TW201421130A - Pixel structure of liquid crystal display panel - Google Patents
Pixel structure of liquid crystal display panel Download PDFInfo
- Publication number
- TW201421130A TW201421130A TW101144954A TW101144954A TW201421130A TW 201421130 A TW201421130 A TW 201421130A TW 101144954 A TW101144954 A TW 101144954A TW 101144954 A TW101144954 A TW 101144954A TW 201421130 A TW201421130 A TW 201421130A
- Authority
- TW
- Taiwan
- Prior art keywords
- electrode
- liquid crystal
- width
- display panel
- crystal display
- Prior art date
Links
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
本發明係關於一種液晶顯示面板之畫素結構,尤指一種使用負型垂直配向液晶分子之邊緣電場型液晶顯示面板之畫素結構。 The invention relates to a pixel structure of a liquid crystal display panel, in particular to a pixel structure of a fringe electric field type liquid crystal display panel using negative vertical alignment liquid crystal molecules.
隨著液晶顯示技術不斷的提升,液晶顯示面板已廣泛地被應用在平面電視、筆記型電腦、智慧型手機與各類型的消費性電子產品上。為了解決習知液晶顯示面板之視角過小的缺點,業界研發出廣視角液晶顯示面板。然而,習知廣視角液晶顯示面板具有製程複雜、錯位點以及在大視角方向觀看時的色偏(color washout)等缺點,而仍待進一步改善。 With the continuous improvement of liquid crystal display technology, liquid crystal display panels have been widely used in flat-panel televisions, notebook computers, smart phones and various types of consumer electronic products. In order to solve the disadvantage that the viewing angle of the conventional liquid crystal display panel is too small, the industry has developed a wide viewing angle liquid crystal display panel. However, conventional wide viewing angle liquid crystal display panels have disadvantages such as complicated process, misalignment, and color washout when viewed in a large viewing angle, and still need to be further improved.
本發明之目的之一在於提供一種液晶顯示面板之畫素結構,以解決色偏問題及避免錯位點的產生。 One of the objects of the present invention is to provide a pixel structure of a liquid crystal display panel to solve the color shift problem and avoid the generation of misalignment points.
本發明之一實施例提供一種液晶顯示面板之畫素結構,包括第一基板、第一電極、介電層、第二電極、第二基板以及液晶層。第一電極設置於第一基板上。介電層設置於第一基板上並覆蓋第一電極。第二電極設置於介電層上。第二電極包括至少一主幹電極、複數條分支電極與主幹電極連接,以及複數條狹縫分別形成於相鄰之 分支電極之間。第二基板與第一基板面對設置。液晶層設置於第二電極與第二基板之間,且液晶層包括複數個負型垂直配向液晶分子。 An embodiment of the present invention provides a pixel structure of a liquid crystal display panel, including a first substrate, a first electrode, a dielectric layer, a second electrode, a second substrate, and a liquid crystal layer. The first electrode is disposed on the first substrate. The dielectric layer is disposed on the first substrate and covers the first electrode. The second electrode is disposed on the dielectric layer. The second electrode includes at least one main electrode, a plurality of branch electrodes connected to the main electrode, and a plurality of slits respectively formed adjacent to each other Between the branch electrodes. The second substrate is disposed facing the first substrate. The liquid crystal layer is disposed between the second electrode and the second substrate, and the liquid crystal layer includes a plurality of negative-type vertical alignment liquid crystal molecules.
為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。另外,圖式僅以說明為目的,並未依照原尺寸或比例作圖。下文之各實施例係以邊緣電場切換型(fringe field switching,FFS)液晶顯示面板之畫素結構作為範例,但本發明之液晶顯示面板之畫素結構並不以此為限,而可為其它類型之水平電場型液晶顯示面板之畫素結構,例如平面切換型(in-plane switching,IPS)液晶顯示面板之畫素結構。 The present invention will be further understood by those of ordinary skill in the art to which the present invention pertains. . In addition, the drawings are for illustrative purposes only and are not drawn to the original size or scale. The following embodiments are exemplified by a pixel structure of a fringe field switching (FFS) liquid crystal display panel, but the pixel structure of the liquid crystal display panel of the present invention is not limited thereto, but may be other A pixel structure of a horizontal electric field type liquid crystal display panel of a type, such as a pixel structure of an in-plane switching (IPS) liquid crystal display panel.
請參考第1圖與第2圖。第1圖繪示了本發明之第一實施例之液晶顯示面板之畫素結構的剖面示意圖,而第2圖繪示了本發明之第一實施例之液晶顯示面板之畫素結構之第二電極的上視示意圖。如第1圖與第2圖所示,本實施例之液晶顯示面板之畫素結構1包括第一基板10、第一電極12、介電層14、第二電極16、第二基板20以及液晶層22。第一基板10係為透明基板,且第一基板10可為硬質基板例如玻璃基板或石英基板,或是可撓性基板例如塑膠基板。第一電極12係設置於第一基板10上,且第一電極12較佳可為整面電極,其為一完整且連續而不具有狹縫或開口之電極,但不以此為限。介電層14係設置於第一基板10上並覆蓋第一電極12。介電層 14可為單層介電層或多層介電層,且其材料可為無機介電材料例如氧化矽、氮化矽、氮氧化矽、或有機介電材料,或有機/無機混合材料。第二電極16係設置於介電層14上,並藉由介電層14與第一電極12電性分離。第一電極12與第二電極16其中至少一者可為透明電極,上述二電極其中至少一者結構可為單層或多層,且上述二電極其中至少一者材料,例如氧化銦錫(ITO)電極、氧化銦鋅(IZO)電極,但不以此為限。第二基板20係與第一基板10面對設置。第二基板20可為硬質基板例如玻璃基板或石英基板,或是可撓性基板例如塑膠基板,並且,第二基板20上不存在任何用以控制液晶層22中液晶分子轉動的透明電極。液晶層22係設置於第二電極16與第二基板20之間,且液晶層22包括複數個負型垂直配向液晶分子LC。負型液晶分子之介電異方性(dielectric anisotropy,△ε)小於0,且垂直配向液晶分子具有高對比度。本實施例之第二電極16包括至少一主幹電極16M(第1圖未示),以及複數條分支電極16B與主幹電極16M連接。此外,相鄰之分支電極16B之間分別具有狹縫(slit)16S。在本實施例中,任兩相鄰之分支電極16B之間的狹縫16S的間隙S均為相等,且間隙S為固定間隙,也就是說,本實施例之第二電極16的狹縫16S係為單一間隙設計,所有的狹縫16S的間隙S均相等。另外,所有的分支電極16B可具有相同的寬度L。在本實施例中,分支電極16B的寬度L與狹縫16S的間隙S可具有下列關係:0.3≦L/S≦3,但不以此為限。 Please refer to Figure 1 and Figure 2. 1 is a cross-sectional view showing a pixel structure of a liquid crystal display panel according to a first embodiment of the present invention, and FIG. 2 is a second diagram showing a pixel structure of a liquid crystal display panel according to a first embodiment of the present invention. A schematic top view of the electrode. As shown in FIG. 1 and FIG. 2, the pixel structure 1 of the liquid crystal display panel of the present embodiment includes a first substrate 10, a first electrode 12, a dielectric layer 14, a second electrode 16, a second substrate 20, and a liquid crystal. Layer 22. The first substrate 10 is a transparent substrate, and the first substrate 10 may be a rigid substrate such as a glass substrate or a quartz substrate, or a flexible substrate such as a plastic substrate. The first electrode 12 is disposed on the first substrate 10, and the first electrode 12 is preferably a full-surface electrode, which is a complete and continuous electrode without a slit or an opening, but is not limited thereto. The dielectric layer 14 is disposed on the first substrate 10 and covers the first electrode 12. Dielectric layer 14 may be a single dielectric layer or a multilayer dielectric layer, and the material may be an inorganic dielectric material such as hafnium oxide, tantalum nitride, hafnium oxynitride, or an organic dielectric material, or an organic/inorganic hybrid material. The second electrode 16 is disposed on the dielectric layer 14 and electrically separated from the first electrode 12 by the dielectric layer 14. At least one of the first electrode 12 and the second electrode 16 may be a transparent electrode, and at least one of the two electrodes may be a single layer or a plurality of layers, and at least one of the two electrodes, such as indium tin oxide (ITO). Electrode, indium zinc oxide (IZO) electrode, but not limited to this. The second substrate 20 is disposed to face the first substrate 10. The second substrate 20 may be a rigid substrate such as a glass substrate or a quartz substrate, or a flexible substrate such as a plastic substrate, and there is no transparent electrode on the second substrate 20 for controlling the rotation of the liquid crystal molecules in the liquid crystal layer 22. The liquid crystal layer 22 is disposed between the second electrode 16 and the second substrate 20, and the liquid crystal layer 22 includes a plurality of negative-type vertical alignment liquid crystal molecules LC. The dielectric anisotropy (Δε) of the negative liquid crystal molecules is less than 0, and the vertical alignment liquid crystal molecules have high contrast. The second electrode 16 of the present embodiment includes at least one main electrode 16M (not shown in FIG. 1), and a plurality of branch electrodes 16B are connected to the main electrode 16M. Further, a slit 16S is provided between the adjacent branch electrodes 16B. In this embodiment, the gaps S of the slits 16S between any two adjacent branch electrodes 16B are equal, and the gap S is a fixed gap, that is, the slit 16S of the second electrode 16 of the present embodiment. Designed for a single gap, the gaps S of all slits 16S are equal. In addition, all of the branch electrodes 16B may have the same width L. In the present embodiment, the width L of the branch electrode 16B and the gap S of the slit 16S may have the following relationship: 0.3 ≦ L / S ≦ 3, but not limited thereto.
液晶顯示面板之畫素結構1之第一電極12與第二電極16係分別 為具有兩種不同電壓的電極,且可分別用相同或不同的薄膜電晶體(TFT)來控制。也就是說,第一電極12與第二電極16結構上係相互分隔開來,且第一電極12與第二電極16之間具有間隔(gap)存在。舉例來說,在本實施例中,第一電極12為共通電極,其具有共通電壓,而第二電極16則為畫素電極,其具有資料電壓。在一變化實施例中,第一電極12為畫素電極,其具有資料電壓,而第二電極16則為共通電極,其具有共通電壓。在另一變化實施例中,第一電極12與第二電極16可分別為第一畫素電極與第二畫素電極,其可分別由不同的薄膜電晶體來控制使其具有不同的電壓以驅動液晶層22中的液晶分子,或者使用相同薄膜電晶體,利如再搭配電容耦合效應或其他的方式使其具有不同的電壓以驅動液晶層22中的液晶分子。本實施例之液晶顯示面板之畫素結構1使用負型垂直配向液晶分子LC,在沒有電位差的狀態下,負型垂直配向液晶分子LC為垂直配向;在第一電極12與第二電極16的電位差所形成的邊緣電場的驅動下,負型垂直配向液晶分子LC會沿著水平面上的多個方向傾倒,因此會具有多區域配向的效果,並可有效抑制色偏問題。 The first electrode 12 and the second electrode 16 of the pixel structure 1 of the liquid crystal display panel are respectively Electrodes with two different voltages can be controlled with the same or different thin film transistors (TFTs), respectively. That is, the first electrode 12 and the second electrode 16 are structurally separated from each other, and a gap exists between the first electrode 12 and the second electrode 16. For example, in the present embodiment, the first electrode 12 is a common electrode having a common voltage, and the second electrode 16 is a pixel electrode having a data voltage. In a variant embodiment, the first electrode 12 is a pixel electrode having a data voltage and the second electrode 16 is a common electrode having a common voltage. In another variation, the first electrode 12 and the second electrode 16 may be a first pixel electrode and a second pixel electrode, respectively, which may be controlled by different thin film transistors to have different voltages. The liquid crystal molecules in the liquid crystal layer 22 are driven, or the same thin film transistor is used, which is similar to the capacitive coupling effect or other means to have different voltages to drive the liquid crystal molecules in the liquid crystal layer 22. The pixel structure 1 of the liquid crystal display panel of the present embodiment uses the negative vertical alignment liquid crystal molecules LC, and in the state where there is no potential difference, the negative vertical alignment liquid crystal molecules LC are vertically aligned; at the first electrode 12 and the second electrode 16 Driven by the fringe electric field formed by the potential difference, the negative vertical alignment liquid crystal molecules LC are tilted in multiple directions on the horizontal plane, so that the multi-region alignment effect is obtained, and the color shift problem can be effectively suppressed.
本發明之液晶顯示面板之畫素結構1可另包括液晶顯示面板所必須配置的顯示元件例如閘極線、資料線、儲存電容線、主動開關元件、配向膜、彩色濾光片、黑色矩陣圖案與偏光片等,其功能與配置等為該領域具通常知識者所熟知,在此不再贅述。 The pixel structure 1 of the liquid crystal display panel of the present invention may further comprise display elements such as gate lines, data lines, storage capacitor lines, active switching elements, alignment films, color filters, and black matrix patterns that must be disposed on the liquid crystal display panel. The functions and configurations of the polarizer and the like are well known to those skilled in the art and will not be described herein.
請參考第3圖與第4圖。第3圖繪示了本發明之一對照實施例之 液晶顯示面板之畫素結構之預定灰階值與歸一化穿透率(normalized transmittance)的關係圖,而第4圖繪示了本發明之第一實施例之液晶顯示面板之畫素結構之預定灰階值與歸一化穿透率的關係圖。本發明之對照實施例之液晶顯示面板之畫素結構係使用正型垂直配向液晶分子(介電異方性(dielectric anisotropy,△ε)大於0)。正型垂直配向液晶分子在沒有電位差的狀態下,正型垂直配向液晶分子LC為垂直配向;在資料電壓與共通電壓的電位差所形成的邊緣電場的驅動下,正型垂直配向液晶分子LC會沿著水平面上的單一方向傾倒,因此不具有多區域配向的效果。在第3圖中,曲線A顯示了對照實施例之液晶顯示面板之畫素結構在正視方向上之預定灰階值與歸一化穿透率的關係;曲線B顯示了對照實施例之液晶顯示面板之畫素結構(分支電極的寬度約為4微米且狹縫的間隙約為4微米)在側視方向上之預定灰階值與歸一化穿透率的關係;以及曲線C顯示了對照實施例之液晶顯示面板之畫素結構(分支電極的寬度約為8微米且狹縫的間隙約為8微米)在側視方向上之預定灰階值與歸一化穿透率的關係。如第3圖所示,模擬結果顯示了使用正型垂直配向液晶分子的對照實施例之液晶顯示面板之畫素結構在側視方向具有顯著的色偏問題。 Please refer to Figures 3 and 4. Figure 3 is a diagram showing a comparative example of the present invention. a relationship between a predetermined gray scale value of a pixel structure of the liquid crystal display panel and a normalized transmittance, and FIG. 4 illustrates a pixel structure of the liquid crystal display panel of the first embodiment of the present invention. A plot of the predetermined grayscale value versus the normalized penetration rate. The pixel structure of the liquid crystal display panel of the comparative example of the present invention uses positive vertical alignment liquid crystal molecules (dielectric anisotropy (Δε) is larger than 0). Positive vertical alignment liquid crystal molecules in the state without potential difference, the positive vertical alignment liquid crystal molecules LC are vertically aligned; driven by the fringe electric field formed by the potential difference between the data voltage and the common voltage, the positive vertical alignment liquid crystal molecules LC will follow It is dumped in a single direction on the horizontal plane, so it does not have the effect of multi-zone alignment. In Fig. 3, curve A shows the relationship between the predetermined gray scale value and the normalized transmittance in the front view direction of the pixel structure of the liquid crystal display panel of the comparative example; and curve B shows the liquid crystal display of the comparative example. The pixel structure of the panel (the width of the branch electrode is about 4 microns and the gap of the slit is about 4 microns). The relationship between the predetermined gray scale value in the side view direction and the normalized transmittance; and the curve C shows the contrast. The pixel structure of the liquid crystal display panel of the embodiment (the width of the branch electrode is about 8 μm and the gap of the slit is about 8 μm) is the relationship between the predetermined gray scale value and the normalized transmittance in the side view direction. As shown in Fig. 3, the simulation results show that the pixel structure of the liquid crystal display panel of the comparative example using the positive type vertical alignment liquid crystal molecules has a significant color shift problem in the side view direction.
在第4圖中,曲線A’顯示了第一實施例之液晶顯示面板之畫素結構在正視方向上之預定灰階值與歸一化穿透率的關係;曲線B’顯示了第一實施例之液晶顯示面板之畫素結構(分支電極的寬度約為3微米且狹縫的間隙約為3微米)在側視方向上之預定灰階值與歸 一化穿透率的關係;曲線C’顯示了第一實施例之液晶顯示面板之畫素結構(分支電極的寬度約為4微米且狹縫的間隙約為4微米)在側視方向上之預定灰階值與歸一化穿透率的關係;曲線D’顯示了第一實施例之液晶顯示面板之畫素結構(分支電極的寬度約為5微米且狹縫的間隙約為6微米)在側視方向上之預定灰階值與歸一化穿透率的關係;以及曲線E’顯示了第一實施例之液晶顯示面板之畫素結構(分支電極的寬度約為6微米且狹縫的間隙約為6微米)在側視方向上之預定灰階值與歸一化穿透率的關係。如第4圖所示,模擬結果顯示了使用負型垂直配向液晶分子的第一實施例之液晶顯示面板之畫素結構在側視方向的色偏問題具有顯著的改善。 In Fig. 4, a curve A' shows the relationship between the predetermined gray scale value and the normalized transmittance in the front view direction of the pixel structure of the liquid crystal display panel of the first embodiment; the curve B' shows the first implementation. The pixel structure of the liquid crystal display panel (the width of the branch electrode is about 3 μm and the gap of the slit is about 3 μm), and the predetermined gray scale value and the return in the side view direction The relationship of the transmittance; the curve C' shows the pixel structure of the liquid crystal display panel of the first embodiment (the width of the branch electrode is about 4 μm and the gap of the slit is about 4 μm) in the side view direction. The relationship between the predetermined gray scale value and the normalized transmittance; the curve D' shows the pixel structure of the liquid crystal display panel of the first embodiment (the width of the branch electrode is about 5 μm and the gap of the slit is about 6 μm) The relationship between the predetermined gray scale value and the normalized transmittance in the side view direction; and the curve E' shows the pixel structure of the liquid crystal display panel of the first embodiment (the width of the branch electrode is about 6 μm and the slit The gap is approximately 6 microns. The relationship between the predetermined gray scale value in the side view direction and the normalized transmittance. As shown in Fig. 4, the simulation results show that the pixel structure of the liquid crystal display panel of the first embodiment using the negative-type vertical alignment liquid crystal molecules has a significant improvement in the color shift problem in the side view direction.
請參考第5圖。第5圖繪示了本發明之第一實施例之變化實施例之液晶顯示面板之畫素結構的示意圖。如第5圖所示,不同於第一實施例,在本變化實施例之液晶顯示面板之畫素結構1’中,第二電極16之分支電極16B可區分成複數種具有不同寬度的分支電極。舉例而言,本實施例之分支電極16B包括第一分支電極16B1、第二分支電極16B2與第三分支電極16B3。第一分支電極16B1具有第一寬度L1,第二分支電極16B2具有第二寬度L2,第三分支電極16B3具有第三寬度L3,且第一寬度L1、第二寬度L2與第三寬度L3三者皆不相等。另外,第二電極16之狹縫16S可區分成複數種具有不同間隙的狹縫。舉例而言,本實施例之第二電極16之狹縫16S包括第一狹縫16S1、第二狹縫16S2與第三狹縫16S3,第一狹縫16S1具有第一間隙S1,第二狹縫16S2具有第二間隙S2,第三 狹縫16S3具有第三間隙S3,且第一間隙S1、第二間隙S2與第三間隙S3三者皆不相等。第一間隙S1、第二間隙S2與第三間隙S3均為固定間隙。在本變化實施例中,第一寬度L1、第二寬度L2與第三寬度L3以及第一間隙S1、第二間隙S2與第三間隙S3可具有下列關係:0.3≦L1/S1≦3、0.3≦L2/S2≦3以及0.3≦L3/S3≦3。在其他實施例中,第一寬度L1、第二寬度L2與第三寬度L3以及第一間隙S1、第二間隙S2與第三間隙S3可具有下列關係:0.5≦L1/S1≦1.5、1≦L2/S2≦3以及1≦L3/S3≦3,較佳為:L1/S1=1、L2/S2=2以及L3/S3=1.5,但不以此為限。本實施例之第二電極16的狹縫16S係為多重間隙設計,具有更佳的多區域配向的效果,並可有效抑制色偏問題。 Please refer to Figure 5. Fig. 5 is a view showing the pixel structure of a liquid crystal display panel according to a variation of the first embodiment of the present invention. As shown in FIG. 5, unlike the first embodiment, in the pixel structure 1' of the liquid crystal display panel of the present variation, the branch electrode 16B of the second electrode 16 can be divided into a plurality of branch electrodes having different widths. . For example, the branch electrode 16B of the present embodiment includes a first branch electrode 16B1, a second branch electrode 16B2, and a third branch electrode 16B3. The first branch electrode 16B1 has a first width L1, the second branch electrode 16B2 has a second width L2, the third branch electrode 16B3 has a third width L3, and the first width L1, the second width L2, and the third width L3 Not equal. In addition, the slit 16S of the second electrode 16 can be divided into a plurality of slits having different gaps. For example, the slit 16S of the second electrode 16 of the embodiment includes a first slit 16S1, a second slit 16S2 and a third slit 16S3. The first slit 16S1 has a first gap S1, and the second slit 16S2 has a second gap S2, third The slit 16S3 has a third gap S3, and the first gap S1, the second gap S2, and the third gap S3 are all unequal. The first gap S1, the second gap S2, and the third gap S3 are both fixed gaps. In this variant embodiment, the first width L1, the second width L2 and the third width L3, and the first gap S1, the second gap S2 and the third gap S3 may have the following relationship: 0.3≦L1/S1≦3, 0.3 ≦L2/S2≦3 and 0.3≦L3/S3≦3. In other embodiments, the first width L1, the second width L2 and the third width L3, and the first gap S1, the second gap S2, and the third gap S3 may have the following relationship: 0.5≦L1/S1≦1.5, 1≦ L2/S2≦3 and 1≦L3/S3≦3, preferably: L1/S1=1, L2/S2=2, and L3/S3=1.5, but not limited thereto. The slit 16S of the second electrode 16 of the present embodiment has a multi-gap design, has a better multi-zone alignment effect, and can effectively suppress the color shift problem.
請參考第6圖。第6圖繪示了本發明之第一實施例之變化實施例之液晶顯示面板之畫素結構之預定灰階值與歸一化穿透率的關係圖。在第6圖中,曲線A”顯示了變化實施例之液晶顯示面板之畫素結構在正視方向上之預定灰階值與歸一化穿透率的關係;曲線B”顯示了變化實施例之液晶顯示面板之畫素結構(L1/S1=1、L2/S2=2、L3/S3=1.5)在側視方向上之預定灰階值與歸一化穿透率的關係;以及曲線C”顯示了變化實施例之液晶顯示面板之畫素結構(L1/S1=1、L2/S2=0.6、L3/S3=2.5)在側視方向上之預定灰階值與歸一化穿透率的關係。如第6圖所示,模擬結果顯示了使用負型垂直配向液晶分子的變化實施例之液晶顯示面板之畫素結構在側視方向的色偏問題具有顯著的改善。 Please refer to Figure 6. Figure 6 is a diagram showing the relationship between the predetermined gray scale value and the normalized transmittance of the pixel structure of the liquid crystal display panel according to the modified embodiment of the first embodiment of the present invention. In Fig. 6, the curve A" shows the relationship between the predetermined gray scale value and the normalized transmittance in the front view direction of the pixel structure of the liquid crystal display panel of the modified embodiment; the curve B" shows the variation of the embodiment The relationship between the predetermined gray scale value and the normalized transmittance in the side view direction of the pixel structure of the liquid crystal display panel (L1/S1=1, L2/S2=2, L3/S3=1.5); and the curve C" The pixel structure (L1/S1=1, L2/S2=0.6, L3/S3=2.5) of the liquid crystal display panel of the modified embodiment is shown in the side view direction with a predetermined gray scale value and a normalized transmittance. Relationship. As shown in Fig. 6, the simulation results show that the pixel structure of the liquid crystal display panel of the modified embodiment using the negative-type vertical alignment liquid crystal molecules has a significant improvement in the color shift problem in the side view direction.
本發明之液晶顯示面板之畫素結構並不以上述實施例為限。下文將依序介紹本發明之其它較佳實施例之液晶顯示面板之畫素結構,且為了便於比較各實施例之相異處並簡化說明,在下文之各實施例中使用相同的符號標注相同的元件,且主要針對各實施例之相異處進行說明,而不再對重覆部分進行贅述。此外,下文之各實施例的圖式係繪示出第二電極之局部放大圖,故請一併參考第1圖與第2圖所繪示之液晶顯示面板之畫素結構的示意圖。 The pixel structure of the liquid crystal display panel of the present invention is not limited to the above embodiment. The pixel structure of the liquid crystal display panel of other preferred embodiments of the present invention will be sequentially described below, and the same symbols are used in the following embodiments for the purpose of comparing the differences of the embodiments and simplifying the description. The components are mainly described for the differences between the embodiments, and the repeated portions are not described again. In addition, the drawings of the respective embodiments below show a partial enlarged view of the second electrode, so please refer to the schematic diagram of the pixel structure of the liquid crystal display panel shown in FIGS. 1 and 2 together.
請參考第7圖。第7圖繪示了本發明之第二實施例之液晶顯示面板之畫素結構的示意圖。如第7圖所示,在第二實施例中,第二電極16之分支電極16B包括複數條第一分支電極16B1與複數條第二分支電極16B2。第一分支電極16B1與第二分支電極16B2為交替排列,第一分支電極16B1具有第一寬度L1,第二分支電極16B2具有第二寬度L2,其中第一寬度L1係為固定寬度,而第二寬度L2係由靠近主幹電極16M之內側向遠離主幹電極16M之外側遞減。藉此,各狹縫16S之間隙S係由靠近主幹電極16M之內側向遠離主幹電極16M之外側遞增。此外,在本實施例中,各第二分支電極16B2之第二寬度L2係由靠近主幹電極16M之內側向遠離主幹電極16M之外側不連續性地(discretely)遞減。舉例而言,第一分支電極16B1可為例如直條狀電極,其第一寬度L1為固定寬度,而第二分支電極16B2可為一階梯狀電極,其第二寬度L2由靠近主幹電極16M之內側向遠離主幹電極16M之外側不連續性地遞減(也就是 說,第二寬度L2具有多個不同的寬度值),藉此間隙S可由靠近主幹電極16M之內側向遠離主幹電極16M之外側不連續性地遞增。第二寬度L2的寬度值可視需要加以調整,例如兩個不同的寬度值、三個不同的寬度值或更多的寬度值。 Please refer to Figure 7. Fig. 7 is a view showing the pixel structure of the liquid crystal display panel of the second embodiment of the present invention. As shown in FIG. 7, in the second embodiment, the branch electrode 16B of the second electrode 16 includes a plurality of first branch electrodes 16B1 and a plurality of second branch electrodes 16B2. The first branch electrode 16B1 and the second branch electrode 16B2 are alternately arranged, the first branch electrode 16B1 has a first width L1, and the second branch electrode 16B2 has a second width L2, wherein the first width L1 is a fixed width, and the second The width L2 is decreased from the inner side of the main electrode 16M toward the outer side away from the main electrode 16M. Thereby, the gap S of each slit 16S is increased from the inner side close to the trunk electrode 16M toward the outer side away from the main electrode 16M. Further, in the present embodiment, the second width L2 of each of the second branch electrodes 16B2 is discretely decreasing from the inner side of the main electrode 16M toward the outer side away from the main electrode 16M. For example, the first branch electrode 16B1 may be, for example, a straight strip electrode whose first width L1 is a fixed width, and the second branch electrode 16B2 may be a stepped electrode whose second width L2 is close to the main electrode 16M. The inner side is discontinuously discontinuous away from the outer side of the main electrode 16M (ie, The second width L2 has a plurality of different width values, whereby the gap S can be discontinuously increased from the inner side of the main electrode 16M toward the outer side away from the main electrode 16M. The width value of the second width L2 can be adjusted as needed, such as two different width values, three different width values, or more.
本實施例之液晶顯示面板之畫素結構的第二電極的狹縫具有遞減間隙設計,其目的在於避免錯位點(disclination node)的產生。所謂的錯位點係指在電極具有固定間隙的情況下,在某些位置的液晶分子的傾倒方向會不明確而產生暗點。舉例而言,在一個畫素區內,靠近分支電極之中間位置的液晶分子,會受到同一個畫素區內的主幹電極的驅動電壓與另一個相鄰畫素區內的主幹電極的驅動電壓的影響,而使得此位置的液晶分子會受到兩個方向不同的電場的影響,一旦此兩電場的強度接近時會互相抵銷,則液晶分子的傾倒方向就會不明確而產生暗點。液晶分子的傾倒程度係取決於受到的電場強度,而電場強度(E)、驅動電壓(V)與電極間距(d)具有列關係:E=V/d。也就是說,在相同的驅動電壓下,電場強度係與電極間距呈反比關係。在本實施例中,由於間隙S係由靠近主幹電極16M之內側向遠離主幹電極16M之外側遞增,因此對應於間隙S的電場強度係由靠近主幹電極16M之內側向遠離主幹電極16M之外側遞減。在此狀況下,在任何位置的液晶分子均會受到同一方向的電場的驅動而可有效避免錯位點的形成,進而提升顯示品質。 The slit of the second electrode of the pixel structure of the liquid crystal display panel of the present embodiment has a decreasing gap design for the purpose of avoiding the occurrence of a disclination node. The so-called misalignment means that in the case where the electrode has a fixed gap, the tilting direction of the liquid crystal molecules at some positions may be unclear and a dark spot may be generated. For example, in a pixel region, liquid crystal molecules near the middle of the branch electrode are subjected to the driving voltage of the main electrode in the same pixel region and the driving voltage of the main electrode in another adjacent pixel region. The effect is that the liquid crystal molecules at this position are affected by electric fields of different directions. Once the intensities of the two electric fields are close to each other, the tilting direction of the liquid crystal molecules is unclear and dark spots are generated. The degree of tilting of the liquid crystal molecules depends on the electric field strength received, and the electric field strength (E), the driving voltage (V) and the electrode spacing (d) have a column relationship: E = V / d. That is to say, under the same driving voltage, the electric field strength is inversely proportional to the electrode spacing. In the present embodiment, since the gap S is increased from the inner side close to the main electrode 16M toward the outer side away from the main electrode 16M, the electric field intensity corresponding to the gap S is decreased from the inner side close to the main electrode 16M toward the outer side away from the main electrode 16M. . Under this condition, liquid crystal molecules at any position are driven by an electric field in the same direction, which can effectively avoid the formation of a misalignment point, thereby improving display quality.
請參考第8圖。第8圖繪示了本發明之第二實施例之第一變化實 施例之液晶顯示面板之畫素結構的示意圖。如第8圖所示,不同於第二實施例,在第一變化實施例中,第二電極16包括複數條分支電極16B,各分支電極16B具有一寬度L,且寬度L係由靠近主幹電極16M之內側向遠離主幹電極16M之外側不連續性地遞減。舉例而言,各分支電極16B可為階梯狀電極,但不以此為限。藉此,各狹縫16S之間隙S係由靠近主幹電極16M之內側向遠離主幹電極16M之外側不連續性地遞增。因此對應於間隙S的電場強度係由靠近主幹電極16M之內側向遠離主幹電極16M之外側遞減。在此狀況下,在任何位置的液晶分子均會受到同一方向的電場的驅動而可有效避免錯位點的形成,進而提升顯示品質。 Please refer to Figure 8. Figure 8 is a diagram showing the first variation of the second embodiment of the present invention. A schematic diagram of a pixel structure of a liquid crystal display panel of the embodiment. As shown in FIG. 8, unlike the second embodiment, in the first variation, the second electrode 16 includes a plurality of branch electrodes 16B, each of the branch electrodes 16B has a width L, and the width L is close to the main electrode. The inner side of 16M is discontinuously discontinuously away from the outer side of the main electrode 16M. For example, each branch electrode 16B can be a stepped electrode, but is not limited thereto. Thereby, the gap S of each slit 16S is discontinuously increased from the inner side close to the trunk electrode 16M toward the outer side away from the main electrode 16M. Therefore, the electric field intensity corresponding to the gap S is decreased from the inner side close to the trunk electrode 16M toward the outer side away from the main electrode 16M. Under this condition, liquid crystal molecules at any position are driven by an electric field in the same direction, which can effectively avoid the formation of a misalignment point, thereby improving display quality.
請參考第9圖。第9圖繪示了本發明之第二實施例之第二變化實施例之液晶顯示面板之畫素結構的示意圖。如第9圖所示,在第二變化實施例中,第二電極16之分支電極16B包括複數條第一分支電極16B1與複數條第二分支電極16B2。第一分支電極16B1與第二分支電極16B2為交替排列,第一分支電極16B1具有第一寬度L1,第二分支電極16B2具有第二寬度L2,其中第一寬度L1係為固定寬度,而第二寬度L2係由靠近主幹電極16M之內側向遠離主幹電極16M之外側遞減。藉此,各狹縫16S之間隙S係由靠近主幹電極16M之內側向遠離主幹電極16M之外側遞增。此外,在第二變化實施例中,各第二分支電極16B2之第二寬度L2係由靠近主幹電極16M之內側向遠離主幹電極16M之外側連續性地(continuously)遞減。舉例而言,第一分支電極16B1可為例如直條狀電極,其第 一寬度L1為固定寬度,而第二分支電極16B2可為一梯形電極,其第二寬度L2由靠近主幹電極16M之內側向遠離主幹電極16M之外側連續性地遞減,藉此間隙S可由靠近主幹電極16M之內側向遠離主幹電極16M之外側連續性地遞增。因此對應於間隙S的電場強度係由靠近主幹電極16M之內側向遠離主幹電極16M之外側遞減。在此狀況下,在任何位置的液晶分子均會受到同一方向的電場的驅動而可有效避免錯位點的形成,進而提升顯示品質。 Please refer to Figure 9. FIG. 9 is a schematic view showing a pixel structure of a liquid crystal display panel according to a second modified embodiment of the second embodiment of the present invention. As shown in FIG. 9, in the second modified embodiment, the branch electrode 16B of the second electrode 16 includes a plurality of first branch electrodes 16B1 and a plurality of second branch electrodes 16B2. The first branch electrode 16B1 and the second branch electrode 16B2 are alternately arranged, the first branch electrode 16B1 has a first width L1, and the second branch electrode 16B2 has a second width L2, wherein the first width L1 is a fixed width, and the second The width L2 is decreased from the inner side of the main electrode 16M toward the outer side away from the main electrode 16M. Thereby, the gap S of each slit 16S is increased from the inner side close to the trunk electrode 16M toward the outer side away from the main electrode 16M. Further, in the second modified embodiment, the second width L2 of each of the second branch electrodes 16B2 is continuously decreasing from the inner side of the main electrode 16M toward the outer side away from the main electrode 16M. For example, the first branch electrode 16B1 may be, for example, a straight strip electrode, the A width L1 is a fixed width, and the second branch electrode 16B2 may be a trapezoidal electrode whose second width L2 is continuously decreased from the inner side of the main electrode 16M toward the outer side away from the main electrode 16M, whereby the gap S may be close to the trunk The inner side of the electrode 16M continuously increases away from the outer side of the main electrode 16M. Therefore, the electric field intensity corresponding to the gap S is decreased from the inner side close to the trunk electrode 16M toward the outer side away from the main electrode 16M. Under this condition, liquid crystal molecules at any position are driven by an electric field in the same direction, which can effectively avoid the formation of a misalignment point, thereby improving display quality.
請參考第10圖。第10圖繪示了本發明之第二實施例之第三變化實施例之液晶顯示面板之畫素結構的示意圖。如第10圖所示,不同於第二變化實施例,在第三變化實施例中,第二電極16包括複數條分支電極16B,各分支電極16B具有一寬度L,且寬度L係由靠近主幹電極16M之內側向遠離主幹電極16M之外側連續性地遞減。舉例而言,各分支電極16B可為梯形電極,但不以此為限。藉此,各狹縫16S之間隙S係由靠近主幹電極16M之內側向遠離主幹電極16M之外側連續性地遞增。因此對應於間隙S的電場強度係由靠近主幹電極16M之內側向遠離主幹電極16M之外側遞減。在此狀況下,在任何位置的液晶分子均會受到同一方向的電場的驅動而可有效避免錯位點的形成,進而提升顯示品質。 Please refer to Figure 10. FIG. 10 is a schematic view showing a pixel structure of a liquid crystal display panel according to a third modified embodiment of the second embodiment of the present invention. As shown in FIG. 10, unlike the second variation embodiment, in the third variation embodiment, the second electrode 16 includes a plurality of branch electrodes 16B, each of the branch electrodes 16B has a width L, and the width L is close to the trunk. The inner side of the electrode 16M continuously decreases away from the outer side of the main electrode 16M. For example, each branch electrode 16B can be a trapezoidal electrode, but is not limited thereto. Thereby, the gap S of each slit 16S is continuously increased from the inner side close to the trunk electrode 16M toward the outer side away from the main electrode 16M. Therefore, the electric field intensity corresponding to the gap S is decreased from the inner side close to the trunk electrode 16M toward the outer side away from the main electrode 16M. Under this condition, liquid crystal molecules at any position are driven by an electric field in the same direction, which can effectively avoid the formation of a misalignment point, thereby improving display quality.
請參考第11圖。第11圖繪示了本發明之第三實施例之液晶顯示面板之畫素結構的示意圖。如第11圖所示,在第三實施例中,第二電極16之分支電極16B包括複數條第一分支電極16B1與複數條第 二分支電極16B2。第一分支電極16B1與第二分支電極16B2為交替排列,第一分支電極16B1具有第一寬度L1,第二分支電極16B2具有第二寬度L2,其中第一寬度L1係為固定寬度,而第二寬度L2係由靠近主幹電極16M之內側向遠離主幹電極16M之外側遞增。藉此,各狹縫16S之間隙S係由靠近主幹電極16M之內側向遠離主幹電極16M之外側遞減。此外,在本實施例中,各第二分支電極16B2之第二寬度L2係由靠近主幹電極16M之內側向遠離主幹電極16M之外側不連續性地遞增。舉例而言,第一分支電極16B1可為例如直條狀電極,其第一寬度L1為固定寬度,而第二分支電極16B2可為一階梯狀電極,其第二寬度L2由靠近主幹電極16M之內側向遠離主幹電極16M之外側不連續性地遞增,藉此間隙S可由靠近主幹電極16M之內側向遠離主幹電極16M之外側不連續性地遞減。 Please refer to Figure 11. 11 is a schematic view showing a pixel structure of a liquid crystal display panel of a third embodiment of the present invention. As shown in FIG. 11, in the third embodiment, the branch electrode 16B of the second electrode 16 includes a plurality of first branch electrodes 16B1 and a plurality of strips Two branch electrodes 16B2. The first branch electrode 16B1 and the second branch electrode 16B2 are alternately arranged, the first branch electrode 16B1 has a first width L1, and the second branch electrode 16B2 has a second width L2, wherein the first width L1 is a fixed width, and the second The width L2 is increased from the inner side of the main electrode 16M toward the outer side away from the main electrode 16M. Thereby, the gap S of each slit 16S is decreased toward the outer side away from the trunk electrode 16M from the inner side of the trunk electrode 16M. Further, in the present embodiment, the second width L2 of each of the second branch electrodes 16B2 is discontinuously increased from the inner side close to the trunk electrode 16M toward the outer side away from the main electrode 16M. For example, the first branch electrode 16B1 may be, for example, a straight strip electrode whose first width L1 is a fixed width, and the second branch electrode 16B2 may be a stepped electrode whose second width L2 is close to the main electrode 16M. The inner side is discontinuously discontinuously away from the outer side of the main electrode 16M, whereby the gap S may be discontinuously decreased from the inner side close to the main electrode 16M toward the outer side away from the main electrode 16M.
在本實施例中,由於間隙S係由靠近主幹電極16M之內側向遠離主幹電極16M之外側遞減,因此對應於間隙S的電場強度係由靠近主幹電極16M之內側向遠離主幹電極16M之外側遞增。在此狀況下,在任何位置的液晶分子均會受到同一方向的電場的驅動而有效避免錯位點的形成,進而提升顯示品質。 In the present embodiment, since the gap S is decreased from the inner side of the main electrode 16M toward the outer side away from the main electrode 16M, the electric field intensity corresponding to the gap S is increased from the inner side close to the main electrode 16M toward the outer side away from the main electrode 16M. . Under this condition, the liquid crystal molecules at any position are driven by the electric field in the same direction to effectively avoid the formation of misalignment points, thereby improving the display quality.
請參考第12圖。第12圖繪示了本發明之第三實施例之第一變化實施例之液晶顯示面板之畫素結構的示意圖。如第12圖所示,不同於第二實施例,在第一變化實施例中,第二電極16包括複數條分支電極16B,各分支電極16B具有一寬度L,且寬度L係由靠近主幹 電極16M之內側向遠離主幹電極16M之外側不連續性地遞增。舉例而言,各分支電極16B可為階梯狀電極,但不以此為限。藉此,各狹縫16S之間隙S係由靠近主幹電極16M之內側向遠離主幹電極16M之外側不連續性地遞減。因此對應於間隙S的電場強度係由靠近主幹電極16M之內側向遠離主幹電極16M之外側遞增。在此狀況下,在任何位置的液晶分子均會受到同一方向的電場的驅動而有效避免錯位點的形成,進而提升顯示品質。 Please refer to Figure 12. Figure 12 is a diagram showing the pixel structure of a liquid crystal display panel according to a first variation of the third embodiment of the present invention. As shown in FIG. 12, unlike the second embodiment, in the first variation, the second electrode 16 includes a plurality of branch electrodes 16B, each of the branch electrodes 16B has a width L, and the width L is close to the trunk. The inner side of the electrode 16M is discontinuously increased away from the outer side of the main electrode 16M. For example, each branch electrode 16B can be a stepped electrode, but is not limited thereto. Thereby, the gap S of each slit 16S is discontinuously discontinuously from the inner side of the trunk electrode 16M toward the outer side away from the trunk electrode 16M. Therefore, the electric field intensity corresponding to the gap S is increased from the inner side of the main electrode 16M toward the outer side away from the main electrode 16M. Under this condition, the liquid crystal molecules at any position are driven by the electric field in the same direction to effectively avoid the formation of misalignment points, thereby improving the display quality.
請參考第13圖。第13圖繪示了本發明之第三實施例之第二變化實施例之液晶顯示面板之畫素結構的示意圖。如第13圖所示,在第二變化實施例中,第二電極16之分支電極16B包括複數條第一分支電極16B1與複數條第二分支電極16B2。第一分支電極16B1與第二分支電極16B2為交替排列,第一分支電極16B1具有第一寬度L1,第二分支電極16B2具有第二寬度L2,其中第一寬度L1係為固定寬度,而第二寬度L2係由靠近主幹電極16M之內側向遠離主幹電極16M之外側遞增。藉此,各狹縫16S之間隙S係由靠近主幹電極16M之內側向遠離主幹電極16M之外側遞減。此外,在第二變化實施例中,各第二分支電極16B2之第二寬度L2係由靠近主幹電極16M之內側向遠離主幹電極16M之外側連續性地遞增。舉例而言,第一分支電極16B1可為例如直條狀電極,其第一寬度L1為固定寬度,而第二分支電極16B2可為一梯形電極,其第二寬度L2由靠近主幹電極16M之內側向遠離主幹電極16M之外側連續性地遞增,藉此間隙S可由靠近主幹電極16M之內側向遠離主幹電極 16M之外側連續性地遞減。因此對應於間隙S的電場強度係由靠近主幹電極16M之內側向遠離主幹電極16M之外側遞增。在此狀況下,在任何位置的液晶分子均會受到同一方向的電場的驅動而有效避免錯位點的形成,進而提升顯示品質。 Please refer to Figure 13. Figure 13 is a diagram showing the pixel structure of a liquid crystal display panel according to a second modified embodiment of the third embodiment of the present invention. As shown in Fig. 13, in the second modified embodiment, the branch electrode 16B of the second electrode 16 includes a plurality of first branch electrodes 16B1 and a plurality of second branch electrodes 16B2. The first branch electrode 16B1 and the second branch electrode 16B2 are alternately arranged, the first branch electrode 16B1 has a first width L1, and the second branch electrode 16B2 has a second width L2, wherein the first width L1 is a fixed width, and the second The width L2 is increased from the inner side of the main electrode 16M toward the outer side away from the main electrode 16M. Thereby, the gap S of each slit 16S is decreased toward the outer side away from the trunk electrode 16M from the inner side of the trunk electrode 16M. Further, in the second modified embodiment, the second width L2 of each of the second branch electrodes 16B2 is continuously increased from the inner side close to the trunk electrode 16M toward the outer side away from the main electrode 16M. For example, the first branch electrode 16B1 may be, for example, a straight strip electrode having a first width L1 of a fixed width, and the second branch electrode 16B2 may be a trapezoidal electrode whose second width L2 is close to the inner side of the stem electrode 16M. Continuously increasing away from the outer side of the main electrode 16M, whereby the gap S can be moved away from the inner side of the main electrode 16M toward the main electrode The outer side of 16M is continuously decreasing. Therefore, the electric field intensity corresponding to the gap S is increased from the inner side of the main electrode 16M toward the outer side away from the main electrode 16M. Under this condition, the liquid crystal molecules at any position are driven by the electric field in the same direction to effectively avoid the formation of misalignment points, thereby improving the display quality.
請參考第14圖。第14圖繪示了本發明之第三實施例之第三變化實施例之液晶顯示面板之畫素結構的示意圖。如第14圖所示,不同於第二變化實施例,在第三變化實施例中,第二電極16包括複數條分支電極16B,各分支電極16B具有一寬度L,且寬度L係由靠近主幹電極16M之內側向遠離主幹電極16M之外側連續性地遞增。舉例而言,各分支電極16B可為梯形電極,但不以此為限。藉此,各狹縫16S之間隙S係由靠近主幹電極16M之內側向遠離主幹電極16M之外側連續性地遞減。因此對應於間隙S的電場強度係由靠近主幹電極16M之內側向遠離主幹電極16M之外側遞增。在此狀況下,在任何位置的液晶分子均會受到同一方向的電場的驅動而有效避免錯位點的形成,進而提升顯示品質。 Please refer to Figure 14. Figure 14 is a diagram showing the pixel structure of a liquid crystal display panel according to a third modified embodiment of the third embodiment of the present invention. As shown in FIG. 14, unlike the second variation embodiment, in the third variation embodiment, the second electrode 16 includes a plurality of branch electrodes 16B, each of the branch electrodes 16B has a width L, and the width L is close to the trunk. The inner side of the electrode 16M continuously increases away from the outer side of the main electrode 16M. For example, each branch electrode 16B can be a trapezoidal electrode, but is not limited thereto. Thereby, the gap S of each slit 16S is continuously decreased from the inner side close to the trunk electrode 16M toward the outer side away from the main electrode 16M. Therefore, the electric field intensity corresponding to the gap S is increased from the inner side of the main electrode 16M toward the outer side away from the main electrode 16M. Under this condition, the liquid crystal molecules at any position are driven by the electric field in the same direction to effectively avoid the formation of misalignment points, thereby improving the display quality.
請參考第15圖。第15圖繪示了本發明之第四實施例之液晶顯示面板之畫素結構的示意圖。如第15圖所示,在第四實施例中,第二電極16之分支電極16B包括複數條第一分支電極16B1與複數條第二分支電極16B2,其中第一分支電極16B1與第二分支電極16B2係為交替排列,第一分支電極16B1具有第一寬度L1,第二分支電極16B2具有一第二寬度L2,第一寬度L1係為一固定寬度,第二 寬度L2係為一固定寬度,且第一寬度L1可等於第二寬度L2,但不以此為限。第一分支電極16B1大體上彼此平行,第二分支電極16B2,且第一分支電極16B1與第二分支電極16B2不平行。於本實施例中,第一分支電極16B1與第二分支電極16B2之個別延伸方向會實質上構成V型,但不以此為限。另外,狹縫16S包括複數個第一狹縫16S1與複數個第二狹縫16S2,其中第一狹縫16S1與第二狹縫16S2係為交替排列。各第一狹縫16S1具有一第一間隙S1,且各第一間隙S1係由靠近主幹電極16M之內側向遠離主幹電極16M之外側遞增,各第二狹縫16S2具有一第二間隙S2,且各第二間隙S2係由靠近主幹電極16M之內側向遠離主幹電極16M之外側遞減。 Please refer to Figure 15. Fig. 15 is a view showing the pixel structure of the liquid crystal display panel of the fourth embodiment of the present invention. As shown in FIG. 15, in the fourth embodiment, the branch electrode 16B of the second electrode 16 includes a plurality of first branch electrodes 16B1 and a plurality of second branch electrodes 16B2, wherein the first branch electrodes 16B1 and the second branch electrodes 16B2 is alternately arranged, the first branch electrode 16B1 has a first width L1, and the second branch electrode 16B2 has a second width L2, the first width L1 is a fixed width, and the second The width L2 is a fixed width, and the first width L1 may be equal to the second width L2, but is not limited thereto. The first branch electrodes 16B1 are substantially parallel to each other, the second branch electrodes 16B2, and the first branch electrodes 16B1 and the second branch electrodes 16B2 are not parallel. In this embodiment, the respective extending directions of the first branch electrode 16B1 and the second branch electrode 16B2 substantially constitute a V-shape, but are not limited thereto. In addition, the slit 16S includes a plurality of first slits 16S1 and a plurality of second slits 16S2, wherein the first slits 16S1 and the second slits 16S2 are alternately arranged. Each of the first slits 16S1 has a first gap S1, and each of the first slits S1 is increased from the inner side of the main electrode 16M toward the outer side of the main electrode 16M, and each of the second slits 16S2 has a second gap S2. Each of the second gaps S2 is decremented from the inner side of the main electrode 16M toward the outer side away from the main electrode 16M.
在本實施例中,由於第一間隙S1係由靠近主幹電極16M之內側向遠離主幹電極16M之外側遞增,且第一間隙S2係由靠近主幹電極16M之內側向遠離主幹電極16M之外側遞減,因此對應於第一間隙S1的電場強度係由靠近主幹電極16M之內側向遠離主幹電極16M之外側遞減,且對應於第二間隙S2的電場強度係由靠近主幹電極16M之內側向遠離主幹電極16M之外側遞增。在此狀況下,在任何位置的液晶分子均會受到同一方向的電場的驅動而有效避免錯位點的形成,進而提升顯示品質。 In the present embodiment, since the first gap S1 is increased from the inner side of the main electrode 16M toward the outer side away from the main electrode 16M, and the first gap S2 is decreased from the inner side of the main electrode 16M toward the outer side away from the main electrode 16M, Therefore, the electric field intensity corresponding to the first gap S1 decreases from the inner side of the main electrode 16M toward the outer side away from the main electrode 16M, and the electric field intensity corresponding to the second gap S2 is from the inner side of the main electrode 16M toward the far side away from the main electrode 16M. The outside is incremented. Under this condition, the liquid crystal molecules at any position are driven by the electric field in the same direction to effectively avoid the formation of misalignment points, thereby improving the display quality.
綜上所述,本發明之液晶顯示面板之畫素結構使用負型垂直配向液晶分子,可有效增加對比度與視角並抑制色偏問題。此外,本發明之液晶顯示面板之畫素結構具有遞增或遞減的電極間距,可有效 增加液晶分子的排列一致性,進而避免錯位點的產生。 In summary, the pixel structure of the liquid crystal display panel of the present invention uses negative vertical alignment liquid crystal molecules, which can effectively increase the contrast and viewing angle and suppress the color shift problem. In addition, the pixel structure of the liquid crystal display panel of the present invention has an increasing or decreasing electrode spacing, which is effective Increasing the alignment of liquid crystal molecules, thereby avoiding the generation of misalignment points.
以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.
1‧‧‧液晶顯示面板之畫素結構 1‧‧‧Pixel structure of liquid crystal display panel
10‧‧‧第一基板 10‧‧‧First substrate
12‧‧‧第一電極 12‧‧‧First electrode
14‧‧‧介電層 14‧‧‧Dielectric layer
16‧‧‧第二電極 16‧‧‧second electrode
20‧‧‧第二基板 20‧‧‧second substrate
22‧‧‧液晶層 22‧‧‧Liquid layer
LC‧‧‧負型垂直配向液晶分子 LC‧‧‧negative vertical alignment liquid crystal molecules
16M‧‧‧主幹電極 16M‧‧‧Main electrode
16B‧‧‧分支電極 16B‧‧‧ branch electrode
16S‧‧‧狹縫 16S‧‧‧slit
S‧‧‧間隙 S‧‧‧ gap
L‧‧‧寬度 L‧‧‧Width
1’‧‧‧液晶顯示面板之畫素結構 1'‧‧‧Pixel structure of liquid crystal display panel
16B1‧‧‧第一分支電極 16B1‧‧‧First branch electrode
16B2‧‧‧第二分支電極 16B2‧‧‧Second branch electrode
16B3‧‧‧第三分支電極 16B3‧‧‧third branch electrode
L1‧‧‧第一寬度 L1‧‧‧ first width
L2‧‧‧第二寬度 L2‧‧‧ second width
L3‧‧‧第三寬度 L3‧‧‧ third width
16S1‧‧‧第一狹縫 16S1‧‧‧first slit
16S2‧‧‧第二狹縫 16S2‧‧‧Second slit
16S3‧‧‧第三狹縫 16S3‧‧‧ third slit
第1圖繪示了本發明之第一實施例之液晶顯示面板之畫素結構的剖面示意圖。 1 is a cross-sectional view showing a pixel structure of a liquid crystal display panel according to a first embodiment of the present invention.
第2圖繪示了本發明之第一實施例之液晶顯示面板之畫素結構之第二電極的上視示意圖。 2 is a top plan view showing a second electrode of a pixel structure of a liquid crystal display panel according to a first embodiment of the present invention.
第3圖繪示了本發明之一對照實施例之液晶顯示面板之畫素結構之預定灰階值與歸一化穿透率的關係圖。 FIG. 3 is a view showing a relationship between a predetermined gray scale value and a normalized transmittance of a pixel structure of a liquid crystal display panel according to a comparative embodiment of the present invention.
第4圖繪示了本發明之第一實施例之液晶顯示面板之畫素結構之預定灰階值與歸一化穿透率的關係圖。 Fig. 4 is a view showing the relationship between the predetermined gray scale value and the normalized transmittance of the pixel structure of the liquid crystal display panel of the first embodiment of the present invention.
第5圖繪示了本發明之第一實施例之變化實施例之液晶顯示面板之畫素結構的示意圖。 Fig. 5 is a view showing the pixel structure of a liquid crystal display panel according to a variation of the first embodiment of the present invention.
第6圖繪示了本發明之第一實施例之變化實施例之液晶顯示面板之畫素結構之預定灰階值與歸一化穿透率的關係圖。 Figure 6 is a diagram showing the relationship between the predetermined gray scale value and the normalized transmittance of the pixel structure of the liquid crystal display panel according to the modified embodiment of the first embodiment of the present invention.
第7圖繪示了本發明之第二實施例之液晶顯示面板之畫素結構的示意圖。 Fig. 7 is a view showing the pixel structure of the liquid crystal display panel of the second embodiment of the present invention.
第8圖繪示了本發明之第二實施例之第一變化實施例之液晶顯示面板之畫素結構的示意圖。 FIG. 8 is a schematic view showing a pixel structure of a liquid crystal display panel according to a first variation of the second embodiment of the present invention.
第9圖繪示了本發明之第二實施例之第二變化實施例之液晶顯示面 板之畫素結構的示意圖。 Figure 9 is a view showing a liquid crystal display surface of a second modified embodiment of the second embodiment of the present invention. Schematic diagram of the pixel structure of the board.
第10圖繪示了本發明之第二實施例之第三變化實施例之液晶顯示面板之畫素結構的示意圖。 FIG. 10 is a schematic view showing a pixel structure of a liquid crystal display panel according to a third modified embodiment of the second embodiment of the present invention.
第11圖繪示了本發明之第三實施例之液晶顯示面板之畫素結構的示意圖。 11 is a schematic view showing a pixel structure of a liquid crystal display panel of a third embodiment of the present invention.
第12圖繪示了本發明之第三實施例之第一變化實施例之液晶顯示面板之畫素結構的示意圖。 Figure 12 is a diagram showing the pixel structure of a liquid crystal display panel according to a first variation of the third embodiment of the present invention.
第13圖繪示了本發明之第三實施例之第二變化實施例之液晶顯示面板之畫素結構的示意圖。 Figure 13 is a diagram showing the pixel structure of a liquid crystal display panel according to a second modified embodiment of the third embodiment of the present invention.
第14圖繪示了本發明之第三實施例之第三變化實施例之液晶顯示面板之畫素結構的示意圖。 Figure 14 is a diagram showing the pixel structure of a liquid crystal display panel according to a third modified embodiment of the third embodiment of the present invention.
第15圖繪示了本發明之第四實施例之液晶顯示面板之畫素結構的示意圖。 Fig. 15 is a view showing the pixel structure of the liquid crystal display panel of the fourth embodiment of the present invention.
1‧‧‧液晶顯示面板之畫素結構 1‧‧‧Pixel structure of liquid crystal display panel
10‧‧‧第一基板 10‧‧‧First substrate
12‧‧‧第一電極 12‧‧‧First electrode
14‧‧‧介電層 14‧‧‧Dielectric layer
16‧‧‧第二電極 16‧‧‧second electrode
20‧‧‧第二基板 20‧‧‧second substrate
22‧‧‧液晶層 22‧‧‧Liquid layer
LC‧‧‧負型垂直配向液晶分子 LC‧‧‧negative vertical alignment liquid crystal molecules
16S‧‧‧狹縫 16S‧‧‧slit
16B‧‧‧分支電極 16B‧‧‧ branch electrode
L‧‧‧寬度 L‧‧‧Width
S‧‧‧間隙 S‧‧‧ gap
Claims (19)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101144954A TWI494672B (en) | 2012-11-30 | 2012-11-30 | Pixel structure of liquid crystal display panel |
CN201310017882.8A CN103135294B (en) | 2012-11-30 | 2013-01-17 | Pixel structure of liquid crystal display panel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101144954A TWI494672B (en) | 2012-11-30 | 2012-11-30 | Pixel structure of liquid crystal display panel |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201421130A true TW201421130A (en) | 2014-06-01 |
TWI494672B TWI494672B (en) | 2015-08-01 |
Family
ID=48495345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101144954A TWI494672B (en) | 2012-11-30 | 2012-11-30 | Pixel structure of liquid crystal display panel |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103135294B (en) |
TW (1) | TWI494672B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9329440B2 (en) | 2013-09-12 | 2016-05-03 | Au Optronics Corporation | Pixel structure |
TWI566020B (en) * | 2014-07-08 | 2017-01-11 | 群創光電股份有限公司 | Display panel and display device |
TWI607268B (en) * | 2017-02-20 | 2017-12-01 | 友達光電股份有限公司 | Pixel structure |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105204241B (en) * | 2014-06-20 | 2021-05-07 | 三星显示有限公司 | Liquid crystal display device with a light guide plate |
CN104503169B (en) * | 2014-11-21 | 2018-03-06 | 深圳市华星光电技术有限公司 | Vertical alignment type liquid crystal display device |
CN104536219A (en) * | 2015-01-22 | 2015-04-22 | 京东方科技集团股份有限公司 | Liquid crystal display panel and display device |
CN105116646B (en) * | 2015-10-15 | 2019-01-29 | 深圳市华星光电技术有限公司 | A kind of electrode structure and liquid crystal display panel |
KR102511886B1 (en) * | 2016-07-04 | 2023-03-21 | 삼성디스플레이 주식회사 | Liquid crystal display device |
TWI668504B (en) * | 2018-06-25 | 2019-08-11 | 友達光電股份有限公司 | Pixel structure |
TWI674463B (en) * | 2018-07-19 | 2019-10-11 | 友達光電股份有限公司 | Display device |
CN110888273A (en) * | 2019-11-21 | 2020-03-17 | Tcl华星光电技术有限公司 | Pixel electrode structure and liquid crystal display panel |
CN113641045A (en) * | 2021-07-22 | 2021-11-12 | Tcl华星光电技术有限公司 | Display panel |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100689312B1 (en) * | 2003-11-11 | 2007-03-08 | 엘지.필립스 엘시디 주식회사 | In plane switching mode liquid crystal display device and method for fabricating thereof |
JP4381782B2 (en) * | 2003-11-18 | 2009-12-09 | 株式会社 日立ディスプレイズ | Liquid crystal display |
KR100606410B1 (en) * | 2003-12-11 | 2006-07-28 | 엘지.필립스 엘시디 주식회사 | Thin film transistor array substrate and fabricating method thereof |
KR101308163B1 (en) * | 2006-06-30 | 2013-09-12 | 엘지디스플레이 주식회사 | Structure of pixel electrode for display apparatus |
JP4475303B2 (en) * | 2007-08-17 | 2010-06-09 | ソニー株式会社 | Display device |
KR20090027920A (en) * | 2007-09-13 | 2009-03-18 | 삼성전자주식회사 | Display substrate and display panel having the same |
JP4618321B2 (en) * | 2008-04-24 | 2011-01-26 | ソニー株式会社 | Liquid crystal display element |
JP5138481B2 (en) * | 2008-06-30 | 2013-02-06 | 三菱電機株式会社 | Liquid crystal display |
CN101930139B (en) * | 2009-06-25 | 2015-01-07 | 群创光电股份有限公司 | Pixel array substrate, liquid crystal display device and driving method thereof |
TWI406073B (en) * | 2009-12-11 | 2013-08-21 | Au Optronics Corp | Pixel structure |
-
2012
- 2012-11-30 TW TW101144954A patent/TWI494672B/en not_active IP Right Cessation
-
2013
- 2013-01-17 CN CN201310017882.8A patent/CN103135294B/en active Active
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9329440B2 (en) | 2013-09-12 | 2016-05-03 | Au Optronics Corporation | Pixel structure |
TWI566020B (en) * | 2014-07-08 | 2017-01-11 | 群創光電股份有限公司 | Display panel and display device |
TWI607268B (en) * | 2017-02-20 | 2017-12-01 | 友達光電股份有限公司 | Pixel structure |
Also Published As
Publication number | Publication date |
---|---|
CN103135294A (en) | 2013-06-05 |
TWI494672B (en) | 2015-08-01 |
CN103135294B (en) | 2016-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI494672B (en) | Pixel structure of liquid crystal display panel | |
US10134906B2 (en) | Display device | |
JP4414824B2 (en) | Multi-domain transverse electric field mode liquid crystal display device | |
JP2007003877A (en) | Liquid crystal driving electrode, liquid crystal display apparatus, and method for manufacturing same | |
TWI567451B (en) | Array substrate and in-plane switching liquid crystal display panel | |
US10520779B2 (en) | Liquid crystal display device | |
JP2002139727A (en) | Liquid crystal display device and method of manufacture | |
US20160026043A1 (en) | Display device | |
TWI504981B (en) | Liquid crystal display panel | |
US8610856B2 (en) | Liquid crystal display device | |
WO2015174349A1 (en) | Liquid crystal display device | |
US7151584B2 (en) | Thin film transistor liquid crystal display device for reducing color shift | |
TWI571683B (en) | Display panel and display device | |
KR20070044918A (en) | Liquid display panel and method for manufacturing the same | |
US20160097956A1 (en) | Liquid crystal display | |
US20160097955A1 (en) | Liquid crystal display | |
JP2008076978A (en) | Liquid crystal display device | |
JP5197873B2 (en) | Liquid crystal display | |
US20160225347A1 (en) | Liquid crystal display panel | |
US20160033802A1 (en) | Display panel and display device | |
US20150022771A1 (en) | Liquid crystal display panel | |
KR100870668B1 (en) | In plane switching mode liquid crystal display device | |
US9250485B1 (en) | Liquid crystal display panel and array substrate thereof wherein a width of bar-shaped gaps in each of a plurality of pixel units increases gradually | |
KR102263883B1 (en) | Liquid crystal display device | |
KR101297247B1 (en) | In plane switching mode liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |