TW201409539A - Manufacturing method of epitaxial substrate and product thereof - Google Patents

Manufacturing method of epitaxial substrate and product thereof Download PDF

Info

Publication number
TW201409539A
TW201409539A TW101129968A TW101129968A TW201409539A TW 201409539 A TW201409539 A TW 201409539A TW 101129968 A TW101129968 A TW 101129968A TW 101129968 A TW101129968 A TW 101129968A TW 201409539 A TW201409539 A TW 201409539A
Authority
TW
Taiwan
Prior art keywords
single crystal
bonding layer
plate body
epitaxial substrate
layer
Prior art date
Application number
TW101129968A
Other languages
Chinese (zh)
Other versions
TWI474381B (en
Inventor
dong-xing Wu
Re-Ching Lin
rui-hua Hong
Original Assignee
Nat Univ Chung Hsing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chung Hsing filed Critical Nat Univ Chung Hsing
Priority to TW101129968A priority Critical patent/TWI474381B/en
Publication of TW201409539A publication Critical patent/TW201409539A/en
Application granted granted Critical
Publication of TWI474381B publication Critical patent/TWI474381B/en

Links

Abstract

The present invention provides a manufacturing method of epitaxial substrate growing an epitaxial film structure on the substrate to constitute a vertical conduction LED. The epitaxial film structure is mainly composed of gallium nitride material. The manufacturing method comprises steps of: (a) forming a first bonding layer on a first surface of a first single crystal board body; (b) forming a second bonding layer on a first surface of a second single crystal board body; (c) bonding the first bonding layer and the second bonding layer into together to form an adhesive layer; and (d) thinning the second crystal board body on the second surface of the second single board body opposite to the first surface after performing the step (c), wherein the second surface of the second single crystal board body is used for growing the epitaxial film structure. The present invention also provides an epitaxial substrate through the said method.

Description

磊晶基板的製作方法及其製品 Method for manufacturing epitaxial substrate and product thereof

本發明是有關於一種基板,特別是指一種磊晶基板(epitaxial substrate)的製作方法及其製品。 The present invention relates to a substrate, and more particularly to a method for fabricating an epitaxial substrate and an article thereof.

藍光/綠光發光二極體(light emitting diode,LED)基於其所使用之藍寶石(sapphire)磊晶基板不易散熱等原因,如圖1所示,熟悉此技術領域的相關技術人員便採用晶圓鍵合的技術(wafer bonding),以將一藍寶石磊晶基板10上的一氮化鎵(GaN)膜層結構11貼合至一散熱性導電基板100上[參圖1(B)],並進一步地利用雷射剝離(laser lift-off;LLO)製程來裂解該GaN膜層結構11與藍寶石磊晶基板10間的緩衝層12,從而使得該藍寶石磊晶基板10是自該GaN膜層結構11被移除掉[參圖1(C)],以藉此解決前述散熱不佳的問題,並於移除該藍寶石磊晶基板10後的該GaN膜層結構11上形成一上電極(圖未示)以製得一垂直導通式(vertical feedthrough)的發光二極體。 The blue/green light emitting diode (LED) is based on the fact that the sapphire epitaxial substrate used for the sapphire is not easy to dissipate heat, and the like, as shown in FIG. Wafer bonding to bond a gallium nitride (GaN) film layer structure 11 on a sapphire epitaxial substrate 10 to a heat-dissipating conductive substrate 100 [see FIG. 1(B)], and Further, a laser lift-off (LLO) process is used to crack the buffer layer 12 between the GaN film layer structure 11 and the sapphire epitaxial substrate 10, so that the sapphire epitaxial substrate 10 is from the GaN film layer structure. 11 is removed [refer to FIG. 1 (C)], thereby solving the aforementioned problem of poor heat dissipation, and forming an upper electrode on the GaN film layer structure 11 after removing the sapphire epitaxial substrate 10 (Fig. Not shown) to produce a vertical feedthrough light emitting diode.

然而,此處需補充說明的是,如圖1(A)所示,在實施晶圓鍵合技術之前,該GaN膜層結構11的表面上是預先依序形成有一金屬反射層13及一金屬鍵合層14;之後,再利用熱壓法(即,晶圓鍵合技術)使該金屬鍵合層14與該散熱性導電基板100上的另一金屬鍵合層15上相互鍵合[如圖1(B)所示]。 However, it should be additionally noted here that, as shown in FIG. 1(A), before the wafer bonding technique is performed, a surface of the GaN film layer 11 is formed with a metal reflective layer 13 and a metal in advance. Bonding layer 14; then, the metal bonding layer 14 and the other metal bonding layer 15 on the heat-dissipating conductive substrate 100 are bonded to each other by a hot pressing method (ie, wafer bonding technique) [eg, Figure 1 (B)].

因此,熟悉此技術領域相關技術人員應知,在實施晶 圓鍵合技術時,該金屬反射層13將因熱壓法所處的高溫環境而出現氧化問題,從而使得該金屬反射層13的反射率嚴重地受到不良的影響。再者,在晶圓鍵合技術之後所實施的LLO製程中,該GaN膜層結構11亦將因LLO製程的高能量雷射光束而受到損傷,從而影響其漏電流的特性。關於垂直導通式發光二極體之製法及其結構等相關說明,可參TW200812105與TW201123524等早期公開專利公報的說明。 Therefore, those skilled in the art should be aware of the implementation of crystal In the case of the round bonding technique, the metal reflective layer 13 will have an oxidation problem due to the high temperature environment in which the hot pressing method is applied, so that the reflectance of the metal reflective layer 13 is seriously adversely affected. Furthermore, in the LLO process implemented after the wafer bonding technique, the GaN film layer structure 11 is also damaged by the high-energy laser beam of the LLO process, thereby affecting the characteristics of its leakage current. For a description of the method for fabricating a vertical-conducting light-emitting diode and its structure, reference is made to the description of the earlier published patent publications such as TW200812105 and TW201123524.

此處更須點破的一成本問題是,即便是散熱問題可經由上述製法/結構初步地取得其解決方案;然而,該GaN膜層結構11始終必須成長在價格昂貴的藍寶石磊晶基板10上,導致垂直導通式發光二極體的整體製作成本無法被向下拉低。 A cost problem that needs to be broken here is that even the heat dissipation problem can be initially obtained through the above-described manufacturing method/structure; however, the GaN film layer structure 11 must always be grown on the expensive sapphire epitaxial substrate 10, The overall fabrication cost of the vertical-conducting light-emitting diode cannot be pulled down.

經上述說明可知,改良磊晶基板的製法及其製品結構,藉以降低垂直導通式發光二極體的原物料成本,使得垂直導通式發光二極體之製法得以根據磊晶基板的結構改良而獲得改進,並從而解決漏電流甚或金屬反射層高溫氧化等問題,是此技術領域相關技術人員所需改進的課題。 It can be seen from the above description that the method for manufacturing the epitaxial substrate and the structure of the product thereof can reduce the cost of the raw material of the vertical-conducting light-emitting diode, so that the method for manufacturing the vertical-conducting light-emitting diode can be obtained according to the structural improvement of the epitaxial substrate. Improvements and thus solving problems such as leakage current or even high temperature oxidation of the metal reflective layer are problems that need to be improved by those skilled in the art.

因此,本發明之目的,即在提供一種磊晶基板的製作方法。 Accordingly, it is an object of the present invention to provide a method of fabricating an epitaxial substrate.

本發明之另一目的,即在提供一種磊晶基板。 Another object of the present invention is to provide an epitaxial substrate.

於是,本發明磊晶基板的製作方法,是用以於其上成長一磊晶膜層結構以構成一垂直導通式發光二極體,該磊 晶膜層結構是由一以氮化鎵為主(GaN-based)的材料所構成。該製作方法包含以下步驟:(a)於一第一單晶板本體的一第一表面形成一第一鍵合層;(b)於一第二單晶板本體的一第一表面形成一第二鍵合層;(c)以熱壓法使該第一鍵合層與該第二鍵合層鍵合在一起,並從而形成一黏結層;及(d)於該步驟(c)後,自該第二單晶板本體之一相反於其第一表面的第二表面薄化該第二單晶板本體,該第二單晶板本體的第二表面是用以成長該磊晶膜層結構。 Therefore, the method for fabricating the epitaxial substrate of the present invention is to grow an epitaxial film layer structure thereon to form a vertical conductive light emitting diode. The crystal film layer structure is composed of a GaN-based material. The manufacturing method comprises the steps of: (a) forming a first bonding layer on a first surface of a first single crystal plate body; and (b) forming a first surface on a first surface of a second single crystal plate body. a second bonding layer; (c) bonding the first bonding layer and the second bonding layer by heat pressing, and thereby forming a bonding layer; and (d) after the step (c), The second single crystal plate body is thinned from a second surface of the second single crystal plate body opposite to the first surface thereof, and the second surface of the second single crystal plate body is used to grow the epitaxial film layer structure.

此外,本發明之磊晶基板,是用以於其上成長一磊晶膜層結構以構成一垂直導通式發光二極體,該磊晶膜層結構是由一以氮化鎵為主的材料所構成。本發明該磊晶基板包含:一第一單晶板本體、一第二單晶板本體,及一黏結層。該第二單晶板本體具有相反設置的一第一表面及一第二表面,該第二單晶板本體的第二表面是用以成長該磊晶膜層構,且該第二單晶板本體的厚度是低於10 μm。該黏結層鍵合於該第一單晶板本體與該第二單晶板本體之第一表面之間。 In addition, the epitaxial substrate of the present invention is used to grow an epitaxial film layer structure thereon to form a vertical-conducting light-emitting diode structure, which is composed of a gallium nitride-based material. Composition. The epitaxial substrate of the present invention comprises: a first single crystal plate body, a second single crystal plate body, and a bonding layer. The second single crystal plate body has a first surface and a second surface disposed oppositely, and the second surface of the second single crystal plate body is configured to grow the epitaxial film layer, and the second single crystal plate The thickness of the body is less than 10 μm. The adhesive layer is bonded between the first single crystal plate body and the first surface of the second single crystal plate body.

本發明之功效在於:其經改良的磊晶基板結構可降低垂直導通式發光二極體的原物料成本,並使得垂直導通式發光二極體之製法得以根據磊晶基板的結構改良而獲得改 進,從而解決漏電流甚或金屬反射層高溫氧化等問題。 The invention has the advantages that the improved epitaxial substrate structure can reduce the raw material cost of the vertical-conducting light-emitting diode, and the method for manufacturing the vertical-conducting light-emitting diode can be improved according to the structural improvement of the epitaxial substrate. In order to solve the problem of leakage current or even high temperature oxidation of the metal reflective layer.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一個較佳實施例的詳細說明中,將可清楚的呈現。 The above and other technical contents, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments.

參閱圖2,本發明磊晶基板2的製作方法的一較佳實施例,是用以於其上成長一磊晶膜層結構3以構成一垂直導通式發光二極體(參圖6),該磊晶膜層結構3是由一以氮化鎵為主(GaN-based)的材料所構成。本發明該較佳實施例之製作方法包含以下步驟:(a)於一第一單晶板本體21的一第一表面211形成一第一鍵合層231;(b)於一第二單晶板本體22的一第一表面形221成一第二鍵合層232;(c)以熱壓法使該第一鍵合層231與該第二鍵合層232鍵合在一起,並從而形成一黏結層23;及(d)於該步驟(c)後,自該第二單晶板本體22之一相反於其第一表面221的第二表面222薄化該第二單晶板本體22,該第二單晶板本體22的第二表面222是用以成長該磊晶膜層結構3。 Referring to FIG. 2, a preferred embodiment of the method for fabricating the epitaxial substrate 2 of the present invention is used to grow an epitaxial film layer structure 3 thereon to form a vertical-conducting light-emitting diode (see FIG. 6). The epitaxial film layer structure 3 is composed of a GaN-based material. The manufacturing method of the preferred embodiment of the present invention comprises the steps of: (a) forming a first bonding layer 231 on a first surface 211 of a first single crystal panel body 21; (b) forming a second single crystal A first surface shape 221 of the board body 22 is formed into a second bonding layer 232; (c) the first bonding layer 231 and the second bonding layer 232 are bonded together by heat pressing, and thereby forming a After the step (c), the second single crystal plate body 22 is thinned from a second surface 222 of the second single crystal plate body 22 opposite to the first surface 221 thereof, The second surface 222 of the second single crystal plate body 22 is used to grow the epitaxial film layer structure 3.

較佳地,該步驟(d)之第二單晶板本體22經薄化後的厚度是低於10 μm。在本發明該較佳實施例中,該步驟(d)是使用化學機械研磨法(CMP)來薄化該第二單晶板本體22。 Preferably, the thickness of the second single crystal plate body 22 of the step (d) after thinning is less than 10 μm. In the preferred embodiment of the invention, step (d) is to thin the second single crystal plate body 22 using chemical mechanical polishing (CMP).

由本發明該較佳實施例之上述製作方法的初步說明可 知,經本發明該較佳實施例之製作方法所製得的磊晶基板2是顯示於圖2的步驟(d),其是用以於其上成長該磊晶膜層結構3以構成該垂直導通式發光二極體(參圖6),該磊晶膜層結構3是由一以氮化鎵為主的材料所構成。該磊晶基板2包含:該第一單晶板本體21、該第二單晶板本體22,及該黏結層23。該第二單晶板本體22具有相反設置的第一表面221及第二表面222,該第二單晶板本體22的第二表面222是用以成長該磊晶膜層構3,且該第二單晶板本體22的厚度是低於10 μm。該黏結層23鍵合於該第一單晶板本體21與該第二單晶板本體22之第一表面221之間。 A preliminary description of the above manufacturing method of the preferred embodiment of the present invention may be It is understood that the epitaxial substrate 2 obtained by the manufacturing method of the preferred embodiment of the present invention is shown in step (d) of FIG. 2, which is used to grow the epitaxial film layer structure 3 thereon to constitute the vertical A general-purpose light-emitting diode (see FIG. 6), the epitaxial film layer structure 3 is composed of a material mainly composed of gallium nitride. The epitaxial substrate 2 includes the first single crystal plate body 21, the second single crystal plate body 22, and the adhesive layer 23. The second single crystal plate body 22 has a first surface 221 and a second surface 222 disposed oppositely, and the second surface 222 of the second single crystal plate body 22 is used to grow the epitaxial film layer 3, and the first The thickness of the two single crystal plate bodies 22 is less than 10 μm. The adhesive layer 23 is bonded between the first single crystal plate body 21 and the first surface 221 of the second single crystal plate body 22.

較佳地,於該步驟(a)與該步驟(b)之後並於該步驟(c)之前,還包含對該步驟(a)與該步驟(b)所形成的第一鍵合層231與第二鍵合層232施予RCA清洗流程(圖未示),以移除該第一鍵合層231與該第二鍵合層232表面的有機物及金屬微粒並於其表面形成偶極(dipole),且該第一鍵合層231與該第二鍵合層232的平均表面粗糙度是小於0.4 nm,以致於在實施該步驟(c)的狀態下,使該第一鍵合層231與該該第二鍵合層232面對面接觸時能初步地因其兩者表面的凡得瓦爾力(van der Waals' forces)而相互吸附。 Preferably, after the step (a) and the step (b) and before the step (c), the first bonding layer 231 formed by the step (a) and the step (b) is further included. The second bonding layer 232 is subjected to an RCA cleaning process (not shown) to remove the organic materials and metal particles on the surface of the first bonding layer 231 and the second bonding layer 232 and form a dipole on the surface thereof (dipole) And the average surface roughness of the first bonding layer 231 and the second bonding layer 232 is less than 0.4 nm, so that in the state in which the step (c) is performed, the first bonding layer 231 is When the second bonding layer 232 is in face-to-face contact, it can be initially adsorbed by van der Waals' forces on both surfaces thereof.

較佳地,該第一單晶板本體21是由一適合由一濕式蝕刻劑所移除的第一單晶材料所構成;該第二單晶板本體22是由一第二單晶材料所構成,該第二單晶材料是矽(111),且本發明該較佳實施例之第一單晶材料及第二單晶材料對該濕式蝕刻劑是呈現出選擇性蝕刻(selectivity etching)的特 性,以致該濕式蝕刻劑對該第一單晶材料的蝕刻速率是遠大於對該第二單晶材料的蝕刻速率。在本發明該較佳實施例中,該第一單晶材料是矽(100);該第一鍵合層231與該第二鍵合層232是由氧化矽(SiO2)所構成;即,該黏結層23是由氧化矽所構成;此外,適用於本發明該較佳實施例之濕式蝕刻劑是氫氧化鉀(KOH)。 Preferably, the first single crystal plate body 21 is composed of a first single crystal material suitable for being removed by a wet etchant; the second single crystal plate body 22 is made of a second single crystal material. The second single crystal material is ruthenium (111), and the first single crystal material and the second single crystal material of the preferred embodiment of the present invention exhibit selective etching on the wet etchant. The characteristics are such that the wet etchant etch rate of the first single crystal material is much greater than the etch rate of the second single crystal material. In the preferred embodiment of the present invention, the first single crystal material is tantalum (100); the first bonding layer 231 and the second bonding layer 232 are made of yttrium oxide (SiO 2 ); The adhesive layer 23 is composed of ruthenium oxide; further, the wet etchant suitable for use in the preferred embodiment of the present invention is potassium hydroxide (KOH).

較佳地,該第一鍵合層231的厚度是介於0.4 μm至2 μm之間;該第二鍵合層232的厚度是介於0.4 μm至2 μm之間(即,該黏結層23的厚度是介於0.8 μm至4 μm之間);該步驟(c)的實施溫度是介於500℃至1100℃之間,該步驟(c)的實施壓力是介於5 MPa至15 MPa之間。 Preferably, the thickness of the first bonding layer 231 is between 0.4 μm and 2 μm; the thickness of the second bonding layer 232 is between 0.4 μm and 2 μm (ie, the bonding layer 23 The thickness of the step (c) is between 500 ° C and 1100 ° C, and the implementation pressure of the step (c) is between 5 MPa and 15 MPa. between.

此處值得補充說明的是,本發明該較佳實施例之磊晶基板2後續被進一步地拿來製作垂直導通式發光二極體的相關說明及其應用,是簡單地說明於下。 It should be noted that the related description and application of the epitaxial substrate 2 of the preferred embodiment of the present invention to further form a vertical-conducting light-emitting diode are briefly described below.

首先,參圖3,此熟悉此技術領域的相關技術人員可在該第一單晶板本體21之遠離該黏結層23的一第二表面212形成一高緻密性並具有一開口50的遮罩層5,並根據該第一單晶板本體[即,矽(100)]21與該第二單晶板本體[即,矽(111)]21兩者對KOH的選擇性蝕刻差異,使用KOH以快速地移除裸露於該開口50外的第一單晶板本體21,從而在該第一單晶板本體21形成一貫穿其第一、二表面211、212並界定出一空間210的內圍繞面213;其中,KOH的濕式蝕刻行為是終止於該黏結層(SiO2)23。 First, referring to FIG. 3, a person skilled in the art can form a mask having a high density and having an opening 50 on a second surface 212 of the first single crystal board body 21 away from the adhesive layer 23. Layer 5, and according to the selective etching difference of KOH between the first single crystal plate body [i.e., ruthenium (100)] 21 and the second single crystal plate body [i.e., ruthenium (111)] 21, KOH is used. To quickly remove the first single crystal plate body 21 exposed outside the opening 50, thereby forming a space through the first and second surfaces 211, 212 and defining a space 210 in the first single crystal board body 21. surrounding surface 213; wherein, KOH wet etching action is to terminate on the adhesive layer (SiO 2) 23.

進一步地,參圖4,利用離子耦合電漿(ICP)乾式蝕刻 法自該黏結層23朝該磊晶膜層結構3的方向依序移除該裸露於該空間210外的黏結層23、第二單晶板本體22及部分磊晶膜層結構3,從而於該黏結層23、該第二單晶板本體22及該磊晶膜層結構3分別形成有一內環面233、223、36,且該第一單晶板本體21的內圍繞面213及該等內環面233、223、36共同界定出一空腔20,並使該磊晶膜層結構3中的一n型GaN層31裸露於該空腔20外。之後,移除該遮罩層5(如圖5所示)。經本段說明可知,為避免ICP乾式蝕刻法實施時間過長;因此,如前幾段所述者,本發明該較佳實施例之第二單晶板本體22與該黏結層23的厚度較佳是分別控制在10 μm以下與0.8 μm至4 μm之間。 Further, referring to Figure 4, dry etching using ion coupled plasma (ICP) The bonding layer 23, the second single crystal plate body 22 and the partial epitaxial film layer structure 3 exposed outside the space 210 are sequentially removed from the bonding layer 23 toward the epitaxial film layer structure 3, thereby The bonding layer 23, the second single crystal board body 22 and the epitaxial film layer structure 3 are respectively formed with an inner annular surface 233, 223, 36, and the inner surrounding surface 213 of the first single crystal board body 21 and the like The inner annular faces 233, 223, 36 collectively define a cavity 20 and expose an n-type GaN layer 31 in the epitaxial film layer structure 3 outside the cavity 20. Thereafter, the mask layer 5 is removed (as shown in FIG. 5). As can be seen from the description of this paragraph, in order to avoid the ICP dry etching method is too long; therefore, as described in the preceding paragraphs, the thickness of the second single crystal board body 22 and the bonding layer 23 of the preferred embodiment of the present invention is better. It is controlled between 10 μm and 0.8 μm to 4 μm, respectively.

如圖6所示,熟悉此技術領域的相關技術人員可在圖3~圖5等流程之前,於該磊晶膜層結構3的表面預先形成多數個相互間隔設置的第一電極4,甚或在該磊晶膜層結構3與該等第一電極4之間形成一透明導電層(圖未示)以作為一電流傳播層(current spreading layer)。最後,自形成有該空腔20的一側依序形成一金屬反射層6、一第二電極層7及一散熱層8;該金屬反射層6覆蓋該n型GaN層31、該等內環面36、223、233、該第一單晶板本體21的內圍繞面213及其第二表面212,該第二電極層7覆蓋該金屬反射層6,且該散熱層8覆蓋該第二電極層7,並藉此完成該垂直導通式發光二極體的底部毆姆接觸。 As shown in FIG. 6 , a person skilled in the art can form a plurality of first electrodes 4 spaced apart from each other on the surface of the epitaxial film layer structure 3 before the processes of FIG. 3 to FIG. 5 , or even A transparent conductive layer (not shown) is formed between the epitaxial film layer structure 3 and the first electrodes 4 to serve as a current spreading layer. Finally, a metal reflective layer 6, a second electrode layer 7, and a heat dissipation layer 8 are sequentially formed from a side on which the cavity 20 is formed; the metal reflective layer 6 covers the n-type GaN layer 31, the inner rings a surface 36, 223, 233, an inner surrounding surface 213 of the first single crystal panel body 21 and a second surface 212 thereof, the second electrode layer 7 covers the metal reflective layer 6, and the heat dissipation layer 8 covers the second electrode Layer 7, and thereby completing the bottom ohmic contact of the vertical-conducting light-emitting diode.

再參圖3、圖4及圖6,本發明該較佳實施例所製得之磊晶基板2一方面是利用該第二單晶板本體[即, Si(111)]22,來降低該磊晶膜層結構3於磊晶成長時所產生的晶格不匹配度(lattice mismatch),以藉此取代價格較為昂貴的藍寶石磊晶基板,並降低製作垂直導通式發光二極體時的原物料成本。 Referring to FIG. 3, FIG. 4 and FIG. 6, the epitaxial substrate 2 obtained by the preferred embodiment of the present invention utilizes the second single crystal plate body on the one hand [ie, Si(111)]22, to reduce the lattice mismatch caused by the epitaxial film layer structure 3 during epitaxial growth, thereby replacing the more expensive sapphire epitaxial substrate and reducing the fabrication Raw material cost when vertically conducting a light-emitting diode.

另一方面,本發明該較佳實施例亦藉由該第一單晶板本體21[即,Si(100)]與該第二單晶板本體22[即,Si(111)]兩者對於該濕式蝕刻劑(即,KOH)的選擇性蝕刻特性,以快速地在該第一單晶板本體21中形成該空間210;並進一步地透過ICP乾式蝕刻法以依序移除裸露於該空間210外的黏結層23、第二單晶板本體[即,Si(111)]22與部分磊晶膜層結構3,從而使該n型GaN層31裸露於該空腔20外,以使得該金屬反射層6、該第二電極層7與該散熱層8可留在垂直導通式發光二極體之製法的最後一道步驟實施,並完成底部毆姆接觸的製作程序,以藉此避免該金屬反射層6因高溫製程的熱壓法所衍生的氧化問題,並提升該金屬反射層6的反射率。 In another aspect, the preferred embodiment of the present invention also utilizes the first single crystal plate body 21 [ie, Si (100)] and the second single crystal plate body 22 [ie, Si (111)]. Selective etching characteristics of the wet etchant (ie, KOH) to rapidly form the space 210 in the first single crystal plate body 21; and further removing the bare by the ICP dry etching method a bonding layer 23 outside the space 210, a second single crystal plate body [ie, Si(111)] 22 and a portion of the epitaxial film layer structure 3, such that the n-type GaN layer 31 is exposed outside the cavity 20, so that The metal reflective layer 6, the second electrode layer 7 and the heat dissipation layer 8 can be implemented in the last step of the method of manufacturing the vertical conductive light-emitting diode, and the fabrication process of the bottom ohmic contact is completed, thereby avoiding the The metal reflective layer 6 has an oxidation problem derived from a hot pressing method of a high temperature process, and enhances the reflectance of the metal reflective layer 6.

再者,由於該空腔20是由該磊晶膜層結構3的內環面36與本發明該較佳實施例之磊晶基板2之內圍繞面213及各內環面233、223所共同定義而成;因此,該金屬反射層6的披覆面積相對地獲得提升,亦增加了後續所完成之垂直導通式發光二極體的整體散熱面積。 Furthermore, since the cavity 20 is formed by the inner annular surface 36 of the epitaxial film layer structure 3 and the inner surrounding surface 213 and the inner annular surfaces 233, 223 of the epitaxial substrate 2 of the preferred embodiment of the present invention. It is defined; therefore, the coating area of the metal reflective layer 6 is relatively improved, and the overall heat dissipation area of the subsequently completed vertical-conducting light-emitting diode is also increased.

又,本發明該較佳實施例之磊晶基板2的結構設計,其在後續製作垂直導通式發光二極體時,可省略掉先前技術所使用的雷射剝離(LLO)製程,使該磊晶膜層結構3免於 遭受高能量的雷射光束所損傷,可降低先前技術所述及的漏電流問題。 Moreover, the structural design of the epitaxial substrate 2 of the preferred embodiment of the present invention can omit the laser lift-off (LLO) process used in the prior art when the vertical-conducting light-emitting diode is subsequently fabricated. Crystal film layer structure 3 is free of Damage to the laser beam subjected to high energy can reduce the leakage current problem described in the prior art.

綜上所述,本發明磊晶基板的製作方法及其製品,其經改良的磊晶基板結構可降低垂直導通式發光二極體的原物料成本,並使得垂直導通式發光二極體之製法得以根據磊晶基板的結構改良而獲得改進,從而解決漏電流甚或金屬反射層高溫氧化等問題,故確實能達成本發明之目的。 In summary, the method for fabricating the epitaxial substrate of the present invention and the article thereof, the improved epitaxial substrate structure can reduce the raw material cost of the vertical-conducting light-emitting diode, and the method for manufacturing the vertical-conducting light-emitting diode It is possible to obtain an improvement according to the structural improvement of the epitaxial substrate, thereby solving the problems of leakage current or even high-temperature oxidation of the metal reflective layer, so that the object of the present invention can be achieved.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,即大凡依本發明申請專利範圍及發明說明內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 The above is only the preferred embodiment of the present invention, and the scope of the invention is not limited thereto, that is, the simple equivalent changes and modifications made by the scope of the invention and the description of the invention are All remain within the scope of the invention patent.

2‧‧‧磊晶基板 2‧‧‧ epitaxial substrate

20‧‧‧空腔 20‧‧‧ cavity

21‧‧‧第一單晶板本體 21‧‧‧The first single crystal plate body

210‧‧‧空間 210‧‧‧ Space

211‧‧‧第一表面 211‧‧‧ first surface

212‧‧‧第二表面 212‧‧‧ second surface

213‧‧‧內圍繞面 Surrounded by 213‧‧

22‧‧‧第二單晶板本體 22‧‧‧Second single crystal plate body

221‧‧‧第一表面 221‧‧‧ first surface

222‧‧‧第二表面 222‧‧‧ second surface

223‧‧‧內環面 223‧‧‧ Inner torus

23‧‧‧黏結層 23‧‧‧Bonded layer

231‧‧‧第一鍵合層 231‧‧‧First bonding layer

232‧‧‧第二鍵合層 232‧‧‧Second bonding layer

233‧‧‧內環面 233‧‧‧ Inner torus

3‧‧‧磊晶膜層結構 3‧‧‧ epitaxial film structure

31‧‧‧n型GaN層 31‧‧‧n-type GaN layer

36‧‧‧內環面 36‧‧‧ Inner torus

4‧‧‧第一電極 4‧‧‧First electrode

5‧‧‧遮罩層 5‧‧‧mask layer

50‧‧‧開口 50‧‧‧ openings

6‧‧‧金屬反射層 6‧‧‧Metal reflector

7‧‧‧第二電極層 7‧‧‧Second electrode layer

8‧‧‧散熱層 8‧‧‧heat layer

圖1是一元件製作流程示意圖,說明傳統垂直導通式發光二極體的基本製法;圖2是一元件製作流程示意圖,說明本發明磊晶基板的製作方法的一較佳實施例;圖3是一正視示意圖,說明本發明該較佳實施例所得之磊晶基板,其在後續應用於製作垂直導通式發光二極體時的一流程的一步驟;圖4是一正視示意圖,說明延續於圖3之後的一步驟;圖5是一正視示意圖,說明延續於圖4之後的一步驟;及圖6是一正視示意圖,說明延續於圖5之後的步驟所 完成的一垂直導通式發光二極體。 1 is a schematic diagram of a component fabrication process, illustrating a basic manufacturing process of a conventional vertical-conducting light-emitting diode; FIG. 2 is a schematic diagram of a component fabrication process, illustrating a preferred embodiment of a method for fabricating an epitaxial substrate of the present invention; A front view showing an epitaxial substrate obtained by the preferred embodiment of the present invention, which is applied to a step of a process for fabricating a vertical-conducting light-emitting diode; FIG. 4 is a front view showing the continuity a step after 3; FIG. 5 is a front view showing a step continuing after FIG. 4; and FIG. 6 is a front view showing a step continuing after FIG. A finished vertical light emitting diode is completed.

2‧‧‧磊晶基板 2‧‧‧ epitaxial substrate

21‧‧‧第一單晶板本體 21‧‧‧The first single crystal plate body

211‧‧‧第一表面 211‧‧‧ first surface

22‧‧‧第二單晶板本體 22‧‧‧Second single crystal plate body

221‧‧‧第一表面 221‧‧‧ first surface

222‧‧‧第二表面 222‧‧‧ second surface

23‧‧‧黏結層 23‧‧‧Bonded layer

231‧‧‧第一鍵合層 231‧‧‧First bonding layer

232‧‧‧第二鍵合層 232‧‧‧Second bonding layer

3‧‧‧磊晶膜層結構 3‧‧‧ epitaxial film structure

Claims (12)

一種磊晶基板的製作方法,是用以於其上成長一磊晶膜層結構以構成一垂直導通式發光二極體,該磊晶膜層結構是由一以氮化鎵為主的材料所構成,該製作方法包含以下步驟:(a)於一第一單晶板本體的一第一表面形成一第一鍵合層;(b)於一第二單晶板本體的一第一表面形成一第二鍵合層;(c)以熱壓法使該第一鍵合層與該第二鍵合層鍵合在一起,並從而形成一黏結層;及(d)於該步驟(c)後,自該第二單晶板本體之一相反於其第一表面的第二表面薄化該第二單晶板本體,該第二單晶板本體的第二表面是用以成長該磊晶膜層結構。 An epitaxial substrate is formed by growing an epitaxial film layer structure to form a vertical-conducting light-emitting diode structure, and the epitaxial film layer structure is made of a material mainly composed of gallium nitride. The method includes the steps of: (a) forming a first bonding layer on a first surface of a first single crystal plate body; and (b) forming a first surface of a second single crystal plate body. a second bonding layer; (c) bonding the first bonding layer and the second bonding layer by heat pressing, and thereby forming a bonding layer; and (d) in the step (c) Thereafter, the second single crystal plate body is thinned from a second surface of the second single crystal plate body opposite to the first surface thereof, and the second surface of the second single crystal plate body is used to grow the epitaxial crystal Membrane structure. 依據申請專利範圍第1項所述之磊晶基板的製作方法,其中,該第一單晶板本體是由一適合由一濕式蝕刻劑所移除的第一單晶材料所構成;該第二單晶板本體是由一第二單晶材料所構成,該第二單晶材料是矽(111),且該濕式蝕刻劑對該第一單晶材料的蝕刻速率是遠大於對該第二單晶材料的蝕刻速率。 The method for fabricating an epitaxial substrate according to claim 1, wherein the first single crystal plate body is composed of a first single crystal material suitable for being removed by a wet etchant; The second single crystal plate body is composed of a second single crystal material, the second single crystal material is germanium (111), and the etching rate of the wet single etchant to the first single crystal material is much larger than the first The etching rate of the two single crystal materials. 依據申請專利範圍第2項所述之磊晶基板的製作方法,其中,該第一單晶材料是矽(100)。 The method for fabricating an epitaxial substrate according to claim 2, wherein the first single crystal material is ruthenium (100). 依據申請專利範圍第3項所述之磊晶基板的製作方法,其中,該第一鍵合層與該第二鍵合層是由氧化矽所構 成。 The method for fabricating an epitaxial substrate according to claim 3, wherein the first bonding layer and the second bonding layer are made of yttrium oxide to make. 依據申請專利範圍第4項所述之磊晶基板的製作方法,其中,該步驟(c)的實施溫度是介於500℃至1100℃之間,該步驟(c)的實施壓力是介於5 MPa至15 MPa之間。 The method for fabricating an epitaxial substrate according to the fourth aspect of the invention, wherein the implementation temperature of the step (c) is between 500 ° C and 1100 ° C, and the implementation pressure of the step (c) is between 5 Between MPa and 15 MPa. 依據申請專利範圍第1項所述之磊晶基板的製作方法,其中,該第一鍵合層的厚度是介於0.4 μm至2 μm之間;該第二鍵合層的厚度是介於0.4 μm至2 μm之間。 The method for fabricating an epitaxial substrate according to claim 1, wherein the thickness of the first bonding layer is between 0.4 μm and 2 μm; and the thickness of the second bonding layer is 0.4 Between μm and 2 μm. 依據申請專利範圍第1項所述之磊晶基板的製作方法,於該步驟(a)與該步驟(b)之後並於該步驟(c)之前,還包含對該步驟(a)與該步驟(b)所形成的第一鍵合層與第二鍵合層施予RCA清洗流程,以移除該第一鍵合層與該第二鍵合層表面的有機物及金屬微粒並於其表面形成偶極,且該第一鍵合層與該第二鍵合層的平均表面粗糙度是小於0.4 nm,以致於在實施該步驟(c)的狀態下,使該第一鍵合層與該第二鍵合層面對面接觸時能初步地因其兩者表面的凡得瓦爾力而相互吸附。 According to the method for fabricating an epitaxial substrate according to the first aspect of the patent application, after the step (a) and the step (b) and before the step (c), the step (a) and the step are further included. (b) forming the first bonding layer and the second bonding layer to apply an RCA cleaning process to remove the first bonding layer and the organic material and metal particles on the surface of the second bonding layer and form on the surface thereof a dipole, and an average surface roughness of the first bonding layer and the second bonding layer is less than 0.4 nm, so that the first bonding layer and the first layer are performed in a state in which the step (c) is performed When the two bonding layers are in face-to-face contact, they can be initially adsorbed by the van der Waals force of both surfaces. 依據申請專利範圍第1項所述之磊晶基板的製作方法,其中,該步驟(d)之第二單晶板本體經薄化後的厚度是低於10 μm。 The method for fabricating an epitaxial substrate according to the first aspect of the invention, wherein the thickness of the second single crystal plate body of the step (d) after being thinned is less than 10 μm. 一種磊晶基板,是用以於其上成長一磊晶膜層結構以構成一垂直導通式發光二極體,該磊晶膜層結構是由一以氮化鎵為主的材料所構成,該磊晶基板包含:一第一單晶板本體; 一第二單晶板本體,具有相反設置的一第一表面及一第二表面,該第二單晶板本體的第二表面是用以成長該磊晶膜層構,且該第二單晶板本體的厚度是低於10 μm;及一黏結層,鍵合於該第一單晶板本體與該第二單晶板本體之第一表面之間。 An epitaxial substrate is configured to grow an epitaxial film layer structure thereon to form a vertical conductive light emitting diode layer, wherein the epitaxial film layer structure is composed of a material mainly composed of gallium nitride, The epitaxial substrate comprises: a first single crystal plate body; a second single crystal plate body having a first surface and a second surface disposed oppositely, the second surface of the second single crystal plate body is configured to grow the epitaxial film layer, and the second single crystal The thickness of the board body is less than 10 μm; and a bonding layer is bonded between the first single crystal board body and the first surface of the second single crystal board body. 依據申請專利範圍第9項所述之磊晶基板,其中,該第一單晶板本體是由一適合由一濕式蝕刻劑所移除的第一單晶材料所構成;該第二單晶板本體是由一第二單晶材料所構成,該第二單晶材料是矽(111),且該濕式蝕刻劑對該第一單晶材料的蝕刻速率是遠大於對該第二單晶材料的蝕刻速率。 The epitaxial substrate according to claim 9, wherein the first single crystal plate body is composed of a first single crystal material suitable for being removed by a wet etchant; the second single crystal The plate body is composed of a second single crystal material, the second single crystal material is ruthenium (111), and the wet etchant etch rate of the first single crystal material is much larger than the second single crystal The etch rate of the material. 依據申請專利範圍第10項所述之磊晶基板,其中,該第一單晶材料是矽(100)。 The epitaxial substrate according to claim 10, wherein the first single crystal material is ruthenium (100). 依據申請專利範圍第11項所述之磊晶基板,其中,該黏結層是由氧化矽所構成,該黏結層的厚度是介於0.8 μm至4 μm之間。 The epitaxial substrate according to claim 11, wherein the adhesive layer is composed of yttrium oxide, and the thickness of the adhesive layer is between 0.8 μm and 4 μm.
TW101129968A 2012-08-17 2012-08-17 Preparation method of epitaxial substrate TWI474381B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101129968A TWI474381B (en) 2012-08-17 2012-08-17 Preparation method of epitaxial substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101129968A TWI474381B (en) 2012-08-17 2012-08-17 Preparation method of epitaxial substrate

Publications (2)

Publication Number Publication Date
TW201409539A true TW201409539A (en) 2014-03-01
TWI474381B TWI474381B (en) 2015-02-21

Family

ID=50820472

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101129968A TWI474381B (en) 2012-08-17 2012-08-17 Preparation method of epitaxial substrate

Country Status (1)

Country Link
TW (1) TWI474381B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI556283B (en) * 2015-05-08 2016-11-01 李天錫 A substrate bonding method by polarization through ions absorbed on surfaces

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100503A (en) * 1985-04-01 1986-09-17 中国科学院上海冶金研究所 The reflection cavity of light emitting semiconductor device and technology thereof
FR2857982B1 (en) * 2003-07-24 2007-05-18 Soitec Silicon On Insulator PROCESS FOR PRODUCING AN EPITAXIC LAYER
US8187900B2 (en) * 2007-08-10 2012-05-29 Hong Kong Applied Science and Technology Research Institute Company Limited Optimization of polishing stop design

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI556283B (en) * 2015-05-08 2016-11-01 李天錫 A substrate bonding method by polarization through ions absorbed on surfaces

Also Published As

Publication number Publication date
TWI474381B (en) 2015-02-21

Similar Documents

Publication Publication Date Title
TWI795293B (en) Engineered substrate structure
KR101692410B1 (en) Light emitting device and method of manufacturing the same
TW201526279A (en) Tensile separation of a semiconducting stack
TWI416763B (en) A light-emitting element, a method of manufacturing the same, and a light-emitting device
TWI392118B (en) Method of fabricating light-emitting diode and light-emitting diode
WO2015035736A1 (en) Method for manufacturing semiconductor light emitting device
TW200939518A (en) Method of fabricating photoelectric device of III-nitride based semiconductor and structure thereof
WO2014110982A1 (en) Laser lift-off-based method for preparing semiconductor light-emitting device
TWI609503B (en) A method for producing light-emitting diode
JP6017035B2 (en) Composite substrate with protective layer to prevent metal diffusion
US20150048301A1 (en) Engineered substrates having mechanically weak structures and associated systems and methods
TWI459592B (en) A thin-film light-emitting diode with nano-scale epitaxial lateral growth and a method for fabricating the same
TWI474381B (en) Preparation method of epitaxial substrate
TWI460885B (en) A semiconductor optical device having air media layer and the method for forming the air media layer
KR101352242B1 (en) Manufacturing method of semiconductor
US20170186919A1 (en) Optoelectronic Semiconductor Devices with Enhanced Light Output
JP2017139266A (en) Composite substrate, semiconductor device, and method of manufacturing them
TWI634673B (en) Flip-chip light emission diode device and manufacturing method thereof
KR20120079670A (en) Fabrication method of nitride semiconductor light emitting device
US20130130420A1 (en) Method of laser lift-off for leds
TWI587531B (en) Bendable solar cell capable of optimizing thickness and conversion efficiency
TWI446583B (en) Method of semiconductor manufacturing process
TWI460891B (en) Preparation method and product of vertical conduction type light emitting diode
JP2010103248A (en) Semiconductor light-emitting element
KR101296263B1 (en) Laser lift off methods using various seperation film materials