TW201419527A - Epitaxial layer and method of forming the same - Google Patents

Epitaxial layer and method of forming the same Download PDF

Info

Publication number
TW201419527A
TW201419527A TW101141311A TW101141311A TW201419527A TW 201419527 A TW201419527 A TW 201419527A TW 101141311 A TW101141311 A TW 101141311A TW 101141311 A TW101141311 A TW 101141311A TW 201419527 A TW201419527 A TW 201419527A
Authority
TW
Taiwan
Prior art keywords
epitaxial layer
epitaxial
germanium
source
growth process
Prior art date
Application number
TW101141311A
Other languages
Chinese (zh)
Other versions
TWI544623B (en
Inventor
Chin-I Liao
Chin-Cheng Chien
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW101141311A priority Critical patent/TWI544623B/en
Publication of TW201419527A publication Critical patent/TW201419527A/en
Application granted granted Critical
Publication of TWI544623B publication Critical patent/TWI544623B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A method of forming an epitaxial layer includes the following steps. At first, a first epitaxial growth process is performed to form a first epitaxial layer on a substrate, and a gas source of silicon, a gas source of carbon, a gas source of phosphorous and a gas source of germanium are introduced during the first epitaxial growth process to form the first epitaxial layer including silicon, carbon, phosphorous and germanium. Subsequently, a second epitaxial growth process is performed to form a second epitaxial layer, and a number of elements in the second epitaxial layer is smaller than a number of elements in the first epitaxial layer.

Description

磊晶層及其製作方法 Epitaxial layer and manufacturing method thereof

本發明係關於一種磊晶層及其製作方法,尤指一種具有矽、碳、磷以及鍺的磊晶層及其製作方法。 The invention relates to an epitaxial layer and a manufacturing method thereof, in particular to an epitaxial layer having germanium, carbon, phosphorus and germanium and a manufacturing method thereof.

隨著半導體朝向微細化尺寸之發展,電晶體的閘極、源極、汲極的尺寸也隨著特徵尺寸的減小而跟著不斷地縮小。但由於材料物理性質的限制,閘極、源極、汲極的尺寸減小會造成電晶體元件中決定電流大小的載子量減少,進而影響電晶體的效能。因此,提升載子遷移率以增加MOS電晶體之速度已成為目前半導體技術領域中之一大課題。 As semiconductors move toward miniaturized sizes, the size of the gate, source, and drain of the transistor continues to shrink as the feature size decreases. However, due to the limitation of the physical properties of the material, the reduction of the size of the gate, the source and the drain may cause a decrease in the amount of the current-determining carrier in the transistor element, thereby affecting the performance of the transistor. Therefore, increasing the carrier mobility to increase the speed of the MOS transistor has become a major issue in the field of semiconductor technology.

在目前已知的技術中,係有利用改變基底組成以全面性製造機械應力,進而提升載子遷移率的方法。例如,在矽基底上磊晶生成一鍺化矽(silicon germanium;SiGe)層,並在鍺化矽層上生成一矽(silicon)磊晶層,矽的晶格常數為5.431埃(angstrom,A),鍺的晶格常數為5.646埃,晶格常數較小的矽磊晶層沈積於鍺化矽層上,將受到橫向張力,進而造成應變(strain),此層矽可稱為應變矽(strained silicon)層。應變矽層有助於之後較佳品質的閘極氧化層之形成,並提供應力於電晶體之通道區,以改善其載子遷移率。另外,亦有使用選擇性磊晶成長方法,於閘極形成之後,在閘極兩側的源極/汲極 區域中形成矽鍺(SiGe)磊晶層,以提供壓縮應力增進PMOS的運作速度;或在NMOS製程中形成矽碳(SiC)磊晶層,以提供拉伸應力增進NMOS的運作速度。 Among the currently known techniques, there is a method of comprehensively manufacturing mechanical stress by changing the composition of the substrate, thereby increasing the mobility of the carrier. For example, a germanium germanium (SiGe) layer is epitaxially formed on a germanium substrate, and a silicon epitaxial layer is formed on the germanium germanium layer. The lattice constant of germanium is 5.431 angstroms (angstrom, A). ), the lattice constant of ytterbium is 5.646 angstroms, and the bismuth epitaxial layer with a small lattice constant is deposited on the bismuth telluride layer, which will undergo lateral tension and cause strain. This layer can be called strain enthalpy ( Strained silicon) layer. The strained ruthenium layer facilitates the formation of a better quality gate oxide layer and provides stress to the channel region of the transistor to improve its carrier mobility. In addition, there is also a selective epitaxial growth method, after the gate is formed, the source/drain on both sides of the gate A germanium (SiGe) epitaxial layer is formed in the region to provide compressive stress to enhance the operating speed of the PMOS; or a germanium carbon (SiC) epitaxial layer is formed in the NMOS process to provide tensile stress to enhance the operating speed of the NMOS.

然而,當NMOS的源極/汲極區域具有N型摻質以及提供拉伸應力的應變矽磊晶層,例如磷摻雜的矽碳磊晶層時,由於磷元素的原子半徑(1.26埃)與碳元素的原子半徑(0.91埃)均小於矽元素的原子半徑(1.46埃),此原子半徑的差異將不利於磷摻雜的矽碳磊晶層形成於晶格方向(111)的矽晶圓表面上,而造成磷摻雜的矽碳磊晶層無法填滿NMOS閘極結構兩側的凹槽以形成完整的源極/汲極區域,進而影響NMOS的電性表現。因此,如何改善具有不同原子半徑之元素組成的應變矽磊晶製程實為相關技術者所欲改進之課題。 However, when the source/drain region of the NMOS has an N-type dopant and a strained germanium epitaxial layer that provides tensile stress, such as a phosphorus-doped germanium carbon epitaxial layer, due to the atomic radius of the phosphorus element (1.26 angstroms) The atomic radius (0.91 angstrom) with carbon is smaller than the atomic radius of the lanthanum element (1.46 angstrom). This difference in atomic radius will be detrimental to the twinning of the phosphorus-doped bismuth carbon epitaxial layer in the lattice direction (111). On the circular surface, the phosphorus-doped germanium carbon epitaxial layer cannot fill the grooves on both sides of the NMOS gate structure to form a complete source/drain region, thereby affecting the electrical performance of the NMOS. Therefore, how to improve the strain 矽 epitaxy process with elemental compositions with different atomic radii is a subject that the related art desires to improve.

本發明之目的之一在於提供一種具有不同原子半徑之元素的磊晶層及製作此磊晶層的方法,以獲得具有預期形狀的磊晶層,改善半導體裝置的電性表現。 One of the objects of the present invention is to provide an epitaxial layer having elements having different atomic radii and a method of fabricating the epitaxial layer to obtain an epitaxial layer having a desired shape to improve the electrical performance of the semiconductor device.

本發明之一較佳實施例是提供一種製作磊晶層的方法,包括下列步驟。首先,進行一第一磊晶成長製程,以於一基底上形成一第一磊晶層,其中第一磊晶成長製程包括同時通入矽源、碳源、磷源以及鍺源等氣體,以使第一磊晶層包括矽、碳、磷以及鍺。接著,進行一第二磊晶成長製程形成一第二磊晶層,且第二磊晶層包括的元 素種類之數目小於第一磊晶層包括的元素種類之數目。 A preferred embodiment of the present invention provides a method of making an epitaxial layer comprising the following steps. First, a first epitaxial growth process is performed to form a first epitaxial layer on a substrate, wherein the first epitaxial growth process includes simultaneously introducing a gas such as a germanium source, a carbon source, a phosphorus source, and a germanium source. The first epitaxial layer is made of germanium, carbon, phosphorus, and antimony. Then, performing a second epitaxial growth process to form a second epitaxial layer, and the second epitaxial layer includes the element The number of species is less than the number of element species included in the first epitaxial layer.

本發明之另一較佳實施例是提供一種磊晶層,包括:一第一磊晶層以及一第二磊晶層。第一磊晶層實質上包括矽、碳、磷以及鍺。第二磊晶層設置於第一磊晶層上,其中第二磊晶層包括的元素種類之數目小於第一磊晶層包括的元素種類之數目。 Another preferred embodiment of the present invention provides an epitaxial layer comprising: a first epitaxial layer and a second epitaxial layer. The first epitaxial layer substantially comprises germanium, carbon, phosphorus, and antimony. The second epitaxial layer is disposed on the first epitaxial layer, wherein the second epitaxial layer includes a number of element types smaller than the number of element types included in the first epitaxial layer.

本發明將原子半徑與矽相近的元素例如:鍺摻雜於矽碳磷(SiCP)磊晶層中,以形成同時包含矽、碳、磷以及鍺等的磊晶層,可減緩由於矽與碳或矽與磷的原子半徑之差異造成的晶格係數差異(lattice mismatch)之影響,使此磊晶層可形成於晶格方向(111)的矽晶圓表面上,獲得預期的磊晶層之形狀。另外,本發明的磊晶層製程可進一步與源極/汲極區之製程結合,以改善MOS電晶體的電性表現。 The present invention relates an element having an atomic radius close to that of germanium, for example, germanium doped in a germanium carbon phosphorus (SiCP) epitaxial layer to form an epitaxial layer containing germanium, carbon, phosphorus, germanium, etc., which can slow down the germanium and carbon. Or the influence of the lattice mismatch caused by the difference in the atomic radius of bismuth and phosphorus, so that the epitaxial layer can be formed on the surface of the germanium wafer in the lattice direction (111) to obtain the desired epitaxial layer. shape. In addition, the epitaxial layer process of the present invention can be further combined with the source/drain region process to improve the electrical performance of the MOS transistor.

為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。 The present invention will be further understood by those of ordinary skill in the art to which the present invention pertains. .

請參考第1圖至第2圖。第1圖至第2圖繪示了本發明之一較佳實施例之製作磊晶層的方法之示意圖。如第1圖所示,提供包括至少一凹槽12的一基底10。基底10可包含例如一由砷化鎵、矽覆絕緣(SOI)層、磊晶層、矽鍺層或其他半導體基底材料所構成的半導體 基底。基底10可另包括至少一閘極結構14以及至少一淺溝渠隔離16,且凹槽12位於閘極結構14與淺溝渠隔離16之間的主動區域中。閘極結構14包含有一閘極介電層18、一閘極導電層20設置於閘極介電層18上以及一蓋層22選擇性設置於閘極導電層20上。閘極介電層18可由利用熱氧化或沈積等製程所形成之矽氧化物、氮氧化物或介電常數大於4的高介電常數介電層等絕緣材料所構成。閘極導電層20可由多晶矽、金屬矽化物或具有特定功函數的金屬材料等導電材料所構成。選擇性形成的蓋層22可由氮化矽、氧化矽或氮氧化矽等介電材料所構成。淺溝渠隔離16可包含矽氧化物等絕緣材料。形成閘極結構14與淺溝渠隔離16的方法係為習知該項技藝者與通常知識者所熟知,在此不多加贅述。 Please refer to Figures 1 to 2. 1 to 2 are schematic views showing a method of fabricating an epitaxial layer according to a preferred embodiment of the present invention. As shown in FIG. 1, a substrate 10 including at least one recess 12 is provided. The substrate 10 may comprise, for example, a semiconductor composed of a gallium arsenide, a silicon-on-insulator (SOI) layer, an epitaxial layer, a germanium layer or other semiconductor substrate material. Substrate. The substrate 10 can further include at least one gate structure 14 and at least one shallow trench isolation 16 and the recess 12 is located in the active region between the gate structure 14 and the shallow trench isolation 16. The gate structure 14 includes a gate dielectric layer 18, a gate conductive layer 20 disposed on the gate dielectric layer 18, and a cap layer 22 selectively disposed on the gate conductive layer 20. The gate dielectric layer 18 may be formed of an insulating material such as tantalum oxide, oxynitride or a high-k dielectric layer having a dielectric constant greater than 4 formed by a process such as thermal oxidation or deposition. The gate conductive layer 20 may be composed of a conductive material such as polysilicon, metal halide or a metal material having a specific work function. The selectively formed cap layer 22 may be composed of a dielectric material such as tantalum nitride, hafnium oxide or hafnium oxynitride. The shallow trench isolation 16 may comprise an insulating material such as tantalum oxide. The method of forming the gate structure 14 and the shallow trench isolation 16 is well known to those skilled in the art and will not be further described herein.

而形成凹槽12的方法可包括下列步驟:首先,選擇性形成一第一側壁子24於各閘極結構14之側壁;之後,以已形成的閘極結構14與第一側壁子24作為遮罩進行一蝕刻製程,例如一非等向性之乾蝕刻製程,於閘極結構14之兩側的基底10中形成凹槽12。此外,也可混合搭配乾、濕蝕刻製程以形成各種形狀如桶形(邊較直的形狀)、六角形、多角形的凹槽12,在後續製程中,形成於此類形狀之凹槽12中的磊晶層將可對通道區C提供更大的應力。其中,第一側壁子24可包括氧化矽、氮化矽或其組合或其他適合材料所組成的單一薄膜層或複合薄膜層結構,且第一側壁子24可作為一種臨時性的側壁子(disposable spacer),因此在選擇性磊晶生長製程完成後,第一側壁子24可被選擇性地部分或完全移除,但不以此為限。 此外,在第一側壁子24與閘極結構14之間尚可選擇性地包含其他單層或多層之側壁子(圖未示)。 The method of forming the recess 12 may include the following steps: first, selectively forming a first sidewall 24 on the sidewall of each gate structure 14; thereafter, using the formed gate structure 14 and the first sidewall spacer 24 as a mask The mask is subjected to an etching process, such as an anisotropic dry etching process, in which grooves 12 are formed in the substrate 10 on either side of the gate structure 14. In addition, a dry and wet etching process may be mixed to form various shapes such as a barrel shape (a straight shape), a hexagonal shape, and a polygonal groove 12, which are formed in the groove 12 of such a shape in a subsequent process. The epitaxial layer in the layer will provide greater stress to channel region C. Wherein, the first sidewalls 24 may comprise a single film layer or a composite film layer structure composed of yttrium oxide, tantalum nitride or a combination thereof or other suitable materials, and the first sidewalls 24 may serve as a temporary sidewall (disposable) Spacer), therefore, after the selective epitaxial growth process is completed, the first sidewalls 24 can be selectively partially or completely removed, but not limited thereto. In addition, other single or multiple layers of sidewalls (not shown) may be selectively included between the first sidewall 24 and the gate structure 14.

為形成品質較佳的磊晶層於凹槽12中,在進行後續的磊晶層製程前,可另先進行一預清洗(pre-clean)步驟,例如利用稀釋氫氟酸水溶液、或含有硫酸、過氧化氫、與去離子水的SPM混合溶液等清洗液以去除凹槽12表面之不純物質例如原生氧化物(native oxide)層。此外,可再進行一預烤步驟(pre-bake),例如在通入氫氣的腔室中加熱基底10,以清除凹槽12表面之原生氧化物層或殘留的清洗液。 In order to form a better quality epitaxial layer in the recess 12, a pre-clean step may be performed before the subsequent epitaxial layer process, for example, by diluting a hydrofluoric acid aqueous solution or containing sulfuric acid. A cleaning solution such as hydrogen peroxide or a SPM mixed solution of deionized water to remove an impurity such as a native oxide layer on the surface of the groove 12. In addition, a pre-bake may be performed, such as heating the substrate 10 in a chamber in which hydrogen is introduced to remove the native oxide layer or residual cleaning liquid on the surface of the recess 12.

如第2圖所示,進行一第一磊晶成長製程,於基底10上形成一第一磊晶層26。進行第一磊晶成長製程包含進行一原位(in-situ)磊晶製程,詳細而言,係在具有一特定操作壓力係實質上約介於10至50托耳(torr)的反應腔室中,同時通入矽源、碳源、磷源以及鍺源等元素源氣體以及載氣例如氮氣(nitrogen gas)及氫氣(hydrogen gas),也就是說,在形成矽碳磷磊晶層時,同時摻雜鍺於矽碳磷磊晶層中,以直接形成包含矽(Si)、碳(C)、磷(P)以及鍺(Ge)等四種元素的第一磊晶層26。其中矽源氣體可包含二氯矽烷(Dichlorosilane,DCS)或矽烷化合物其化學式可包含SixH2x+2;x>1,例如:矽甲烷(silane,SiH4)或乙矽烷(disilane,Si2H6);碳源氣體可包含甲基矽烷(monomethyl silane,MMS,(CH3)SiH3)或多甲基矽烷其化學式可包含Si(CH3)xH4-x;x>1;磷源氣體可包含磷化氫(phosphine,PH3);鍺源氣體可包含鍺烷(GeH4);以形成第一磊晶層26於凹槽12內。值 得注意的是,第一磊晶層26的材質組成可以矽碳磷鍺(SiCxPyGez)表示,鍺元素的原子半徑(1.52埃)相近於矽元素的原子半徑(1.46埃),相較於僅具有矽、碳、磷元素的磊晶層,鍺的存在可降底第一磊晶層26中不同元素間例如矽與碳,或矽與磷之間的原子半徑的差異度所造成的晶格係數差異(lattice mismatch)之影響,有助於第一磊晶層26形成於晶格方向(111)的矽晶圓表面上。此外,為提供拉伸應力,碳的摻雜濃度係需實質上大於鍺的摻雜濃度,也就是說在第一磊晶層26的材料亦即矽碳磷鍺(SiCxPyGez)中,x值較佳係實質上大於z值,在本實施例中,碳的摻雜濃度大於0,磷的摻雜濃度實質上大於或等於5E19cm-3,鍺的摻雜濃度實質上大於1E18cm-3,且碳的摻雜濃度實質上大於鍺的摻雜濃度,使第一磊晶層26可提供拉伸應力至通道區C。 As shown in FIG. 2, a first epitaxial growth process is performed to form a first epitaxial layer 26 on the substrate 10. Performing the first epitaxial growth process includes performing an in-situ epitaxial process, in detail, in a reaction chamber having a specific operating pressure system of substantially between about 10 and 50 torr Medium, a source gas such as a helium source, a carbon source, a phosphorus source, and a helium source, and a carrier gas such as a nitrogen gas and a hydrogen gas are introduced at the same time, that is, when a bismuth carbon phosphate epitaxial layer is formed, At the same time, it is doped in the bismuth carbon phosphorus epitaxial layer to directly form the first epitaxial layer 26 containing four elements such as bismuth (Si), carbon (C), phosphorus (P), and germanium (Ge). The helium source gas may comprise Dichlorosilane (DCS) or a decane compound, and the chemical formula may include Si x H 2x+2 ; x>1, for example: silane (SiH 4 ) or disilane (Si 2 ) H 6 ); the carbon source gas may comprise monomethyl silane (MMS, (CH 3 )SiH 3 ) or polymethyl decane, the chemical formula of which may include Si(CH 3 ) x H 4-x ; x>1; phosphorus The source gas may comprise phosphine (PH 3 ); the helium source gas may comprise germane (GeH 4 ); to form a first epitaxial layer 26 within the recess 12. It is worth noting that the material composition of the first epitaxial layer 26 can be represented by carbon phosphide (SiC x P y Ge z ), and the atomic radius of the lanthanum element (1.52 angstrom) is close to the atomic radius of the lanthanum element (1.46 angstrom). Compared with an epitaxial layer having only germanium, carbon, and phosphorus elements, the presence of germanium can lower the difference in atomic radius between different elements in the first epitaxial layer 26, such as germanium and carbon, or between germanium and phosphorus. The resulting lattice mismatch affects the formation of the first epitaxial layer 26 on the surface of the germanium wafer in the lattice direction (111). In addition, in order to provide tensile stress, the doping concentration of carbon is substantially greater than the doping concentration of cerium, that is, the material of the first epitaxial layer 26, that is, bismuth carbon phosphide (SiC x P y Ge z ). Preferably, the value of x is substantially greater than the value of z. In this embodiment, the doping concentration of carbon is greater than 0, the doping concentration of phosphorus is substantially greater than or equal to 5E19 cm -3 , and the doping concentration of germanium is substantially greater than 1E18 cm. -3 and the doping concentration of carbon is substantially greater than the doping concentration of germanium such that the first epitaxial layer 26 can provide tensile stress to the channel region C.

在一實施例中,第一磊晶成長製程可為一並流(co-flow)沈積製程,在沈積過程中同時通入上述的元素源氣體、載氣以及蝕刻氣體包含氯化氫(hydrogen chloride)氣體於反應腔室中,以在形成磊晶層的過程中,同時進行蝕刻製程去除部分磊晶層。在另一實施例中,第一磊晶成長製程可為一循環(cyclic)沈積製程,在沈積過程中交替通入上述的元素源氣體以及蝕刻氣體,且可搭配載氣,以反覆進行多次沈積和蝕刻之循環。另外,在並流沈積製程之後,或在循環沈積製程中,可再搭配進行一淨化製程,例如以載氣或其他氣體沖洗製程腔室,及/或利用真空幫浦排空製程腔室,以移除過量的元素源氣體、反應副產物和其他污染物。此外,也可在矽碳磷鍺磊晶層形 成之後,再進行一離子佈植製程,將導電型摻質包括N型導電型摻質例如磷離子摻雜於矽碳磷鍺磊晶層中,使部分第一磊晶層26可作為源極/汲極摻雜區。 In one embodiment, the first epitaxial growth process may be a co-flow deposition process in which the element source gas, the carrier gas, and the etching gas are simultaneously introduced to contain hydrogen chloride gas during the deposition process. In the reaction chamber, during the process of forming the epitaxial layer, an etching process is simultaneously performed to remove a portion of the epitaxial layer. In another embodiment, the first epitaxial growth process may be a cyclic deposition process in which the element source gas and the etching gas are alternately introduced during the deposition process, and may be matched with the carrier gas to be repeatedly performed multiple times. The cycle of deposition and etching. Alternatively, after the co-current deposition process, or in the cyclic deposition process, a purification process can be performed, such as flushing the process chamber with a carrier gas or other gas, and/or evacuating the process chamber with a vacuum pump. Excess element source gases, reaction by-products and other contaminants are removed. In addition, it can also be in the epitaxial layer of bismuth carbon After the formation, an ion implantation process is further performed, and the conductive type dopant includes an N-type conductivity type dopant such as phosphorus ions doped in the bismuth carbon phosphide epitaxial layer, so that part of the first epitaxial layer 26 can serve as a source. /汲polar doped area.

接著,進行一第二磊晶成長製程,於第一磊晶層26上形成一第二磊晶層28,且第二磊晶層28包括的元素種類之數目小於第一磊晶層26包括的元素種類之數目,亦即進行第二磊晶成長製程時所通入的元素源氣體源種類少於進行第一磊晶成長製程時所通入之氣體源種類。詳細而言,進行第二磊晶成長製程包含進行一原位磊晶製程,其係在具有一特定操作壓力係實質上約介於10至50托耳(torr)的反應腔室中,同時通入矽源以及磷源等氣體,以使第二磊晶層28包括矽以及磷等元素。矽源以及磷源等氣體如上所述,在此不重覆贅述。第二磊晶層28的設置可防止第一磊晶層26中的鍺元素,在後續製程例如形成鎳/矽金屬矽化物時向上擴散至基底10的表面,影響後續所形成之半導體裝置例如:NMOS的電性品質。此外,在其他實施例中,當半導體裝置的電性表現與鍺元素之擴散未有明顯相關性時,第二磊晶成長製程也可包含進行一同時通入矽源、磷源以及鍺源等氣體的原位磊晶製程,使第二磊晶層包含矽、磷以及鍺等三種元素。另外,也可先形成矽磷磊晶層,再進行一離子佈植製程,以摻雜導電型摻質包括N型導電型摻質例如磷離子於矽磷磊晶層中,以作為源極/汲極摻雜區。 Then, a second epitaxial growth process is performed to form a second epitaxial layer 28 on the first epitaxial layer 26, and the second epitaxial layer 28 includes a smaller number of element types than the first epitaxial layer 26 includes. The number of element types, that is, the type of element source gas source that is introduced during the second epitaxial growth process is less than the type of gas source that is introduced when the first epitaxial growth process is performed. In detail, performing the second epitaxial growth process includes performing an in-situ epitaxial process in a reaction chamber having a specific operating pressure system substantially between about 10 and 50 torr. A gas such as a helium source and a phosphorus source is introduced so that the second epitaxial layer 28 includes an element such as germanium or phosphorus. The gas such as a helium source and a phosphorus source is as described above, and will not be repeated here. The arrangement of the second epitaxial layer 28 prevents the germanium element in the first epitaxial layer 26 from diffusing upward to the surface of the substrate 10 during subsequent processes such as formation of a nickel/germanium metal telluride, affecting subsequently formed semiconductor devices such as: The electrical quality of the NMOS. In addition, in other embodiments, when the electrical performance of the semiconductor device is not significantly correlated with the diffusion of germanium, the second epitaxial growth process may also include performing a simultaneous access to the germanium source, the phosphor source, the germanium source, and the like. The in-situ epitaxial process of the gas causes the second epitaxial layer to contain three elements such as germanium, phosphorus, and antimony. In addition, a bismuth phosphorite epitaxial layer may be formed first, and then an ion implantation process is performed to dope the conductive type dopant including an N-type conductivity type dopant such as phosphorus ions in the bismuth phosphorite epitaxial layer as a source/ Bungee doped area.

在本實施例中,第一磊晶層26填入於凹槽12中,且第一磊晶層 26的頂面S1與第二磊晶層28的頂面S2均高於基底10的表面S3,以增加第一磊晶層26與第二磊晶層28對於閘極結構14下方之通道區C提供應力之效能,但不以此為限。 In this embodiment, the first epitaxial layer 26 is filled in the recess 12, and the first epitaxial layer The top surface S1 of 26 and the top surface S2 of the second epitaxial layer 28 are both higher than the surface S3 of the substrate 10 to increase the first epitaxial layer 26 and the second epitaxial layer 28 for the channel region C under the gate structure 14. Provides the effectiveness of stress, but not limited to it.

本發明為針對不同的元件特性調整應變矽磊晶層的材料組成,除了第一磊晶成長製程以及第二磊晶成長製程之外,也包含進行一第三磊晶成長製程。例如至少包含下列各實施態樣: The invention adjusts the material composition of the strain 矽 epitaxial layer for different component characteristics, and includes performing a third epitaxial growth process in addition to the first epitaxial growth process and the second epitaxial growth process. For example, at least the following implementations are included:

第一實施態樣: The first embodiment:

請參考第3圖。第3圖繪示了本發明之一較佳實施例之製作磊晶層的方法之示意圖。如第3圖所示,首先,進行第三磊晶成長製程包含進行一原位磊晶製程,且進行第三磊晶成長製程時所通入的元素源氣體種類係少於進行第一磊晶成長製程時所通入之元素源氣體種類,例如可同時通入矽源、碳源以及磷源等氣體於具有一特定操作壓力係實質上約介於10至50托耳(torr)的反應腔室中,以形成一第三磊晶層30於凹槽12中,其中第三磊晶層30包括矽、碳、磷等三種元素,而第三磊晶層30包括的元素種類之數目小於第一磊晶層26包括的元素種類之數目,且矽源、碳源以及磷源等氣體如上所述,在此不重覆贅述。接著,依序進行前述的第一磊晶成長製程以及第二磊晶成長製程形成第一磊晶層26與第二磊晶層28。 Please refer to Figure 3. FIG. 3 is a schematic view showing a method of fabricating an epitaxial layer according to a preferred embodiment of the present invention. As shown in FIG. 3, first, the third epitaxial growth process includes performing an in-situ epitaxial process, and the element source gas species introduced during the third epitaxial growth process is less than the first epitaxial process. The source gas source that is introduced during the growth process, for example, can simultaneously pass a gas such as a helium source, a carbon source, and a phosphorus source to a reaction chamber having a specific operating pressure system of substantially 10 to 50 torr. In the chamber, a third epitaxial layer 30 is formed in the recess 12, wherein the third epitaxial layer 30 includes three elements such as germanium, carbon, and phosphorus, and the third epitaxial layer 30 includes a smaller number of element types than the first The number of element types included in an epitaxial layer 26, and the gases such as a germanium source, a carbon source, and a phosphorus source are as described above, and are not repeated herein. Then, the first epitaxial growth process and the second epitaxial growth process are sequentially performed to form the first epitaxial layer 26 and the second epitaxial layer 28 .

第二實施態樣: Second implementation aspect:

請再參考第3圖,如第3圖所示,第二實施態樣與第一實施態樣在磊晶成長製程的實施順序相同,且第三磊晶層30包括的元素種類之數目亦小於第一磊晶層26包括的元素種類之數目,其不同之處在於元素源氣體的種類,第二實施態樣中第三磊晶成長製程係包含同時通入矽源、碳源以及鍺源等氣體,而未包括磷源氣體,以形成第三磊晶層30於凹槽12中,其中第三磊晶層30將包括矽、碳、鍺等三種元素,且矽源、碳源以及鍺源等氣體如上所述,在此不重覆贅述。 Referring to FIG. 3 again, as shown in FIG. 3, the second embodiment is identical to the first embodiment in the epitaxial growth process, and the third epitaxial layer 30 includes a smaller number of element types. The number of element types included in the first epitaxial layer 26 is different in the type of element source gas. In the second embodiment, the third epitaxial growth process includes simultaneously introducing a source of germanium, a source of carbon, and a source of germanium. a gas, but not including a phosphorus source gas, to form a third epitaxial layer 30 in the recess 12, wherein the third epitaxial layer 30 will include three elements such as germanium, carbon, and germanium, and the germanium source, the carbon source, and the germanium source The gas is as described above and will not be repeated here.

第三實施態樣: The third embodiment:

請再參考第3圖,如第3圖所示,第三實施態樣與第二實施態樣在磊晶成長製程的實施順序相同,且各磊晶成長製程使用的元素源氣體種類相同,不同之處在於,第一磊晶成長製程包括通入具有一流量隨時間改變的碳源氣體,使第一磊晶層26具有一碳摻雜濃度呈梯度變化,更詳細地說,當第三磊晶層30設置於第一磊晶層26下方,第一磊晶層26之碳摻雜濃度係沿第一磊晶層26與第三磊晶層30之一交界面往第一磊晶層26與第二磊晶層28之一交界面的方向遞增,例如:第三磊晶層30具有固定碳摻雜濃度實質上約0.1%,而第一磊晶層26具有碳摻雜濃度分佈實質上介於0.1%至2.5%。 Please refer to FIG. 3 again. As shown in FIG. 3, the third embodiment and the second embodiment have the same implementation sequence in the epitaxial growth process, and the element source gases used in each epitaxial growth process are the same. The first epitaxial growth process includes introducing a carbon source gas having a flow rate change with time, so that the first epitaxial layer 26 has a carbon doping concentration as a gradient change, and more specifically, when the third epitaxy The crystal layer 30 is disposed under the first epitaxial layer 26 , and the carbon doping concentration of the first epitaxial layer 26 is along the interface of the first epitaxial layer 26 and the third epitaxial layer 30 to the first epitaxial layer 26 . The direction of the interface with one of the second epitaxial layers 28 is increased, for example, the third epitaxial layer 30 has a fixed carbon doping concentration of substantially 0.1%, and the first epitaxial layer 26 has a carbon doping concentration profile substantially Between 0.1% and 2.5%.

第四實施態樣: Fourth implementation aspect:

請再參考第3圖,如第3圖所示,第四實施態樣與第二實施態樣在磊晶成長製程的實施順序相同,且各磊晶成長製程使用的元素源氣體種類相同,不同之處在於,第三磊晶成長製程包括通入具有一流量隨時間改變的碳源氣體,使第三磊晶層30亦具有一碳摻雜濃度呈梯度變化,更詳細地說,第三磊晶層30之碳摻雜濃度係沿第三磊晶層30之一底面B往第一磊晶層26與第三磊晶層30之一交界面遞增例如:第三磊晶層30具有碳摻雜濃度分佈實質上介於0.1%至2.5%,而第一磊晶層26具有固定碳摻雜濃度實質上約2.5%。 Please refer to FIG. 3 again. As shown in FIG. 3, the fourth embodiment and the second embodiment have the same implementation sequence in the epitaxial growth process, and the element source gases used in each epitaxial growth process are the same. The third epitaxial growth process includes introducing a carbon source gas having a flow rate change with time, so that the third epitaxial layer 30 also has a carbon doping concentration gradient, and in more detail, the third Lei The carbon doping concentration of the crystal layer 30 is increased along the bottom surface B of the third epitaxial layer 30 to the interface between the first epitaxial layer 26 and the third epitaxial layer 30. For example, the third epitaxial layer 30 has carbon doping. The impurity concentration profile is substantially between 0.1% and 2.5%, while the first epitaxial layer 26 has a fixed carbon doping concentration of substantially 2.5%.

第五實施態樣: Fifth embodiment:

請再參考第3圖,如第3圖所示,第五實施態樣與第二實施態樣在磊晶成長製程的實施順序相同,且各磊晶成長製程使用的元素源氣體種類相同,不同之處在於,第一磊晶成長製程與第三磊晶成長製程均包括通入具有一流量隨時間改變的碳源氣體,使第一磊晶層26與第三磊晶層30均具有一碳摻雜濃度呈梯度變化,使碳摻雜濃度係沿第三磊晶層30之一底面B往第一磊晶層26與第二磊晶層28之一交界面遞增。例如:自第三磊晶層30之底面B至第一磊晶層26之頂面T間的磊晶層具有碳摻雜濃度分佈實質上介於0.1%至2.5%。 Please refer to FIG. 3 again. As shown in FIG. 3, the fifth embodiment and the second embodiment have the same implementation sequence in the epitaxial growth process, and the element source gases used in each epitaxial growth process are the same. The first epitaxial growth process and the third epitaxial growth process both include a carbon source gas having a flow rate change with time, so that the first epitaxial layer 26 and the third epitaxial layer 30 each have a carbon. The doping concentration changes in a gradient such that the carbon doping concentration increases along the bottom surface B of the third epitaxial layer 30 toward one of the first epitaxial layer 26 and the second epitaxial layer 28. For example, the epitaxial layer from the bottom surface B of the third epitaxial layer 30 to the top surface T of the first epitaxial layer 26 has a carbon doping concentration distribution substantially between 0.1% and 2.5%.

第六實施態樣: Sixth implementation aspect:

請再參考第3圖,如第3圖所示,第六實施態樣可與第三實施態樣,第四實施態樣或第五實施態樣的第一磊晶成長製程與第三磊晶成長製程之條件相似,不同之處在於,第二磊晶成長製程係同時通入矽源、磷源以及鍺源等氣體的原位磊晶製程,亦即關閉第一磊晶成長製程的碳源氣體,使第二磊晶層28係包含矽、磷以及鍺等三種元素。 Referring to FIG. 3 again, as shown in FIG. 3, the sixth embodiment can be combined with the third embodiment, the fourth epitaxial growth process and the third epitaxial process of the fourth embodiment or the fifth embodiment. The conditions for the growth process are similar. The difference is that the second epitaxial growth process simultaneously introduces an in-situ epitaxial process of a gas such as a helium source, a phosphorus source, and a helium source, that is, a carbon source that closes the first epitaxial growth process. The gas causes the second epitaxial layer 28 to contain three elements such as germanium, phosphorus, and antimony.

第七實施態樣: The seventh embodiment:

請參考第4圖。第4圖繪示了本發明之一較佳實施例之製作磊晶層的方法之示意圖。如第4圖所示,首先,進行前述的第一磊晶成長製程形成第一磊晶層26,接著,進行第三磊晶成長製程包含進行一原位磊晶製程,且同時通入矽源、碳源以及磷源等氣體,亦即關閉第一磊晶成長製程的鍺源氣體,以形成一第三磊晶層32於凹槽12中,其中第三磊晶層32包括矽、碳、磷等三種元素。然後,進行前述的第二磊晶成長製程,亦即關閉第三磊晶成長製程的碳源氣體,以形成第二磊晶層28。 Please refer to Figure 4. FIG. 4 is a schematic view showing a method of fabricating an epitaxial layer according to a preferred embodiment of the present invention. As shown in FIG. 4, first, the first epitaxial growth process is performed to form the first epitaxial layer 26, and then, the third epitaxial growth process includes performing an in-situ epitaxial process and simultaneously introducing the source. a gas such as a carbon source and a phosphorus source, that is, a source gas that closes the first epitaxial growth process, to form a third epitaxial layer 32 in the recess 12, wherein the third epitaxial layer 32 includes germanium, carbon, Three elements such as phosphorus. Then, the second epitaxial growth process described above is performed, that is, the carbon source gas of the third epitaxial growth process is turned off to form the second epitaxial layer 28.

值得注意的是,上述實施態樣中,第二磊晶層28包括的元素種類之數目與第三磊晶層30/32包括的元素種類之數目均小於第一磊晶層26包括的元素種類之數目。換句話說,在進行第二磊晶成長製程或第三磊晶成長製程時所通入的元素源氣體種類均係少於進行第 一磊晶成長製程時所通入之元素源氣體種類。 It should be noted that, in the above embodiment, the number of element types included in the second epitaxial layer 28 and the number of element types included in the third epitaxial layer 30/32 are smaller than the element types included in the first epitaxial layer 26. The number. In other words, the type of elemental source gas that is introduced during the second epitaxial growth process or the third epitaxial growth process is less than that of the first The source gas source that is introduced during an epitaxial growth process.

此外,為保護已形成的磊晶層,可再選擇性進行一第四磊晶成長製程,僅通入矽源氣體,以形成一第四磊晶層34於第二磊晶層28上,故第四磊晶層34僅包括矽,其可供進行鎳/矽金屬矽化物製程時之矽基材的消耗,有助於維持第四磊晶層34下方已形成的磊晶層之結構完整。至此完成半導體裝置36/38/40。由於本發明係藉由添加鍺源氣體至提供拉伸應力的磊晶層例如:矽碳磊晶層或包含磷摻質的矽碳磊晶層的磊晶成長製程中,使磊晶層可完整形成於矽晶圓上,且形成的磊晶層將同時包含矽、碳、磷以及鍺,因此,本發明較佳係整合於NMOS的半導體製程中,使NMOS中提供拉伸應力的磊晶層具有預定形狀,也就是說,所形成的半導體裝置36/38/40較佳係NMOS。 In addition, in order to protect the formed epitaxial layer, a fourth epitaxial growth process may be selectively performed, and only the germanium source gas is introduced to form a fourth epitaxial layer 34 on the second epitaxial layer 28. The fourth epitaxial layer 34 includes only germanium, which is used for the consumption of the germanium substrate during the nickel/germanium metal telluride process, and helps maintain the structural integrity of the epitaxial layer formed under the fourth epitaxial layer 34. The semiconductor device 36/38/40 has thus been completed. Since the present invention is completed by adding a germanium source gas to an epitaxial layer providing tensile stress, such as a germanium carbon epitaxial layer or a germanium carbon epitaxial layer containing a phosphorus dopant, the epitaxial layer can be completed. Formed on the germanium wafer, and the formed epitaxial layer will contain germanium, carbon, phosphorus and germanium at the same time. Therefore, the present invention is preferably integrated into the semiconductor process of the NMOS to provide an epitaxial layer of tensile stress in the NMOS. It has a predetermined shape, that is, the formed semiconductor device 36/38/40 is preferably an NMOS.

還有,第一磊晶層26與第二磊晶層28亦不限於形成於凹槽12中,請參考第5圖以及第6圖。第5圖以及第6圖均繪示了本發明之一較佳實施例之製作磊晶層的方法之示意圖。如第5圖以及第6圖所示,第一磊晶層26與第二磊晶層28亦可搭配前述實施樣態直接形成於基底10上,以提供應力於通道區C。 Further, the first epitaxial layer 26 and the second epitaxial layer 28 are not limited to being formed in the recess 12, please refer to FIG. 5 and FIG. 5 and 6 are schematic views showing a method of fabricating an epitaxial layer according to a preferred embodiment of the present invention. As shown in FIG. 5 and FIG. 6, the first epitaxial layer 26 and the second epitaxial layer 28 may be directly formed on the substrate 10 in combination with the foregoing embodiments to provide stress to the channel region C.

請參考表1以及表2,並請一併參考第3圖以及第4圖。表1以及表2列示本發明一較佳實施例之一磊晶層的組成材質參考表。如表1以及表2所示,本發明提供一種磊晶層包含一第一磊晶層26、 一第二磊晶層28、一第三磊晶層30/32以及一第四磊晶層34設置於一基底10上或一凹槽12中。各磊晶層可分別藉由通入不同元素源氣體的原位(in-situ)磊晶製程所形成。第一磊晶層26實質上包含矽、碳、磷以及鍺等四種元素,其材質組成可以矽碳磷鍺(SiCxPyGez)表示,其中x值較佳係實質上大於z值,以提供拉伸應力於半導體裝置例如NMOS的通道區。此外,鍺與矽的原子半徑比實質上小於碳與矽的原子半徑比或磷與矽的原子半徑比,有助於第一磊晶層26形成於晶格方向(111)的矽晶圓表面上,使第一磊晶層26具有預期的結構形狀。第二磊晶層28設置於第一磊晶層26上,其中第二磊晶層28包括的元素種類之數目小於第一磊晶層26包括的元素種類之數目,第二磊晶層28實質上可包含矽以及磷等兩種元素或矽、磷以及鍺等三種元素。第三磊晶層30/32設置於第一磊晶層26下方或設置於第一磊晶層26與第二磊晶層28之間,其中第三磊晶層30/32包括的元素種類之數目實質上小於第一磊晶層26包括的元素種類之數目,第三磊晶層30/32實質上可包含矽、碳以及磷或矽、碳以及鍺等三種元素。第四磊晶層34設置於第一磊晶層26、第二磊晶層28與第三磊晶層30/32上方,且第四磊晶層34僅包括矽,作為保護層。此外,第一磊晶層26或/以及第三磊晶層30/32可具有一梯度變化的碳摻雜濃度,舉例來說,當第三磊晶層30設置於第一磊晶層26下方時,第一磊晶層26之碳摻雜濃度係沿第一磊晶層26與第三磊晶層30之一交界面往第一磊晶層26與第二磊晶層28之一交界面的方向遞增,或/以及第三磊晶層30之碳摻雜濃度係沿第三磊晶層30之一底面B往第一磊晶層26與第三磊晶層30之一交界面遞 增。 Please refer to Table 1 and Table 2, and please refer to Figure 3 and Figure 4 together. Table 1 and Table 2 show a reference material composition table of an epitaxial layer according to a preferred embodiment of the present invention. As shown in Table 1 and Table 2, the present invention provides an epitaxial layer comprising a first epitaxial layer 26, a second epitaxial layer 28, a third epitaxial layer 30/32, and a fourth epitaxial layer 34. It is disposed on a substrate 10 or in a recess 12. Each of the epitaxial layers can be formed by an in-situ epitaxial process through which different element source gases are passed. The first epitaxial layer 26 substantially comprises four elements such as germanium, carbon, phosphorus and germanium, and the material composition thereof can be represented by carbon phosphide (SiC x P y Ge z ), wherein the value of x is preferably substantially greater than the value of z. To provide tensile stress to the channel region of a semiconductor device such as an NMOS. In addition, the atomic radii ratio of lanthanum and cerium is substantially smaller than the atomic radii ratio of carbon to lanthanum or the atomic radii ratio of phosphorus to lanthanum, which contributes to the formation of the first epitaxial layer 26 on the surface of the germanium wafer in the lattice direction (111). The first epitaxial layer 26 is made to have a desired structural shape. The second epitaxial layer 28 is disposed on the first epitaxial layer 26, wherein the second epitaxial layer 28 includes a number of element types smaller than the number of element types included in the first epitaxial layer 26, and the second epitaxial layer 28 is substantially It may contain two elements such as ruthenium and phosphorus or three elements such as ruthenium, phosphorus and ruthenium. The third epitaxial layer 30/32 is disposed under the first epitaxial layer 26 or between the first epitaxial layer 26 and the second epitaxial layer 28, wherein the third epitaxial layer 30/32 includes an element type The number is substantially smaller than the number of element types included in the first epitaxial layer 26, and the third epitaxial layer 30/32 may substantially contain three elements such as germanium, carbon, and phosphorus or germanium, carbon, and germanium. The fourth epitaxial layer 34 is disposed above the first epitaxial layer 26, the second epitaxial layer 28, and the third epitaxial layer 30/32, and the fourth epitaxial layer 34 includes only germanium as a protective layer. In addition, the first epitaxial layer 26 or/and the third epitaxial layer 30/32 may have a gradient of carbon doping concentration, for example, when the third epitaxial layer 30 is disposed under the first epitaxial layer 26. The carbon doping concentration of the first epitaxial layer 26 is along the interface of the first epitaxial layer 26 and the third epitaxial layer 30 to the interface of the first epitaxial layer 26 and the second epitaxial layer 28. The direction of the addition, or/and the carbon doping concentration of the third epitaxial layer 30 increases along the bottom surface B of the third epitaxial layer 30 toward one of the first epitaxial layer 26 and the third epitaxial layer 30.

綜上所述,本發明將原子半徑與矽相近的元素例如:鍺摻雜於矽碳磷(SiCP)磊晶層中,以形成同時包含矽、碳、磷以及鍺等的磊晶層,可減緩由於矽與碳或矽與磷的原子半徑之差異造成的晶格係數差異(lattice mismatch)之影響,使此磊晶層可形成於晶格方向(111)的矽晶圓表面上,獲得預期的磊晶層之形狀。另外,本發明的磊晶層製程可進一步與源極/汲極區之製程結合,以改善MOS電晶體的電性表現。 In summary, the present invention has an element having an atomic radius close to that of germanium, for example, germanium doped in a germanium carbon phosphorus (SiCP) epitaxial layer to form an epitaxial layer containing germanium, carbon, phosphorus, germanium, and the like. Slowing down the lattice mismatch caused by the difference in atomic radius between bismuth and carbon or bismuth and phosphorus, so that the epitaxial layer can be formed on the surface of the germanium wafer in the lattice direction (111), which is expected The shape of the epitaxial layer. In addition, the epitaxial layer process of the present invention can be further combined with the source/drain region process to improve the electrical performance of the MOS transistor.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10‧‧‧基底 10‧‧‧Base

12‧‧‧凹槽 12‧‧‧ Groove

14‧‧‧閘極結構 14‧‧‧ gate structure

16‧‧‧淺溝渠隔離 16‧‧‧Shallow trench isolation

18‧‧‧閘極介電層 18‧‧‧ gate dielectric layer

20‧‧‧閘極導電層 20‧‧‧ gate conductive layer

22‧‧‧蓋層 22‧‧‧ cover

24‧‧‧第一側壁子 24‧‧‧First side wall

26‧‧‧第一磊晶層 26‧‧‧First epitaxial layer

28‧‧‧第二磊晶層 28‧‧‧Second epilayer

30,32‧‧‧第三磊晶層 30,32‧‧‧ third epitaxial layer

34‧‧‧第四磊晶層 34‧‧‧ fourth epitaxial layer

36,38,40‧‧‧半導體裝置 36,38,40‧‧‧ semiconductor devices

B‧‧‧底面 B‧‧‧ bottom

C‧‧‧通道區 C‧‧‧Channel area

T,S1,S2,S3‧‧‧頂面 T, S1, S2, S3‧‧‧ top

第1圖至第2圖繪示了本發明之一較佳實施例之製作磊晶層的方法之示意圖。 1 to 2 are schematic views showing a method of fabricating an epitaxial layer according to a preferred embodiment of the present invention.

第3圖繪示了本發明之一較佳實施例之製作磊晶層的方法之示意圖。 FIG. 3 is a schematic view showing a method of fabricating an epitaxial layer according to a preferred embodiment of the present invention.

第4圖繪示了本發明之一較佳實施例之製作磊晶層的方法之示意圖。 FIG. 4 is a schematic view showing a method of fabricating an epitaxial layer according to a preferred embodiment of the present invention.

第5圖繪示了本發明之一較佳實施例之製作磊晶層的方法之示意圖。 FIG. 5 is a schematic view showing a method of fabricating an epitaxial layer according to a preferred embodiment of the present invention.

第6圖均繪示了本發明之一較佳實施例之製作磊晶層的方法之示意圖。 Figure 6 is a schematic view showing a method of fabricating an epitaxial layer in accordance with a preferred embodiment of the present invention.

10‧‧‧基底 10‧‧‧Base

14‧‧‧閘極結構 14‧‧‧ gate structure

16‧‧‧淺溝渠隔離 16‧‧‧Shallow trench isolation

18‧‧‧閘極介電層 18‧‧‧ gate dielectric layer

20‧‧‧閘極導電層 20‧‧‧ gate conductive layer

22‧‧‧蓋層 22‧‧‧ cover

24‧‧‧第一側壁子 24‧‧‧First side wall

26‧‧‧第一磊晶層 26‧‧‧First epitaxial layer

28‧‧‧第二磊晶層 28‧‧‧Second epilayer

30‧‧‧第三磊晶層 30‧‧‧ Third epitaxial layer

34‧‧‧第四磊晶層 34‧‧‧ fourth epitaxial layer

38‧‧‧半導體裝置 38‧‧‧ semiconductor devices

B‧‧‧底面 B‧‧‧ bottom

C‧‧‧通道區 C‧‧‧Channel area

T‧‧‧頂面 T‧‧‧ top surface

Claims (20)

一種製作磊晶層的方法,包括:進行一第一磊晶成長製程,以於一基底上形成一第一磊晶層,其中該第一磊晶成長製程包括同時通入矽源、碳源、磷源以及鍺源等氣體,以使該第一磊晶層包括矽、碳、磷以及鍺;以及進行一第二磊晶成長製程形成一第二磊晶層,且該第二磊晶層包括的元素種類之數目小於該第一磊晶層包括的元素種類之數目。 A method for fabricating an epitaxial layer includes: performing a first epitaxial growth process to form a first epitaxial layer on a substrate, wherein the first epitaxial growth process includes simultaneously introducing a germanium source, a carbon source, a phosphorus source and a gas such as a germanium source, such that the first epitaxial layer includes germanium, carbon, phosphorus, and antimony; and performing a second epitaxial growth process to form a second epitaxial layer, and the second epitaxial layer includes The number of element types is smaller than the number of element types included in the first epitaxial layer. 如請求項1所述之製作磊晶層的方法,其中該第二磊晶成長製程包括同時通入矽源以及磷源等氣體,以使該第二磊晶層包括矽以及磷。 The method for fabricating an epitaxial layer according to claim 1, wherein the second epitaxial growth process comprises simultaneously introducing a gas such as a germanium source and a phosphorus source such that the second epitaxial layer comprises germanium and phosphorus. 如請求項1所述之製作磊晶層的方法,其中該第二磊晶成長製程包括同時通入矽源、磷源以及鍺源等氣體,以使該第二磊晶層包括矽、磷以及鍺。 The method for producing an epitaxial layer according to claim 1, wherein the second epitaxial growth process comprises simultaneously introducing a gas such as a germanium source, a phosphorus source, and a germanium source, so that the second epitaxial layer includes germanium, phosphorus, and germanium. 如請求項1所述之製作磊晶層的方法,其中該第二磊晶層形成於該第一磊晶層上。 The method of fabricating an epitaxial layer according to claim 1, wherein the second epitaxial layer is formed on the first epitaxial layer. 如請求項1所述之製作磊晶層的方法,另包括進行一第三磊晶成長製程形成一第三磊晶層,且該第三磊晶層包括的元素種類之數 目小於該第一磊晶層包括的元素種類之數目。 The method for fabricating an epitaxial layer according to claim 1, further comprising performing a third epitaxial growth process to form a third epitaxial layer, and the number of element types included in the third epitaxial layer The mesh is smaller than the number of element types included in the first epitaxial layer. 如請求項5所述之製作磊晶層的方法,其中該第三磊晶成長製程係進行於該第一磊晶成長製程之前,或進行該第一磊晶成長製程與該第二磊晶成長製程之間。 The method for producing an epitaxial layer according to claim 5, wherein the third epitaxial growth process is performed before the first epitaxial growth process, or the first epitaxial growth process and the second epitaxial growth process are performed. Between processes. 如請求項5所述之製作磊晶層的方法,其中該第三磊晶成長製程包括同時通入矽源、碳源以及磷源等氣體。 The method for producing an epitaxial layer according to claim 5, wherein the third epitaxial growth process comprises simultaneously introducing a gas such as a germanium source, a carbon source, and a phosphorus source. 如請求項5所述之製作磊晶層的方法,其中該第三磊晶成長製程包括同時通入矽源、碳源以及鍺源等氣體。 The method for producing an epitaxial layer according to claim 5, wherein the third epitaxial growth process comprises simultaneously introducing a gas such as a germanium source, a carbon source, and a germanium source. 如請求項8所述之製作磊晶層的方法,其中該第三磊晶層具有一碳摻雜濃度呈梯度變化。 The method of producing an epitaxial layer according to claim 8, wherein the third epitaxial layer has a carbon doping concentration in a gradient. 如請求項1所述之製作磊晶層的方法,其中該第一磊晶成長製程包括通入具有一流量隨時間改變的碳源氣體。 The method of producing an epitaxial layer according to claim 1, wherein the first epitaxial growth process comprises introducing a carbon source gas having a flow rate change with time. 如請求項1所述之製作磊晶層的方法,另包括進行一第四磊晶成長製程形成一第四磊晶層,其中該第四磊晶層僅包括矽。 The method for fabricating an epitaxial layer according to claim 1, further comprising performing a fourth epitaxial growth process to form a fourth epitaxial layer, wherein the fourth epitaxial layer comprises only germanium. 一種磊晶層,包括:一第一磊晶層,其中該第一磊晶層實質上包括矽、碳、磷以及鍺; 以及一第二磊晶層設置於該第一磊晶層上,其中該第二磊晶層包括的元素種類之數目小於該第一磊晶層包括的元素種類之數目。 An epitaxial layer includes: a first epitaxial layer, wherein the first epitaxial layer substantially comprises germanium, carbon, phosphorus, and antimony; And a second epitaxial layer is disposed on the first epitaxial layer, wherein the second epitaxial layer comprises a number of element types smaller than a number of element types included in the first epitaxial layer. 如請求項12所述之磊晶層,其中該第二磊晶層包括矽以及磷。 The epitaxial layer of claim 12, wherein the second epitaxial layer comprises germanium and phosphorus. 如請求項13所述之磊晶層,其中該第二磊晶層另包括鍺。 The epitaxial layer of claim 13, wherein the second epitaxial layer further comprises germanium. 如請求項12所述之磊晶層,另包括一第三磊晶層,其中該第三磊晶層包括的元素種類之數目實質上小於該第一磊晶層包括的元素種類之數目。 The epitaxial layer of claim 12, further comprising a third epitaxial layer, wherein the third epitaxial layer comprises a number of element types substantially smaller than the number of element types included in the first epitaxial layer. 如請求項15所述之磊晶層,其中該第三磊晶層設置於該第一磊晶層下方或設置於該第一磊晶層與該第二磊晶層之間。 The epitaxial layer of claim 15, wherein the third epitaxial layer is disposed under the first epitaxial layer or between the first epitaxial layer and the second epitaxial layer. 如請求項15所述之磊晶層,其中該第三磊晶層設置於該第一磊晶層下方,且該第三磊晶層之該碳摻雜濃度係沿該第三磊晶層之一底面往該第一磊晶層與該第三磊晶層之一交界面遞增。 The epitaxial layer of claim 15, wherein the third epitaxial layer is disposed under the first epitaxial layer, and the carbon doping concentration of the third epitaxial layer is along the third epitaxial layer A bottom surface increases in interface with one of the first epitaxial layer and the third epitaxial layer. 如請求項17所述之磊晶層,其中該第一磊晶層之該碳摻雜濃度係沿該第一磊晶層與該第三磊晶層之一交界面往該第一磊晶層與該第二磊晶層之一交界面的方向遞增。 The epitaxial layer of claim 17, wherein the carbon doping concentration of the first epitaxial layer is along the interface between the first epitaxial layer and the third epitaxial layer to the first epitaxial layer The direction of the interface with one of the second epitaxial layers is increased. 如請求項12所述之磊晶層,其中該第一磊晶層的材質組成係以矽碳磷鍺(SiCxPyGez)表示,且x值實質上大於z值。 The epitaxial layer of claim 12, wherein the material composition of the first epitaxial layer is represented by bismuth carbon bismuth (SiC x P y Ge z ), and the value of x is substantially greater than the value of z. 如請求項12所述之磊晶層,另包括一第四磊晶層設置於該第二磊晶層上,且該第四磊晶層僅包括矽。 The epitaxial layer according to claim 12, further comprising a fourth epitaxial layer disposed on the second epitaxial layer, wherein the fourth epitaxial layer comprises only germanium.
TW101141311A 2012-11-07 2012-11-07 Epitaxial layer and method of forming the same TWI544623B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101141311A TWI544623B (en) 2012-11-07 2012-11-07 Epitaxial layer and method of forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101141311A TWI544623B (en) 2012-11-07 2012-11-07 Epitaxial layer and method of forming the same

Publications (2)

Publication Number Publication Date
TW201419527A true TW201419527A (en) 2014-05-16
TWI544623B TWI544623B (en) 2016-08-01

Family

ID=51294474

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101141311A TWI544623B (en) 2012-11-07 2012-11-07 Epitaxial layer and method of forming the same

Country Status (1)

Country Link
TW (1) TWI544623B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10164098B2 (en) 2016-06-30 2018-12-25 Taiwan Semiconductor Manufacturing Company, Ltd. Method of manufacturing semiconductor device
TWI661472B (en) * 2016-11-03 2019-06-01 南韓商優吉尼科技股份有限公司 Method for forming epitaxial layer at low temperature
CN109950151A (en) * 2017-12-20 2019-06-28 中芯国际集成电路制造(上海)有限公司 PMOS transistor and forming method thereof
US10840355B2 (en) 2018-05-01 2020-11-17 Taiwan Semiconductor Manufacturing Company, Ltd. Increasing source/drain dopant concentration to reduced resistance
CN112201691A (en) * 2020-09-28 2021-01-08 上海华力集成电路制造有限公司 Germanium-silicon source drain structure and manufacturing method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11069810B2 (en) 2016-06-30 2021-07-20 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device having a shaped epitaxial region
US10505042B2 (en) 2016-06-30 2019-12-10 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device having a shaped epitaxial region
TWI682441B (en) * 2016-06-30 2020-01-11 台灣積體電路製造股份有限公司 Semiconductor devices and methods for fabricating the same
US10164098B2 (en) 2016-06-30 2018-12-25 Taiwan Semiconductor Manufacturing Company, Ltd. Method of manufacturing semiconductor device
TWI661472B (en) * 2016-11-03 2019-06-01 南韓商優吉尼科技股份有限公司 Method for forming epitaxial layer at low temperature
CN109891555A (en) * 2016-11-03 2019-06-14 株式会社Eugene科技 Low temperature epilayer forming method
CN109891555B (en) * 2016-11-03 2022-11-08 株式会社Eugene科技 Low temperature epitaxial layer forming method
CN109950151A (en) * 2017-12-20 2019-06-28 中芯国际集成电路制造(上海)有限公司 PMOS transistor and forming method thereof
US10840355B2 (en) 2018-05-01 2020-11-17 Taiwan Semiconductor Manufacturing Company, Ltd. Increasing source/drain dopant concentration to reduced resistance
TWI729385B (en) * 2018-05-01 2021-06-01 台灣積體電路製造股份有限公司 Semiconductor device and fabrication method thereof
US10847638B2 (en) 2018-05-01 2020-11-24 Taiwan Semiconductor Manufacturing Company, Ltd. Increasing source/drain dopant concentration to reduced resistance
US11830934B2 (en) 2018-05-01 2023-11-28 Taiwan Semiconductor Manufacturing Company, Ltd. Increasing source/drain dopant concentration to reduced resistance
CN112201691A (en) * 2020-09-28 2021-01-08 上海华力集成电路制造有限公司 Germanium-silicon source drain structure and manufacturing method thereof

Also Published As

Publication number Publication date
TWI544623B (en) 2016-08-01

Similar Documents

Publication Publication Date Title
TWI689971B (en) Forming non-line-of-sight source drain extension in an nmos finfet using n-doped selective epitaxial growth
US9514995B1 (en) Implant-free punch through doping layer formation for bulk FinFET structures
JP4345774B2 (en) Manufacturing method of semiconductor device
US10115826B2 (en) Semiconductor structure and the manufacturing method thereof
US10516048B2 (en) Fabrication of semiconductor device
TWI540728B (en) Integrated circuit structure and method for fabricating the same
TWI458096B (en) Semiconductor device and method of manufacturing the same
TWI484633B (en) Intermediate product for a multichannel fet and process for obtaining an intermediate product
US9034706B2 (en) FinFETs with regrown source/drain and methods for forming the same
US7670934B1 (en) Methods for fabricating MOS devices having epitaxially grown stress-inducing source and drain regions
US10134897B2 (en) Semiconductor device and fabrication method thereof
US9985117B2 (en) Method and structure for forming dielectric isolated finFET with improved source/drain epitaxy
KR101639484B1 (en) Semiconductor device structure and method for manufacturing the same
CN109427591B (en) Semiconductor device and method of forming the same
US10205002B2 (en) Method of epitaxial growth shape control for CMOS applications
TWI544623B (en) Epitaxial layer and method of forming the same
US8928126B2 (en) Epitaxial layer
US20160149003A1 (en) Methods of Manufacturing Semiconductor Devices
TWI812984B (en) Method of forming strained channel layer
CN106910715B (en) Semiconductor device and manufacturing method thereof
JP2008078519A (en) Method for manufacturing semiconductor device
CN109524306B (en) Method for forming transistor
JP2009176876A (en) Semiconductor device