TW201414888A - A method for fabricating III-nitride with zinc-blende structure and an epitaxy structure having III-nitride with zinc-blende structure - Google Patents

A method for fabricating III-nitride with zinc-blende structure and an epitaxy structure having III-nitride with zinc-blende structure Download PDF

Info

Publication number
TW201414888A
TW201414888A TW101136739A TW101136739A TW201414888A TW 201414888 A TW201414888 A TW 201414888A TW 101136739 A TW101136739 A TW 101136739A TW 101136739 A TW101136739 A TW 101136739A TW 201414888 A TW201414888 A TW 201414888A
Authority
TW
Taiwan
Prior art keywords
group iii
zinc
iii nitride
sphalerite
gallium
Prior art date
Application number
TW101136739A
Other languages
Chinese (zh)
Other versions
TWI456094B (en
Inventor
I-Kai Lo
Cheng-Hung Shih
Wen-Yuan Pang
Yu-Chi Hsu
Original Assignee
Univ Nat Sun Yat Sen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Sun Yat Sen filed Critical Univ Nat Sun Yat Sen
Priority to TW101136739A priority Critical patent/TWI456094B/en
Publication of TW201414888A publication Critical patent/TW201414888A/en
Application granted granted Critical
Publication of TWI456094B publication Critical patent/TWI456094B/en

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Abstract

A method for fabricating III-nitride with zinc-blende structure is disclosed. The method prepares a γ -Ga2O3 substrate and controls the fabrication temperature as being lower than 420 degree Celsius, with a ratio of III-group elements to nitride being less than 2.0 to epitaxy grow a layer of III-nitride with zinc-blende structure on the γ -Ga2O3 substrate. Furthermore, an epitaxy structure having III-nitride with the zinc-blende structure is disclosed. The epitaxy structure comprises a γ -Ga2O3 substrate and a layer of III-nitride with zinc-blende structure. The γ -Ga2O3 substrate has a surface on which the layer of III-nitride is mounted.

Description

閃鋅礦結構三族氮化物之製造方法及具有閃鋅礦結構三族氮 化物之磊晶結構 Method for producing zinc-mineral structure tri-family nitride and tri-family nitrogen having sphalerite structure Epitaxial structure

本發明係關於一種閃鋅礦結構三族氮化物之製造方法,尤其是,一種在三氧化二鎵基材上成長閃鋅礦結構三族氮化物之方法。 The present invention relates to a method for producing a zinc oxide structure of a zinc blende structure, and more particularly to a method for growing a zinc oxide structure of a zinc oxide structure on a gallium trioxide substrate.

按,由於氮化鎵(GaN)、氮化鋁(AlN)、氮化銦(InN)及其合金氮化鋁鎵(AlGaN)、氮化銦鎵(InGaN)、氮化鋁銦(AlInN)等三族氮化物(III-Nitride)半導體具有直接寬能隙之特性,因此,可用於製造發光元件,例如:發光二極體(LEDs)或雷射二極體(LDs)等,後續係以相關文件舉例說明三族氮化物半導體之特性,如表一所示: According to gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN) and its alloys, aluminum gallium nitride (AlGaN), indium gallium nitride (InGaN), aluminum indium nitride (AlInN), etc. Group III nitride (III-Nitride) semiconductors have the characteristics of direct wide band gap and, therefore, can be used to fabricate light-emitting elements such as light-emitting diodes (LEDs) or laser diodes (LDs), etc. The document gives an example of the characteristics of a Group III nitride semiconductor, as shown in Table 1:

由表一所列文件可以得知,三族氮化物半導體的穩定晶體結構為纖鋅礦結構(wurtzite structure)【詳見引用文件1】。然而,以纖鋅礦結構三族氮化物半導體製作的發光元件,在晶體c軸方向將受到強大的內建電場影響,使發光元件的量子井能帶結構傾斜,導致發光效率降低,此現象稱為量子侷限史塔克效應(Quantum Confined Stark Effect,QCSE)【詳見引用文件2】。 It can be known from the documents listed in Table 1 that the stable crystal structure of the Group III nitride semiconductor is a wurtzite structure [see Reference 1]. However, a light-emitting element made of a wurtzite-structured group III nitride semiconductor is affected by a strong built-in electric field in the c-axis direction of the crystal, and the quantum well band structure of the light-emitting element is tilted, resulting in a decrease in luminous efficiency. For the Quantum Confined Stark Effect (QCSE) [see Reference 2].

為了避免上述量子侷限史塔克效應,可將量子井成長在非極性(non-polar)(即M-plane及A-plane的GaN)或半極性(semi-polar)(即非[0001]方向的GaN薄膜),用以消除晶體內部靜電場所導致的能帶位移問題【詳見引用文件3】。其中,儘管非極性GaN(即M-plane及A-plane GaN)能克服內建電場的影響。然而,由於a軸與c軸晶體成長速率差異性大,將導致晶格不匹配(mismatch),而產生大量晶格缺陷。 In order to avoid the above-mentioned quantum-limited Stark effect, quantum wells can be grown in non-polar (ie, M-plane and A-plane GaN) or semi-polar (ie, non-[0001] directions). The GaN film) is used to eliminate the band displacement problem caused by the electrostatic field inside the crystal [see Reference 3]. Among them, although non-polar GaN (ie, M-plane and A-plane GaN) can overcome the influence of built-in electric field. However, since the a-axis and c-axis crystal growth rates differ greatly, lattice mismatch will result, resulting in a large number of lattice defects.

為了克服晶體成長速率差異所造成的問題,可將三族氮化物半導體成長為閃鋅礦(zinc-blende)結構,用以形成立方體(cubic)結構。然而,閃鋅礦結構三族氮化物半導體在自然界為不穩定的晶體結構,不易在高溫環境下(大於420℃)成長,且成長的製程條件控制不易【詳見引用文件 4】。倘若採用習知三族氮化物磊晶成長技術,例如:氫化物氣相磊晶法(Hydride Vapor Phase Epitaxy,HVPE)或有機金屬氣相磊晶法(Metal-Organic Vapor Phase Epitaxy,MOVPE)等,由於磊晶過程的溫度變化較大,使閃鋅礦結構三族氮化物半導體容易轉為纖鋅礦結構,因此,不易得到單一相(phase)的閃鋅礦結構三族氮化物磊晶薄膜【詳見引用文件5】。有鑑於此,唯有採用分子束磊晶法(Molecular Beam Epitaxy,MBE),方能在低溫環境下(約小於420℃)成長閃鋅礦結構三族氮化物半導體【詳見引用文件6】。 In order to overcome the problems caused by the difference in crystal growth rate, the Group III nitride semiconductor can be grown into a zinc-blende structure for forming a cubic structure. However, the sphalerite structure of the Group III nitride semiconductor is an unstable crystal structure in nature, and is not easily grown in a high temperature environment (greater than 420 ° C), and the growth process conditions are not easily controlled [see the reference document for details). 4]. If a conventional trigonal nitride epitaxial growth technique, such as Hydride Vapor Phase Epitaxy (HVPE) or Metal-Organic Vapor Phase Epitaxy (MOVPE), Due to the large temperature change of the epitaxial process, the zinc-phosphorus structure of the sphalerite structure is easily converted into a wurtzite structure, and therefore, it is difficult to obtain a single phase phase of the sphalerite structure of the group III nitride epitaxial film. See Ref. 5 for details. In view of this, only the Molecular Beam Epitaxy (MBE) can be used to grow a sphalerite-structured Group III nitride semiconductor in a low temperature environment (about less than 420 ° C) [see Reference 6].

其中,該閃鋅礦結構三族氮化物半導體製造成功與否的條件,除了磊晶技術之外,基板與三族氮化物薄膜之間的晶格匹配程度乃是磊晶成長過程中最重要的因素。 Among them, the conditions for the success or failure of the sphalerite structure of the Group III nitride semiconductor, in addition to the epitaxial technique, the degree of lattice matching between the substrate and the Group III nitride film is the most important during the epitaxial growth process. factor.

舉例而言,以目前最常用於成長基板的砷化鎵(GaAs)(100)、碳化矽(3C-SiC)(100)及氧化鎂(MgO)(100)【詳見引用文件7~9】為例,其中,3C-SiC與GaN或AlN之間晶格匹配程度較佳,惟,3C-SiC的能隙值為2.35 eV,其波長527.6奈米(nm)屬於黃光波長的範圍,倘若發光元件所發出的可見光波長小於527.6奈米,則該可見光將被3C-SiC基板吸收,並且,由於SiC單晶製造溫度高,及其結構為多相(Poly-type)結晶結構等因素,因此基板的取得不易及價格相對較高。另外,採用砷化鎵基板則會造成砷元素析出(造成污染)及晶格匹配程度不佳等現象,而採用氧化鎂基板則因其製造溫度高,同樣不利成長閃鋅礦結構三族氮化物。此外,矽(Si)亦可作為三族氮化物磊 晶基材,惟其製作過程繁複,不易降低製造成本。 For example, gallium arsenide (GaAs) (100), tantalum carbide (3C-SiC) (100), and magnesium oxide (MgO) (100), which are currently most commonly used for growing substrates [see Ref. 7~9] For example, the degree of lattice matching between 3C-SiC and GaN or AlN is better. However, the band gap of 3C-SiC is 2.35 eV, and the wavelength of 527.6 nm (nm) belongs to the range of yellow wavelength. When the visible light wavelength emitted by the light-emitting element is less than 527.6 nm, the visible light will be absorbed by the 3C-SiC substrate, and since the SiC single crystal is manufactured at a high temperature and its structure is a poly-type crystal structure, etc., The acquisition of the substrate is not easy and the price is relatively high. In addition, the use of gallium arsenide substrate causes arsenic precipitation (contamination) and poor lattice matching, and the use of magnesium oxide substrate is also disadvantageous for the growth of zinc blende structure tri-family due to its high manufacturing temperature. . In addition, bismuth (Si) can also be used as a tri-family nitride Crystal substrate, but its production process is complicated, it is not easy to reduce manufacturing costs.

綜上所述,習知三族氮化物製造方法除了「不易成長閃鋅礦結構三族氮化物」之外,仍有「吸收可見光」、「造成污染」及「製作過程繁複」等疑慮,在實際使用時更衍生不同限制與缺點,確有不便之處,亟需進一步改良,以提升其實用性。 In summary, in addition to the "three types of nitrides that do not easily grow sphalerite structure", there are still doubts about "absorbing visible light", "causing pollution" and "manufacturing process". In actual use, different limitations and shortcomings are derived. There are inconveniences and further improvements are needed to enhance their practicality.

本發明之目的乃改良上述缺點,以提供一種閃鋅礦結構三族氮化物之製造方法,採用γ相三氧化二鎵作為成長閃鋅礦結構三族氮化物的基材,以減少閃鋅礦結構三族氮化物的晶格缺陷,可有效改善發光元件之發光效率。 The object of the present invention is to improve the above disadvantages to provide a method for producing a zinc oxide structure of a zinc blende structure, using gamma-phase gallium trioxide as a substrate for growing a zinc blende structure of a zinc blende structure to reduce sphalerite The lattice defects of the structure tri-family nitride can effectively improve the luminous efficiency of the light-emitting element.

本發明之次一目的係提供一種具有閃鋅礦結構三族氮化物之磊晶結構,使用γ相三氧化二鎵作為基材,以減少閃鋅礦結構三族氮化物薄膜內的晶格缺陷,可用以改善發光元件之發光效率。 A second object of the present invention is to provide an epitaxial structure having a sphalerite structure of a group III nitride, using gamma phase gallium dioxide as a substrate to reduce lattice defects in a zinc oxide structure of a zinc oxide structure. It can be used to improve the luminous efficiency of the light-emitting element.

本發明之閃鋅礦結構三族氮化物之製造方法,其步驟係包含:備妥一γ相三氧化二鎵基材;及控制製程溫度小於420度,且周圍環境中三族元素與氮之比值小於2.0,使一閃鋅礦結構三族氮化物層磊晶成長於該γ相三氧化二鎵基材。 The method for manufacturing a sphalerite structure group III nitride of the present invention comprises the steps of: preparing a gamma-phase di-gallium oxide substrate; and controlling the process temperature to be less than 420 degrees, and the tri-family elements and nitrogen in the surrounding environment The ratio is less than 2.0, and the tri-semenide layer of a sphalerite structure is epitaxially grown on the gamma-phase gallium oxide substrate.

其中,該閃鋅礦結構三族氮化物層之成長溫度為350至420度。 Wherein, the zinc trichloride structure tri-family nitride layer has a growth temperature of 350 to 420 degrees.

其中該三族元素與氮之比值的範圍為1.0至2.0。 Wherein the ratio of the triad element to nitrogen ranges from 1.0 to 2.0.

其中,該閃鋅礦結構三族氮化物層為一閃鋅礦結構氮 化鎵層。 Wherein the sphalerite structure tri-family nitride layer is a sphalerite structure nitrogen Gallium layer.

其中,該閃鋅礦結構三族氮化物層為一閃鋅礦結構氮化鋁層。 Wherein, the zinc-nitride structure group III nitride layer is a sphalerite structure aluminum nitride layer.

其中,該閃鋅礦結構三族氮化物層為一閃鋅礦結構氮化銦層。 Wherein, the tribolite layer of the sphalerite structure is a zinc iodide structure indium nitride layer.

其中,該閃鋅礦結構三族氮化物層為一閃鋅礦結構氮化鋁鎵層。 Wherein, the zinc trichloride nitride layer of the sphalerite structure is a sphalerite structure aluminum nitride gallium layer.

其中,該閃鋅礦結構三族氮化物層為一閃鋅礦結構氮化銦鎵層。 Wherein, the tribolite layer of the sphalerite structure is a zinc oxide structure indium gallium nitride layer.

其中,該閃鋅礦結構三族氮化物層為一閃鋅礦結構氮化鋁銦層。 Wherein, the tribolite layer of the sphalerite structure is a zinc iodide layer of a sphalerite structure.

其中,該γ相三氧化二鎵基材經過氮化處理,而形成一氮化鎵緩衝層,該閃鋅礦結構三族氮化物層磊晶成長於該氮化鎵緩衝層。 Wherein, the gamma-phase digallium trioxide substrate is subjected to nitriding treatment to form a gallium nitride buffer layer, and the sphalerite structure group III nitride layer is epitaxially grown on the gallium nitride buffer layer.

其中,該γ相三氧化二鎵基材之製備方式係於真空環境中,將一β相鎵酸鋰基材進行一退火過程,使該β相鎵酸鋰基材轉變為該γ相三氧化二鎵基材。 Wherein, the γ-phase gallium oxide gallium substrate is prepared in a vacuum environment, and an β-phase lithium gallate substrate is subjected to an annealing process to convert the β-phase lithium gallate substrate into the γ phase three-oxide Two gallium substrates.

一種具有閃鋅礦結構三族氮化物之磊晶結構,包含:一γ相三氧化二鎵基材,具有一成長表面;及一閃鋅礦結構三族氮化物層,係設於該γ相三氧化二鎵基材之成長表面。 An epitaxial structure having a zinc-mineral structure of a group III nitride, comprising: a gamma-phase gallium oxide substrate having a grown surface; and a sphalerite structure group III nitride layer disposed in the gamma phase III The growth surface of the GaN substrate.

其中,該γ相三氧化二鎵基材設有一氮化鎵緩衝層,該成長表面位於該氮化鎵緩衝層之表面。 Wherein, the γ phase gallium oxide gallium substrate is provided with a gallium nitride buffer layer, and the growth surface is located on the surface of the gallium nitride buffer layer.

為讓本發明之上述及其他目的、特徵及優點能更明顯易懂,下文特舉本發明之較佳實施例,並配合所附圖式,作詳細說明如下:本發明全文所述之「退火」(annealing),係指將一種材料暴露於一高溫環境中,待經過一段時間後,再慢慢冷卻的熱處理過程,包含三個階段:將該材料加熱至一加熱溫度、保持或浸漬(soaking)於該欲加熱溫度、將該材料冷卻至一冷卻溫度(例如:室溫等),係本發明所屬技術領域中具有通常知識者可以理解。 The above and other objects, features and advantages of the present invention will become more <RTIgt; (annealing) means a heat treatment process in which a material is exposed to a high temperature environment and then slowly cooled after a period of time, comprising three stages: heating the material to a heating temperature, holding or dipping (soaking) It is understood by those of ordinary skill in the art to which the temperature is to be heated and the material is cooled to a cooling temperature (e.g., room temperature, etc.).

本發明全文所述之「氮化」(nitridation),係指在一定溫度及一定介質的條件下,使氮原子與欲氮化處理之材料反應形成氮化物之表面處理技術,係本發明所屬技術領域中具有通常知識者可以理解。 The term "nitridation" as used throughout the present invention refers to a surface treatment technique in which a nitrogen atom is reacted with a material to be nitrided to form a nitride under conditions of a certain temperature and a certain medium, and is a technique of the present invention. Those with ordinary knowledge in the field can understand.

請參閱第1圖所示,其係本發明之閃鋅礦結構三族氮化物之製造方法較佳實施例的製造流程圖,其中,本發明之閃鋅礦結構三族氮化物之製造方法可藉由習知電漿輔助分子束磊晶系統(Plasma Assisted Molecular Beam Epitaxy,PA-MBE)進行後續所述步驟S1及S2,其中習知電漿輔助分子束磊晶系統之結構及操作方法係熟知該項技藝者可以理解,在此容不贅述。 Please refer to FIG. 1 , which is a manufacturing flow diagram of a preferred embodiment of a method for producing a zinc-series structure of a zinc blende structure according to the present invention, wherein the method for producing a zinc-series structure of a zinc-zinc structure of the present invention can be The subsequent steps S1 and S2 are performed by a conventional Plasma Assisted Molecular Beam Epitaxy (PA-MBE), wherein the structure and operation method of the conventional plasma assisted molecular beam epitaxy system are well known. The artist can understand that it is not described here.

該步驟S1,係備妥一γ相三氧化二鎵基材(γ-phase gallium oxide substrate,γ-Ga2O3)。詳言之,該γ相三氧化二鎵基材可以取自製備完成之γ相三氧化二鎵基板,或者,採用自行製備的方式,較佳於真空環境中,將一β相鎵酸鋰(β-LiGaO2)基材進行一退火過程,使該β相鎵酸 鋰基材轉變為該γ相三氧化二鎵基材,其中,進行該退火過程所需設備及技術係本發明所屬技術領域中具有通常知識者可以理解,在此僅舉一例進行說明。 In the step S1, a γ-phase gallium oxide substrate (γ-Ga 2 O 3 ) is prepared. In detail, the γ phase gallium oxide gallium substrate can be taken from the prepared γ phase gallium oxide gallium substrate, or a self-prepared manner, preferably in a vacuum environment, a β-phase lithium gallate ( The β-LiGaO 2 substrate is subjected to an annealing process to convert the β-phase lithium gallate substrate into the γ-phase gallium oxide gallium substrate, wherein the equipment and technology required for performing the annealing process are technical fields to which the present invention pertains Those having ordinary knowledge can understand that only one example will be described here.

舉例而言,首先,將該β相鎵酸鋰基板加熱至一加熱溫度,例如:850至1100度(℃),接著,將該β相鎵酸鋰基板保持於該加熱溫度,待經過一保持時間,例如:2小時,之後,將該β相鎵酸鋰基板冷卻至一冷卻溫度,例如:25度),使該β相鎵酸鋰基板分解出鋰原子,而形成該γ相三氧化二鎵基材1(如第2圖所示),該γ相三氧化二鎵基材1具有一成長表面11,用以磊晶成長具有閃鋅礦結構之三族氮化物(III-nitride with zinc-blende structure)。 For example, first, the β-phase lithium gallate substrate is heated to a heating temperature, for example, 850 to 1100 degrees (° C.), and then the β-phase lithium gallate substrate is maintained at the heating temperature until a hold is maintained. Time, for example: 2 hours, after which the β-phase lithium gallate substrate is cooled to a cooling temperature, for example, 25 degrees), and the β-phase lithium gallate substrate is decomposed into lithium atoms to form the γ phase trioxide Gallium substrate 1 (as shown in Fig. 2), the γ phase gallium oxide substrate 1 has a growth surface 11 for epitaxial growth of a group III nitride having a sphalerite structure (III-nitride with zinc -blende structure).

其中,當該γ相三氧化二鎵基材1備妥後,較佳將該γ相三氧化二鎵基材1經過氮化處理,而使該γ相三氧化二鎵基材1形成一氮化鎵緩衝層12(GaN buffering layer),其中該成長表面11位於該氮化鎵緩衝層12之表面,由於該氮化鎵緩衝層12中具有氮原子,因此,該氮化鎵緩衝層12可用以成長上述具有閃鋅礦結構之三族氮化物,進而減少該γ相三氧化二鎵基材1與其生成物(例如:上述具有閃鋅礦結構之三族氮化物)兩者之間的晶格缺陷。 Wherein, after the gamma-phase di-arsenide substrate 1 is prepared, the gamma-phase di-arsenide substrate 1 is preferably subjected to nitriding treatment, so that the γ-phase gallium oxide substrate 1 forms a nitrogen. a GaN buffering layer 12, wherein the growth surface 11 is located on the surface of the gallium nitride buffer layer 12. Since the gallium nitride buffer layer 12 has nitrogen atoms, the gallium nitride buffer layer 12 can be used. To grow the above-mentioned group III nitride having a zinc blende structure, thereby reducing the crystal between the gamma-phase di-gallium oxide substrate 1 and its product (for example, the above-mentioned group III nitride having a zinc blende structure) Defects.

該步驟S2,係滿足一閃鋅礦結構成長條件,使一閃鋅礦結構三族氮化物層磊晶成長於該γ相三氧化二鎵基材,例如:閃鋅礦結構氮化鎵層(GaN)、氮化鋁層(AlN)、氮化銦層(InN)、氮化鋁鎵層(AlGaN)、氮化銦鎵層(InGaN)或氮化鋁銦層(AlInN)等半導體薄膜,惟不以此為限。其中,該閃鋅礦結構成長條件係指在磊晶成長三族氮化物的 過程中,倘若控制製程溫度小於420度(℃),且周圍環境中三族(IIIA)元素與氮之比值小於2.0,則可使該閃鋅礦結構三族氮化物層磊晶成長在該γ相三氧化二鎵基材上,其中該三族氮化物在成長過程中將會穩定地形成閃鋅礦結構,而不會轉變為纖鋅礦結構,其係本發明所屬技術領域中具有通常知識者可以理解,在此容不贅述。在此實施例中,該三族元素係以鎵(Ga)元素為例,用以製造該閃鋅礦結構氮化鎵層,其他閃鋅礦結構三族氮化物層的製造方式可依此類推。其中,藉由習知電漿輔助分子束磊晶系統(圖未繪示),可在一個含有鎵元素環境(Ga-rich condition)中,例如:在鎵/氮比(Ga/N ratio)的範圍為1.0至2.0的環境中,保持該環境的溫度於一成長溫度,例如:350至420度,使該γ相三氧化二鎵基材1上磊晶成長該閃鋅礦結構三族氮化物層2(如第2圖所示),例如:閃鋅礦結構三族氮化物薄膜,使該γ相三氧化二鎵基材1與閃鋅礦結構三族氮化物層2共同構成一個具有閃鋅礦結構三族氮化物之磊晶結構,例如:磊晶薄膜等,其中,在上述磊晶成長過程中,由於環境的溫度保持於該成長溫度,可確保該閃鋅礦結構三族氮化物層2不會轉變為纖鋅礦結構。 The step S2 satisfies the growth condition of a sphalerite structure, and epitaxially grows a tri-semenide layer of a sphalerite structure on the gamma-phase gallium oxide substrate, for example, a sphalerite structure gallium nitride layer (GaN). a semiconductor film such as an aluminum nitride layer (AlN), an indium nitride layer (InN), an aluminum gallium nitride layer (AlGaN), an indium gallium nitride layer (InGaN), or an aluminum indium nitride layer (AlInN), but This is limited. Wherein, the sphalerite structure growth condition refers to the epitaxial growth of the group III nitride In the process, if the control process temperature is less than 420 degrees (° C.), and the ratio of the tri-group (IIIA) element to nitrogen in the surrounding environment is less than 2.0, the sphalerite structure tri-family nitride layer can be epitaxially grown in the γ On a phase of a gallium trioxide substrate, wherein the group III nitride will stably form a zinc blende structure during growth without being converted into a wurtzite structure, which has the usual knowledge in the technical field to which the present invention pertains. It can be understood that it is not described here. In this embodiment, the tri-group element is exemplified by a gallium (Ga) element for fabricating the sphalerite structure gallium nitride layer, and the other sphalerite structure tri-family nitride layer can be manufactured in the same manner. . Wherein, a conventional plasma assisted molecular beam epitaxy system (not shown) can be used in a Ga-rich condition, for example, in a gallium/nitrogen ratio (Ga/N ratio). In an environment having a range of 1.0 to 2.0, maintaining the temperature of the environment at a growth temperature, for example, 350 to 420 degrees, causing epitaxial growth of the gamma-phase gallium oxide substrate 1 to the sphalerite structure group III nitride Layer 2 (as shown in Fig. 2), for example, a sphalerite structure of a group III nitride film, such that the gamma phase gallium oxide substrate 1 and the sphalerite structure group III nitride layer 2 together form a flash An epitaxial structure of a group III nitride of a zinc ore structure, for example, an epitaxial film, etc., wherein during the epitaxial growth process, since the temperature of the environment is maintained at the growth temperature, the trigonal nitride of the sphalerite structure can be ensured. Layer 2 does not transform into a wurtzite structure.

請參閱第3a圖所示,其係本發明之閃鋅礦結構氮化鎵層磊晶成長於γ相三氧化二鎵基板之TEM明視野圖。第3a圖中的DP01為閃鋅礦結構氮化鎵層之選區繞射圖(如第3b圖所示),第3a圖中的DP02為閃鋅礦結構氮化鎵層與γ相三氧化二鎵基材之界面繞射圖(如第3c圖所示), 第3a圖中的DP03為γ相三氧化二鎵基材之選區繞射圖(如第3d圖所示),在第3c圖中,紅色虛線及黃色虛線分別代表γ相三氧化二鎵及閃鋅礦結構氮化鎵之所屬晶格繞射點位置,由於圖中的紅色虛線及黃色虛線幾乎重疊,顯示該閃鋅礦結構氮化鎵層之晶格(如第3e圖所示)與γ相三氧化二鎵之晶格(如第3f圖所示)大小相近,因此,可以得知γ相三氧化二鎵非常適合作為成長閃鋅礦結構氮化鎵磊晶薄膜的基板。藉由本發明之閃鋅礦結構三族氮化物之製造方法較佳實施例所揭示的步驟,確實可以在該γ相三氧化二鎵基材(γ-Ga2O3)(100)上磊晶成長該閃鋅礦結構氮化鎵層(zb-GaN)(100)。 Please refer to FIG. 3a, which is a TEM bright-field view of the episulfide structure of the zinc nitride layer of the present invention, which is epitaxially grown on a gamma-phase gallium oxide substrate. DP01 in Fig. 3a is a selected area diffraction pattern of a sphalerite structure gallium nitride layer (as shown in Fig. 3b), and DP02 in Fig. 3a is a sphalerite structure gallium nitride layer and γ phase trioxide The interfacial diffraction pattern of the gallium substrate (as shown in Fig. 3c), DP03 in Fig. 3a is the selected area diffraction pattern of the gamma phase galvanic oxide substrate (as shown in Fig. 3d), in Fig. 3c In the middle, the red dotted line and the yellow dotted line respectively represent the lattice diffraction point positions of the γ phase gallium oxide and the zinc blende structure gallium nitride, and the zinc blende structure is shown because the red dotted line and the yellow dotted line in the figure almost overlap. The lattice of the gallium nitride layer (as shown in Fig. 3e) is similar to the lattice of the gamma-phase gallium trioxide (as shown in Fig. 3f). Therefore, it can be known that the gamma-phase gallium oxide is very suitable as A substrate for growing a sphalerite structure of a gallium nitride epitaxial film. By the steps disclosed in the preferred embodiment of the method for producing a zinc oxide structure of a zinc blende structure of the present invention, it is indeed possible to epitaxially crystallize the gamma-phase gallium oxide substrate (γ-Ga 2 O 3 ) (100). The sphalerite structure gallium nitride layer (zb-GaN) (100) is grown.

同理,若將該環境中的元素換為氮及鋁,即可成長閃鋅礦結構氮化鋁層;若將該環境中的元素換為氮及銦,即可成長閃鋅礦結構氮化銦層;若將該環境中的元素換為氮、鋁及鎵,即可成長閃鋅礦結構氮化鋁鎵層;若將該環境中的元素換為氮、銦及鎵,即可成長閃鋅礦結構氮化銦鎵層;若將該環境中的元素換為氮、鋁及銦,即可成長閃鋅礦結構氮化鋁銦層。 Similarly, if the elements in the environment are replaced by nitrogen and aluminum, the zinc nitride structure aluminum nitride layer can be grown; if the elements in the environment are replaced by nitrogen and indium, the zinc sulfide structure nitridation can be grown. Indium layer; if the elements in the environment are replaced by nitrogen, aluminum and gallium, the zinc nitride structure of the zinc blende structure can be grown; if the elements in the environment are replaced by nitrogen, indium and gallium, it can be grown. The indium gallium nitride layer of the zinc ore structure; if the elements in the environment are replaced by nitrogen, aluminum and indium, the zinc nitride indium nitride layer of the zinc blende structure can be grown.

此外,以下係舉例說明該γ相三氧化二鎵(γ-Ga2O3)基材與閃鋅礦結構氮化鎵層(zb-GaN)、氮化鋁層(zb-AlN)及氮化銦層(zb-InN)之間的晶格匹配程度。 In addition, the following is an example of the γ-phase gallium oxide (γ-Ga 2 O 3 ) substrate and a zinc blende structure gallium nitride layer (zb-GaN), an aluminum nitride layer (zb-AlN), and nitridation. The degree of lattice matching between indium layers (zb-InN).

如表二所示,在閃鋅礦結構氮化鎵層、氮化鋁層及氮化銦層之中,晶格不匹配率的最小值僅為6%,因此,本發明之閃鋅礦結構三族氮化物之製造方法,利用該γ相三氧化二鎵基材成長該閃鋅礦結構三族氮化物層,使該閃鋅礦結構三族氮化物層與γ相三氧化二鎵基材之間的晶格缺陷減少,可用於製作閃鋅礦結構三族氮化物半導體元件(III-nitride semiconductor device),例如:發光二極體或雷射二極體等發光元件,進而提升該發光元件之發光效率。其中,倘若該閃鋅礦結構三族氮化物層2係成長於該γ相三氧化二鎵基材1之氮化鎵緩衝層12上,則可進一步減少該閃鋅礦結構三族氮化物層2與該γ相三氧化二鎵基材1之間的晶格缺陷。 As shown in Table 2, among the sphalerite structure gallium nitride layer, the aluminum nitride layer and the indium nitride layer, the minimum lattice mismatch ratio is only 6%, and therefore, the sphalerite structure of the present invention a method for producing a group III nitride, using the γ phase gallium oxide gallium substrate to grow the zinc blende structure group III nitride layer, and the zinc blende structure group III nitride layer and the γ phase gallium oxide gallium substrate The reduction of lattice defects between the three can be used to fabricate a III-nitride semiconductor device, such as a light-emitting diode such as a light-emitting diode or a laser diode, thereby enhancing the light-emitting element. Luminous efficiency. Wherein, if the sphalerite structure group III nitride layer 2 is grown on the gallium nitride buffer layer 12 of the gamma phase gallium oxide gallium substrate 1, the zinc sulfide structure group III nitride layer can be further reduced. 2 a lattice defect between the gamma phase gallium oxide substrate 1 and the gamma phase.

藉由前揭之技術手段,本發明之閃鋅礦結構三族氮化物之製造方法較佳實施例的主要特點列舉如下:採用習知電漿輔助分子束磊晶系統,可在該成長溫度介於350至600度的條件下,在該γ相三氧化二鎵基材上成長該閃鋅礦結構氮化鎵層(GaN)、氮化鋁層(AlN)、氮化銦層(InN)、氮化鋁鎵層(AlGaN)、氮化銦鎵層(InGaN)或氮化鋁銦層(AlInN)等閃鋅礦結構三族氮化物層,該些閃鋅礦結構三族氮化物層不會在成長過程中轉變為纖鋅礦結構,用以避免纖鋅礦結構晶體之成長速率差異及內建電場所導致的問題。 The main features of the preferred embodiment of the method for producing the sphalerite structure of the group III nitride of the present invention are as follows: a conventional plasma assisted molecular beam epitaxy system can be used at the growth temperature. The sphalerite structure gallium nitride layer (GaN), the aluminum nitride layer (AlN), the indium nitride layer (InN), and the gamma-phase gallium oxide substrate are grown at 350 to 600 degrees. a zinc oxide structure group III nitride layer such as an aluminum gallium nitride layer (AlGaN), an indium gallium nitride layer (InGaN) or an aluminum indium nitride layer (AlInN), and the sphalerite structure group III nitride layer does not In the process of growth, it is transformed into a wurtzite structure to avoid the difference in the growth rate of the wurtzite structure crystals and the problems caused by the built-in electric field.

因此,本發明之閃鋅礦結構三族氮化物之製造方法較佳實施例,係採用γ相三氧化二鎵作為成長閃鋅礦結構三族氮化物層的基材,使該γ相三氧化二鎵基材與閃鋅礦結構三族氮化物層可共同構成該具有閃鋅礦結構三族氮化物之磊晶結構,以減少閃鋅礦結構三族氮化物層的晶格缺陷,可有效改善發光元件之發光效率,並解決目前採用纖鋅礦結構三族氮化物半導體製造發光元件所引起的問題。 Therefore, a preferred embodiment of the method for producing a sphalerite structure of a group III nitride according to the present invention is to use gamma-phase gallium trioxide as a substrate for a zinc oxide layer of a zinc sphalerite structure, and to oxidize the gamma phase. The digallium substrate and the sphalerite structure tri-family nitride layer may together constitute the epitaxial structure of the triad-nitride structure having a zinc blende structure to reduce the lattice defects of the sphalerite structure tri-family nitride layer, which is effective The luminous efficiency of the light-emitting element is improved, and the problems caused by the current fabrication of the light-emitting element using the wurtzite-structured group III nitride semiconductor are solved.

本發明之閃鋅礦結構三族氮化物之製造方法較佳實施例,係採用γ相三氧化二鎵作為成長閃鋅礦結構三族氮化物的基材,以減少閃鋅礦結構三族氮化物與該基材之間的晶格缺陷,可有效改善發光元件之發光效率,並可直接導入現有的半導體製程,此為本發明之功效。 A preferred embodiment of the method for producing a sphalerite structure of a group III nitride according to the present invention is to use gamma-phase gallium trioxide as a substrate for a zinc oxide structure of a zinc blende structure to reduce the zinc oxide structure of the zinc group. The lattice defect between the compound and the substrate can effectively improve the luminous efficiency of the light-emitting element, and can be directly introduced into an existing semiconductor process, which is an effect of the present invention.

本發明之具有閃鋅礦結構三族氮化物之磊晶結構較佳實施例,係藉由γ相三氧化二鎵基材形成閃鋅礦結構三族氮化物,以減少閃鋅礦結構三族氮化物與該γ相三氧化二鎵基材之間的晶格缺陷,可用以改善發光元件之發光效率,並作為發光元件之原料,此乃本發明之功效。 A preferred embodiment of the epitaxial structure of the group III nitride having a zinc blende structure is formed by a gamma phase gallium oxide gallium substrate to form a sphalerite structure group III nitride to reduce the sphalerite structure The lattice defect between the nitride and the gamma-phase di-gallium oxide substrate can be used to improve the luminous efficiency of the light-emitting element and serve as a raw material for the light-emitting element, which is an effect of the present invention.

雖然本發明已利用上述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者在不脫離本發明之精神和範圍之內,相對上述實施例進行各種更動與修改仍屬本發明所保護之技術範疇,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the invention has been described in connection with the preferred embodiments described above, it is not intended to limit the scope of the invention. The technical scope of the invention is protected, and therefore the scope of the invention is defined by the scope of the appended claims.

〔本發明〕 〔this invention〕

1‧‧‧γ相三氧化二鎵基材 1‧‧‧γ phase gallium oxide substrate

11‧‧‧成長表面 11‧‧‧Growth surface

12‧‧‧氮化鎵緩衝層 12‧‧‧ gallium nitride buffer layer

2‧‧‧閃鋅礦結構三族氮化物層 2‧‧‧Zincite structure triad nitride layer

第1圖:本發明之閃鋅礦結構三族氮化物之製造方法較佳實施例的製造流程圖。 Fig. 1 is a flow chart showing the manufacture of a preferred embodiment of the method for producing a zinc oxide structure of a sphalerite structure of the present invention.

第2圖:本發明之具有閃鋅礦結構三族氮化物之磊晶結構較佳實施例的結構示意圖。 Fig. 2 is a schematic view showing the structure of a preferred embodiment of the epitaxial structure of the group III nitride having a sphalerite structure according to the present invention.

第3a圖:本發明之閃鋅礦結構氮化鎵層磊晶成長於γ相三氧化二鎵基板之TEM明視野圖。 Fig. 3a is a TEM bright-field view of the epitaxially grown gallium nitride layer of the present invention grown on a gamma-phase gallium oxide substrate.

第3b圖:本發明之閃鋅礦結構氮化鎵層之選區繞射圖。 Figure 3b: Selected area diffraction pattern of the sphalerite structure gallium nitride layer of the present invention.

第3c圖:本發明之閃鋅礦結構氮化鎵層與γ相三氧化二鎵基材之界面繞射圖。 Figure 3c: Interfacial diffraction pattern of the zinc oxide structure gallium nitride layer of the present invention and the gamma phase gallium oxide substrate.

第3d圖:本發明之γ相三氧化二鎵基材之選區繞射圖。 Figure 3d: Selected area diffraction pattern of the gamma phase gallium oxide gallium substrate of the present invention.

第3e圖:本發明之閃鋅礦結構氮化鎵層(100)晶面之晶格示意圖。 Figure 3e is a schematic diagram of the crystal lattice of the (100) crystal plane of the sphalerite structure of the present invention.

第3f圖:本發明之γ相三氧化二鎵基材(100)晶面之晶格示意圖。 Fig. 3f is a schematic view showing the crystal lattice of the crystal face of the γ phase gallium oxide gallium substrate (100) of the present invention.

Claims (13)

一種閃鋅礦結構三族氮化物之製造方法,其步驟係包含:備妥一γ相三氧化二鎵基材;及控制製程溫度小於420度,且周圍環境中三族元素與氮之比值小於2.0,使一閃鋅礦結構三族氮化物層磊晶成長於該γ相三氧化二鎵基材。 A method for manufacturing a zinc-series structure of a tri-family nitride comprises the steps of: preparing a gamma-phase gallium oxide substrate; and controlling the process temperature to be less than 420 degrees, and the ratio of the tri-family element to nitrogen in the surrounding environment is less than 2.0, epitaxial growth of a zinc-mineral structure tri-family nitride layer on the gamma-phase di-gallium oxide substrate. 如申請專利範圍第1項所述之閃鋅礦結構三族氮化物之製造方法,其中該閃鋅礦結構三族氮化物層之成長溫度為350至420度。 The method for producing a sphalerite structure group III nitride according to claim 1, wherein the sphalerite structure group III nitride layer has a growth temperature of 350 to 420 degrees. 如申請專利範圍第1項所述之閃鋅礦結構三族氮化物之製造方法,其中該三族元素與氮之比值的範圍為1.0至2.0。 The method for producing a zinc blende structure group III nitride according to claim 1, wherein the ratio of the group III element to nitrogen ranges from 1.0 to 2.0. 如申請專利範圍第1項所述之閃鋅礦結構三族氮化物之製造方法,其中該閃鋅礦結構三族氮化物層為一閃鋅礦結構氮化鎵層。 The method for producing a zinc blende structure group III nitride according to claim 1, wherein the zinc blende structure group III nitride layer is a sphalerite structure gallium nitride layer. 如申請專利範圍第1項所述之閃鋅礦結構三族氮化物之製造方法,其中該閃鋅礦結構三族氮化物層為一閃鋅礦結構氮化鋁層。 The method for producing a zinc blende structure group III nitride according to claim 1, wherein the zinc blende structure group III nitride layer is a sphalerite structure aluminum nitride layer. 如申請專利範圍第1項所述之閃鋅礦結構三族氮化物之製造方法,其中該閃鋅礦結構三族氮化物層為一閃鋅礦結構氮化銦層。 The method for producing a sphalerite structure group III nitride according to claim 1, wherein the sphalerite structure group III nitride layer is a sphalerite structure indium nitride layer. 如申請專利範圍第1項所述之閃鋅礦結構三族氮化物之製造方法,其中該閃鋅礦結構三族氮化物層為一閃鋅 礦結構氮化鋁鎵層。 The method for producing a sphalerite structure group III nitride according to claim 1, wherein the sphalerite structure group III nitride layer is a zinc flash Mineral structure aluminum nitride gallium layer. 如申請專利範圍第1項所述之閃鋅礦結構三族氮化物之製造方法,其中該閃鋅礦結構三族氮化物層為一閃鋅礦結構氮化銦鎵層。 The method for producing a zinc blende structure group III nitride according to claim 1, wherein the zinc blende structure group III nitride layer is a sphalerite structure indium gallium nitride layer. 如申請專利範圍第1項所述之閃鋅礦結構三族氮化物之製造方法,其中該閃鋅礦結構三族氮化物層為一閃鋅礦結構氮化鋁銦層。 The method for producing a sphalerite structure group III nitride according to claim 1, wherein the sphalerite structure group III nitride layer is a sphalerite structure aluminum nitride indium layer. 如申請專利範圍第1項所述之閃鋅礦結構三族氮化物之製造方法,其中該γ相三氧化二鎵基材經過氮化處理,而形成一氮化鎵緩衝層,該閃鋅礦結構三族氮化物層磊晶成長於該氮化鎵緩衝層。 The method for producing a sphalerite structure group III nitride according to claim 1, wherein the γ phase gallium oxide substrate is subjected to nitridation treatment to form a gallium nitride buffer layer, the sphalerite The structure tri-family nitride layer is epitaxially grown on the gallium nitride buffer layer. 如申請專利範圍第1項所述之閃鋅礦結構三族氮化物之製造方法,其中該γ相三氧化二鎵基材之製備方式係於真空環境中,將一β相鎵酸鋰基材進行一退火過程,使該β相鎵酸鋰基材轉變為該γ相三氧化二鎵基材。 The method for producing a zinc-zinc oxide structure of a group III nitride according to the first aspect of the invention, wherein the γ-phase gallium dioxide substrate is prepared in a vacuum environment, and a β-phase lithium gallate substrate is used. An annealing process is performed to convert the β-phase lithium gallate substrate into the γ-phase gallium oxide substrate. 一種具有閃鋅礦結構三族氮化物之磊晶結構,包含:一γ相三氧化二鎵基材,具有一成長表面;及一閃鋅礦結構三族氮化物層,係設於該γ相三氧化二鎵基材之成長表面。 An epitaxial structure having a zinc-mineral structure of a group III nitride, comprising: a gamma-phase gallium oxide substrate having a grown surface; and a sphalerite structure group III nitride layer disposed in the gamma phase III The growth surface of the GaN substrate. 如申請專利範圍第12項所述之具有閃鋅礦結構三族氮化物之磊晶結構,其中該γ相三氧化二鎵基材設有一氮化鎵緩衝層,該成長表面位於該氮化鎵緩衝層之表面。 The epitaxial structure having a zinc blende structure of a group III nitride according to claim 12, wherein the gamma-phase gallium oxide substrate is provided with a gallium nitride buffer layer, and the grown surface is located in the gallium nitride layer The surface of the buffer layer.
TW101136739A 2012-10-04 2012-10-04 A method for fabricating iii-nitride with zinc-blende structure and an epitaxy structure having iii-nitride with zinc-blende structure TWI456094B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101136739A TWI456094B (en) 2012-10-04 2012-10-04 A method for fabricating iii-nitride with zinc-blende structure and an epitaxy structure having iii-nitride with zinc-blende structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101136739A TWI456094B (en) 2012-10-04 2012-10-04 A method for fabricating iii-nitride with zinc-blende structure and an epitaxy structure having iii-nitride with zinc-blende structure

Publications (2)

Publication Number Publication Date
TW201414888A true TW201414888A (en) 2014-04-16
TWI456094B TWI456094B (en) 2014-10-11

Family

ID=52112288

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101136739A TWI456094B (en) 2012-10-04 2012-10-04 A method for fabricating iii-nitride with zinc-blende structure and an epitaxy structure having iii-nitride with zinc-blende structure

Country Status (1)

Country Link
TW (1) TWI456094B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110692120A (en) * 2017-03-31 2020-01-14 剑桥实业有限公司 Group III nitrides of sphalerite structure
TWI796046B (en) * 2021-12-13 2023-03-11 國立中山大學 Manufacturing method of ingan quantum wells

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5378829B2 (en) * 2009-02-19 2013-12-25 住友電気工業株式会社 Method for forming epitaxial wafer and method for manufacturing semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110692120A (en) * 2017-03-31 2020-01-14 剑桥实业有限公司 Group III nitrides of sphalerite structure
CN110692120B (en) * 2017-03-31 2023-04-21 剑桥实业有限公司 Sphalerite structured group III nitrides
TWI796046B (en) * 2021-12-13 2023-03-11 國立中山大學 Manufacturing method of ingan quantum wells

Also Published As

Publication number Publication date
TWI456094B (en) 2014-10-11

Similar Documents

Publication Publication Date Title
JP5792209B2 (en) Method for heteroepitaxial growth of high quality N-plane GaN, InN and AlN and their alloys by metalorganic chemical vapor deposition
JP4189386B2 (en) Method for growing nitride semiconductor crystal layer and method for producing nitride semiconductor light emitting device
US8455885B2 (en) Method for heteroepitaxial growth of high-quality N-face gallium nitride, indium nitride, and aluminum nitride and their alloys by metal organic chemical vapor deposition
JP6705831B2 (en) Epitaxial substrate for semiconductor element, semiconductor element, and method for manufacturing epitaxial substrate for semiconductor element
JP5451280B2 (en) Wurtzite crystal growth substrate, manufacturing method thereof, and semiconductor device
US10192737B2 (en) Method for heteroepitaxial growth of III metal-face polarity III-nitrides on substrates with diamond crystal structure and III-nitride semiconductors
WO2010025153A1 (en) Nitride crystal with removable surface layer and methods of manufacture
Amano Development of GaN-based blue LEDs and metalorganic vapor phase epitaxy of GaN and related materials
US20110237054A1 (en) Planar nonpolar group iii-nitride films grown on miscut substrates
US20110003420A1 (en) Fabrication method of gallium nitride-based compound semiconductor
WO2017077989A1 (en) Epitaxial substrate for semiconductor elements, semiconductor element, and production method for epitaxial substrates for semiconductor elements
JP6872724B2 (en) Nitride semiconductor self-supporting substrate manufacturing method
JP6242941B2 (en) Group III nitride semiconductor and method of manufacturing the same
US20150084163A1 (en) Epitaxial substrate, semiconductor device, and method for manufacturing semiconductor device
TW201414888A (en) A method for fabricating III-nitride with zinc-blende structure and an epitaxy structure having III-nitride with zinc-blende structure
JP2007103955A (en) Nitride semiconductor and method for growing nitride semiconductor crystal layer
US20200144451A1 (en) Nitride semiconductor crystal and method of fabricating the same
Yun et al. MOCVD epitaxy of InAlN on different templates
JP2009143756A (en) MULTILAYER SUBSTRATE INCLUDING GaN LAYER, ITS MANUFACTURING METHOD AND DEVICE
JP4940562B2 (en) Compound semiconductor epitaxial substrate and manufacturing method thereof
JPH07240374A (en) Iii-v group compound semiconductor crystal
KR101532267B1 (en) Method for manufacturing nitride-based light emitting device
KR20140070043A (en) Method of growing nitride semiconductor layer and fabrication nitride semiconductor device
Collazo et al. Advantages and limitations of UV optoelectronics on AlN substrates
KR100839224B1 (en) Method for manufacturing thick film of gan