TW201421737A - Light-emitting device with multiple light-emitting stacked layers - Google Patents

Light-emitting device with multiple light-emitting stacked layers Download PDF

Info

Publication number
TW201421737A
TW201421737A TW102138853A TW102138853A TW201421737A TW 201421737 A TW201421737 A TW 201421737A TW 102138853 A TW102138853 A TW 102138853A TW 102138853 A TW102138853 A TW 102138853A TW 201421737 A TW201421737 A TW 201421737A
Authority
TW
Taiwan
Prior art keywords
light
quantum well
layer
emitting
multiple quantum
Prior art date
Application number
TW102138853A
Other languages
Chinese (zh)
Other versions
TWI589019B (en
Inventor
Min-Hsun Hsieh
Yi-Chieh Lin
Rong-Ren Lee
Original Assignee
Epistar Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/683,476 external-priority patent/US8927958B2/en
Application filed by Epistar Corp filed Critical Epistar Corp
Publication of TW201421737A publication Critical patent/TW201421737A/en
Application granted granted Critical
Publication of TWI589019B publication Critical patent/TWI589019B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

A light-emitting device includes a first light-emitting element emitting a first light with a first dominant wavelength, including a first MQW structure including a first number of MQW pairs; a second MQW structure on the first MQW structure, including a second number of MQW pairs; and a tunneling layer between the first MQW structure and the second MQW structure; and a second light-emitting element emitting a third light with a third dominant wavelength, wherein the first number is different from the second number.

Description

具有複數個發光疊層之發光裝置 Light-emitting device with a plurality of light-emitting laminates

本發明關於一種發光裝置,特別是關於一種具有複數個發光疊層之發光裝置。 The present invention relates to a light emitting device, and more particularly to a light emitting device having a plurality of light emitting stacks.

發光二極體(Light-emitting Diode;LED)係一種固態半導體元件,其至少包含一p-n接面(p-n junction),此p-n接面形成於p型與n型半導體層之間。當於p-n接面上施加一定程度之偏壓時,p型半導體層中之電洞與n型半導體層中之電子會結合而釋放出光。此光產生之區域一般又稱為發光區(light-emitting region)。 A light-emitting diode (LED) is a solid-state semiconductor device including at least a p-n junction formed between a p-type and an n-type semiconductor layer. When a certain degree of bias is applied to the p-n junction, the holes in the p-type semiconductor layer combine with the electrons in the n-type semiconductor layer to emit light. This region of light generation is also commonly referred to as the light-emitting region.

LED的主要特徵在於尺寸小、高演色性、可靠度高發光效率高、壽命長和反應快速,目前已經廣泛地使用在光學顯示裝置、交通號誌、資料儲存裝置、通訊裝置、照明裝置與醫療器材上。隨著全彩LED的問世,LED已逐漸取代傳統的照明設備,如螢光燈和白熾燈泡。 LED's main features are small size, high color rendering, high reliability, high luminous efficiency, long life and fast response. It has been widely used in optical display devices, traffic signs, data storage devices, communication devices, lighting devices and medical treatment. On the equipment. With the advent of full-color LEDs, LEDs have gradually replaced traditional lighting devices such as fluorescent lights and incandescent light bulbs.

在LED的製造成本中,基板的價格佔據很大的比重,所以如何降低基板在LED中的使用量是引人關注的議題。 In the manufacturing cost of LEDs, the price of the substrate occupies a large proportion, so how to reduce the amount of the substrate used in the LED is an attractive topic.

一發光裝置,包含可射出具有第一主波長之第一光的一第一發光元件,其中第一發光元件具有包含第一數量之多重量子井對的一第一多重量子井結構;包含第二數量之多重量子井對的一第二多重量子井結構,位於第一多重量子井結構之上;以及一穿隧層位於第一多重量子井結構與第二多重量子井結構之間;以及可射出具有第三主波長之第三光的一第二發光元件,其中第一數量不同於第二數量。 An illuminating device comprising a first illuminating element capable of emitting a first light having a first dominant wavelength, wherein the first illuminating element has a first multiple quantum well structure comprising a first number of multiple quantum well pairs; A second multiple quantum well structure of a plurality of multiple quantum well pairs is located above the first multiple quantum well structure; and a tunneling layer is located between the first multiple quantum well structure and the second multiple quantum well structure And a second illuminating element that emits a third light having a third dominant wavelength, wherein the first quantity is different from the second quantity.

一發光元件,具有包含第一數量之多重量子井對的一第一多重量子井結構;包含第二數量之多重量子井對的一第二多重量子井結構,位於第一多重量子井結構之上;以及一第一穿隧層位於第一多重量子井結構與第二多重量子井結構之間,其中第一數量不同於第二數量。 a light-emitting element having a first multiple quantum well structure comprising a first number of multiple quantum well pairs; a second multiple quantum well structure comprising a second plurality of multiple quantum well pairs, located in the first multiple quantum well Above the structure; and a first tunneling layer is between the first multiple quantum well structure and the second multiple quantum well structure, wherein the first quantity is different from the second quantity.

1、2‧‧‧發光元件 1, 2‧‧‧Lighting elements

10‧‧‧基板 10‧‧‧Substrate

11‧‧‧接觸層 11‧‧‧Contact layer

12‧‧‧第一黏結層 12‧‧‧First bonding layer

14、21‧‧‧第一發光疊層 14, 21‧‧‧ First light-emitting laminate

142‧‧‧第一半導體層 142‧‧‧First semiconductor layer

144、212‧‧‧第一主動層 144, 212‧‧‧ first active layer

146‧‧‧第二半導體層 146‧‧‧Second semiconductor layer

16、22‧‧‧第一穿隧層 16, 22‧‧‧ first tunneling layer

18、23‧‧‧第二發光疊層 18, 23‧‧‧Second light-emitting laminate

182‧‧‧第三半導體層 182‧‧‧ Third semiconductor layer

184、232‧‧‧第二主動層 184, 232‧‧‧ second active layer

186‧‧‧第四半導體層 186‧‧‧ fourth semiconductor layer

24‧‧‧第二穿隧層 24‧‧‧Second tunneling

25‧‧‧第三發光疊層 25‧‧‧3rd light-emitting laminate

252‧‧‧第三主動層 252‧‧‧ third active layer

3‧‧‧第二發光元件 3‧‧‧Second light-emitting element

4‧‧‧發光裝置 4‧‧‧Lighting device

40‧‧‧載體 40‧‧‧ Carrier

5‧‧‧光源產生裝置 5‧‧‧Light source generating device

51‧‧‧光源 51‧‧‧Light source

52‧‧‧電源供應系統 52‧‧‧Power supply system

53‧‧‧控制元件 53‧‧‧Control elements

6‧‧‧背光模組 6‧‧‧Backlight module

61‧‧‧光學元件 61‧‧‧Optical components

第1圖繪示本申請案一實施例之發光元件之剖面示意圖。 FIG. 1 is a cross-sectional view showing a light-emitting element according to an embodiment of the present application.

第2圖繪示本申請案另一實施例之發光元件之剖面示意圖。 FIG. 2 is a schematic cross-sectional view showing a light-emitting element according to another embodiment of the present application.

第3圖繪示本申請案一實施例之發光裝置之剖面示意圖。 FIG. 3 is a cross-sectional view showing a light-emitting device according to an embodiment of the present application.

第4圖繪示本申請案一實施例之光源產生裝置之示意圖。 FIG. 4 is a schematic diagram of a light source generating device according to an embodiment of the present application.

第5圖繪示本申請案一實施例之背光模組之示意圖。 FIG. 5 is a schematic diagram of a backlight module according to an embodiment of the present application.

本發明之實施例會被詳細地描述,並且繪製於圖式中,相同或類似的部分會以相同的號碼在各圖式以及說明出現。 The embodiments of the present invention will be described in detail, and in the drawings, the same or the like

第1圖繪示一發光元件1具有一基板10;一第一黏結層12,形成於基板10之上;一第一發光疊層14,形成於第一黏結層12之上;一第一穿隧層16,形成於第一發光疊層14之上;一第二發光疊層18,形成於第一穿隧層16之上;以及一接觸層11,形成於第二發光疊層18之上。第一發光疊層14具有一第一半導體層142、一第一主動層144以及一第二半導體層146形成於基板10與第一穿隧層16之間;第二發光疊層18具有一第三半導體層182、一第二主動層184以及一第四半導體層186形成於第一穿隧層16與接觸層11之間。本實施例之第一發光元件1具有兩層發光疊層位於基板10之上,相較於具有一層發光疊層位於基板上之一傳統發光元件,優點之一係第一發光元件1所產生之流明約等於兩個各自僅具有一主動層之傳統發光元件之流明總和。此外,相較於各自具有基板之兩個傳統發光元件,因為第一發光元件1只使用一塊基板,因此減少基板的使用量而降低製造成本。流明增加且成本降低,每塊錢所產生之流明(流明/元)因而增加。第一發光元件1之輸入功率亦大於傳統發光元件。因為第一發光元件1具有兩層發光疊層且順向電壓增加,在輸入與傳統發光元件相同的操作電流下,第一發光元件1之輸入功率增加,所以第一發光元件1所產生之流明增加。此外,因為串聯電阻大於片電阻,所以提升電流擴散。第一發光疊層14經電流通過之面積增加,發光效率因此提升。 1 shows a light-emitting element 1 having a substrate 10; a first bonding layer 12 formed on the substrate 10; a first light-emitting layer 14 formed on the first bonding layer 12; a tunneling layer 16 is formed on the first light emitting layer 14; a second light emitting layer 18 is formed on the first tunneling layer 16; and a contact layer 11 is formed on the second light emitting layer 18. . The first light emitting layer 14 has a first semiconductor layer 142, a first active layer 144 and a second semiconductor layer 146 formed between the substrate 10 and the first tunneling layer 16; the second light emitting layer 18 has a first A third semiconductor layer 182, a second active layer 184, and a fourth semiconductor layer 186 are formed between the first tunneling layer 16 and the contact layer 11. The first light-emitting element 1 of the present embodiment has two layers of light-emitting layers on the substrate 10, and one of the advantages is that the first light-emitting element 1 is produced as compared with a conventional light-emitting element having a light-emitting layer on the substrate. The lumen is approximately equal to the sum of the lumens of two conventional light-emitting elements each having only one active layer. Further, compared to the two conventional light-emitting elements each having a substrate, since the first light-emitting element 1 uses only one substrate, the amount of use of the substrate is reduced to reduce the manufacturing cost. As lumens increase and costs decrease, the lumens (lumen/yuan) generated per dollar increases. The input power of the first light-emitting element 1 is also larger than that of the conventional light-emitting element. Since the first light-emitting element 1 has two layers of light-emitting stacks and the forward voltage is increased, the input power of the first light-emitting element 1 is increased at the same operating current as the conventional light-emitting element, so that the lumen of the first light-emitting element 1 is generated. increase. In addition, since the series resistance is larger than the sheet resistance, the current is spread. The area of the first light-emitting layer 14 that passes through the current increases, and the luminous efficiency is thus improved.

此外,第一主動層144具有包含第一數量之多重量子井對的第一多重量子井結構,其中多重量子井對包含一井層與 一阻障層,阻障層之能隙高於井層之能隙。第二主動層184具有包含第二數量之多重量子井對的第二多重量子井結構,第一數量不同於第二數量。另一實施例中,第一數量可大於第二數量。當第一數量與第二數量之總合固定,此實施例之第一發光元件1之發光效率高於第一數量等於第二數量之另一傳統雙接面發光元件的發光效率。例如第一數量與第二數量之總合為10,此實施例之第一數量為7,第二數量為3,第一多重量子井結構與第二多重量子井結構所產生之光的流明與第一數量和第二數量皆為5之傳統雙接面發光元件所產生之光的流明相同。然而因為第一發光元件之第二數量小於第一數量,較少的多重量子井對可吸收第一多重量子井結構所發之光,所以第一發光元件1之發光效率大於傳統雙接面發光元件之發光效率。 Additionally, the first active layer 144 has a first multiple quantum well structure comprising a first number of multiple quantum well pairs, wherein the multiple quantum well pairs comprise a well layer and In a barrier layer, the energy gap of the barrier layer is higher than the energy gap of the well layer. The second active layer 184 has a second multiple quantum well structure comprising a second number of multiple quantum well pairs, the first number being different from the second number. In another embodiment, the first number can be greater than the second number. When the sum of the first quantity and the second quantity is fixed, the luminous efficiency of the first light-emitting element 1 of this embodiment is higher than the luminous efficiency of the first quantity equal to the second quantity of another conventional double-junction light-emitting element. For example, the sum of the first quantity and the second quantity is 10, the first quantity of this embodiment is 7, and the second quantity is 3, the light generated by the first multiple quantum well structure and the second multiple quantum well structure The lumens are the same as the lumens of light produced by a conventional dual junction light-emitting element having a first number and a second number of five. However, since the second number of the first illuminating elements is smaller than the first quantity, the fewer multiple quantum well pairs can absorb the light emitted by the first multiple quantum well structure, so the luminous efficiency of the first illuminating element 1 is greater than that of the conventional double junction. The luminous efficiency of the light-emitting element.

基板10可用以成長及/或支持位於其上之發光疊層,其材料可為絕緣材料或導電材料。絕緣材料包含但不限於藍寶石(Sapphire)、鑽石(Diamond)、玻璃(Glass)、石英(Quartz)、壓克力(Acryl)或氮化鋁(AlN)。導電材料包含但不限於銅(Cu)、鋁(Al)、類鑽碳薄膜(Diamond Like Carbon;DLC)、碳化矽(SiC)、金屬基複合材料(Metal Matrix Composite;MMC)、陶瓷基複合材料(Ceramic Matrix Composite;CMC)、矽(Si)、磷化碘(IP)、砷化鎵(GaAs)、鍺(Ge)、磷化鎵(GaP)、磷砷化鎵(GaAsP)、硒化鋅(ZnSe)、氧化鋅(ZnO)、磷化銦(InP)、鎵酸鋰(LiGaO2)或鋁酸鋰(LiAlO2)。其中可用以成長發光疊層之材料例如為藍寶石、砷化鎵或碳化矽。當基板10用以成長發光疊層,第一黏結層12可以用作成長發光疊層之緩衝層取代。 The substrate 10 can be used to grow and/or support a light-emitting stack thereon, the material of which can be an insulating material or a conductive material. Insulating materials include, but are not limited to, Sapphire, Diamond, Glass, Quartz, Acryl, or Aluminum Nitride (AlN). Conductive materials include, but are not limited to, copper (Cu), aluminum (Al), diamond-like carbon (DLC), tantalum carbide (SiC), metal matrix composite (MMC), ceramic matrix composites (Ceramic Matrix Composite; CMC), bismuth (Si), phosphine oxide (IP), gallium arsenide (GaAs), germanium (Ge), gallium phosphide (GaP), gallium arsenide (GaAsP), zinc selenide (ZnSe), zinc oxide (ZnO), indium phosphide (InP), lithium gallate (LiGaO 2 ) or lithium aluminate (LiAlO 2 ). Materials in which the light-emitting laminate can be grown are, for example, sapphire, gallium arsenide or tantalum carbide. When the substrate 10 is used to grow the light-emitting stack, the first adhesive layer 12 can be replaced by a buffer layer for growing the light-emitting stack.

第一黏結層12可連接基板10與第一發光疊層14, 以及包含複數個附屬層(未顯示)。第一黏結層12之材料可為導電材料,包含但不限於氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化鋅(ZnO)、氧化釔鋅(YZO)、氧化銦鋅(IZO)、類鑽碳薄膜、銅(Cu)、鋁(Al)、錫(Sn)、金(Au)、鉑(Pt)、鋅(Zn)、銀(Ag)、鈦(Ti)、鎳(Ni)、鉛(Pb)、鈀(Pd)、鍺(Ge)、鉻(Cr)、鎘(Cd)、鈷(Co)、錳(Mn)、銻(Sb)、鉍(Bi)、鎵(Ga)、鎢(W)、銀-鈦(Ag-Ti)、銅-錫(Cu-Sn)、銅-鋅(Cu-Zn)、銅-鎘(Cu-Cd)、錫-鉛-銻(Sn-Pb-Sb)、錫-鉛-鋅(Sn-Pb-Zn)、鎳-錫(Ni-Sn)、鎳-鈷(Ni-Co)或金合金(Au alloy)等。緩衝層之材料可為半導體材料,包含一種以上之元素,此元素可選自鎵(Ga)、鋁(Al)、銦(In)、磷(P)、氮(N)、鋅(Zn)、鎘(Cd)與硒(Se)所構成之群組。第一黏結層12可更包含反射層(未顯示)以反射發光疊層所產生之光。反射層之材料可包含但不限於銅(Cu)、鋁(Al)、錫(Sn)、金(Au)、鉑(Pt)、鋅(Zn)、銀(Ag)、鈦(Ti)、鎳(Ni)、鉛(Pb)、銀-鈦(Ag-Ti)、銅-錫(Cu-Sn)、銅-鋅(Cu-Zn)、銅-鎘(Cu-Cd)、錫-鉛-銻(Sn-Pb-Sb)、錫-鉛-鋅(Sn-Pb-Zn)、鎳-錫(Ni-Sn)、鎳-鈷(Ni-Co)、銀-銅(Ag-Cu)或金合金(Au alloy) The first bonding layer 12 can connect the substrate 10 and the first light emitting laminate 14 . And includes a plurality of subsidiary layers (not shown). The material of the first bonding layer 12 may be a conductive material, including but not limited to indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), oxidation. Aluminum zinc (AZO), zinc tin oxide (ZTO), gallium zinc oxide (GZO), zinc oxide (ZnO), bismuth zinc oxide (YZO), indium zinc oxide (IZO), diamond-like carbon film, copper (Cu), Aluminum (Al), tin (Sn), gold (Au), platinum (Pt), zinc (Zn), silver (Ag), titanium (Ti), nickel (Ni), lead (Pb), palladium (Pd), Ge (Ge), chromium (Cr), cadmium (Cd), cobalt (Co), manganese (Mn), antimony (Sb), antimony (Bi), gallium (Ga), tungsten (W), silver-titanium (Ag -Ti), Cu-Sn, Cu-Zn, Cu-Cd, Sn-Pb-Sb, Tin-Lead-Zinc Sn-Pb-Zn), nickel-tin (Ni-Sn), nickel-cobalt (Ni-Co) or gold alloy (Au alloy). The material of the buffer layer may be a semiconductor material comprising more than one element selected from the group consisting of gallium (Ga), aluminum (Al), indium (In), phosphorus (P), nitrogen (N), zinc (Zn), A group of cadmium (Cd) and selenium (Se). The first bonding layer 12 may further comprise a reflective layer (not shown) to reflect the light generated by the luminescent stack. The material of the reflective layer may include, but is not limited to, copper (Cu), aluminum (Al), tin (Sn), gold (Au), platinum (Pt), zinc (Zn), silver (Ag), titanium (Ti), nickel. (Ni), lead (Pb), silver-titanium (Ag-Ti), copper-tin (Cu-Sn), copper-zinc (Cu-Zn), copper-cadmium (Cu-Cd), tin-lead-锑(Sn-Pb-Sb), tin-lead-zinc (Sn-Pb-Zn), nickel-tin (Ni-Sn), nickel-cobalt (Ni-Co), silver-copper (Ag-Cu) or gold alloy (Au alloy)

第一發光疊層14及/或第二發光疊層18可直接成長於基板10之上,或藉由第一黏結層12固定於基板10之上。第一發光疊層14及第二發光疊層18之材料可為半導體材料,包含一種以上之元素,此元素可選自鎵(Ga)、鋁(Al)、銦(In)、磷(P)、氮(N)、鋅(Zn)、鎘(Cd)與硒(Se)所構成之群組。第一半導體層142與第二半導體層146的電性相異,第三半導體層182與第二半導體層186的電性相異。第一主動層144與第二主動層184可發光,其中第一主動層144具有第一能隙及第二主動層184具有第二能隙,此 實施例中第一能隙不同於第二能隙。第一能隙與第二能隙之能隙差介於0.3eV與0.5eV之間,第一能隙可小於或大於第二能隙,例如第一能隙為1.45eV,第二能隙為1.9eV。又一實施例中,第一主動層144所產生之光係人眼無法辨識之不可見光,此實施例之不可見光波長約為小於400nm或大於780nm,較佳為介於780nm與2500nm之間或介於300nm與400nm之間,更佳為介於780nm與900nm之間。第二主動層184所產生之光係人眼可辨識之可見光,此實施例之可見光波長約介於400nm與780nm之間,較佳為介於560nm與750nm之間。另一實施例中,第一主動層144所產生之光具有一第一主波長,第二主動層184所產生之光具有一第二主波長,第一主波長與第二主波長之波長差約為150nm至220nm,第一主波長可大於或小於第二主波長。此實施例可應用於醫療領域,優點之一係一個發光元件可同時具有不同功能;例如第一主波長為815nm,可促進傷口癒合,第二主波長為633nm,有助於消除細紋。 The first light emitting layer 14 and/or the second light emitting layer 18 may be directly grown on the substrate 10 or fixed on the substrate 10 by the first bonding layer 12. The material of the first light emitting layer 14 and the second light emitting layer 18 may be a semiconductor material comprising more than one element selected from the group consisting of gallium (Ga), aluminum (Al), indium (In), and phosphorus (P). A group consisting of nitrogen (N), zinc (Zn), cadmium (Cd) and selenium (Se). The electrical properties of the first semiconductor layer 142 and the second semiconductor layer 146 are different, and the electrical properties of the third semiconductor layer 182 and the second semiconductor layer 186 are different. The first active layer 144 and the second active layer 184 can emit light, wherein the first active layer 144 has a first energy gap and the second active layer 184 has a second energy gap. In the embodiment, the first energy gap is different from the second energy gap. The energy gap difference between the first energy gap and the second energy gap is between 0.3 eV and 0.5 eV, and the first energy gap can be smaller or larger than the second energy gap, for example, the first energy gap is 1.45 eV, and the second energy gap is 1.9eV. In another embodiment, the light generated by the first active layer 144 is invisible light that is unrecognizable by the human eye. The invisible wavelength of this embodiment is less than about 400 nm or greater than 780 nm, preferably between 780 nm and 2500 nm. It is between 300 nm and 400 nm, more preferably between 780 nm and 900 nm. The light generated by the second active layer 184 is visible light visible to the human eye. The visible light wavelength of this embodiment is between about 400 nm and 780 nm, preferably between 560 nm and 750 nm. In another embodiment, the light generated by the first active layer 144 has a first dominant wavelength, and the light generated by the second active layer 184 has a second dominant wavelength, a wavelength difference between the first dominant wavelength and the second dominant wavelength. About 150 nm to 220 nm, the first dominant wavelength may be greater or smaller than the second dominant wavelength. This embodiment can be applied to the medical field. One of the advantages is that one light-emitting element can have different functions at the same time; for example, the first dominant wavelength is 815 nm, which can promote wound healing, and the second dominant wavelength is 633 nm, which helps to eliminate fine lines.

另一實施例中,第一主動層144由一第一量子井與一第二量子井交互堆疊形成,其中第一量子井具有一第一量子井能隙,第二量子井具有一第二量子井能隙,第一量子井能隙與第二量子井能隙相異,第一量子井能隙與第二量子井能隙之能隙差約為0.06eV至0.1eV,第一量子井能隙可小於或大於第二量子井能隙。第二主動層184由一第三量子井與一第四量子井交互堆疊形成,其中第三量子井具有一第三量子井能隙,第四量子井具有一第四量子井能隙,第三量子井能隙與第四量子井能隙相異,第三量子井能隙與第四量子井能隙之能隙差約為0.06eV至0.1eV,第一量子井能隙可小於或大於第二量子井能隙。 In another embodiment, the first active layer 144 is formed by alternately stacking a first quantum well and a second quantum well, wherein the first quantum well has a first quantum well energy gap and the second quantum well has a second quantum Well energy gap, the first quantum well energy gap is different from the second quantum well energy gap, and the energy gap between the first quantum well energy gap and the second quantum well energy gap is about 0.06 eV to 0.1 eV, and the first quantum well can The gap can be smaller or larger than the second quantum well energy gap. The second active layer 184 is formed by alternately stacking a third quantum well and a fourth quantum well, wherein the third quantum well has a third quantum well energy gap, the fourth quantum well has a fourth quantum well energy gap, and the third The energy gap of the quantum well is different from the energy gap of the fourth quantum well. The energy gap between the energy gap of the third quantum well and the energy gap of the fourth quantum well is about 0.06 eV to 0.1 eV, and the energy gap of the first quantum well can be smaller or larger than the first gap. Two quantum well energy gaps.

第一穿隧層16成長於第一發光疊層14之上,其摻雜濃度大於8x1018/cm3,所以電子可利用穿隧效應通過第一穿隧層16。第一穿隧層16之材料可為半導體材料,包含一種以上之元素,此元素可選自鎵(Ga)、鋁(Al)、銦(In)、磷(P)、氮(N)、鋅(Zn)、鎘(Cd)與硒(Se)所構成之群組。另一實施例中,第一穿隧層16可被一第二黏結層置換,以黏結第一發光疊層14與第二發光疊層18。第二黏結層之材料包含透明導電材料,例如氧化銦錫(ITO)、氧化銦(InO)、氧化錫(SnO)、氧化鎘錫(CTO)、氧化銻錫(ATO)、氧化鋅(ZnO)、氧化鎂(MgO)、砷化鋁鎵(AlGaAs)、氮化鎵(GaN)、磷化鎵(GaP)、氧化鋁鋅(AZO)、氧化鋅錫(ZTO)、氧化鎵鋅(GZO)、氧化銦鋅(IZO)或氧化鉭(Ta2O5);或是絕緣材料,例如Su8、苯并環丁烯(BCB)、過氟環丁烷(PFCB)、環氧樹脂(Epoxy)、丙烯酸樹脂(Acrylic Resin)、環烯烴聚合物(COC)、聚甲基丙烯酸甲酯(PMMA)、聚對苯二甲酸乙二酯(PET)、聚亞醯胺(PI)、聚碳酸酯(PC)、聚醚醯亞胺(Polyetherimide)、氟碳聚合物(Fluorocarbon Polymer)、玻璃(Glass)、氧化鋁(Al2O3)、氧化矽(SiO2)、氧化鈦(TiO2)、氮化矽(SiNx)、旋塗玻璃(SOG)或四乙氧基矽烷(TEOS)。接觸層11用以傳導電流,其材料包含GaP、AlxGa1-xAs(0x1)或AlaGabIn1-a-bP(0a1,0b1,0a+b1)。 The first tunneling layer 16 is grown on the first light-emitting layer 14 with a doping concentration greater than 8× 10 18 /cm 3 , so that electrons can pass through the first tunneling layer 16 by tunneling. The material of the first tunneling layer 16 may be a semiconductor material containing more than one element selected from the group consisting of gallium (Ga), aluminum (Al), indium (In), phosphorus (P), nitrogen (N), and zinc. A group consisting of (Zn), cadmium (Cd) and selenium (Se). In another embodiment, the first tunneling layer 16 can be replaced by a second bonding layer to bond the first luminescent layer 14 and the second luminescent layer 18. The material of the second bonding layer comprises a transparent conductive material such as indium tin oxide (ITO), indium oxide (InO), tin oxide (SnO), cadmium tin oxide (CTO), antimony tin oxide (ATO), zinc oxide (ZnO). , Magnesium Oxide (MgO), AlGaAs, AlGaN, GaP, AZO, ZTO, Zinc Indium zinc oxide (IZO) or yttrium oxide (Ta 2 O 5 ); or an insulating material such as Su8, benzocyclobutene (BCB), perfluorocyclobutane (PFCB), epoxy resin (Epoxy), acrylic acid Acrylic Resin, cycloolefin polymer (COC), polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), polyamidamine (PI), polycarbonate (PC) , Polyetherimide, Fluorocarbon Polymer, Glass, Al 2 O 3 , SiO 2 , TiO 2 , Tantalum Nitride (SiN x ), spin-on glass (SOG) or tetraethoxy decane (TEOS). The contact layer 11 is for conducting current, and the material thereof includes GaP, Al x Ga 1-x As (0) x 1) or Al a Ga b In 1-ab P(0 a 1,0 b 1,0 a+b 1).

第2圖繪示一第一發光元件2具有一基板10;一第一黏結層12,形成於基板10之上;一第一發光疊層21,形成於第一黏結層12之上;一第一穿隧層22,形成於第一發光疊層21之上;一第二發光疊層23,形成於第一穿隧層22之上;一第二穿隧層24,形成於第二發光疊層23之上;一第三發光疊層25,形成於第二穿隧層24之上;以及一接觸層11,形成於第三發光疊層25 之上。第一發光疊層21具有一第一主動層212;第二發光疊層23具有一第二主動層232;以及第三發光疊層25具有一第三主動層252。本實施例之第一發光元件2具有三層發光疊層位於基板10之上,優點之一係第一發光元件2所產生之流明約等於三個傳統發光元件之流明總和。此外,相較三個傳統發光元件使用三塊基板,因為第一發光元件2只使用一塊基板,因此減少基板的使用量而降低製造成本。流明增加且成本降低,每塊錢所產生之流明(流明/元)也因而增加。第一發光元件2之輸入功率亦大於傳統發光元件。因為第一發光元件2具有三層發光疊層且順向電壓增加,在輸入與傳統發光元件相同的操作電流下,第一發光元件2之輸入功率增加,所以第一發光元件2所產生之流明增加。此外,因為串聯電阻大於片電阻,所以提升電流擴散。第一發光疊層21經電流通過之面積增加,發光效率因此提升。 2 shows a first light-emitting element 2 having a substrate 10; a first bonding layer 12 formed on the substrate 10; a first light-emitting layer 21 formed on the first bonding layer 12; a tunneling layer 22 is formed on the first light emitting layer 21; a second light emitting layer 23 is formed on the first tunneling layer 22; and a second tunneling layer 24 is formed in the second light emitting layer Above the layer 23; a third light emitting layer 25 formed on the second tunneling layer 24; and a contact layer 11 formed on the third light emitting layer 25 Above. The first light emitting layer 21 has a first active layer 212; the second light emitting layer 23 has a second active layer 232; and the third light emitting layer 25 has a third active layer 252. The first light-emitting element 2 of the present embodiment has a three-layer light-emitting stack on the substrate 10. One of the advantages is that the lumen produced by the first light-emitting element 2 is approximately equal to the sum of the lumens of the three conventional light-emitting elements. Further, three substrates are used in comparison with three conventional light-emitting elements, and since only one substrate is used for the first light-emitting element 2, the amount of use of the substrate is reduced to reduce the manufacturing cost. As lumens increase and costs decrease, the lumens (lumens/yuan) generated per dollar increase. The input power of the first light-emitting element 2 is also larger than that of the conventional light-emitting element. Since the first light-emitting element 2 has a three-layer light-emitting stack and the forward voltage is increased, the input power of the first light-emitting element 2 is increased at the same operating current as the conventional light-emitting element, so that the lumen of the first light-emitting element 2 is generated. increase. In addition, since the series resistance is larger than the sheet resistance, the current is spread. The area of the first light-emitting layer 21 that passes through the current increases, and the luminous efficiency is thus improved.

此外,第一主動層212具有包含第一數量之多重量子井對的第一多重量子井結構,其中多重量子井對包含一井層與一阻障層,阻障層之能隙高於井層之能隙。第二主動層232具有包含第二數量之多重量子井對的第二多重量子井結構。第三主動層252具有一第三多重量子井結構,其中第三多重量子井結構可發出一具有第四主波長之第四光,且具有一第三數量之多重量子井對,第一數量、第二數量與第三數量皆不相同。另一實施例中,第一數量可大於第二數量且第二數量可大於第三數量。當第一數量、第二數量與第三數量之總合固定,此實施例之第一發光元件2之發光效率會高於第一數量、第二數量與第三數量皆相等之另一傳統三接面發光元件的發光效率。例如第一數量、第二數量與第三數量之總合為15,此實施例之第一數量為7,第二數量為5,第 三數量為3,第一多重量子井結構、第二多重量子井結構與第三多重量子井結構所產生之光的流明與第一數量、第二數量和第三數量皆為5之傳統雙接面發光元件所產生之光的流明相同。然而因為第一發光元件2之第二數量或第三數量小於第一數量,較少的多重量子井對可吸收第一多重量子井結構所發之光,所以第一發光元件2之發光效率大於傳統三接面發光元件之發光效率。 In addition, the first active layer 212 has a first multiple quantum well structure including a first number of multiple quantum well pairs, wherein the multiple quantum well pairs comprise a well layer and a barrier layer, and the energy gap of the barrier layer is higher than the well The energy gap of the layer. The second active layer 232 has a second multiple quantum well structure comprising a second number of multiple quantum well pairs. The third active layer 252 has a third multiple quantum well structure, wherein the third multiple quantum well structure can emit a fourth light having a fourth dominant wavelength and has a third number of multiple quantum well pairs, first The quantity, the second quantity and the third quantity are all different. In another embodiment, the first number can be greater than the second amount and the second amount can be greater than the third amount. When the sum of the first quantity, the second quantity and the third quantity is fixed, the luminous efficiency of the first light-emitting element 2 of this embodiment may be higher than the first quantity, the second quantity and the third quantity are equal to another conventional three. The luminous efficiency of the junction light-emitting element. For example, the sum of the first quantity, the second quantity and the third quantity is 15, the first quantity of this embodiment is 7, and the second quantity is 5, the first The third quantity is 3, and the lumens and the first quantity, the second quantity, and the third quantity of the light generated by the first multiple quantum well structure, the second multiple quantum well structure, and the third multiple quantum well structure are 5 The lumens of light produced by conventional double junction light-emitting elements are the same. However, since the second or third number of the first light-emitting elements 2 is smaller than the first number, fewer multiple quantum well pairs can absorb the light emitted by the first multiple quantum well structure, so the luminous efficiency of the first light-emitting element 2 It is larger than the luminous efficiency of the conventional three-junction light-emitting element.

如第3圖所示,一發光裝置4包含一載體40;第一發光元件1形成於載體40一部分之上;以及一第二發光元件3形成於載體40另一部分之上。第一發光元件1具有可發出具有第一主波長之第一光的第一發光疊層14,以及可發出具有第二主波長之第二光的第二發光疊層18,其中第一主波長不同於第二主波長。第二發光元件3具有可發出具有第三主波長之第三光的第三發光疊層(未顯示),其中第三主波長可不同於第一主波長與第二主波長。因為第一光、第二光與第三光具有不同的主波長,可顯示不同顏色,所以第一光、第二光與第三光混合所產生的混合光具有較好的演色性指數(CRI)。例如混合光是白光,白光具有第一光是紅光;第二光是綠光;以及第三光是藍光。另一實施例中,一波長轉換層(未顯示)可位於第二發光元件3之上,以致於所產生之第三光係色溫約介於5700K與6500K之間的冷白光。第一發光元件1可射出主波長不同的第一光與第二光,第一光、第二光與第三光可混合後產生色溫約介於2700K與3700K的暖白光,所以發光裝置4之演色性指數較第一發光元件僅具有一種主波長的傳統發光裝置為佳。發光裝置4的演色性指數至少為80,更佳為90,且紅色指數R9至少為50。第一光與第二光可顯示相同顏色,例如紅色。一實施例中,第一主動層144具有一多重量子井結構,多 重量子井結構由複數個第一井層與複數個第一阻障層交互堆疊形成,第二主動層184具有另一多重量子井結構,另一多重量子井結構由複數個第二井層與複數個第二阻障層交互堆疊形成。第一井層與第二井層之材料可由化學式InxGa1-xP或InxGa1-xAs表示,且0<x<1,其中第一井層中x所顯示銦的比例大於第二井層。第一井層中銦的比例與第二井層中銦的比例差異約介於1%與6%,較佳為約介於2%與5%。第一主波長與第二主波長之差可約介於5奈米與30奈米,較佳為約介於10奈米與25奈米。此實施例中,第一主波長例如為615奈米至635奈米,第二主波長例如為605奈米至625奈米。 As shown in FIG. 3, a light-emitting device 4 includes a carrier 40; a first light-emitting element 1 is formed on a portion of the carrier 40; and a second light-emitting element 3 is formed on another portion of the carrier 40. The first illuminating element 1 has a first luminescent stack 14 that emits a first light having a first dominant wavelength, and a second luminescent stack 18 that emits a second light having a second dominant wavelength, wherein the first dominant wavelength Different from the second dominant wavelength. The second light emitting element 3 has a third light emitting stack (not shown) that emits a third light having a third dominant wavelength, wherein the third dominant wavelength can be different from the first dominant wavelength and the second dominant wavelength. Since the first light, the second light, and the third light have different dominant wavelengths, different colors can be displayed, so the mixed light generated by the mixing of the first light, the second light, and the third light has a good color rendering index (CRI) ). For example, the mixed light is white light, the white light has a first light that is red light, the second light is green light, and the third light is blue light. In another embodiment, a wavelength conversion layer (not shown) may be positioned over the second illuminating element 3 such that the resulting third light system has a color temperature of between about 5700K and 6500K of cool white light. The first light-emitting element 1 can emit the first light and the second light having different main wavelengths, and the first light, the second light and the third light can be mixed to generate warm white light having a color temperature of about 2700K and 3700K, so the light-emitting device 4 The color rendering index is better than a conventional light-emitting device having only one dominant wavelength of the first light-emitting element. The color rendering index of the illuminating device 4 is at least 80, more preferably 90, and the red index R9 is at least 50. The first light and the second light may display the same color, such as red. In one embodiment, the first active layer 144 has a multiple quantum well structure, and the multiple quantum well structure is formed by alternately stacking a plurality of first well layers and a plurality of first barrier layers, and the second active layer 184 has another In the weight subwell structure, another multiple quantum well structure is formed by alternately stacking a plurality of second well layers and a plurality of second barrier layers. The material of the first well layer and the second well layer may be represented by a chemical formula of In x Ga 1-x P or In x Ga 1-x As, and 0<x<1, wherein the proportion of indium displayed by x in the first well layer is greater than Second well. The ratio of the ratio of indium in the first well layer to the ratio of indium in the second well layer is about 1% and 6%, preferably about 2% and 5%. The difference between the first dominant wavelength and the second dominant wavelength may be between about 5 nanometers and 30 nanometers, preferably between about 10 nanometers and 25 nanometers. In this embodiment, the first dominant wavelength is, for example, 615 nm to 635 nm, and the second dominant wavelength is, for example, 605 nm to 625 nm.

載體40可用以成長且/或支持位於其上之發光元件,其材料可為絕緣材料或導電材料。絕緣材料包含但不限於藍寶石(Sapphire)、鑽石(Diamond)、玻璃(Glass)、石英(Quartz)、壓克力(Acryl)、氧化鋅(ZnO)或氮化鋁(AlN)。導電材料包含但不限於銅(Cu)、鋁(Al)、類鑽碳薄膜(Diamond Like Carbon;DLC)、碳化矽(SiC)、金屬基複合材料(Metal Matrix Composite;MMC)、陶瓷基複合材料(Ceramic Matrix Composite;CMC)、矽(Si)、磷化碘(IP)、砷化鎵(GaAs)、鍺(Ge)、磷化鎵(GaP)、磷砷化鎵(GaAsP)、硒化鋅(ZnSe)、氧化鋅(ZnO)、磷化銦(InP)、鎵酸鋰(LiGaO2)或鋁酸鋰(LiAlO2)。其中可用以成長發光疊層之材料例如為藍寶石、砷化鎵或碳化矽。 The carrier 40 can be used to grow and/or support a light-emitting element located thereon, the material of which can be an insulating material or a conductive material. Insulating materials include, but are not limited to, Sapphire, Diamond, Glass, Quartz, Acryl, Zinc Oxide (ZnO) or Aluminum Nitride (AlN). Conductive materials include, but are not limited to, copper (Cu), aluminum (Al), diamond-like carbon (DLC), tantalum carbide (SiC), metal matrix composite (MMC), ceramic matrix composites (Ceramic Matrix Composite; CMC), bismuth (Si), phosphine oxide (IP), gallium arsenide (GaAs), germanium (Ge), gallium phosphide (GaP), gallium arsenide (GaAsP), zinc selenide (ZnSe), zinc oxide (ZnO), indium phosphide (InP), lithium gallate (LiGaO 2 ) or lithium aluminate (LiAlO 2 ). Materials in which the light-emitting laminate can be grown are, for example, sapphire, gallium arsenide or tantalum carbide.

第4圖係繪示出一光源產生裝置示意圖,一光源產生裝置5包含本發明任一實施例中之發光元件或發光裝置。光源產生裝置5可以是一照明裝置,例如路燈、車燈或室內照明光源,也可以是交通號誌或一平面顯示器中背光模組的一背光光源。光 源產生裝置5具有前述發光裝置組成之一光源51、一電源供應系統52以供應光源51一電流、以及一控制元件53,用以控制電源供應系統52。 4 is a schematic view showing a light source generating device, and a light source generating device 5 includes a light emitting element or a light emitting device in any of the embodiments of the present invention. The light source generating device 5 can be a lighting device, such as a street light, a car light or an indoor lighting source, or a backlight source of a traffic sign or a backlight module in a flat display. Light The source generating device 5 has a light source 51 of the foregoing illuminating device, a power supply system 52 for supplying a current to the light source 51, and a control element 53 for controlling the power supply system 52.

第5圖係繪示出一背光模組剖面示意圖,一背光模組6包含前述實施例中的光源產生裝置5,以及一光學元件61。光學元件61可將由光源產生裝置5發出的光加以處理,以應用於平面顯示器,例如散射光源產生裝置5發出的光。 FIG. 5 is a cross-sectional view showing a backlight module. The backlight module 6 includes the light source generating device 5 of the foregoing embodiment, and an optical element 61. The optical element 61 can process the light emitted by the light source generating device 5 to be applied to a flat display such as the light emitted by the scattered light source generating device 5.

惟上述實施例僅為例示性說明本申請案之原理及其功效,而非用於限制本申請案。任何本申請案所屬技術領域中具有通常知識者均可在不違背本申請案之技術原理及精神的情況下,對上述實施例進行修改及變化。因此本申請案之權利保護範圍如後述之申請專利範圍所列。 However, the above embodiments are merely illustrative of the principles and effects of the present application, and are not intended to limit the present application. Modifications and variations of the above-described embodiments can be made without departing from the spirit and scope of the invention. Therefore, the scope of protection of the present application is as set forth in the scope of the patent application described below.

1‧‧‧發光元件 1‧‧‧Lighting elements

10‧‧‧基板 10‧‧‧Substrate

11‧‧‧接觸層 11‧‧‧Contact layer

12‧‧‧第一黏結層 12‧‧‧First bonding layer

14‧‧‧第一發光疊層 14‧‧‧First light-emitting laminate

142‧‧‧第一半導體層 142‧‧‧First semiconductor layer

144‧‧‧第一主動層 144‧‧‧First active layer

146‧‧‧第二半導體層 146‧‧‧Second semiconductor layer

16‧‧‧第一穿隧層 16‧‧‧First tunneling layer

18‧‧‧第二發光疊層 18‧‧‧Second light-emitting laminate

182‧‧‧第三半導體層 182‧‧‧ Third semiconductor layer

184‧‧‧第二主動層 184‧‧‧Second active layer

186‧‧‧第四半導體層 186‧‧‧ fourth semiconductor layer

Claims (10)

一發光裝置,包含:一第一發光元件,包含:一第一多重量子井結構,射出具有一第一主波長之一第一光;以及一第二多重量子井結構,位於該第一多重量子井結構之上,射出具有一第二主波長之一第二光;以及一載體,承載該第一發光元件;其中該第一主波長與該第二主波長之差異係5奈米至30奈米。 An illuminating device comprising: a first illuminating element comprising: a first multiple quantum well structure emitting a first light having a first dominant wavelength; and a second multiple quantum well structure located at the first a plurality of quantum well structures emitting a second light having a second dominant wavelength; and a carrier carrying the first light emitting element; wherein the difference between the first dominant wavelength and the second dominant wavelength is 5 nm Up to 30 nm. 如請求項第1項所述的發光裝置,其中該第一多重量子井結構位於該第二多重量子井結構與該載體之間,該第一主波長大於該第二主波長。 The illuminating device of claim 1, wherein the first multiple quantum well structure is located between the second multiple quantum well structure and the carrier, the first dominant wavelength being greater than the second dominant wavelength. 如請求項第1項所述的發光裝置,其中該第一多重量子井結構包含一第一數量之多重量子井對,該第二多重量子井結構包含一第二數量之多重量子井對,該第一數量不同於該第二數量。 The illuminating device of claim 1, wherein the first multiple quantum well structure comprises a first number of multiple quantum well pairs, and the second multiple quantum well structure comprises a second number of multiple quantum well pairs The first quantity is different from the second quantity. 如請求項第3項所述的發光裝置,其中該第一發光元件包含一第三多重量子井結構,該第三多重量子井結構包含一第三數量之多重量子井對,該第三數量不同於該第二數量。 The illuminating device of claim 3, wherein the first illuminating element comprises a third multiple quantum well structure, the third multiple quantum well structure comprising a third number of multiple quantum well pairs, the third The quantity is different from the second quantity. 如請求項第4項所述的發光裝置,其中該第三多重量子井結構射出一包含第三主波長之第三光,該第一主波長、該第二主波長與該第三主波長皆不同。 The illuminating device of claim 4, wherein the third multiple quantum well structure emits a third light having a third dominant wavelength, the first dominant wavelength, the second dominant wavelength, and the third dominant wavelength All are different. 如請求項第1項所述的發光裝置,更包含一第二發光元件位於該載體之上,射出包含一第三主波長之一第三光。 The illuminating device of claim 1, further comprising a second illuminating element on the carrier for emitting a third light comprising a third dominant wavelength. 如請求項第6項所述的發光裝置,其中該第一光、該第二光與該第三光混合產生一混合光,該混合光之演色性指數係90以上。 The illuminating device of claim 6, wherein the first light, the second light and the third light are mixed to produce a mixed light having a color rendering index of 90 or more. 如請求項第6項所述的發光裝置,其中該混合光之紅色指數R9係50以上。 The illuminating device of claim 6, wherein the mixed light has a red index R9 of 50 or more. 如請求項第6項所述的發光裝置,其中該第二主波長大於該第三主波長。 The illuminating device of claim 6, wherein the second dominant wavelength is greater than the third dominant wavelength. 如請求項第6項所述的發光裝置,更包含一波長轉換層位於該第二發光元件之上。 The illuminating device of claim 6, further comprising a wavelength conversion layer on the second illuminating element.
TW102138853A 2012-11-21 2013-10-24 Light-emitting device with multiple light-emitting stacked layers TWI589019B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/683,476 US8927958B2 (en) 2011-07-12 2012-11-21 Light-emitting element with multiple light-emitting stacked layers

Publications (2)

Publication Number Publication Date
TW201421737A true TW201421737A (en) 2014-06-01
TWI589019B TWI589019B (en) 2017-06-21

Family

ID=50625700

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102138853A TWI589019B (en) 2012-11-21 2013-10-24 Light-emitting device with multiple light-emitting stacked layers

Country Status (5)

Country Link
JP (1) JP2014103391A (en)
KR (2) KR20140065340A (en)
CN (1) CN103840045A (en)
DE (1) DE102013108782B4 (en)
TW (1) TWI589019B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593289B (en) * 2011-01-10 2015-05-20 晶元光电股份有限公司 Light-emitting element
US10396240B2 (en) * 2015-10-08 2019-08-27 Ostendo Technologies, Inc. III-nitride semiconductor light emitting device having amber-to-red light emission (>600 nm) and a method for making same
US11056434B2 (en) * 2017-01-26 2021-07-06 Epistar Corporation Semiconductor device having specified p-type dopant concentration profile
DE102017103856A1 (en) 2017-02-24 2018-08-30 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
CN113140657B (en) * 2021-05-13 2022-04-19 西安瑞芯光通信息科技有限公司 Ultraviolet LED epitaxial structure and preparation method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135838A (en) * 1997-10-20 1999-05-21 Ind Technol Res Inst White-color light-emitting diode and manufacture thereof
JP2000299493A (en) * 1999-04-15 2000-10-24 Daido Steel Co Ltd Semiconductor surface light emitting element
JP4140157B2 (en) * 1999-12-28 2008-08-27 東芝ライテック株式会社 Illumination light source and illumination device using light emitting diode
US6621211B1 (en) * 2000-05-15 2003-09-16 General Electric Company White light emitting phosphor blends for LED devices
JP2002176198A (en) * 2000-12-11 2002-06-21 Mitsubishi Cable Ind Ltd Multi-wavelength light emitting element
US7005679B2 (en) 2003-05-01 2006-02-28 Cree, Inc. Multiple component solid state white light
KR100631832B1 (en) 2003-06-24 2006-10-09 삼성전기주식회사 White light emitting device and its manufacturing method
DE102004004765A1 (en) * 2004-01-29 2005-09-01 Rwe Space Solar Power Gmbh Active Zones Semiconductor Structure
CN100349306C (en) * 2004-08-27 2007-11-14 中国科学院半导体研究所 Blue light and yellow light quantum sink heap structure white light emitting diode and producing method
DE102004047763A1 (en) * 2004-09-30 2006-04-13 Osram Opto Semiconductors Gmbh Multiple LED array
JP4760082B2 (en) * 2005-03-25 2011-08-31 日亜化学工業株式会社 Light emitting device, phosphor for light emitting element, and method for manufacturing the same
JP2007095844A (en) 2005-09-27 2007-04-12 Oki Data Corp Semiconductor light-emitting composite device
DE102006051745B4 (en) * 2006-09-28 2024-02-08 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung LED semiconductor body and use of an LED semiconductor body
JP2008141118A (en) 2006-12-05 2008-06-19 Rohm Co Ltd Semiconductor white light emitting device
JP2009152297A (en) 2007-12-19 2009-07-09 Rohm Co Ltd Semiconductor light-emitting device
JP2010267571A (en) * 2009-05-18 2010-11-25 Toshiba Lighting & Technology Corp Lighting device
EP2367203A1 (en) * 2010-02-26 2011-09-21 Samsung LED Co., Ltd. Semiconductor light emitting device having multi-cell array and method for manufacturing the same

Also Published As

Publication number Publication date
JP2014103391A (en) 2014-06-05
KR20180064348A (en) 2018-06-14
CN103840045A (en) 2014-06-04
KR20140065340A (en) 2014-05-29
TWI589019B (en) 2017-06-21
DE102013108782B4 (en) 2024-05-08
DE102013108782A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
US8927958B2 (en) Light-emitting element with multiple light-emitting stacked layers
TWI540758B (en) Light-emitting device
JP6056150B2 (en) Semiconductor light emitting device
JP5040355B2 (en) Semiconductor light emitting device and light emitting device having the same
TWI589019B (en) Light-emitting device with multiple light-emitting stacked layers
TWI555226B (en) A light-emitting element with multiple light-emitting stacked layers
JP2009164423A (en) Light-emitting element
TWI577045B (en) Light-emitting element
TW200903856A (en) Semiconductor light emitting device and method
CN102263120A (en) Semiconductor light-emitting element, light-emitting device, luminaire, display unit, traffic signal lamp unit, and traffic information display unit
WO2005081750A2 (en) Group iii-nitride based led having a transparent current spreading layer
CN103151447B (en) A kind of double-side diode structure and preparation method thereof
TWI591855B (en) Light-emitting element with window layers sandwiching distributed bragg reflector
JP2004349301A (en) Light emitting diode element electrode and light emitting diode element
CN103247732B (en) The light-emitting component of current-diffusion layer with flat surface
CN107017321B (en) Light emitting element
CN104576870B (en) Light-emitting component
JP2004356273A (en) Electrode of light emitting diode element and light emitting diode element
TWI605614B (en) A light-emitting element with multiple light-emitting stacked layers
CN205900576U (en) Light emitting diode chip
TW201114066A (en) A light-emitting device having a ramp
CN102916088A (en) Luminous element with multiple laminated luminous layers
KR101392977B1 (en) A light-emitting element with multiple light-emitting stacked layers
JP2004228134A (en) Oxide semiconductor light emitting element and its manufacturing method
TWI223902B (en) Structure of light emitting diode