TW201414157A - Grid-connected photovoltaic generation system with positive grounding for solar cell arrays - Google Patents

Grid-connected photovoltaic generation system with positive grounding for solar cell arrays Download PDF

Info

Publication number
TW201414157A
TW201414157A TW101135225A TW101135225A TW201414157A TW 201414157 A TW201414157 A TW 201414157A TW 101135225 A TW101135225 A TW 101135225A TW 101135225 A TW101135225 A TW 101135225A TW 201414157 A TW201414157 A TW 201414157A
Authority
TW
Taiwan
Prior art keywords
converter
current
control unit
voltage
solar cell
Prior art date
Application number
TW101135225A
Other languages
Chinese (zh)
Other versions
TWI477046B (en
Inventor
Hung-Liang Chou
Kuen-Der Wu
Jinn-Chang Wu
jia-min Shen
Bo-Yu Yang
Original Assignee
Univ Nat Kaohsiung Applied Sci
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Kaohsiung Applied Sci filed Critical Univ Nat Kaohsiung Applied Sci
Priority to TW101135225A priority Critical patent/TWI477046B/en
Publication of TW201414157A publication Critical patent/TW201414157A/en
Application granted granted Critical
Publication of TWI477046B publication Critical patent/TWI477046B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

A grid-connected photovoltaic generation system includes a solar cell array, an energy buffer, a DC-DC converter set, a DC-AC converter and a controller. The solar cell array has an output port including a positive potential terminal and a negative potential terminal. The output port of the solar cell array connects with the energy buffer in parallel and further connects with an input port of the DC-DC converter set. An input port of the DC-AC converter connects with an output port of the DC-DC converter set and an output set of the DC-AC converter connects with a utility grid. The controller is operated to generate control signals to controllably switch power switches of the DC-DC converter set and the DC-AC converter. The positive potential terminal of the solar cell array connects to a ground terminal of the utility grid so as to perform directly grounding.

Description

太陽能電池陣列正電位端接地之市電併聯型太陽能發電系統 Mains parallel solar power system with solar cell array positive potential terminal grounded

本發明係關於一種太陽能電池陣列正電位端直接接地之市電併聯型太陽能發電系統;特別是關於一種太陽能電池陣列正電位端直接接地之非隔離〔non-isolated〕市電併聯型太陽能發電系統;更特別是關於一種適用於由單晶矽材質〔mono-crystalline〕製造的薄膜太陽能電池模組〔A-300〕組成之太陽能電池陣列正電位端直接接地之市電併聯型太陽能發電系統,可避免該薄膜太陽能電池模組因極化現象所產生的損壞。 The invention relates to a mains parallel solar power generation system in which a positive potential end of a solar cell array is directly grounded; in particular, a non-isolated mains parallel solar power generation system in which a positive potential end of a solar cell array is directly grounded; The utility model relates to a commercial electric parallel solar power generation system suitable for directly grounding a positive potential end of a solar cell array composed of a thin film solar cell module (A-300) made of a monocrystalline material, which can avoid the thin film solar energy. Damage to the battery module due to polarization.

習用市電併聯型太陽能發電系統,如第1圖所示之中華民國專利公告第I356566號之〝具輸入直流電壓漣波抑制之直流/直流電能轉換器之控制方法及其裝置〞發明專利,其揭示市電併聯型太陽能發電系統1之架構示意圖。請參照第1圖所示,該市電併聯型太陽能發電系統1包含一直流輸入電壓源11、一DC-DC電能轉換器12、一電能緩衝器13及一DC-AC電能轉換器14。該市電併聯型太陽能發電系統1連接至一交流配電系統15,在該市電併聯型太陽能發電系統1中,該直流輸入電壓源11之正電位端無法直接連接至該交流配電系統15之接地端,如此會使由單晶矽為材質所製造出的薄膜太陽能電池模組〔A-300〕產生極化現象,因造成薄膜太陽能電池的損壞與壽命縮短,並會產生漏電流,使整體電能轉換效率降低。 The utility model relates to a method for controlling a DC/DC electric energy converter of a DC voltage chopper suppression input device and a device thereof, as shown in FIG. Schematic diagram of the structure of the commercial parallel solar power generation system 1. Referring to FIG. 1 , the mains parallel solar power generation system 1 includes a DC input voltage source 11 , a DC-DC power converter 12 , an energy buffer 13 , and a DC-AC power converter 14 . The commercial parallel solar power generation system 1 is connected to an AC power distribution system 15. In the commercial parallel solar power generation system 1, the positive potential end of the DC input voltage source 11 cannot be directly connected to the ground end of the AC power distribution system 15, Thus, the thin film solar cell module [A-300] produced by the single crystal germanium material is polarized, which causes damage and life of the thin film solar cell, and causes leakage current to cause overall electric energy conversion efficiency. reduce.

另一習用市電併聯型太陽能發電系統,如第2圖所示之中華民國專利公告第M408678號之〝太陽光伏發電系統〞新型專利,其揭示太陽光伏發電系統2之架構示意圖。請參照第2圖所示,該太陽光伏發電系統2包含一太陽光伏模組21、一 主動箝位電路22、一電力轉換器23及一交流選擇開關電路24。該太陽光伏發電系統2連接至一交流配電系統25,在該太陽光伏發電系統2中,該電力轉換器23包含一隔離變壓器,該隔離變壓器之一次側為兩繞組,而該隔離變壓器之二次側為一繞組,如此該太陽能光伏模組21之正電位端可以直接連接至該交流配電系統25之接地端。雖然該太陽光伏發電系統2可解決單晶矽為材質所製造出的薄膜太陽能電池模組〔A-300〕由其極化現象所產生的損壞問題,但也因使用了隔離變壓器會造成整體發電系統轉換效率降低與成本的增加之缺點。 Another conventional utility power parallel solar power generation system, as shown in Fig. 2, is a new patent of the solar photovoltaic power generation system of the Republic of China Patent Publication No. M408678, which discloses a schematic diagram of the structure of the solar photovoltaic power generation system 2. Referring to FIG. 2, the solar photovoltaic power generation system 2 includes a solar photovoltaic module 21 and a The active clamp circuit 22, a power converter 23 and an AC selection switch circuit 24. The solar photovoltaic power generation system 2 is connected to an AC power distribution system 25, in which the power converter 23 includes an isolation transformer, the primary side of which is two windings, and the isolation transformer is twice The side is a winding, so that the positive potential end of the solar photovoltaic module 21 can be directly connected to the ground end of the AC power distribution system 25. Although the solar photovoltaic power generation system 2 can solve the damage caused by the polarization phenomenon of the thin film solar cell module [A-300] manufactured by the single crystal germanium material, the use of the isolation transformer causes the overall power generation. The disadvantages of reduced system conversion efficiency and increased cost.

前述中華民國專利公告第I356566號及第M408678號之專利申請案僅為本發明技術背景之參考及說明目前技術發展狀態而已,其並非用以限制本發明之範圍。 The above-mentioned patent applications of the Republic of China Patent Publication No. I356566 and No. M408678 are only for reference to the technical background of the present invention and the state of the art is not intended to limit the scope of the present invention.

有鑑於此,本發明為了解決上述問題,其提供一種太陽能電池陣列正電位端接地之非隔離市電併聯型太陽能發電系統,其不需使用隔離變壓器,以提升電能轉換效率,且由於太陽能電池陣列正電位端可直接接地,可改善單晶矽材質所製造出的薄膜太陽能電池模組〔A-300〕因極化現象所產生的損壞,且可減少產生漏電流。 In view of the above, the present invention provides a non-isolated mains parallel solar power generation system in which a positive potential terminal of a solar cell array is grounded, which does not require an isolation transformer to improve power conversion efficiency, and since the solar cell array is positive. The potential end can be directly grounded, which can improve the damage caused by the polarization phenomenon of the thin film solar cell module [A-300] manufactured by the single crystal germanium material, and can reduce the leakage current.

本發明之主要目的係提供一種太陽能電池陣列正電位端接地之市電併聯型太陽能發電系統,其不需使用隔離變壓器,以避免隔離變壓器造成的發電轉換效率降低,以達成提升電能轉換效率之目的。 The main object of the present invention is to provide a mains parallel solar power generation system with a positive potential end of a solar cell array, which does not need to use an isolation transformer to avoid the reduction of power generation conversion efficiency caused by the isolation transformer, so as to achieve the purpose of improving the power conversion efficiency.

本發明之另一目的係提供一種太陽能電池陣列正電位端接地之市電併聯型太陽能發電系統,其太陽能電池模組由單晶矽材質製成,且太陽能電池陣列正電位端直接接地,可減少產生漏電流,並避免太陽能電池模組因極化現象所產生的損壞, 以達成延長太陽能電池模組使用壽命之目的。 Another object of the present invention is to provide a commercial parallel power solar power generation system in which a positive potential end of a solar cell array is grounded, wherein the solar cell module is made of a single crystal germanium material, and the positive potential end of the solar cell array is directly grounded, which can reduce the generation. Leakage current and avoid damage caused by polarization of the solar cell module. In order to achieve the purpose of extending the life of the solar cell module.

為了達成上述目的,本發明較佳實施例之太陽能電池陣列正電位端接地之市電併聯型太陽能發電系統包含:一太陽能電池陣列,其由數個太陽能電池模組串聯或並聯而成,該太陽能電池陣列具有一輸出埠,該輸出埠包含一正電位端及一負電位端,該輸出埠輸出一直流電壓及一直流電流;一電能緩衝器,其與該太陽能電池陣列之輸出埠並聯;一直流-直流轉換器組,其具有一輸入埠及一輸出埠,該直流-直流轉換器組之輸入埠與太陽能電池陣列之輸出埠連接;一直流-交流轉換器,其具有一輸入埠及一輸出埠,該直流-交流轉換器之輸入埠與直流-直流轉換器組之輸出埠連接;及一控制器,其產生一控制信號,該控制信號用以分別控制該直流-直流轉換器組及直流-交流轉換器之功率開關之切換;其中該直流-交流轉換器之輸出埠連接至一交流配電系統,該太陽能電池陣列之輸出埠之正電位端連接至該交流配電系統之接地端,以形成直接接地。 In order to achieve the above object, a commercial power parallel solar power generation system in which a positive potential terminal of a solar cell array is grounded according to a preferred embodiment of the present invention includes: a solar cell array in which a plurality of solar battery modules are connected in series or in parallel, the solar cell The array has an output 埠, the output 埠 includes a positive potential end and a negative potential end, the output 埠 outputs a direct current voltage and a direct current; an electric energy buffer is connected in parallel with the output 埠 of the solar cell array; a DC converter group having an input port and an output port, the input port of the DC-DC converter group being connected to the output port of the solar cell array; the DC-AC converter having an input port and an output埠, the input 埠 of the DC-AC converter is connected to the output 埠 of the DC-DC converter group; and a controller generates a control signal for separately controlling the DC-DC converter group and the DC Switching the power switch of the AC converter; wherein the output of the DC-AC converter is connected to an AC power distribution system, the It can be a positive electric potential side output port of an array of cells connected to a ground terminal of the AC power distribution systems, in order to form directly to ground.

本發明較佳實施例之該直流-直流轉換器組包含一直流-直流升降壓轉換器及一直流-直流升壓轉換器。 The DC-DC converter set of the preferred embodiment of the present invention includes a DC-DC buck-boost converter and a DC-DC boost converter.

本發明較佳實施例之該直流-直流升降壓轉換器包含一電感器、一功率開關及一二極體,而該直流-直流升壓轉換器包含一電感器、一功率開關及一二極體。 In the preferred embodiment of the present invention, the DC-DC buck-boost converter comprises an inductor, a power switch and a diode, and the DC-DC boost converter comprises an inductor, a power switch and a diode. body.

本發明較佳實施例之該直流-交流轉換器選自一半橋式直流-交流轉換器、一多階半橋式直流-交流轉換器或一三埠式電能轉換器。 The DC-AC converter of the preferred embodiment of the present invention is selected from the group consisting of a half bridge DC-AC converter, a multi-stage half bridge DC-AC converter or a three-turn power converter.

本發明較佳實施例之該三埠式電能轉換器包含一電容臂、一第一臂、一第二臂、一濾波電感、一解耦合電路及一儲能元件。 In the preferred embodiment of the present invention, the three-turn power converter includes a capacitor arm, a first arm, a second arm, a filter inductor, a decoupling circuit, and an energy storage component.

本發明較佳實施例之該控制器包含一電壓外迴路控制單元、一電流內迴路控制單元及一PWM電路,其用以控制一直流-直流升壓轉換器。 The controller of the preferred embodiment of the present invention comprises a voltage outer loop control unit, a current inner loop control unit and a PWM circuit for controlling the DC-DC boost converter.

本發明較佳實施例之該控制器包含一電壓外迴路控制單元、一電流內迴路控制單元及一PWM電路,其用以控制一直流-直流升降壓轉換器。 The controller of the preferred embodiment of the present invention comprises a voltage external loop control unit, a current inner loop control unit and a PWM circuit for controlling the DC-DC buck-boost converter.

本發明較佳實施例之該控制器包含一直流匯流排電壓控制單元、一電流控制單元及一PWM電路,其用以控制一半橋式直流-交流轉換器。 In the preferred embodiment of the invention, the controller comprises a DC bus voltage control unit, a current control unit and a PWM circuit for controlling the half bridge DC-AC converter.

本發明較佳實施例之該控制器包含一直流匯流排電壓控制單元、一電流控制單元、一第一PWM電路及一第二PWM電路,其用以控制一多階半橋式直流-交流轉換器。 The controller of the preferred embodiment of the present invention comprises a DC bus voltage control unit, a current control unit, a first PWM circuit and a second PWM circuit for controlling a multi-stage half bridge DC-AC conversion Device.

本發明較佳實施例之該控制器包含一儲能元件電壓/電流控制單元、一直流匯流排電壓控制單元、一電流控制單元、一第一PWM電路及一第二PWM電路,其用以控制一三埠式電能轉換器。 The controller of the preferred embodiment of the present invention comprises an energy storage component voltage/current control unit, a DC bus voltage control unit, a current control unit, a first PWM circuit and a second PWM circuit for controlling A three-turn power converter.

為了充分瞭解本發明,於下文將例舉較佳實施例並配合所附圖式作詳細說明,且其並非用以限定本發明。 In order to fully understand the present invention, the preferred embodiments of the present invention are described in detail below and are not intended to limit the invention.

請參照第3圖所示,本發明較佳實施例之太陽能電池陣列正電位端接地之市電併聯型太陽能發電系統3包含一太陽能電池陣列31、一電能緩衝器32、一直流-直流轉換器組33、一直流-交流轉換器34及一控制器36。該太陽能電池陣列正電位端接地之市電併聯型太陽能發電系統3連接至一交流配電系 統35,該太陽能電池陣列正電位端接地之市電併聯型太陽能發電系統3產生一交流電力注入該交流配電系統35。 Referring to FIG. 3, the solar cell parallel-type solar power generation system 3 with the positive potential end of the solar cell array of the preferred embodiment of the present invention includes a solar cell array 31, an electric energy buffer 32, and a DC-DC converter group. 33. A DC-AC converter 34 and a controller 36. The solar cell parallel-type solar power generation system 3 with the positive potential end of the solar cell array is connected to an AC power distribution system In the system 35, the commercial power parallel solar power generation system 3 whose ground potential terminal is grounded generates an AC power to be injected into the AC power distribution system 35.

舉例而言,該太陽能電池陣列31由數個太陽能電池模組串並聯而成,其為單晶矽為材質所製造出的薄膜太陽能電池模組〔A-300〕。該太陽能電池陣列31具有一輸出埠用以輸出一直流電壓及一直流電流,且該太陽能電池陣列31之輸出埠包含一正電位端點G及一負電位端點A。該太陽能電池陣列31之輸出埠之二端點G及A與該電能緩衝器32並聯。另外,該太陽能電池陣列31之輸出埠之正電位端點G直接形成接地。 For example, the solar cell array 31 is composed of a plurality of solar cell modules connected in series and in parallel, and is a thin film solar cell module [A-300] manufactured by using single crystal germanium as a material. The solar cell array 31 has an output port for outputting a DC voltage and a DC current, and the output port of the solar cell array 31 includes a positive potential terminal G and a negative potential terminal A. The two terminals G and A of the output port of the solar cell array 31 are connected in parallel with the power buffer 32. In addition, the positive potential terminal G of the output 埠 of the solar cell array 31 directly forms a ground.

該直流-直流轉換器組33及直流-交流轉換器34分別具有一輸入埠及一輸出埠,且該太陽能電池陣列31之輸出埠之二端點G及A與該直流-直流轉換器組33之輸入埠之二端點G與A形成對應連接。 The DC-DC converter group 33 and the DC-AC converter 34 respectively have an input port and an output port, and the output terminals of the solar cell array 31 have two terminals G and A and the DC-DC converter group 33. The two endpoints G of the input port form a corresponding connection with A.

另外,該直流-直流轉換器組33之輸出埠之三端點B、G、C與該直流-交流轉換器34之輸入埠之三端點B、G、C形成對應連接。如第3圖所示,該直流-交流轉換器34之兩端點B及C為該直流匯流排之電壓VBC,而在端點B與G之間電壓為VBG及在端點G與C點之間電壓為VGC,該電壓之關係可表示為:VBG=VGC (1) In addition, the three terminals B, G, and C of the output port of the DC-DC converter group 33 are connected to the three terminals B, G, and C of the input port of the DC-AC converter 34. As shown in FIG. 3, the points B and C of the DC-AC converter 34 are the voltage V BC of the DC bus, and the voltage between the terminals B and G is V BG and at the end G and The voltage between point C is V GC , and the relationship of this voltage can be expressed as: V BG =V GC (1)

VBG+VGC=VBC (2) V BG +V GC =V BC (2)

該直流-交流轉換器34之輸出埠之二端點D、G連接於該交流配電系統35之二端點D、G,該交流配電系統35之輸出埠之端點G直接與連接,如此該太陽能電池陣列31之輸出埠之正電位端點G可直接形成接地。該控制器36產生一控制信號,以控制該直流-直流轉換器組33及直流-交流轉換器34之電力電子開關元件進行適當切換。 The two ends D, G of the output of the DC-AC converter 34 are connected to the two terminals D, G of the AC power distribution system 35, and the end point G of the output port of the AC power distribution system 35 is directly connected, so The positive potential terminal G of the output 埠 of the solar cell array 31 can be directly grounded. The controller 36 generates a control signal to control the switching of the power electronic switching elements of the DC-DC converter group 33 and the DC-AC converter 34.

本發明之市電併聯型太陽能發電系統3為太陽能電池陣列正電位端接地之非隔離市電併聯型太陽能發電系統,此系統不使用隔離變壓器,而將該太陽能電池陣列31之正電位端形成直接接地,如此不但可減少因隔離變壓器所造成的能量損失與減少電能轉換器設備之重量與體積,並可以避免特別材質之薄膜太陽能電池〔A-300〕因極化現象而造成損壞之問題。 The mains parallel solar power generation system 3 of the present invention is a non-isolated mains parallel solar power generation system in which the positive potential end of the solar cell array is grounded. The system does not use an isolation transformer, and the positive potential end of the solar cell array 31 is directly grounded. This not only reduces the energy loss caused by the isolation transformer and reduces the weight and volume of the power converter equipment, but also avoids the problem of damage caused by polarization caused by the special material thin film solar cell [A-300].

請再參照第3圖所示,該直流-直流轉換器組33包含一直流-直流升降壓轉換器331及一直流-直流升壓轉換器332。該直流-直流升降壓轉換器331包含一電感器3311、一功率開關3312及一二極體3313,而該直流-直流升壓轉換器332包含一電感器3321、一功率開關3322及一二極體3323。該直流-直流升降壓轉換器331執行將該太陽能電池陣列31輸出電壓之升壓,並穩壓VBG為直流匯流排VBC電壓之一半,而該直流-直流升壓轉換器332控制該太陽能電池陣列31之輸出電壓執行最大功率追蹤〔MPPT〕與將該太陽能電池陣列31電壓升壓提供電壓VGC。該電能緩衝器32可抑制該直流-直流轉換器組33所產生之高頻漣波電壓,以避免干擾該直流-直流升壓轉換器332執行MPPT之功能。 Referring again to FIG. 3, the DC-DC converter group 33 includes a DC-DC buck-boost converter 331 and a DC-DC boost converter 332. The DC-DC buck-boost converter 331 includes an inductor 3311, a power switch 3312, and a diode 3313. The DC-DC boost converter 332 includes an inductor 3321, a power switch 3322, and a diode. Body 3323. The DC-DC buck-boost converter 331 performs boosting of the output voltage of the solar cell array 31, and regulates V BG to be one-half of the DC bus bar V BC voltage, and the DC-DC boost converter 332 controls the solar energy. The output voltage of the battery array 31 performs maximum power tracking [MPPT] and boosts the voltage of the solar array 31 to supply a voltage V GC . The power buffer 32 can suppress the high frequency chopping voltage generated by the DC-DC converter group 33 to avoid interfering with the DC-DC boost converter 332 performing the MPPT function.

請參照第3、4A、4B及4C圖所示,該直流-交流轉換器34選自一半橋式直流-交流轉換器341、一多階半橋式直流-交流轉換器〔即二極體箝位之多階半橋式直流-交流轉換器〕342及一三埠式電能轉換器〔即具分離電容之三埠式電能轉換器〕343。該直流-交流轉換器34執行穩壓直流匯流排電壓VBC,且其輸出電流為一低諧波失真之弦波電流,其與該交流配電系統35電壓同相位。該控制器36分別控制該直流-直流轉換器組33及直流-交流轉換器34之功率開關切換,使該直流-直流轉換器組33及直流-交流轉換器34能達成MPPT、穩壓直流匯流排電壓及產生弦波電流之功能。如第4C圖所示,該三埠式電能轉換器343包含一電容臂3431、一第一臂3432、 一第二臂3433、一濾波電感3434、一解耦合電路3435及一儲能元件3436。 Referring to Figures 3, 4A, 4B and 4C, the DC-AC converter 34 is selected from the group consisting of a half bridge DC-AC converter 341 and a multi-stage half bridge DC-AC converter (ie, a diode clamp). A multi-stage half-bridge DC-AC converter 342 and a three-turn power converter (ie, a three-turn power converter with a separate capacitor) 343. The DC-AC converter 34 performs a regulated DC bus voltage V BC and its output current is a low harmonic distortion sine wave current that is in phase with the AC power distribution system 35 voltage. The controller 36 controls the power switch switching of the DC-DC converter group 33 and the DC-AC converter 34 respectively, so that the DC-DC converter group 33 and the DC-AC converter 34 can achieve MPPT and regulated DC convergence. The function of discharging voltage and generating sine wave current. As shown in FIG. 4C, the three-turn power converter 343 includes a capacitor arm 3431, a first arm 3432, a second arm 3343, a filter inductor 3434, a decoupling circuit 3435, and an energy storage component 3436.

該直流-直流轉換器組33之輸入埠與該太陽能電池陣列31之輸出埠形成連接,當該直流-交流轉換器34注入實功至該交流配電系統35時,直流匯流排電壓VBC會產生一市電電壓兩倍頻之低頻漣波電壓。若該太陽能電池陣列31之輸出電壓有一較大漣波電壓時,該直流-直流升壓轉換器332執行MPPT所獲得的功率會降低。因此,該直流-直流轉換器組33必須抑制該直流匯流排之漣波電壓傳導至該太陽能電池陣列31之輸出埠,使該直流-直流升壓轉換器332執行MPPT能達到最大效果,故該直流-直流轉換器組33採用雙迴路控制,其包含一電壓外迴路之控制及一電流內迴路之控制,且該電流內迴路控制電感電流達到接近固定之電流,阻擋直流匯流排之漣波電壓。 The input port of the DC-DC converter group 33 is connected to the output port of the solar cell array 31. When the DC-AC converter 34 is injected into the AC power distribution system 35, the DC bus voltage V BC is generated. The low-frequency chopping voltage of the mains voltage is twice as high. If the output voltage of the solar cell array 31 has a large chopping voltage, the power obtained by the DC-DC boost converter 332 to perform MPPT is lowered. Therefore, the DC-DC converter group 33 must suppress the chopping voltage of the DC bus bar from being transmitted to the output port of the solar cell array 31, so that the DC-DC boost converter 332 can perform MPPT to achieve maximum effect, so The DC-DC converter group 33 adopts dual-loop control, which includes control of a voltage outer loop and control of a current inner loop, and the current inner loop controls the inductor current to reach a near fixed current, blocking the chopping voltage of the DC bus. .

請再參照第3、4A、4B及4C圖所示,該直流-直流升降壓轉換器331及該直流-直流升壓轉換器332分別提供直流電能至該直流-交流轉換器34之電容臂之〔上〕電容器3411及〔下〕電容器3412,直流匯流排電壓VBC為電容器電壓VBG與VGC之總合。該直流-直流升降壓轉換器331控制電容器電壓VBG,而直流匯流排電壓VBC由該直流-交流轉換器34進行控制,故若將該電容器3411之電壓VBG與直流匯流排電壓VBC進行控制,如此另一該電容器3412之電壓VGC亦被控制。 Referring to FIGS. 3, 4A, 4B and 4C, the DC-DC buck-boost converter 331 and the DC-DC boost converter 332 respectively supply DC power to the capacitor arm of the DC-AC converter 34. [Upper] capacitor 3411 and [down] capacitor 3412, DC bus voltage V BC is the sum of capacitor voltage V BG and V GC . The DC-DC buck-boost converter 331 controls the capacitor voltage V BG , and the DC bus voltage V BC is controlled by the DC-AC converter 34, so if the voltage V BG of the capacitor 3411 and the DC bus voltage V BC Control is performed such that the voltage V GC of the other capacitor 3412 is also controlled.

請參照第3及5A圖所示,其揭示該控制器36執行控制該直流-直流升降壓轉換器331之控制電路361之方塊圖。該控制器36具有一控制電路361,其包含一電壓外迴路控制單元3611、一電流內迴路控制單元3612及一PWM電路3613。該電壓外迴路控制單元3611及電流內迴路控制單元3612分別接收該電容器3411之電壓及該電感器3311之電流,以產生該控制信號。該電壓外迴路控制單元3611包含一電壓檢出器 36111、一放大器36112、一減法器36113及一P-I控制器36114,而該電流內迴路控制單元3612包含一電流檢出器36121、一減法器36122及一電流控制器36123。 Referring to Figures 3 and 5A, it is disclosed that the controller 36 performs a block diagram of a control circuit 361 that controls the DC-DC buck-boost converter 331. The controller 36 has a control circuit 361 including a voltage outer loop control unit 3611, a current inner loop control unit 3612, and a PWM circuit 3613. The voltage outer loop control unit 3611 and the current inner loop control unit 3612 receive the voltage of the capacitor 3411 and the current of the inductor 3311, respectively, to generate the control signal. The voltage outer loop control unit 3611 includes a voltage detector 36111, an amplifier 36112, a subtractor 36113 and a P-I controller 36114, and the current inner loop control unit 3612 includes a current detector 36121, a subtractor 36122 and a current controller 36123.

該電壓檢出器36111用以檢出該電容器3411電壓VBG,該放大器36112將直流匯流排設定電壓以放大倍率0.5倍進行放大,以產生一0.5倍之直流匯流排設定電壓,該放大器36112之輸出與該電壓檢出器36111之輸出送至該減法器36113,以獲得該電容器3411之電壓誤差信號。再將該減法器36113之輸出送至該P-I控制器36114,以產生該電感器3311電流之參考信號。該電流檢出器36121用以檢出該電感器3311電流,並將該P-I控制器36114輸出之參考信號與該電流檢出器36121輸出送至該減法器36122,再將該減法器36122輸出誤差信號送至該電流控制器36123,以產生控制信號。接著,將該電流控制器36123輸出送至該PWM電路3613,以產生PWM信號控制該直流-直流升降壓轉換器331之電力電子開關元件。 The voltage detector 36111 is configured to detect the voltage V BG of the capacitor 3411. The amplifier 36112 amplifies the DC bus set voltage by 0.5 times of a magnification to generate a DC bus set voltage of 0.5 times. The amplifier 36112 The output and the output of the voltage detector 36111 are supplied to the subtractor 36113 to obtain a voltage error signal of the capacitor 3411. The output of the subtractor 36113 is then sent to the PI controller 36114 to generate a reference signal for the current of the inductor 3311. The current detector 36121 is configured to detect the current of the inductor 3311, and send the reference signal output by the PI controller 36114 and the output of the current detector 36121 to the subtractor 36122, and output the error of the subtractor 36122. A signal is sent to the current controller 36123 to generate a control signal. Then, the output of the current controller 36123 is sent to the PWM circuit 3613 to generate a PWM signal to control the power electronic switching elements of the DC-DC buck-boost converter 331.

請參照第3及5B圖所示,其揭示該控制器36執行控制該直流-直流升壓轉換器332之控制電路362之方塊圖。該控制器36具有一控制電路362,其包含一電壓外迴路控制單元3621、一電流內迴路控制單元3622及一PWM電路3623。該電壓外迴路控制單元3621及電流內迴路控制單元3622分別接收該太陽能電池陣列31輸出電壓與該電感器3321電流,以產生該控制信號。該電壓外迴路控制單元3621包含一電壓檢出器36211、一MPPT控制器36212、一減法器36213及一P-I控制器36214,而該電流內迴路控制單元3622包含一電流檢出器36221、一減法器36222及一電流控制器36223。 Referring to Figures 3 and 5B, it is disclosed that the controller 36 performs a block diagram of the control circuit 362 that controls the DC-DC boost converter 332. The controller 36 has a control circuit 362 including a voltage outer loop control unit 3621, a current inner loop control unit 3622, and a PWM circuit 3623. The voltage outer loop control unit 3621 and the current inner loop control unit 3622 respectively receive the output voltage of the solar cell array 31 and the current of the inductor 3321 to generate the control signal. The voltage outer loop control unit 3621 includes a voltage detector 36211, an MPPT controller 36212, a subtractor 36213 and a PI controller 36214, and the current inner loop control unit 3622 includes a current detector 36221, a subtraction method. The device 36222 and a current controller 36223.

該電壓檢出器36211用以檢出該太陽能電池陣列31之輸出電壓,該電感器3321之電流經該電流檢出器36221檢出後與該電壓檢出器36211之輸出送至該MPPT控制器36212,以決定該太陽能電池陣列31之輸出電壓。另外,將該MPPT控 制器36212之輸出電壓與電壓檢出器36211之輸出送至該減法器36213,以獲得電壓誤差信號。將該減法器36213之輸出送至該P-I控制器36214,以產生該電感器電流之參考信號,再將該P-I控制器36214之輸出與該電流檢出器36221之輸出送至該減法器36222,並將該減法器36222之輸出送至該電流控制器36223,以產生控制信號。再將該電流控制器36223之輸出送至該PWM電路3623,以產生PWM信號控制該直流-直流升壓轉換器332之電力電子開關元件。 The voltage detector 36211 is configured to detect the output voltage of the solar cell array 31. The current of the inductor 3321 is detected by the current detector 36221 and sent to the MPPT controller with the output of the voltage detector 36211. 36212 to determine the output voltage of the solar cell array 31. In addition, the MPPT control The output voltage of the controller 36212 and the output of the voltage detector 36211 are sent to the subtractor 36213 to obtain a voltage error signal. The output of the subtractor 36213 is sent to the PI controller 36214 to generate a reference signal of the inductor current, and the output of the PI controller 36214 and the output of the current detector 36221 are sent to the subtractor 36222. The output of the subtractor 36222 is sent to the current controller 36223 to generate a control signal. The output of the current controller 36223 is sent to the PWM circuit 3623 to generate a PWM signal to control the power electronic switching elements of the DC-DC boost converter 332.

請參照第3及6A圖所示,其揭示該控制器36執行控制該半橋式直流-交流轉換器341之控制電路363之方塊圖。該控制器36具有一控制電路363,其包含一直流匯流排電壓控制單元3631、一電流控制單元3632及一PWM電路3633,其中該電流控制單元3632用以控制該半橋式直流-交流轉換器341之輸出電流。該直流匯流排電壓控制單元3631及電流控制單元3632分別接收該直流匯流排電壓VBC、交流配電系統35之電壓及半橋式直流-交流轉換器341之輸出電流,以產生該控制信號。該直流匯流排電壓控制單元3631包含一電壓檢出器36311、一減法器36312及一P-I控制器36313,而該電流控制單元3632包含一電壓檢出器36321、一波形產生電路36322、一電流檢出器36323、一乘法器36324、一減法器36325及一電流控制器36326。 Referring to Figures 3 and 6A, it is disclosed that the controller 36 performs a block diagram of the control circuit 363 that controls the half-bridge DC-AC converter 341. The controller 36 has a control circuit 363, which includes a DC bus voltage control unit 3631, a current control unit 3632, and a PWM circuit 3633. The current control unit 3632 is configured to control the half bridge DC-AC converter. 341 output current. The DC bus voltage control unit 3631 and the current control unit 3632 respectively receive the DC bus voltage V BC , the voltage of the AC power distribution system 35, and the output current of the half bridge DC-AC converter 341 to generate the control signal. The DC bus voltage control unit 3631 includes a voltage detector 36311, a subtractor 36312 and a PI controller 36313. The current control unit 3632 includes a voltage detector 36321, a waveform generating circuit 36322, and a current check. The output 36323, a multiplier 36324, a subtractor 36325 and a current controller 36326.

該電壓檢出器36311用以檢出直流匯流排電壓VBC,該直流匯流排電壓VBC經該電壓檢出器36311檢出後與直流匯流排設定電壓輸入至該減法器36312,以獲得電壓誤差信號。將該減法器36312輸出送至該P-I控制器36313,以獲得直流匯流排電壓控制信號。 The voltage detector 63511 is configured to detect the DC bus voltage V BC , and the DC bus voltage V BC is detected by the voltage detector 36311 and input to the DC bus set voltage to the subtractor 36312 to obtain a voltage. Error signal. The output of the subtractor 36312 is sent to the PI controller 36313 to obtain a DC bus voltage control signal.

該交流配電系統35之電壓經由該電壓檢出器36321檢出後,送至該波形產生電路36322,以產生與該交流配電系統35電壓同相位之單位弦波信號。再將該波形產生電路36322輸出 信號與該P-I控制器36313輸出信號送至該乘法器36324相乘,以產生半橋式直流-交流轉換器341輸出電流參考信號。該半橋式直流-交流轉換器341之輸出電流經該電流檢出器36323檢出後,與該乘法器36324輸出之電流參考信號送至該減法器36325相減。將該減法器36325輸出送至該電流控制器36326,再將該電流控制器36326送至該PWM電路3633,以產生PWM信號控制該半橋式直流-交流轉換器341之電力電子開關元件。 The voltage of the AC power distribution system 35 is detected by the voltage detector 36321 and sent to the waveform generating circuit 36322 to generate a unit sine wave signal in phase with the voltage of the AC power distribution system 35. The waveform generation circuit 36322 is output again. The signal is multiplied by the output signal of the P-I controller 36713 to the multiplier 36324 to generate a half bridge DC-AC converter 341 output current reference signal. After the output current of the half bridge DC-AC converter 341 is detected by the current detector 36723, the current reference signal outputted from the multiplier 36324 is sent to the subtractor 36325 for subtraction. The output of the subtractor 36325 is sent to the current controller 36326, and the current controller 36326 is sent to the PWM circuit 3633 to generate a PWM signal to control the power electronic switching element of the half bridge DC-AC converter 341.

請參照第3及6B圖所示,其揭示該控制器36執行控制該多階半橋式直流-交流轉換器342之控制電路364之方塊圖。該控制器36具有一控制電路364,其包含一直流匯流排電壓控制單元3641、一電流控制單元3642、一第一PWM電路3643及一第二PWM電路3644,其中該電流控制單元3642用以控制該多階半橋式直流-交流轉換器342之輸出電流。該直流匯流排電壓控制單元3641及電流控制單元3642分別接收該直流匯流排電壓VBC、交流配電系統35之電壓與該多階半橋式直流-交流轉換器342之輸出電流,以產生該控制信號。該直流匯流排電壓控制單元3641包含一電壓檢出器36411、一減法器36412及一P-I控制器36413,而該電流控制單元3642包含一電壓檢出器36421、一波形產生電路36422、一電流檢出器36423、一乘法器36424、一減法器36425及一電流控制器36426。 Referring to Figures 3 and 6B, it is disclosed that the controller 36 performs a block diagram of the control circuit 364 that controls the multi-stage half-bridge DC-AC converter 342. The controller 36 has a control circuit 364, which includes a DC bus voltage control unit 3641, a current control unit 3642, a first PWM circuit 3643, and a second PWM circuit 3644. The current control unit 3642 is used to control The output current of the multi-stage half-bridge DC-AC converter 342. The DC bus voltage control unit 3641 and the current control unit 3642 respectively receive the DC bus voltage V BC , the voltage of the AC power distribution system 35 and the output current of the multi-stage half bridge DC-AC converter 342 to generate the control. signal. The DC bus voltage control unit 3641 includes a voltage detector 36411, a subtractor 36412 and a PI controller 36413. The current control unit 3642 includes a voltage detector 36421, a waveform generating circuit 36422, and a current check. The output unit 36423, a multiplier 36424, a subtractor 36425 and a current controller 36426.

該電壓檢出器36411用以檢出直流匯流排電壓VBC,該直流匯流排電壓VBC經該電壓檢出器36411檢出後與直流匯流排設定電壓輸入至該減法器36412相減,以獲得直流匯流排電壓誤差信號。將該減法器36412之輸出電壓誤差信號送至該P-I控制器36413,以獲得直流匯流排電壓控制信號。該交流配電系統35之電壓經由該電壓檢出器36421檢出後,送至該波形產生電路36422,以產生與該交流配電系統35電壓同相位之 單位弦波信號。將該波形產生電路36422輸出單位弦波信號與該P-I控制器36413之輸出送至該乘法器36424相乘,以獲得參考輸出電流信號。該多階半橋式直流-交流轉換器364之輸出電流經該電流檢出器36423檢出後,與該乘法器36424輸出之參考輸出電流信號送至該減法器36425相減。將該減法器36425之輸出送至該電流控制器36426,將該電流控制器36426之輸出送至該第一PWM電路3643,再將該電流控制器36426之輸出送至該第二PWM電路3644,該第一PWM電路3643與該第二PWM電路3644分別產生PWM信號控制該多階半橋式直流-交流轉換器342之電力電子開關元件。而該第一PWM電路3643及第二PWM電路3644之載波信號分別為一上三角載波信號與一下三角載波信號。 The voltage detector 36411 is configured to detect the DC bus voltage V BC , and the DC bus voltage V BC is detected by the voltage detector 36411 and then input to the DC bus set voltage to the subtractor 36412 to Obtain a DC bus voltage error signal. The output voltage error signal of the subtractor 36412 is sent to the PI controller 36413 to obtain a DC bus voltage control signal. The voltage of the AC power distribution system 35 is detected by the voltage detector 36621 and sent to the waveform generating circuit 36622 to generate a unit sine wave signal in phase with the voltage of the AC power distribution system 35. The waveform generating circuit 36422 outputs a unit sine wave signal and the output of the PI controller 36413 is supplied to the multiplier 36424 to obtain a reference output current signal. After the output current of the multi-stage half-bridge DC-AC converter 364 is detected by the current detector 36423, the reference output current signal outputted by the multiplier 36424 is sent to the subtractor 36425 for subtraction. The output of the subtractor 36425 is sent to the current controller 36426, the output of the current controller 36426 is sent to the first PWM circuit 3643, and the output of the current controller 36426 is sent to the second PWM circuit 3644. The first PWM circuit 3643 and the second PWM circuit 3644 respectively generate PWM signals to control the power electronic switching elements of the multi-stage half-bridge DC-AC converter 342. The carrier signals of the first PWM circuit 3643 and the second PWM circuit 3644 are respectively an upper triangular carrier signal and a lower triangular carrier signal.

請參照第3及6C圖所示,其揭示該控制器36執行控制該三埠式電能轉換器343之控制電路365之方塊圖。該控制器36具有一控制電路365,其包含一儲能元件電壓/電流控制單元3651、一直流匯流排電壓控制單元3652、一電流控制單元3653、一第一PWM電路3654及一第二PWM電路3655,其中該電流控制單元3653控制該三埠式電能轉換器343之輸出電流。該儲能元件電壓/電流控制單元3651檢出該儲能元件之輸出電壓及電流,且該直流匯流排電壓控制單元3652檢出該交流配電系統35之電壓與該直流匯流排電壓VBC,而該電流控制單元3653檢出該第一臂3432之輸出電流與第二臂3433之輸出電流,以產生該控制信號。該儲能元件電壓/電流控制單元3651包含一電流檢出器36511、一減法器36512、一電壓檢出器36513、一減法器36514、一選擇開關36515、一P-I控制器36516及一反向放大器36517。該直流匯流排電壓控制單元3652包含一電壓檢出器36521、一波形產生電路36522、一電壓檢出器36523、一減法器36524、一P-I控制器36525及一乘法器36526。該電流控制單元3653包含一電流檢出器36531、一放大器36533、一加法器36534、一加法器36535、 一減法器36536、一減法器36537、一第一電流控制器36538及一第二電流控制器36539。 Referring to Figures 3 and 6C, it is disclosed that the controller 36 performs a block diagram of the control circuit 365 that controls the three-turn power converter 343. The controller 36 has a control circuit 365, which includes an energy storage component voltage/current control unit 3651, a DC bus voltage control unit 3652, a current control unit 3653, a first PWM circuit 3654 and a second PWM circuit. 3655, wherein the current control unit 3653 controls an output current of the three-turn power converter 343. The energy storage component voltage/current control unit 3651 detects the output voltage and current of the energy storage component, and the DC bus voltage control unit 3652 detects the voltage of the AC power distribution system 35 and the DC bus voltage V BC . The current control unit 3653 detects the output current of the first arm 3432 and the output current of the second arm 3433 to generate the control signal. The energy storage device voltage/current control unit 3651 includes a current detector 36511, a subtractor 36512, a voltage detector 36513, a subtractor 36514, a selection switch 36515, a PI controller 36616, and an inverting amplifier. 36517. The DC bus voltage control unit 3652 includes a voltage detector 36521, a waveform generating circuit 36522, a voltage detector 36523, a subtractor 36524, a PI controller 36525, and a multiplier 36526. The current control unit 3653 includes a current detector 36531, an amplifier 36533, an adder 36534, an adder 36535, a subtractor 36536, a subtractor 36537, a first current controller 36538 and a second current control.器36539.

該電流檢出器36511用以檢出儲能元件之輸出電流,將該電流檢出器36511之輸出與儲能元件輸出設定電流送至該減法器36512相減,以獲得電流誤差信號。該電壓檢出器36513用以檢出儲能元件輸出電壓,將該電壓檢出器36513之輸出與儲能元件輸出設定電壓送至該減法器36514相減,以獲得電壓誤差信號。將該減法器36512及減法器36514之輸出送至該選擇開關36515,且該選擇開關36515根據當時控制方式來執行,可執行對該儲能元件執行定電壓或定電流充電,或亦可執行對該儲能元件執行放電。當該選擇開關36515選擇誤差電流信號時,則可執行定電流充電或定電流放電;或當該選擇開關36515選擇誤差電壓信號時,則可執行定電壓充電。將該選擇開關36515之輸出送至該P-I控制器36516,再將該P-I控制器36516之輸出送至該反向放大器36517,如此自該P-I控制器36516及反向放大器36517之輸出獲得儲能元件電壓或電流控制信號。 The current detector 36511 is configured to detect an output current of the energy storage component, and send the output of the current detector 36511 and the energy storage component output set current to the subtractor 36512 to obtain a current error signal. The voltage detector 36513 is configured to detect the output voltage of the energy storage component, and send the output of the voltage detector 36513 and the energy storage component output set voltage to the subtractor 36514 to obtain a voltage error signal. The output of the subtractor 36512 and the subtractor 36514 is sent to the selection switch 36515, and the selection switch 36515 is executed according to the current control mode, and may perform a constant voltage or a constant current charging on the energy storage element, or may perform the pair The energy storage element performs a discharge. When the selection switch 36515 selects the error current signal, the constant current charging or the constant current discharging may be performed; or when the selection switch 36515 selects the error voltage signal, the constant voltage charging may be performed. The output of the selection switch 36515 is sent to the PI controller 36616, and the output of the PI controller 36616 is sent to the inverting amplifier 36517, so that the energy storage component is obtained from the output of the PI controller 36616 and the inverting amplifier 36517. Voltage or current control signal.

該電壓檢出器36523檢出該直流匯流排電壓VBC與直流匯流排設定電壓送至該減法器36524相減,以獲得誤差信號。將該減法器36524之輸出誤差信號送至該P-I控制器36525,將該電壓檢出器36521檢出該交流配電系統35之電壓,並送至該波形產生電路36522,以產生與該交流配電系統35電壓同相位之單位弦波信號。將該波形產生電路36522及P-I控制器36525之輸出送至該乘法器36526,以獲得直流匯流排電壓控制信號。 The voltage detector 36523 detects that the DC bus voltage V BC and the DC bus set voltage are sent to the subtractor 36624 for subtraction to obtain an error signal. The output error signal of the subtractor 36624 is sent to the PI controller 36525, and the voltage detector 35521 detects the voltage of the AC power distribution system 35 and sends it to the waveform generating circuit 36522 to generate the AC power distribution system. 35 unit sine wave signal with the same phase of voltage. The output of the waveform generating circuit 36522 and the PI controller 36525 is sent to the multiplier 36526 to obtain a DC bus voltage control signal.

將該乘法器36526之輸出送至該0.5倍之放大器36533。將該放大器36533及P-I控制器36516之輸出送至該加法器36534。該電流檢出器36531檢出該第一臂3432之輸出電流,將該電流檢出器36531及加法器36534之輸出送至該減法器 36536,再將該減法器36536之輸出送至該第一電流控制器36538,再將該第一電流控制器36538之輸出送至該第一PWM電路3654,以產生PWM信號,以便控制該第一臂3432之電力電子開關元件。將該放大器36533及反向放大器36517之輸出送至該加法器36535,由該電流檢出器36532檢出該第二臂3433之輸出電流,將該電流檢出器36532及加法器36535之輸出送至該減法器36537,再將該減法器36537之輸出送至該第二電流控制器36539,再將該第二電流控制器36539之輸出送至該第二PWM電路3655,以產生PWM信號,以便控制該第二臂3433之電力電子開關元件。 The output of the multiplier 36526 is sent to the 0.5x amplifier 36533. The output of the amplifier 36533 and the P-I controller 36516 is sent to the adder 36534. The current detector 36531 detects the output current of the first arm 3432, and sends the output of the current detector 36531 and the adder 36534 to the subtractor. 36536, the output of the subtractor 36536 is sent to the first current controller 36538, and the output of the first current controller 36538 is sent to the first PWM circuit 3654 to generate a PWM signal to control the first Power electronic switching element of arm 3432. The output of the amplifier 36533 and the inverting amplifier 36517 is sent to the adder 36535, and the output current of the second arm 3433 is detected by the current detector 36532, and the output of the current detector 36532 and the adder 36535 is sent. Up to the subtractor 36537, the output of the subtractor 36537 is sent to the second current controller 36539, and the output of the second current controller 36539 is sent to the second PWM circuit 3655 to generate a PWM signal. The power electronic switching element of the second arm 3433 is controlled.

前述較佳實施例僅舉例說明本發明及其技術特徵,該實施例之技術仍可適當進行各種實質等效修飾及/或替換方式予以實施;因此,本發明之權利範圍須視後附申請專利範圍所界定之範圍為準。 The foregoing preferred embodiments are merely illustrative of the invention and the technical features thereof, and the techniques of the embodiments can be carried out with various substantial equivalent modifications and/or alternatives; therefore, the scope of the invention is subject to the appended claims. The scope defined by the scope shall prevail.

1‧‧‧市電併聯型太陽能發電系統 1‧‧‧Commercial parallel solar power system

11‧‧‧直流輸入電壓源 11‧‧‧DC input voltage source

12‧‧‧DC-DC電能轉換器 12‧‧‧DC-DC Energy Converter

13‧‧‧電能緩衝器 13‧‧‧Electric energy buffer

14‧‧‧DC-AC電能轉換器 14‧‧‧DC-AC Energy Converter

15‧‧‧交流配電系統 15‧‧‧AC power distribution system

2‧‧‧太陽光伏發電系統 2‧‧‧Solar Photovoltaic Power System

21‧‧‧太陽光伏模組 21‧‧‧Solar Photovoltaic Module

22‧‧‧主動箝位電路 22‧‧‧Active Clamp Circuit

23‧‧‧電力轉換器 23‧‧‧Power Converter

24‧‧‧交流選擇開關電路 24‧‧‧AC selection switch circuit

25‧‧‧交流配電系統 25‧‧‧AC power distribution system

3‧‧‧市電併聯型太陽能發電系統 3‧‧‧Commercial parallel solar power system

31‧‧‧太陽能電池陣列 31‧‧‧Solar battery array

32‧‧‧電能緩衝器 32‧‧‧Electric energy buffer

33‧‧‧直流-直流轉換器組 33‧‧‧DC-DC converter group

331‧‧‧直流-直流升降壓轉換器 331‧‧‧DC-DC buck-boost converter

3311‧‧‧電感器 3311‧‧‧Inductors

3312‧‧‧功率開關 3312‧‧‧Power switch

3313‧‧‧二極體 3313‧‧‧ diode

332‧‧‧直流-直流升壓轉換器 332‧‧‧DC-DC Boost Converter

3321‧‧‧電感器 3321‧‧‧Inductors

3322‧‧‧功率開關 3322‧‧‧Power switch

3323‧‧‧二極體 3323‧‧ ‧ diode

34‧‧‧直流-交流轉換器 34‧‧‧DC-AC Converter

341‧‧‧半橋式直流-交流轉換器 341‧‧‧Half-bridge DC-AC converter

3411‧‧‧電容器 3411‧‧‧ capacitor

3412‧‧‧電容器 3412‧‧‧ capacitor

342‧‧‧多階半橋式直流-交流轉換器 342‧‧‧Multi-step half-bridge DC-AC converter

343‧‧‧三埠式電能轉換器 343‧‧‧Three-pole power converter

3431‧‧‧電容臂 3431‧‧‧Capacitor arm

3432‧‧‧第一臂 3432‧‧‧First arm

3433‧‧‧第二臂 3433‧‧‧second arm

3434‧‧‧濾波電感 3434‧‧‧Filter inductor

3435‧‧‧解耦合電路 3435‧‧‧Decoupling circuit

3436‧‧‧儲能元件 3436‧‧‧ Energy storage components

35‧‧‧交流配電系統 35‧‧‧AC power distribution system

36‧‧‧控制器 36‧‧‧ Controller

361‧‧‧控制電路 361‧‧‧Control circuit

3611‧‧‧電壓外迴路控制單元 3611‧‧‧Voltage outer loop control unit

36111‧‧‧電壓檢出器 36111‧‧‧Voltage detector

36112‧‧‧放大器 36112‧‧‧Amplifier

36113‧‧‧減法器 36113‧‧‧Subtractor

36114‧‧‧P-I控制器 36114‧‧‧P-I controller

3612‧‧‧電流內迴路控制單元 3612‧‧‧current inner loop control unit

36121‧‧‧電流檢出器 36121‧‧‧ Current detector

36122‧‧‧減法器 36122‧‧‧Subtractor

36123‧‧‧電流控制器 36123‧‧‧ Current controller

3613‧‧‧PWM電路 3613‧‧‧PWM circuit

362‧‧‧控制電路 362‧‧‧Control circuit

3621‧‧‧電壓外迴路控制單元 3621‧‧‧Voltage outer loop control unit

36211‧‧‧電壓檢出器 36211‧‧‧Voltage detector

36212‧‧‧MPPT控制器 36212‧‧‧MPPT controller

36213‧‧‧減法器 36213‧‧‧Subtractor

36214‧‧‧P-I控制器 36214‧‧‧P-I controller

3622‧‧‧電流內迴路控制單元 3622‧‧‧current inner loop control unit

36221‧‧‧電流檢出器 36221‧‧‧ Current detector

36222‧‧‧減法器 36222‧‧‧Subtractor

36223‧‧‧電流控制器 36223‧‧‧ Current controller

3623‧‧‧PWM電路 3623‧‧‧PWM circuit

363‧‧‧控制電路 363‧‧‧Control circuit

3631‧‧‧直流匯流排電壓控制單元 3631‧‧‧DC bus voltage control unit

36311‧‧‧電壓檢出器 36311‧‧‧Voltage detector

36312‧‧‧減法器 36312‧‧‧Subtractor

36313‧‧‧P-I控制器 36313‧‧‧P-I Controller

3632‧‧‧電流控制單元 3632‧‧‧ Current Control Unit

36321‧‧‧電壓檢出器 36321‧‧‧Voltage detector

36322‧‧‧波形產生電路 36322‧‧‧ Waveform generating circuit

36323‧‧‧電流檢出器 36323‧‧‧ Current detector

36324‧‧‧乘法器 36324‧‧‧Multiplier

36325‧‧‧減法器 36325‧‧‧Subtractor

36326‧‧‧電流控制器 36326‧‧‧ Current controller

3633‧‧‧PWM電路 3633‧‧‧PWM circuit

364‧‧‧控制電路 364‧‧‧Control circuit

3641‧‧‧直流匯流排電壓控制單元 3641‧‧‧DC bus voltage control unit

36411‧‧‧電壓檢出器 36411‧‧‧Voltage detector

36412‧‧‧減法器 36412‧‧‧Subtractor

36413‧‧‧P-I控制器 36413‧‧‧P-I controller

3642‧‧‧電流控制單元 3642‧‧‧ Current Control Unit

36421‧‧‧電壓檢出器 36421‧‧‧Voltage detector

36422‧‧‧波形產生電路 36422‧‧‧ Waveform generating circuit

36423‧‧‧電流檢出器 36423‧‧‧ Current detector

36424‧‧‧乘法器 36424‧‧‧Multiplier

36425‧‧‧減法器 36425‧‧‧Subtractor

36426‧‧‧電流控制器 36426‧‧‧ Current controller

3643‧‧‧第一PWM電路 3643‧‧‧First PWM circuit

3644‧‧‧第二PWM電路 3644‧‧‧Second PWM circuit

365‧‧‧控制電路 365‧‧‧Control circuit

3651‧‧‧儲能元件電壓/電流控制單元 3651‧‧‧ Energy storage component voltage / current control unit

36511‧‧‧電流檢出器 36511‧‧‧current detector

36512‧‧‧減法器 36512‧‧‧Subtractor

36513‧‧‧電壓檢出器 36513‧‧‧Voltage detector

36514‧‧‧減法器 36514‧‧‧Subtractor

36515‧‧‧選擇開關 36515‧‧‧Selection switch

36516‧‧‧P-I控制器 36516‧‧‧P-I controller

36517‧‧‧反向放大器 36517‧‧‧Inverting amplifier

3652‧‧‧直流匯流排電壓控制單元 3652‧‧‧DC bus voltage control unit

36521‧‧‧電壓檢出器 36521‧‧‧Voltage detector

36522‧‧‧波形產生電路 36522‧‧‧ Waveform generating circuit

36523‧‧‧電壓檢出器 36523‧‧‧Voltage detector

36524‧‧‧減法器 36524‧‧‧Subtractor

36525‧‧‧P-I控制器 36525‧‧‧P-I controller

36526‧‧‧乘法器 36526‧‧‧Multiplier

3653‧‧‧電流控制單元 3653‧‧‧ Current Control Unit

36531‧‧‧電流檢出器 36531‧‧‧ Current detector

36532‧‧‧電流檢出器 36532‧‧‧ Current detector

36533‧‧‧放大器 36533‧‧‧Amplifier

36534‧‧‧加法器 36534‧‧‧Adder

36535‧‧‧加法器 36535‧‧‧Adder

36536‧‧‧減法器 36536‧‧‧Subtractor

36537‧‧‧減法器 36537‧‧‧Subtractor

36538‧‧‧第一電流控制器 36538‧‧‧First current controller

36539‧‧‧第二電流控制器 36539‧‧‧Second current controller

3654‧‧‧第一PWM電路 3654‧‧‧First PWM circuit

3655‧‧‧第二PWM電路 3655‧‧‧Second PWM circuit

第1圖:中華民國專利公告第I356566號之市電併聯型太陽能發電系統之架構示意圖。 Figure 1: Schematic diagram of the structure of a commercial parallel power solar power system of the Republic of China Patent No. I356566.

第2圖:中華民國專利公告第M408678號之太陽光伏發電系統之架構示意圖。 Figure 2: Schematic diagram of the structure of the solar photovoltaic power generation system of the Republic of China Patent No. M408678.

第3圖:本發明較佳實施例之市電併聯型太陽能發電系統之架構示意圖。 Fig. 3 is a schematic view showing the structure of a commercial parallel solar power generation system according to a preferred embodiment of the present invention.

第4A圖:本發明較佳實施例之市電併聯型太陽能發電系統採用半橋式直流-交流轉換器之架構示意圖。 4A is a schematic view showing the architecture of a half-bridge DC-AC converter in a commercial parallel solar power generation system according to a preferred embodiment of the present invention.

第4B圖:本發明較佳實施例之市電併聯型太陽能發電系統採用多階半橋式直流-交流轉換器之架構示意圖。 FIG. 4B is a schematic diagram showing the architecture of a multi-stage half-bridge DC-AC converter in a commercial parallel solar power generation system according to a preferred embodiment of the present invention.

第4C圖:本發明較佳實施例之市電併聯型太陽能發電系統採用三埠式電能轉換器之架構示意圖。 FIG. 4C is a schematic diagram showing the architecture of a three-turn power converter in a commercial parallel solar power generation system according to a preferred embodiment of the present invention.

第5A圖:本發明較佳實施例之市電併聯型太陽能發電系統採用控制直流-直流升降壓轉換器之控制器之方塊圖。 Fig. 5A is a block diagram showing a controller for controlling a DC-DC buck-boost converter of a commercial power parallel solar power generation system according to a preferred embodiment of the present invention.

第5B圖:本發明較佳實施例之市電併聯型太陽能發電系統採用控制直流-直流升壓轉換器之控制器之方塊圖。 FIG. 5B is a block diagram of a controller for controlling a DC-DC boost converter in a commercial parallel solar power generation system according to a preferred embodiment of the present invention.

第6A圖:本發明較佳實施例之市電併聯型太陽能發電系統採用半橋式直流-交流轉換器之控制器之方塊圖。 Fig. 6A is a block diagram of a controller of a half-bridge DC-AC converter using a commercial parallel power solar power generation system according to a preferred embodiment of the present invention.

第6B圖:本發明較佳實施例之市電併聯型太陽能發電系統採用多階半橋式直流-交流轉換器之控制器之方塊圖。 FIG. 6B is a block diagram of a controller of a multi-stage half-bridge DC-AC converter using a commercial parallel power solar power generation system according to a preferred embodiment of the present invention.

第6C圖:本發明較佳實施例之市電併聯型太陽能發電系統採用三埠式電能轉換器之控制器之方塊圖。 Figure 6C is a block diagram of a controller for a commercial parallel power solar power system in accordance with a preferred embodiment of the present invention using a three-turn power converter.

3‧‧‧市電併聯型太陽能發電系統 3‧‧‧Commercial parallel solar power system

31‧‧‧太陽能電池陣列 31‧‧‧Solar battery array

32‧‧‧電能緩衝器 32‧‧‧Electric energy buffer

33‧‧‧直流-直流轉換器組 33‧‧‧DC-DC converter group

331‧‧‧直流-直流升降壓轉換器 331‧‧‧DC-DC buck-boost converter

3311‧‧‧電感器 3311‧‧‧Inductors

3312‧‧‧功率開關 3312‧‧‧Power switch

3313‧‧‧二極體 3313‧‧‧ diode

332‧‧‧直流-直流升壓轉換器 332‧‧‧DC-DC Boost Converter

3321‧‧‧電感器 3321‧‧‧Inductors

3322‧‧‧功率開關 3322‧‧‧Power switch

3323‧‧‧二極體 3323‧‧ ‧ diode

34‧‧‧直流-交流轉換器 34‧‧‧DC-AC Converter

35‧‧‧交流配電系統 35‧‧‧AC power distribution system

36‧‧‧控制器 36‧‧‧ Controller

Claims (10)

一種太陽能電池陣列正電位端接地之市電併聯型太陽能發電系統,其包含:一太陽能電池陣列,其由數個太陽能電池模組串聯或並聯而成,該太陽能電池陣列具有一輸出埠,該輸出埠具有一正電位端及一負電位端,其輸出一直流電壓及一直流電流;一電能緩衝器,其與該太陽能電池陣列之輸出埠並聯;一直流-直流轉換器組,其具有一輸入埠及一輸出埠,該直流-直流轉換器組之輸入埠與太陽能電池陣列之輸出埠連接;一直流-交流轉換器,其具有一輸入埠及一輸出埠,該直流-交流轉換器之輸入埠與直流-直流轉換器組之輸出埠連接;及一控制器,其產生一控制信號,該控制信號用以分別控制該直流-直流轉換器組及直流-交流轉換器之功率開關之切換;其中該直流-交流轉換器之輸出埠連接至一交流配電系統,該太陽能電池陣列之輸出埠之正電位端直接連接至該交流配電系統之接地端,以形成直接接地。 A solar cell parallel solar power generation system with a positive potential terminal grounded by a solar cell array, comprising: a solar cell array formed by connecting a plurality of solar cell modules in series or in parallel, the solar cell array having an output port, the output port Having a positive potential terminal and a negative potential terminal, the output of the current voltage and the current; a power buffer connected in parallel with the output 埠 of the solar cell array; the DC-DC converter group having an input 埠And an output port, the input port of the DC-DC converter group is connected to the output port of the solar cell array; the DC-AC converter has an input port and an output port, and the input of the DC-AC converter Connected to an output port of the DC-DC converter group; and a controller that generates a control signal for separately controlling switching of the power switch of the DC-DC converter group and the DC-AC converter; The output of the DC-AC converter is connected to an AC power distribution system, and the output of the solar cell array is directly at the positive potential end To the ground terminal of the AC power distribution systems, in order to form directly to ground. 依申請專利範圍第1項所述之市電併聯型太陽能發電系統,其中該直流-直流轉換器組包含一直流-直流升降壓轉換器及一直流-直流升壓轉換器。 The utility model relates to a mains parallel solar power generation system according to claim 1, wherein the DC-DC converter group comprises a DC-DC buck-boost converter and a DC-DC boost converter. 依申請專利範圍第2項所述之市電併聯型太陽能發電系統,其中該直流-直流升降壓轉換器包含一電感器、一功率開關及一二極體,而該直流-直流升壓轉換器包含一電感器、一功率開關及一二極體。 According to the utility model as claimed in claim 2, the DC-DC buck-boost converter comprises an inductor, a power switch and a diode, and the DC-DC boost converter comprises An inductor, a power switch and a diode. 依申請專利範圍第1項所述之市電併聯型太陽能發電系統,其中該直流-交流轉換器選自一半橋式直流-交流轉換器、一多階半橋式直流-交流轉換器或一三埠式電能轉換器。 The utility model relates to a commercial parallel solar power generation system according to claim 1, wherein the DC-AC converter is selected from the group consisting of a half bridge DC-AC converter, a multi-stage half bridge DC-AC converter or a three-inch converter. Energy converter. 依申請專利範圍第4項所述之市電併聯型太陽能發電系統,其中該三埠式電能轉換器包含一電容臂、一第一臂、一第二臂、一濾波電感、一解耦合電路及一儲能元件。 The utility model relates to a commercial parallel solar power generation system according to claim 4, wherein the three-turn power converter comprises a capacitor arm, a first arm, a second arm, a filter inductor, a decoupling circuit and a Energy storage component. 依申請專利範圍第1項所述之市電併聯型太陽能發電系統,其中該控制器包含一電壓外迴路控制單元、一電流內迴路控制單元及一PWM電路,其用以控制一直流-直流升壓轉換器。 The utility model relates to a commercial parallel solar power generation system according to claim 1, wherein the controller comprises a voltage outer loop control unit, a current inner loop control unit and a PWM circuit for controlling the DC-DC boost. converter. 依申請專利範圍第1項所述之市電併聯型太陽能發電系統,其中該控制器包含一電壓外迴路控制單元、一電流內迴路控制單元及一PWM電路,其用以控制一直流-直流升降壓轉換器。 The utility model relates to a commercial parallel solar power generation system according to claim 1, wherein the controller comprises a voltage outer loop control unit, a current inner loop control unit and a PWM circuit for controlling the DC-DC buck-boost converter. 依申請專利範圍第1項所述之市電併聯型太陽能發電系統,其中該控制器包含一直流匯流排電壓控制單元、一電流控制單元及一PWM電路,其用以控制一半橋式直流-交流轉換器。 The utility model relates to a commercial parallel solar power generation system according to claim 1, wherein the controller comprises a DC bus voltage control unit, a current control unit and a PWM circuit for controlling half bridge DC-AC conversion. Device. 依申請專利範圍第1項所述之市電併聯型太陽能發電系統,其中該控制器包含一直流匯流排電壓控制單元、一電流控制單元、一第一PWM電路及一第二PWM電路,其用以控制一多階半橋式直流-交流轉換器。 The utility model relates to a commercial power parallel solar power generation system according to claim 1, wherein the controller comprises a DC bus voltage control unit, a current control unit, a first PWM circuit and a second PWM circuit. Control a multi-stage half-bridge DC-AC converter. 依申請專利範圍第1項所述之市電併聯型太陽能發電系統,其中該控制器包含一儲能元件電壓/電流控制單元、一直流匯流排電壓控制單元、一電流控制單元、一第一PWM電路及一第二PWM電路,其用以控制一三埠式電能轉換器。 The utility model relates to a commercial power parallel solar power generation system according to claim 1, wherein the controller comprises an energy storage component voltage/current control unit, a DC bus voltage control unit, a current control unit, and a first PWM circuit. And a second PWM circuit for controlling a three-turn power converter.
TW101135225A 2012-09-26 2012-09-26 Grid-connected photovoltaic generation system with positive grounding for solar cell arrays TWI477046B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101135225A TWI477046B (en) 2012-09-26 2012-09-26 Grid-connected photovoltaic generation system with positive grounding for solar cell arrays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101135225A TWI477046B (en) 2012-09-26 2012-09-26 Grid-connected photovoltaic generation system with positive grounding for solar cell arrays

Publications (2)

Publication Number Publication Date
TW201414157A true TW201414157A (en) 2014-04-01
TWI477046B TWI477046B (en) 2015-03-11

Family

ID=53185906

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101135225A TWI477046B (en) 2012-09-26 2012-09-26 Grid-connected photovoltaic generation system with positive grounding for solar cell arrays

Country Status (1)

Country Link
TW (1) TWI477046B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI595744B (en) * 2016-04-08 2017-08-11 盈正豫順電子股份有限公司 Power generation abnormality detection method and system for photovoltaic panels

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991003865A1 (en) * 1989-09-11 1991-03-21 Siemens Aktiengesellschaft Process for control of a multi-stage pulse converter
JP2001275259A (en) * 2000-03-29 2001-10-05 Canon Inc Linked system inverter and distributed power generation system
US7554031B2 (en) * 2005-03-03 2009-06-30 Sunpower Corporation Preventing harmful polarization of solar cells
TWI368376B (en) * 2009-01-17 2012-07-11 Ablerex Electronics Co Ltd Three-armed power transforming apparatus
TWI418809B (en) * 2010-01-20 2013-12-11 Univ Nat Kaohsiung Applied Sci Isolation operation detection method for mains voltage control type electric energy converter

Also Published As

Publication number Publication date
TWI477046B (en) 2015-03-11

Similar Documents

Publication Publication Date Title
Sahoo et al. Review and comparative study of single-stage inverters for a PV system
US9608447B2 (en) Solar photovoltaic three-phase micro-inverter and a solar photovoltaic generation system
CN105471238A (en) Direct current bus voltage ripple compensating method and photovoltaic inverter
US8111528B2 (en) DC to AC inverter
Shi et al. A single-phase grid-connected PV converter with minimal DC-link capacitor and low-frequency ripple-free maximum power point tracking
Shen et al. Transformer-less three-port grid-connected power converter for distribution power generation system with dual renewable energy sources
TWI462457B (en) Single-phase three-wire three-port power converter system
Shen et al. Single-phase three-wire grid-connected power converter with energy storage for positive grounding photovoltaic generation system
Mariappan et al. A novel single-stage solar inverter using hybrid active filter with power quality improvement
Savrun Z-source converter integrated dc electric spring for power quality improvement in dc microgrid
Itoh et al. Experimental verification of single-phase inverter with power decoupling function using boost-up chopper
Wu et al. Solar power generation system with power smoothing function
Mirzahosseini et al. A lifetime improved single phase grid connected photovoltaic inverter
TWI477046B (en) Grid-connected photovoltaic generation system with positive grounding for solar cell arrays
Xu et al. Power decoupling method for single-phase buck-boost inverter with energy-based control
CN108199409B (en) Current pulsation suppression method for fuel cell power generation system
CN102931682A (en) Carrier frequency conversion control method
CN103227474A (en) Photovoltaic power generation grid-connected system based on solid-state transformer
Wu et al. A dc bus signaling based autonomous power management strategy for a grid-connected pv-battery system
Acharya et al. A review of high gain inverters for smart-grid applications
KR20160047131A (en) Three-phase inverter and power converting apparatus in generation system
CN111864794A (en) Double-frequency transformer-free single-phase photovoltaic grid-connected inverter
CN107069820B (en) Distributed renewable energy power generation grid-connected power fluctuation control system and control method
Choi et al. Photovoltaic module integrated converter system minimizing input ripple current for inverter load
CN203788155U (en) DC boost circuit structure of miniwatt photovoltaic inverter

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees