the back electrode layer of the present invention refers to a layered structure interposed between a substrate and an absorbing layer in a thin film solar cell, which has the function of increasing the utilization rate of light, so that the absorbing layer is penetrated but not absorbed. The light absorbed by the layer is reflected by the back electrode layer and then absorbed by the absorption layer.

本發明用於薄膜太陽能電池之多元合金材料層具有下述優點: The multi-alloy material layer for thin film solar cells of the present invention has the following advantages:

1.由於該多元合金材料層係為非晶結構,故其結構十分連續且均勻,並無任何柱狀結晶結構,且材料層中幾乎沒有空隙,因此該多元合金材料層幾乎沒有內應力,進而可匹配亦無內應力之鈉鈣玻璃,故該多元合金材料層用於背電極層時,其與基板的附著性大幅增加,進而降低背電極層自基板剝落之機率。 1. Since the multi-alloy material layer is amorphous, the structure is very continuous and uniform, and there is no columnar crystal structure, and there is almost no void in the material layer, so the multi-alloy material layer has almost no internal stress, and thus The soda-lime glass can be matched and has no internal stress. Therefore, when the multi-component alloy material layer is used for the back electrode layer, the adhesion to the substrate is greatly increased, thereby reducing the probability of the back electrode layer peeling off from the substrate.

2.所述之非晶結構能促使其具備表面平整之優點,當多元合金材料層作為薄膜太陽能電池之背電極層時,可使成長於其上的吸收層之晶粒增大,故能有利於得到性能佳的吸收層;進一步的,所述之非晶結構能降低多元合金材料層之活性,可確保包含多元合金材料層的背電極層不與形 成於其上的吸收層產生反應,故於製程中完全不會影響吸收層的成長。 2. The amorphous structure can promote the surface flatness advantage. When the multi-alloy material layer is used as the back electrode layer of the thin film solar cell, the crystal grains of the absorption layer grown thereon can be increased, so that it can be advantageous. In order to obtain an absorption layer with good performance; further, the amorphous structure can reduce the activity of the multi-layer alloy material layer, and can ensure that the back electrode layer containing the multi-layer alloy material layer is not shaped The absorption layer formed thereon generates a reaction, so that the growth of the absorption layer is not affected at all in the process.

3.由於該多元合金材料層係至少包含一熔點係大於1800℃之主要金屬元素,故可使本發明之多元合金材料層之熔點提高,故於製備薄膜太陽能電池時,能承受較高之製程溫度,不易受溫度影響而損壞,進而製得性能更佳之薄膜太陽能電池。 3. Since the multi-alloy material layer contains at least one main metal element having a melting point of more than 1800 ° C, the melting point of the multi-alloy material layer of the present invention can be improved, so that a high process can be withstood when preparing a thin film solar cell. The temperature is not easily damaged by temperature, thereby producing a thin film solar cell with better performance.

4.相較於現有技術之皆為柱狀結晶結構的鉬金屬製成之背電極,本發明提供之非晶結構之多元合金材料層,係一種明顯不同於現有技術之背電極層之材料,且應用於背電極層確實具有與基板的附著性大幅增加、活性低因而不與吸收層產生反應以及使吸收層之晶粒增大等之功效,實為一大突破。 4. Compared with the prior art, the back electrode made of molybdenum metal having a columnar crystal structure, the amorphous alloy material layer provided by the present invention is a material which is significantly different from the back electrode layer of the prior art. Moreover, the application to the back electrode layer does have a large increase in adhesion to the substrate, low activity, no reaction with the absorption layer, and an increase in crystal grains of the absorption layer, and is a major breakthrough.

較佳的,該多元合金材料層之成分係包含二至十種之間的主要金屬元素。 Preferably, the composition of the multi-alloy material layer contains between two and ten major metal elements.

較佳的,該等主要金屬元素之熔點係皆不小於600℃。 Preferably, the main metal elements have a melting point of not less than 600 ° C.

依據本發明,本發明所述之該等主要金屬元素之熔點係皆不小於600℃係指該等主要金屬元素中除了該至少一主要金屬元素之熔點係大於1800℃,其餘之主要金屬元素之熔點係皆不小於600℃。 According to the present invention, the melting points of the main metal elements of the present invention are not less than 600 ° C, meaning that the melting point of the main metal elements except the at least one main metal element is greater than 1800 ° C, and the remaining main metal elements The melting point is not less than 600 ° C.

依據本發明,由於該多元合金材料層之主要金屬元素之熔點係皆不小於600℃,故可使多元合金材料層之熔點提高,故於製備薄膜太陽能電池時,能承受較高之製程溫度,不易受溫度影響而損壞,進而製得性能更佳之薄膜太陽能電池。 According to the present invention, since the melting point of the main metal element of the multi-alloy material layer is not less than 600 ° C, the melting point of the multi-element alloy material layer can be increased, so that a high process temperature can be withstood when preparing a thin film solar cell. It is not easily damaged by temperature, and thus produces a thin film solar cell with better performance.

較佳的,該多元合金材料層之熔點係大於600℃。 Preferably, the multi-alloy material layer has a melting point greater than 600 ° C.

依據本發明,由於該多元合金材料層之熔點係大於600℃,故其應用於製備薄膜太陽能電池之背電極層時,能降低受製程溫度的影響,例如CIGS太陽能電池於製備中須在約600℃進行硒化步驟,故本發明之多元合金材料層不會被硒化步驟所影響。 According to the present invention, since the melting point of the multi-alloy material layer is greater than 600 ° C, it can be used to prepare the back electrode layer of the thin film solar cell, which can reduce the influence of the process temperature. For example, the CIGS solar cell must be prepared at about 600 ° C in the preparation. The selenization step is carried out so that the multi-alloy material layer of the present invention is not affected by the selenization step.

較佳的,該等主要金屬元素係選自下列所構成之群組:鋁、硼、鈹、碳、鈣、鈷、鉻、銅、鉿、鉬、鈮、錸、鈦、鉭、釩、鎢、鋯、矽、銀以及鎳。 Preferably, the main metal elements are selected from the group consisting of aluminum, boron, lanthanum, carbon, calcium, cobalt, chromium, copper, lanthanum, molybdenum, niobium, tantalum, titanium, niobium, vanadium, tungsten. , zirconium, hafnium, silver and nickel.

較佳的,該等金屬元素係選自下列所構成之群組:鈮、矽、鉭、鈦、鋯、銅、鋁以及鎳。 Preferably, the metal elements are selected from the group consisting of ruthenium, osmium, iridium, titanium, zirconium, copper, aluminum, and nickel.

較佳的,該多元合金材料層係選自下列所構成之群組:鈮矽鉭鈦鋯合金材料層以及鋯銅鋁鎳合金材料層。 Preferably, the multi-alloy material layer is selected from the group consisting of a layer of niobium-titanium-zirconium alloy material and a layer of zirconium-copper-aluminum alloy material.

依據本發明,本發明之多元合金材料層係為鈮矽鉭鈦鋯合金材料層時,於可見光以及近紅外光的波長範圍內,其反射率係介於65至90%,明顯大於鉬金屬薄膜之反射率,最大之差異程度甚至可達超過20%。因此,由於該NbSiTaTiZr合金材料層應用於薄膜太陽能電池之背電極層時,可以提高光的使用率,使穿透吸收層但未被吸收層吸收的光,經由該作為背電極層的NbSiTaTiZr合金材料層反射後,再被吸收層吸收,進而提高薄膜太陽能電池之短路電流密度。 According to the present invention, when the multi-alloy material layer of the present invention is a layer of yttrium-titanium-zirconium alloy material, the reflectance is in the range of visible light and near-infrared light, and the reflectance is 65 to 90%, which is significantly larger than that of the molybdenum metal film. The reflectivity, the maximum difference can even exceed 20%. Therefore, since the NbSiTaTiZr alloy material layer is applied to the back electrode layer of the thin film solar cell, the light utilization rate can be improved, and the light that penetrates the absorption layer but is not absorbed by the absorption layer passes through the NbSiTaTiZr alloy material as the back electrode layer. After the layer is reflected, it is absorbed by the absorption layer, thereby increasing the short-circuit current density of the thin film solar cell.

較佳的,以該多元合金薄膜之金屬元素之總含量為基準,各主要金屬元素係大於5原子百分比(at%)。 Preferably, each major metal element is greater than 5 atomic percent (at%) based on the total content of the metal elements of the multicomponent alloy film.

較佳的,以該多元合金薄膜之金屬元素之總含量為基 準,各主要金屬元素係介於5至35 at%之間。本發明更提供一種薄膜太陽能電池,其係包含一基板、一形成於該基板上的背電極層以及一形成於該背電極層上之吸收層,其中該背電極層係前述之多元合金材料層。 Preferably, based on the total content of the metal elements of the multi-alloy film Standard, each major metal element is between 5 and 35 at%. The present invention further provides a thin film solar cell comprising a substrate, a back electrode layer formed on the substrate, and an absorbing layer formed on the back electrode layer, wherein the back electrode layer is the aforementioned multi-alloy material layer .

依據本發明,本發明所述之薄膜太陽能電池係例如但不限於銅鋅錫硫化物(Cu2ZnSnS4,copper zinc tin sulfide,CZTS)太陽能電池、銅鋅錫硒(Cu2ZnSnSe4,copper zinc tin selenide,CZTSe)太陽能電池、銅銦鎵硒(copper indium gallium diselenide,CIGS)太陽能電池、銅銦鎵硫硒(copper indium gallium sulfur selenide,CIGSSe)太陽能電池或銅鋅錫硫硒(copper zinc tin sulfur selenide,CZTSSe)。 According to the present invention, the thin film solar cell of the present invention is, for example but not limited to, Cu 2 ZnSnS 4 (copper zinc tin sulfide, CZTS) solar cell, copper zinc tin selenide (Cu 2 ZnSnSe 4 , copper zinc) Tin selenide, CZTSe) solar cell, copper indium gallium diselenide (CIGS) solar cell, copper indium gallium sulfur selenide (CIGSSe) solar cell or copper zinc tin sulphide (copper Zn sulphide) Selenide, CZTSSe).

依據本發明,本發明所述之基板係例如但不限於玻璃、陶瓷、石墨或金屬。 In accordance with the present invention, the substrate of the present invention is, for example but not limited to, glass, ceramic, graphite or metal.

較佳的,該基板係為鈉鈣玻璃。 Preferably, the substrate is soda lime glass.

較佳的,該基板係為可撓式基板。 Preferably, the substrate is a flexible substrate.

依據本發明,本發明所述之可撓式基板之材料係為可撓曲之材料,其係例如但不限於高分子材料或不鏽鋼。所述之高分子材料係例如但不限於:聚亞醯胺(Polyimide,PI)、聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)或聚醚硫(polyethersulfone,PES)。 According to the present invention, the material of the flexible substrate of the present invention is a flexible material such as, but not limited to, a polymer material or stainless steel. The polymer material is, for example but not limited to, polyimide (PI), polyethylene terephthalate (PET) or polyethersulfone (PES).

較佳的,該吸收層係選自下列所構成之群組:銅鋅錫硫、銅銦鎵硒、硫化鎘、銻化鎘、銅銦鎵硫硒、銅鋅錫硫硒、銅銦硒以及銅鋅錫硒。 Preferably, the absorbing layer is selected from the group consisting of copper zinc tin sulphide, copper indium gallium selenide, cadmium sulfide, cadmium telluride, copper indium gallium sulphide selenide, copper zinc tin sulphide selenium, copper indium selenium, and Copper, zinc, tin and selenium.

依據本發明,本發明所述之薄膜太陽能電池,其更包括一位於該吸收層上的緩衝層、一位於該緩衝層上的窗 層、一位於該窗層上的前電極以及一位於該前電極上的金屬接觸。其中,該緩衝層係例如但不限於硫化鎘、硫化鋅、硒化鋅或硫化銦;該窗層係例如但不限於氧化鋅;該前電極係例如但不限於氧化鋅鋁、氧化鋅硼、氧化鋅鎵、氧化錫銦或氧化鋅鎵銦;該金屬接觸係例如但不限於鋁、鎳、鋁鎳合金、銅或銀。 According to the present invention, the thin film solar cell of the present invention further includes a buffer layer on the absorbing layer and a window on the buffer layer. A layer, a front electrode on the window layer, and a metal contact on the front electrode. Wherein, the buffer layer is, for example but not limited to, cadmium sulfide, zinc sulfide, zinc selenide or indium sulfide; the window layer is, for example but not limited to, zinc oxide; the front electrode is, for example but not limited to, zinc aluminum oxide, zinc oxide boron, Zinc oxide gallium, indium tin oxide or zinc gallium indium oxide; the metal contact is, for example but not limited to, aluminum, nickel, aluminum nickel alloy, copper or silver.

本發明之用於薄膜太陽能電池之多元合金材料層具有下述優點: The multi-alloy material layer for thin film solar cells of the present invention has the following advantages:

1.由於背電極層係由非晶結構的多元合金材料層所形成,故能提升背電極層與基板之間的附著性,藉以降低背電極層自基板脫落的機率。 1. Since the back electrode layer is formed of a multi-layer alloy material layer of an amorphous structure, the adhesion between the back electrode layer and the substrate can be improved, thereby reducing the probability of the back electrode layer falling off from the substrate.

2.由於背電極層的表面平整性佳,故能有利於吸收層的形成,進而提高吸收層的晶粒尺寸,獲得優異的薄膜太陽能電池性能。 2. Since the surface of the back electrode layer has good flatness, it can facilitate the formation of the absorption layer, thereby increasing the grain size of the absorption layer, and obtaining excellent performance of the thin film solar cell.

3.本發明之薄膜太陽能電池的基板係為可撓式基板時,由於該多元合金材料層係為非晶結構,故該多元合金材料層幾乎沒有內應力,故其無內應力之特性可匹配可撓式基板,與可撓式基板的附著性大幅增加,進而降低了自該可撓式基板剝落的機率,因此應用於可撓式薄膜太陽能電池時,大幅增加其產業利用性。 3. When the substrate of the thin film solar cell of the present invention is a flexible substrate, since the multi-alloy material layer is an amorphous structure, the multi-alloy material layer has almost no internal stress, so its internal stress-free property can be matched. The flexible substrate has a large increase in adhesion to the flexible substrate, and further reduces the probability of peeling off from the flexible substrate. Therefore, when it is applied to a flexible thin film solar cell, the industrial applicability is greatly increased.

為能詳細了解本發明的技術特徵與實用功效,並可依照說明書的內容來實施,請進一步配合圖式及較佳實施例,以闡述本發明為達目的所使用的技術手段。 In order to understand the technical features and practical functions of the present invention in detail, and in accordance with the contents of the specification, the drawings and preferred embodiments are further described to illustrate the technical means for the purpose of the present invention.

下述實施例之實驗備製流程中所述及各樣品之來源以 及成分比例敘述如下; The sources of the samples described in the experimental preparation process of the following examples are And the composition ratio is as follows;

鈮(Nb):純度大於99.9%。 Nb: purity is greater than 99.9%.

矽(Si):純度大於99.9%。 矽 (Si): The purity is greater than 99.9%.

鉭(Ta):純度大於99.9%。 钽 (Ta): The purity is greater than 99.9%.

鈦(Ti):純度大於99.9%。 Titanium (Ti): purity greater than 99.9%.

鋯(Zr):純度大於99.9%。 Zirconium (Zr): purity greater than 99.9%.

銅(Cu):純度大於99.9%。 Copper (Cu): purity greater than 99.9%.

鋁(Al):純度大於99.9%。 Aluminum (Al): purity greater than 99.9%.

鎳(Ni):純度大於99.9%。 Nickel (Ni): purity greater than 99.9%.

本發明之備製流程中所述及之光譜儀之型號:V-670(Jasco,日本製) The model of the spectrometer described in the preparation process of the present invention: V-670 (Jasco, Japan)

熱機械分析儀器(Pyris diamond thermomechanical analyzer)之型號:Diamond TMA。 Model of the Pyris diamond thermomechanical analyzer: Diamond TMA.

實施例1Example 1

本實施例係先製備一鈮鉭鈦矽鋯(NbSiTaTiZr)靶材,並使用該NbSiTaTiZr靶材進行濺鍍而在一鈉鈣玻璃(soda lime glass)上形成一NbSiTaTiZr合金材料層,藉以得到本實施例之鈉鈣玻璃/NbSiTaTiZr合金材料層之組合,其詳細的製備方式如下所述:準備鈮原料、鉭原料、鈦原料、矽原料以及鋯原料,且各原料之莫耳數相等,利用水冷卻銅坩鍋真空感應電爐熔融該等原料,且該熔融步驟係重複五次,藉以使該等原料於水冷卻銅坩鍋內係完全的均勻混合,待該等均勻混合之原料固化後,得到一初胚,再機械處理該初胚,得到一直徑係為2吋之NbSiTaTiZr圓靶。 In this embodiment, a niobium-titanium-zirconium-zirconium (NbSiTaTiZr) target is prepared, and the NbSiTaTiZr target is sputtered to form a layer of NbSiTaTiZr alloy material on a soda lime glass, thereby obtaining the embodiment. For the combination of the soda lime glass/NbSiTaTiZr alloy material layer, the detailed preparation method is as follows: preparing the bismuth raw material, the bismuth raw material, the titanium raw material, the bismuth raw material and the zirconium raw material, and the molar number of each raw material is equal, and is cooled by water. The copper crucible vacuum induction electric furnace melts the raw materials, and the melting step is repeated five times, so that the raw materials are completely uniformly mixed in the water-cooled copper crucible, and after the uniformly mixed raw materials are solidified, a The primordial embryo was mechanically treated to obtain a NbSiTaTiZr circular target having a diameter of 2 Å.

於此,齊備一鈉鈣玻璃,使用前述之NbSiTaTiZr圓靶並以磁控濺鍍之方式,利用下述之濺鍍參數形成一NbSiTaTiZr合金材料層於該鈉鈣玻璃上,藉以得到一鈉鈣玻璃/NbSiTaTiZr合金材料層之組合:濺鍍系統之背景壓力係為4.5×10-7托耳(Torr),工作氣體係為氬氣,工作壓力係為5毫托耳(mTorr),磁控直流射頻功率為150瓦(W);其中NbSiTaTiZr合金材料層之厚度係為637 nm。 Here, a soda lime glass is prepared, and a NbSiTaTiZr alloy material layer is formed on the soda lime glass by using the above-mentioned NbSiTaTiZr round target by magnetron sputtering to obtain a soda lime glass by using the following sputtering parameters. /NbSiTaTiZr alloy material layer combination: the background pressure of the sputtering system is 4.5×10 -7 Torr, the working gas system is argon, the working pressure is 5 milliTorr (mTorr), the magnetic control DC RF The power is 150 watts (W); the thickness of the NbSiTaTiZr alloy material layer is 637 nm.

請參閱圖1所示,在2θ為37.79度有一峰值,以及在2θ為64.09度有另一寬峰值,故由圖可知,本實施例之NbSiTaTiZr合金材料層係具有非晶結構。 Referring to FIG. 1, there is a peak at 37.79 degrees at 2θ, and another peak at 64.09 degrees at 2θ. Therefore, it can be seen from the figure that the layer of NbSiTaTiZr alloy material of the present embodiment has an amorphous structure.

實施例2Example 2

本實施例係先製備一鋯銅鋁鎳(ZrCuAlNi)靶材,並使用ZrCuAlNi靶材進行濺鍍而在一鈉鈣玻璃(soda lime glass)上形成一ZrCuAlNi合金材料層,藉以得到本實施例之鈉鈣玻璃/ZrCuAlNi合金材料層之組合,其詳細的製備方式如下所述:準備鋯原料、銅原料、鋁原料以及鎳原料,且各原料之原子百分比分別係為55 at%、30 at%、10 at%以及5 at%,本實施例之ZrCuAlNi靶材之後續製備步驟大致如實施例1所述,在此便不再贅述。於本實施例中,所製得之ZrCuAlNi靶材之直徑為6英吋。 In this embodiment, a zirconium copper aluminum nickel (ZrCuAlNi) target is prepared, and a ZrCuAlNi alloy material layer is formed on a soda lime glass by sputtering using a ZrCuAlNi target, thereby obtaining the embodiment. The combination of the soda lime glass/ZrCuAlNi alloy material layer is prepared in the following manner: preparing a zirconium raw material, a copper raw material, an aluminum raw material, and a nickel raw material, and the atomic percentages of each raw material are 55 at%, 30 at%, respectively. 10 at% and 5 at%, the subsequent preparation steps of the ZrCuAlNi target of the present embodiment are substantially as described in Embodiment 1, and will not be described herein. In the present example, the ZrCuAlNi target produced had a diameter of 6 inches.

於此,齊備一鈉鈣玻璃,使用前述之ZrCuAlNi靶材,並以磁控濺鍍之方式,利用下述之濺鍍參數形成一ZrCuAlNi合金材料層於該鈉鈣玻璃上,藉以得到一鈉鈣玻璃/ZrCuAlNi合金材料層之組合:濺鍍系統之背景壓力係為 2×10-6 Torr,工作氣體係為氬氣,氬氣之流量為標準狀態40毫升/分(standard cubic centimeter per minute,sccm),工作壓力係為3 mTorr,磁控直流射頻功率為300 W,脈衝頻率係為20千赫茲(kHz),反向時間係為5微秒,基板偏壓係為-100伏特(V),基板溫度係為室溫,載台旋轉的轉速係為每分鐘10轉,濺鍍時間係歷經3小時;請參閱圖2以及圖3所示,該ZrCuAlNi合金材料層之厚度係為1.031 μm,且該ZrCuAlNi合金材料層之結構緻密。 Here, a soda-lime glass is prepared, and the ZrCuAlNi target is used, and a ZrCuAlNi alloy material layer is formed on the soda-lime glass by magnetron sputtering to obtain a soda-lime glass by the following sputtering parameters. Combination of glass/ZrCuAlNi alloy material layer: the background pressure of the sputtering system is 2×10 -6 Torr, the working gas system is argon gas, and the flow rate of argon gas is standard state 40 ml/min (standard cubic centimeter per minute, sccm ), the working pressure is 3 mTorr, the magnetically controlled DC RF power is 300 W, the pulse frequency is 20 kHz, the reverse time is 5 microseconds, and the substrate bias is -100 volts (V). The substrate temperature is room temperature, the rotation speed of the stage is 10 revolutions per minute, and the sputtering time is 3 hours; as shown in FIG. 2 and FIG. 3, the thickness of the ZrCuAlNi alloy material layer is 1.031 μm, and The structure of the ZrCuAlNi alloy material layer is dense.

請參閱圖4所示,在2θ為36.5度有一峰值,以及在2θ為58度有另一寬峰值,故由圖可知,本實施例之ZrCuAlNi合金材料層係具有非晶結構。 Referring to FIG. 4, there is a peak at 2θ of 26.5 degrees and another wide peak at 58 degrees of 2θ. Therefore, it can be seen from the figure that the ZrCuAlNi alloy material layer of the present embodiment has an amorphous structure.

比較例1Comparative example 1

本比較例係以磁控濺鍍之方式,並利用下述之濺鍍參數在鈉鈣玻璃上形成一鉬金屬薄膜,藉以得到本比較例之鈉鈣玻璃/鉬金屬薄膜組合:濺鍍系統之背景壓力係為4.5×10-7托耳(Torr),工作氣體係為氬氣,工作壓力係為8 mTorr,磁控直流射頻功率為90 W,基板溫度係為室溫濺鍍時間係歷經0.2小時;其中鉬金屬薄膜之厚度係為700 nm。 In the comparative example, a molybdenum metal film is formed on the soda lime glass by magnetron sputtering, thereby obtaining a soda lime glass/molybdenum metal film combination of the comparative example: a sputtering system The background pressure is 4.5×10 -7 Torr, the working gas system is argon, the working pressure is 8 mTorr, the magnetron DC RF power is 90 W, and the substrate temperature is 0.2 at room temperature. Hour; the thickness of the molybdenum metal film is 700 nm.

測試例1:表面形貌 Test Example 1: Surface Topography

本測試例係以掃瞄式電子顯微鏡觀察實施例1之鈉鈣玻璃/NbSiTaTiZr合金材料層之截面圖以及該NbSiTaTiZr合金材料層表面形貌、比較例1之鈉鈣玻璃/鉬金屬薄膜組合之截面圖以及該鉬金屬薄膜之表面形貌,藉以觀察實施例1以及比較例1之結構差異。 In this test example, a cross-sectional view of the soda lime glass/NbSiTaTiZr alloy material layer of Example 1 and a surface morphology of the NbSiTaTiZr alloy material layer and a cross section of the soda lime glass/molybdenum metal film combination of Comparative Example 1 were observed by a scanning electron microscope. The surface and the surface topography of the molybdenum metal film were used to observe the structural differences between Example 1 and Comparative Example 1.

請參閱圖5以及圖6所示,相較於比較例1之鉬金屬 薄膜,由於實施例1之NbSiTaTiZr合金材料層係為非晶結構,故其結構十分連續且均勻,並無任何柱狀結晶結構,且材料層中幾乎沒有空隙,因此NbSiTaTiZr合金材料層幾乎沒有內應力,因此可匹配亦無內應力之鈉鈣玻璃,故該NbSiTaTiZr合金材料層與鈉鈣玻璃之附著力佳:而比較例1之鉬金屬薄膜,可看出其具有明顯的柱狀結晶結構,且柱狀結晶結構之間具有許多空隙,故該鉬金屬薄膜具有高內應力,故與鈉鈣玻璃之附著力差。 Please refer to FIG. 5 and FIG. 6 , compared with the molybdenum metal of Comparative Example 1. The film, since the NbSiTaTiZr alloy material layer of the embodiment 1 is an amorphous structure, the structure thereof is very continuous and uniform, without any columnar crystal structure, and there is almost no void in the material layer, so the NbSiTaTiZr alloy material layer has almost no internal stress. Therefore, the soda-lime glass can be matched and has no internal stress, so the adhesion of the NbSiTaTiZr alloy material layer to the soda-lime glass is good: and the molybdenum metal film of Comparative Example 1 can be seen to have a distinct columnar crystal structure, and Since there are many voids between the columnar crystal structures, the molybdenum metal film has high internal stress and thus has poor adhesion to soda lime glass.

請參閱圖7以及圖8所示,可得知比較例1之鉬金屬薄膜的表面粗糙,而實施例1之NbSiTaTiZr合金材料層表面相當平整,故相較於鉬金屬薄膜,NbSiTaTiZr合金材料層應用於製備薄膜太陽能電池之背電極層時,可使形成於該NbSiTaTiZr合金材料層上吸收層之晶粒增大,故有利於得到性能佳的吸收層。 Referring to FIG. 7 and FIG. 8 , it can be seen that the surface of the molybdenum metal film of Comparative Example 1 is rough, and the surface of the NbSiTaTiZr alloy material layer of Embodiment 1 is relatively flat, so the application of the NbSiTaTiZr alloy material layer is compared with the molybdenum metal film. When the back electrode layer of the thin film solar cell is prepared, the crystal grains formed on the absorption layer of the NbSiTaTiZr alloy material layer can be increased, which is advantageous for obtaining an absorption layer with good performance.

測試例2:NbSiTaTiZr合金材料層之熔點 Test Example 2: Melting point of NbSiTaTiZr alloy material layer

本測試例係以熱機械分析儀器,以600至1200℃之溫度範圍之間,量測各樣品膨脹以及收縮的現象,藉此可測得玻璃轉化溫度(glass transition temperature,Tg)或是熱膨脹係數等數據,並可測得實施例1之鈉鈣玻璃/NbSiTaTiZr合金材料層之組合中的NbSiTaTiZr合金材料層之熔點。由本測試例之結果可得知該NbSiTaTiZr合金材料層之熔點約為900℃,故該NbSiTaTiZr合金材料層應用製備薄膜太陽能電池之背電極層時,尤其是於製備過程中,需在約600°C進行硒化之薄膜太陽能電池,該NbSiTaTiZr合金材料層不會被硒化步驟所影響。 This test is a thermomechanical analysis instrument that measures the expansion and contraction of each sample between 600 and 1200 °C, thereby measuring the glass transition temperature (Tg) or thermal expansion coefficient. The data was measured, and the melting point of the NbSiTaTiZr alloy material layer in the combination of the soda lime glass/NbSiTaTiZr alloy material layer of Example 1 was measured. It can be known from the results of the test examples that the melting point of the NbSiTaTiZr alloy material layer is about 900 ° C. Therefore, when the NbSiTaTiZr alloy material layer is applied to prepare the back electrode layer of the thin film solar cell, especially in the preparation process, it needs to be about 600 ° C. For a selenized thin film solar cell, the NbSiTaTiZr alloy material layer is not affected by the selenization step.

測試例3:反射率 Test Example 3: Reflectance

本測試例係以光譜儀量測實施例1之鈉鈣玻璃/NbSiTaTiZr合金材料層之組合中的NbSiTaTiZr合金材料層以及比較例1之鈉鈣玻璃/鉬金屬薄膜組合中的鉬金屬薄膜之反射率,且量測的波長的範圍係自300 nm至1800 nm。 In this test example, the reflectance of the NbSiTaTiZr alloy material layer in the combination of the soda lime glass/NbSiTaTiZr alloy material layer of Example 1 and the molybdenum metal film in the soda lime glass/molybdenum metal film combination of Comparative Example 1 was measured by a spectrometer. The measured wavelengths range from 300 nm to 1800 nm.

請參閱圖9所示,於可見光以及近紅外光範圍(波長介於400至1200 nm之間),比較例1之鉬金屬薄膜之反射率皆小於85%,且在較短波長之範圍(波長介於400至900 nm之間,鉬金屬薄膜之反射率相對較低,約介於60至70%之間。 Referring to FIG. 9, in the visible light and near-infrared light range (wavelength between 400 and 1200 nm), the reflectance of the molybdenum metal film of Comparative Example 1 is less than 85%, and in the shorter wavelength range (wavelength) Between 400 and 900 nm, the molybdenum metal film has a relatively low reflectance of between about 60 and 70%.

反觀諸實施例1之NbSiTaTiZr合金材料層,於波長介於400至1200 nm之間的範圍內,其反射率明顯大於鉬金屬薄膜之反射率,其中更以波長為800 nm之反射率最為顯著,該NbSiTaTiZr之反射率高於鉬金屬薄膜之反射率的程度可達超過20%。因此,由於該NbSiTaTiZr合金材料層反射率佳,故應用於薄膜太陽能電池之背電極層時,可以提高光的使用率,使穿透吸收層但未被吸收層吸收的光,經由該作為背電極層的NbSiTaTiZr合金材料層反射後,再被吸收層吸收。 In contrast, the NbSiTaTiZr alloy material layer of the first embodiment has a reflectance significantly larger than that of the molybdenum metal film in the range of wavelengths between 400 and 1200 nm, and the reflectance of the wavelength of 800 nm is most significant. The reflectance of the NbSiTaTiZr is higher than the reflectance of the molybdenum metal film by more than 20%. Therefore, since the NbSiTaTiZr alloy material layer has a good reflectance, when applied to the back electrode layer of the thin film solar cell, the light utilization rate can be increased, and light that penetrates the absorption layer but is not absorbed by the absorption layer can be passed through the back electrode. After the layer of NbSiTaTiZr alloy material is reflected, it is absorbed by the absorption layer.

測試例4:原子百分比 Test Example 4: Atomic percentage

本測試例係以電子探測光顯微分析實施例2之ZrCuAlNi靶材以及ZrCuAlNi合金材料層之各成分之原子百分比,其結果如表1所示。 In this test example, the atomic percentages of the respective components of the ZrCuAlNi target and the ZrCuAlNi alloy material layer of Example 2 were analyzed by electron probe light microscopy, and the results are shown in Table 1.

表1:ZrCuAlNi靶材以及ZrCuAlNi合金材料層之各成分之原子百分比 Table 1: Atomic percentage of each component of the ZrCuAlNi target and the ZrCuAlNi alloy material layer

如表一所示,以該ZrCuAlNi合金材料層之總含量為基準,Zr之含量係為46.7±0.6原子百分比。 As shown in Table 1, the content of Zr is 46.7 ± 0.6 atomic percent based on the total content of the ZrCuAlNi alloy material layer.

測試例5:表面平均粗糙度 Test Example 5: Surface average roughness

本測試例係以原子力顯微鏡分析實施例2之ZrCuAlNi合金材料層之表面形貌,藉以得知ZrCuAlNi合金材料層之表面平均粗糙度(roughness average,Ra),結果如圖10所示,該ZrCuAlNi合金材料層之表面平均粗糙度係為0.35 nm,即,該ZrCuAlNi合金材料層之表面平均粗糙度極低,故該ZrCuAlNi合金材料層之表面平整,故應用於薄膜太陽能電池背電極層時,有利於吸收層的形成。 In this test example, the surface topography of the ZrCuAlNi alloy material layer of Example 2 was analyzed by atomic force microscopy to obtain the surface roughness (Ra) of the ZrCuAlNi alloy material layer. As a result, as shown in FIG. 10, the ZrCuAlNi alloy was used. The surface roughness of the material layer is 0.35 nm, that is, the surface roughness of the ZrCuAlNi alloy material layer is extremely low, so the surface of the ZrCuAlNi alloy material layer is flat, so it is beneficial when applied to the back electrode layer of the thin film solar cell. Formation of an absorbing layer.

測試例6:Test Example 6:

本測試例係齊備實施例1之鈉鈣玻璃/NbSiTaTiZr合金材料層之組合以及比較例1之鈉鈣玻璃/鉬金屬薄膜組合,以相同之製程參數以及條件各形成一銅銦鎵硒(copper indium gallium diselenide,CIGS)吸收層於鈉鈣玻璃/NbSiTaTiZr合金材料層之組合的NbSiTaTiZr合金材料層上以及於鈉鈣玻璃/鉬金屬薄膜組合的鉬金屬薄膜上,藉以分別得到一鈉鈣玻璃/NbSiTaTiZr合金材料層/CIGS吸收層之組合以及一鈉鈣玻璃/鉬金屬薄膜/CIGS吸收層之組合,並使 用掃描式電子顯微鏡量測該兩個組合中CIGS吸收層之晶粒尺寸。 The test example is a combination of the soda lime glass/NbSiTaTiZr alloy material layer of the first embodiment and the soda lime glass/molybdenum metal film combination of the comparative example 1, and a copper indium gallium selenide (copper indium) is formed by the same process parameters and conditions. Gallium diselenide (CIGS) absorbing layer on the NbSiTaTiZr alloy material layer of the combination of soda lime glass/NbSiTaTiZr alloy material layer and molybdenum metal film combined with soda lime glass/molybdenum metal film, thereby obtaining one soda lime glass/NbSiTaTiZr alloy respectively a combination of a material layer/CIGS absorber layer and a combination of a soda lime glass/molybdenum metal film/CIGS absorber layer and The grain size of the CIGS absorber layer in the two combinations was measured by a scanning electron microscope.

請參閱圖11以及圖12所示,可得知鈉鈣玻璃/NbSiTaTiZr合金材料層/CIGS吸收層之組合,由下至上依序為鈉鈣玻璃、NbSiTaTiZr合金材料層以及CIGS吸收層,其中CIGS吸收層之晶粒尺寸約介於500至1000 nm之間,而鈉鈣玻璃/鉬金屬薄膜/CIGS吸收層之組合,由下至上依序為鈉鈣玻璃、鉬金屬薄膜以及CIGS吸收層,其中的CIGS吸收層之晶粒尺寸約介於100至300 nm之間。故由本測試例可得知,由於NbSiTaTiZr合金材料層表面平整,確實可使形成於該NbSiTaTiZr合金材料層上的吸收層之晶粒明顯增大,故有利於得到性能佳的吸收層。 Referring to FIG. 11 and FIG. 12, it can be seen that the combination of the soda lime glass/NbSiTaTiZr alloy material layer/CIGS absorption layer is a soda lime glass, a NbSiTaTiZr alloy material layer and a CIGS absorption layer from bottom to top, wherein CIGS absorption The grain size of the layer is between 500 and 1000 nm, and the combination of soda-lime glass/molybdenum metal film/CIGS absorber layer is composed of soda-lime glass, molybdenum metal film and CIGS absorber layer from bottom to top. The CIGS absorber layer has a grain size between about 100 and 300 nm. Therefore, it can be seen from the test example that since the surface of the NbSiTaTiZr alloy material layer is flat, the crystal grains of the absorption layer formed on the NbSiTaTiZr alloy material layer can be significantly increased, which is advantageous for obtaining an absorption layer having good properties.

實施例3Example 3

本實施例係以實施例1之鈉鈣玻璃/NbSiTaTiZr合金材料層之組合製備CIGS太陽能電池,其詳細的製備方式如下所述:齊備該實施例1之鈉鈣玻璃/NbSiTaTiZr合金材料層之組合,其中該NbSiTaTiZr合金材料層係作為背電極層;圖案化該背電極層;在該圖案化後的背電極層上成長一CuGa/In前驅物層;硒化該CuGa/In前驅物層,藉以形成CIGS吸收層;形成一硫化鎘(CdS)緩衝層在該CIGS吸收層上;沉積一氧化鋅(ZnO)窗層於該CdS緩衝層上;沉積一氧化鋅鋁(aluminum zinc oxide,AZO)前電極層於該ZnO窗層上;以及鍍製鎳鋁合金之金屬接觸層於AZO前電極層上,得到本實施例之CIGS太陽能電池。 In this embodiment, a CIGS solar cell is prepared by using a combination of the soda lime glass/NbSiTaTiZr alloy material layer of the embodiment 1, and the detailed preparation method is as follows: the combination of the soda lime glass/NbSiTaTiZr alloy material layer of the embodiment 1 is prepared, Wherein the NbSiTaTiZr alloy material layer is used as a back electrode layer; the back electrode layer is patterned; a CuGa/In precursor layer is grown on the patterned back electrode layer; and the CuGa/In precursor layer is selenized to form a CIGS absorber layer; forming a cadmium sulfide (CdS) buffer layer on the CIGS absorber layer; depositing a zinc oxide (ZnO) window layer on the CdS buffer layer; depositing a zinc zinc oxide (AZO) front electrode The layer is on the ZnO window layer; and the metal contact layer of the nickel-aluminum alloy is plated on the AZO front electrode layer to obtain the CIGS solar cell of the embodiment.

比較例2Comparative example 2

本實施例係以比較例1之鈉鈣玻璃/鉬金屬薄膜組合製備CIGS太陽能電池,其詳細的製備方式大致如實施例3所述,在此便不再敘述,且各製程參數係與實施例3完全相同,不同之處在於,本比較例係齊備該比較例1之鈉鈣玻璃/鉬金屬薄膜組合,且其中該鉬金屬薄膜係作為背電極層。 In this embodiment, a CIGS solar cell is prepared by combining the soda lime glass/molybdenum metal film of Comparative Example 1, and the detailed preparation method is substantially as described in Embodiment 3, and will not be described here, and each process parameter and embodiment are not described. 3 is identical except that the comparative example is provided with the soda lime glass/molybdenum metal film combination of Comparative Example 1, and the molybdenum metal film is used as the back electrode layer.

測試例7Test Example 7

本測試例係測量實施例3以及比較例2之CIGS太陽能電池之特徵參數,藉以比較兩者之性能差異,其結果如表2所示以及圖13至圖14所示。 This test example measures the characteristic parameters of the CIGS solar cells of Example 3 and Comparative Example 2, thereby comparing the performance difference between the two, and the results are shown in Table 2 and shown in Figs. 13 to 14.

由表2以及圖13至圖14可知,相較於比較例2,由於NbSiTaTiZr合金材料層之結構十分連續且均勻,並無任何柱狀結晶結構,且材料層中幾乎沒有空隙,故其與鈉鈣玻璃之附著力佳,因此降低了破裂以及剝落的機率,故有效降低漏電流,因此實施例3之CIGS太陽能電池之並聯電阻明顯增加,增加程度高達70%。 It can be seen from Table 2 and FIG. 13 to FIG. 14 that, compared with Comparative Example 2, since the structure of the NbSiTaTiZr alloy material layer is very continuous and uniform, there is no columnar crystal structure, and there is almost no void in the material layer, so it is combined with sodium. Since the adhesion of the calcium glass is good, the probability of cracking and peeling is lowered, so that the leakage current is effectively reduced. Therefore, the parallel resistance of the CIGS solar cell of the third embodiment is significantly increased by 70%.

此外,如測試例1所述,由於NbTaTiSiZr合金材料層之表面平整,使得實施例3之CIGS太陽能電池之CIGS吸收層的晶粒更大顆且更平整,因此具有更佳光電轉換能力 與直接降低載子損耗之功效,因此增加短路電流密度,即,實施例3之CIGS太陽能電池之短路電流密度高於比較例2之CIGS太陽能電池之短路電流密度係證明實施例3之CIGS吸收層的晶粒大於比較例2之吸收層的晶粒。 Further, as described in Test Example 1, since the surface of the NbTaTiSiZr alloy material layer is flat, the CIGS absorption layer of the CIGS solar cell of Example 3 has a larger crystal grain and is flatter, thereby having better photoelectric conversion capability. And the effect of directly reducing the carrier loss, thus increasing the short-circuit current density, that is, the short-circuit current density of the CIGS solar cell of Example 3 is higher than the short-circuit current density of the CIGS solar cell of Comparative Example 2, which proves the CIGS absorption layer of Example 3. The crystal grains were larger than those of the absorption layer of Comparative Example 2.

進一步的,實施例3之CIGS太陽能電池之短路電流密度明顯較高,且提高的程度約為7.3%,亦即實施例3之CIGS太陽能電池之光電流較大,其係因為如測試例3所述,由於該NbSiTaTiZr合金材料層之反射率較鉬金屬薄膜之反射率佳,故由NbSiTaTiZr合金材料層反射回CIGS吸收層之光可再被CIGS吸收層吸收而利用,進而轉換成光電流,因此實施例3之CIGS太陽能電池之短路電流密度提高。 Further, the short-circuit current density of the CIGS solar cell of the third embodiment is significantly higher, and the degree of improvement is about 7.3%, that is, the photocurrent of the CIGS solar cell of the third embodiment is larger, because the test example 3 is As described above, since the reflectance of the NbSiTaTiZr alloy material layer is better than that of the molybdenum metal film, the light reflected from the NbSiTaTiZr alloy material layer back to the CIGS absorption layer can be absorbed by the CIGS absorption layer and used to convert it into a photocurrent. The short-circuit current density of the CIGS solar cell of Example 3 was increased.

復又由於實施例3之CIGS太陽能電池之串聯電阻低於比較例2之串聯電阻,降低的程度達13.6%,故可得知實施例3之太陽能電池,其歐姆損失較小,因此該NbSiTaTiZr合金材料層與CIGS吸收層係為更良好的歐姆接觸,進而提高實施例3之CIGS太陽能電池之太陽能電池的轉換效率,相較於比較例2,實施例3之CIGS太陽能電池之轉換效率增加程度為8.5%。 Further, since the series resistance of the CIGS solar cell of the third embodiment is lower than that of the series resistance of the comparative example 2, the degree of reduction is 13.6%, so that the solar cell of the third embodiment has a small ohmic loss, so the NbSiTaTiZr alloy The material layer and the CIGS absorber layer are more excellent ohmic contact, thereby improving the conversion efficiency of the solar cell of the CIGS solar cell of Example 3. Compared with Comparative Example 2, the conversion efficiency of the CIGS solar cell of Example 3 is increased. 8.5%.

由圖14可得知,於波長介於600至1000 nm之間的範圍內,相較於比較例1之CIGS太陽能電池,實施例3之CIGS太陽能電池具有較高之量子效率,如測試例3所述,其係由於該NbSiTaTiZr合金材料層之反射率較鉬金屬薄膜之反射率佳,且在波長約為800 nm時,由於該NbSiTaTiZr之反射率高於鉬金屬薄膜之反射率的程度最為顯著,故實施例3之量子效率高於比較例1之量子效率的程度最為明 顯。 As can be seen from FIG. 14, the CIGS solar cell of Example 3 has higher quantum efficiency than the CIGS solar cell of Comparative Example 1 in the range of wavelength between 600 and 1000 nm, as in Test Example 3. The reason is that the reflectivity of the NbSiTaTiZr alloy material layer is better than that of the molybdenum metal film, and the reflectance of the NbSiTaTiZr is higher than that of the molybdenum metal film at a wavelength of about 800 nm. Therefore, the quantum efficiency of the third embodiment is higher than that of the comparative example 1. Obvious.

圖1係為本發明之實施例1之NbSiTaTiZr合金材料層的X光繞射圖。 BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is an X-ray diffraction pattern of a layer of NbSiTaTiZr alloy material of Example 1 of the present invention.

圖2係為本發明之實施例2之ZrCuAlNi合金材料層的場效發射式掃描電子顯微鏡(field-emission scanning electron microscope,FE-SEM)影像圖,其倍率係為20000倍。 2 is a field-emission scanning electron microscope (FE-SEM) image of a ZrCuAlNi alloy material layer according to Embodiment 2 of the present invention, and the magnification is 20,000 times.

圖3係為本發明之實施例2之ZrCuAlNi合金材料層的場效發射式掃描電子顯微鏡(field-emission scanning electron microscope,FE-SEM)影像圖,其倍率係為40000倍。 3 is a field-emission scanning electron microscope (FE-SEM) image of a ZrCuAlNi alloy material layer according to Embodiment 2 of the present invention, and the magnification is 40,000 times.

圖4係為本發明之實施例2之ZrCuAlNi合金材料層的X光繞射圖。 4 is an X-ray diffraction pattern of a ZrCuAlNi alloy material layer of Example 2 of the present invention.

圖5係為本發明之實施例1之掃描式電子顯微鏡的截面影像圖。 Fig. 5 is a cross-sectional view showing a scanning electron microscope of Example 1 of the present invention.

圖6係為本發明之比較例1之掃描式電子顯微鏡的截面影像圖。 Fig. 6 is a cross-sectional view showing a scanning electron microscope of Comparative Example 1 of the present invention.

圖7係為本發明之實施例1之掃描式電子顯微鏡的表面形貌圖。 Fig. 7 is a view showing the surface topography of a scanning electron microscope of Example 1 of the present invention.

圖8係為本發明之比較例1之掃描式電子顯微鏡的表面形貌圖。 Fig. 8 is a view showing the surface topography of a scanning electron microscope of Comparative Example 1 of the present invention.

圖9係為本發明之實施例1之NbSiTaTiZr合金材料層以及比較例1之鉬金屬薄膜的反射率頻譜圖。 Fig. 9 is a reflectance spectrum diagram of the NbSiTaTiZr alloy material layer of Example 1 of the present invention and the molybdenum metal film of Comparative Example 1.

圖10係為本發明之實施例2之ZrCuAlNi合金材料層 的使用原子力顯微鏡取得之表面形貌圖。 Figure 10 is a layer of ZrCuAlNi alloy material of Example 2 of the present invention. The surface topography obtained using an atomic force microscope.

圖11係為本發明之測試例6之鈉鈣玻璃/NbSiTaTiZr合金材料層/CIGS吸收層之組合之掃描式電子顯微鏡的截面影像圖。 Figure 11 is a cross-sectional image view of a scanning electron microscope of a combination of a soda lime glass/NbSiTaTiZr alloy material layer/CIGS absorber layer of Test Example 6 of the present invention.

圖12係為本發明之測試例6之鈉鈣玻璃/鉬金屬薄膜/CIGS吸收層之組合之掃描式電子顯微鏡的表面形貌圖。 Fig. 12 is a view showing the surface topography of a scanning electron microscope of a combination of a soda lime glass/molybdenum metal film/CIGS absorbing layer of Test Example 6 of the present invention.

圖13係為本發明之實施例3以及比較例2之CIGS太陽能電池的短路電流密度與電壓之曲線圖。 Fig. 13 is a graph showing short-circuit current density and voltage of a CIGS solar cell of Example 3 and Comparative Example 2 of the present invention.

圖14係為本發明之實施例3以及比較例2之CIGS太陽能電池的量子效率曲線圖。 Fig. 14 is a graph showing quantum efficiency of a CIGS solar cell of Example 3 and Comparative Example 2 of the present invention.

Claims (13)

一種多元合金材料層,其係用於薄膜太陽能電池之背電極層,其係為非晶(amorphous)結構,其成分係包含至少二主要金屬元素,且該至少二主要金屬元素中至少一主要金屬元素之熔點係大於1800℃,以該多元合金材料層之總含量為基準,該熔點大於1800℃之主要金屬元素之含量總合係大於45原子百分比(at%)。 A multi-layer alloy material layer for a back electrode layer of a thin film solar cell, which is an amorphous structure, the composition of which comprises at least two main metal elements, and at least one of the at least two main metal elements The melting point of the element is greater than 1800 ° C, and the total content of the main metal element having a melting point greater than 1800 ° C is greater than 45 atomic percent (at %) based on the total content of the multi-alloy material layer. 如請求項1所述之多元合金材料層,其成分係包含二至十種之間的主要金屬元素。 The multi-alloy material layer according to claim 1, the composition of which comprises between two and ten main metal elements. 如請求項1或2所述之多元合金材料層,該等主要金屬元素之熔點係皆不小於600℃。 The multi-alloy material layer according to claim 1 or 2, wherein the main metal elements have a melting point of not less than 600 °C. 如請求項3所述之多元合金材料層,其熔點係大於600℃。 The multi-alloy material layer according to claim 3, which has a melting point of more than 600 ° C. 如請求項4所述之多元合金材料層,其中該等主要金屬元素係選自下列所構成之群組:鋁、硼、鈹、碳、鈣、鈷、鉻、銅、鉿、鉬、鈮、錸、鈦、鉭、釩、鎢、鋯、矽、銀以及鎳。 The multi-alloy material layer according to claim 4, wherein the main metal elements are selected from the group consisting of aluminum, boron, lanthanum, carbon, calcium, cobalt, chromium, copper, lanthanum, molybdenum, niobium, Niobium, titanium, tantalum, vanadium, tungsten, zirconium, hafnium, silver and nickel. 如請求項5所述之多元合金材料層,其中該等主要金屬元素係選自下列所構成之群組:鈮、矽、鉭、鈦、鋯、銅、鋁以及鎳。 The multi-alloy material layer of claim 5, wherein the main metal elements are selected from the group consisting of ruthenium, osmium, iridium, titanium, zirconium, copper, aluminum, and nickel. 如請求項6所述之多元合金材料層,其係選自下列所構成之群組:鈮矽鉭鈦鋯合金材料層以及鋯銅鋁鎳合金材料層。 The multi-alloy material layer according to claim 6, which is selected from the group consisting of a layer of niobium-titanium-zirconium alloy material and a layer of zirconium-copper-aluminum alloy material. 如請求項7所述之多元合金薄膜,其中以該多元合金薄膜總含量為基準,各主要金屬元素之含量係大於5原子 百分比(at%)。 The multi-alloy film according to claim 7, wherein the content of each major metal element is greater than 5 atoms based on the total content of the multi-component alloy film. Percentage (at%). 如請求項8所述之多元合金薄膜,以該多元合金薄膜之總含量為基準,各主要金屬元素係介於5至60 at%之間。 The multi-alloy film according to claim 8, wherein the main metal element is between 5 and 60 at% based on the total content of the multi-alloy film. 一種薄膜太陽能電池,其係包含一基板、一形成於該基板上的背電極層以及一形成於該背電極層上之吸收層,其中該背電極層係一種如請求項1至9中任一項所述之多元合金材料層。 A thin film solar cell comprising a substrate, a back electrode layer formed on the substrate, and an absorber layer formed on the back electrode layer, wherein the back electrode layer is one of claims 1 to 9 The multi-alloy material layer described in the item. 如請求項10所述之薄膜太陽能電池,其中該基板係為鈉鈣玻璃。 The thin film solar cell of claim 10, wherein the substrate is soda lime glass. 如請求項10所述之薄膜太陽能電池,其中該基板係為可撓式基板。 The thin film solar cell of claim 10, wherein the substrate is a flexible substrate. 如請求項10至12中任一項所述之薄膜太陽能電池,其中該吸收層係選自下列所構成之群組:銅鋅錫硫、銅銦鎵硒、硫化鎘、銻化鎘、銅銦鎵硫硒、銅鋅錫硫硒、銅銦硒以及銅鋅錫硒。 The thin film solar cell of any one of claims 10 to 12, wherein the absorbing layer is selected from the group consisting of copper zinc tin sulphide, copper indium gallium selenide, cadmium sulfide, cadmium telluride, copper indium Gallium sulphide selenium, copper zinc tin sulphide selenium, copper indium selenium, and copper zinc tin selenium.
TW101147410A 2012-12-14 2012-12-14 A multicomponent-alloy material layer and a solar cell comprising the same TWI476284B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101147410A TWI476284B (en) 2012-12-14 2012-12-14 A multicomponent-alloy material layer and a solar cell comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101147410A TWI476284B (en) 2012-12-14 2012-12-14 A multicomponent-alloy material layer and a solar cell comprising the same

Publications (2)

Publication Number Publication Date
TW201422823A true TW201422823A (en) 2014-06-16
TWI476284B TWI476284B (en) 2015-03-11

Family

ID=51393820

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101147410A TWI476284B (en) 2012-12-14 2012-12-14 A multicomponent-alloy material layer and a solar cell comprising the same

Country Status (1)

Country Link
TW (1) TWI476284B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI750610B (en) * 2020-03-18 2021-12-21 中美矽晶製品股份有限公司 Solar cell structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5986204A (en) * 1996-03-21 1999-11-16 Canon Kabushiki Kaisha Photovoltaic cell
CN100530701C (en) * 2002-09-30 2009-08-19 米亚索尔公司 Manufacturing apparatus and method for large-scale production of thin-film solar cells
EP2579686B1 (en) * 2010-06-04 2018-07-25 Mitsui Mining & Smelting Co., Ltd Electrode foil and organic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI750610B (en) * 2020-03-18 2021-12-21 中美矽晶製品股份有限公司 Solar cell structure

Also Published As

Publication number Publication date
TWI476284B (en) 2015-03-11

Similar Documents

Publication Publication Date Title
Moholkar et al. Development of CZTS thin films solar cells by pulsed laser deposition: influence of pulse repetition rate
Friedfeld et al. Electrodeposition of CuInxGa1− xSe2 thin films
Wu et al. Structure and electrical properties of Mo back contact for Cu (In, Ga) Se2 solar cells
KR20130016281A (en) Photoelectronically active, chalcogen-based thin film structures incorporating tie layers
Mendil et al. Preparation of RF sputtered AZO/Cu/AZO multilayer films and the investigation of Cu thickness and substrate effects on their microstructural and optoelectronic properties
Liu et al. Improvement of CIGS solar cells with high performance transparent conducting Ti-doped GaZnO thin films
Chelvanathan et al. Growth of MoOx nanobelts from molybdenum bi-layer thin films for thin film solar cell application
US20150340524A1 (en) Method of Fabricating a Flexible Photovoltaic Film Cell With an Iron Diffusion Barrier Layer
Suhariadi et al. Improved nanoscale Al-doped ZnO with a ZnO buffer layer fabricated by nitrogen-mediated crystallization for flexible optoelectronic devices
TWI629803B (en) CIGS film and CIGS solar cell using same
Wang et al. Properties of the Mo back contact for the formation of a thin-film photovoltaic absorber
US8779283B2 (en) Absorber layer for thin film photovoltaics and a solar cell made therefrom
Lee et al. The thickness dependent of optical properties, resistance, strain and morphology of Mo thin films for the back contact of CIGS solar cells
Yan et al. Ga-doped ZnO rear transparent contact enables high efficiency silicon heterojunction solar cells
TWI476284B (en) A multicomponent-alloy material layer and a solar cell comprising the same
US8846438B2 (en) Method for indium sputtering and for forming chalcopyrite-based solar cell absorber layers
CN103924168A (en) Multi-element alloy material and solar cell containing back electrode layer formed therefrom
KR20150035298A (en) Fabrication of thin film for CZTS or CZTSe solar cell and solar cell made therefrom
EP2696371A2 (en) Solar cell and manufacturing method thereof
Pisarkiewicz et al. Fabrication of thin film polycrystalline CIS photovoltaic heterostructure
EP2221876A1 (en) Absorber layer for thin film photovoltaic cells and a solar cell made therefrom
TWI492399B (en) Method for manufacturing a thin film solar cell
JP7479231B2 (en) Photoelectric conversion film, method for producing photoelectric conversion film, and photoelectric conversion element
Nehra et al. Preparation and characterization of vacuum thermal evaporated trilayer Cu/Se/Al thin films
AU2009200640B2 (en) Absorber layer for thin film photovoltaics and a solar cell made therefrom

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees