TW201407958A - Self-calibration of output buffer driving strength - Google Patents

Self-calibration of output buffer driving strength Download PDF

Info

Publication number
TW201407958A
TW201407958A TW101129237A TW101129237A TW201407958A TW 201407958 A TW201407958 A TW 201407958A TW 101129237 A TW101129237 A TW 101129237A TW 101129237 A TW101129237 A TW 101129237A TW 201407958 A TW201407958 A TW 201407958A
Authority
TW
Taiwan
Prior art keywords
delay
circuit
output
timing signal
signal
Prior art date
Application number
TW101129237A
Other languages
Chinese (zh)
Other versions
TWI517575B (en
Inventor
Yu-Meng Chaung
Chun-Hsiung Hung
Kuen-Lung Chang
Ken-Hui Chen
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW101129237A priority Critical patent/TWI517575B/en
Publication of TW201407958A publication Critical patent/TW201407958A/en
Application granted granted Critical
Publication of TWI517575B publication Critical patent/TWI517575B/en

Links

Landscapes

  • Logic Circuits (AREA)

Abstract

An integrated circuit includes an output buffer and a control circuit. The output buffer has a signal input, a signal output and a set of control inputs. the output buffer has an output buffer delay, and a driving strength adjustable in response to control signals applied to the set of control inputs. the control circuit is connected to the set of control inputs of the output buffer. The control circuit uses first and second timing signals to generate the control signals, and includes a reference delay circuit that generates the first timing signal with a reference delay, and a delay emulation circuit that generates the second timing signal with an emulation delay that correlates with the output buffer delay.

Description

自動校正輸出緩衝器的驅動能力 Automatically correct the drive capability of the output buffer

本發明係關於數位電路,特別是關於數位電路的輸出緩衝器。 The present invention relates to digital circuits, and more particularly to output buffers for digital circuits.

一積體電路中的輸出緩衝器可以用來在低電流下接收內部資料及在高電流大小下呈現給外部負載。此輸出緩衝器的輸出時序會隨著製程邊界、電壓、溫度(PVT)條件而變動。因為製程邊界、電壓、溫度(PVT)條件而造成的輸出時序變動會許會減少資料正確的區間。在越高的操作速度下,則此減少的資料正確區間越有可能影響到此積體電路的表現甚至是可靠性。 An output buffer in an integrated circuit can be used to receive internal data at low currents and present to external loads at high current levels. The output timing of this output buffer varies with process boundary, voltage, and temperature (PVT) conditions. Changes in output timing due to process boundary, voltage, and temperature (PVT) conditions may reduce the correct range of data. At higher operating speeds, the reduced data correct interval is more likely to affect the performance or even reliability of the integrated circuit.

因此,希望提供一種對製程邊界、電壓、溫度(PVT)條件不敏感的輸出緩衝器,且因此提供積體電路高速操作下的可靠表現。 Accordingly, it is desirable to provide an output buffer that is insensitive to process boundary, voltage, temperature (PVT) conditions, and thus provides reliable performance of integrated circuits at high speeds.

此處所描述之技術係提供一種積體電路,包含一輸出緩衝器及一控制電路。此輸出緩衝器,具有一信號輸入、一信號輸出及一組控制輸入。該輸出緩衝器具有輸出緩衝延遲,且響應施加至該組控制輸入的控制信號而調整其驅動能力。此控制電路與該輸出緩衝器的該組控制輸入連接,該控制電路使用第一及第二時序信號產生該些控制信號,且包括一產生具有參考延遲的該第一時序信號之參考延遲電路,及一產生具有與該輸出緩衝延遲相關的延遲模擬的該第二時序信號之延遲模擬電 路。 The techniques described herein provide an integrated circuit that includes an output buffer and a control circuit. The output buffer has a signal input, a signal output, and a set of control inputs. The output buffer has an output buffering delay and adjusts its driving capability in response to a control signal applied to the set of control inputs. The control circuit is coupled to the set of control inputs of the output buffer, the control circuit generating the control signals using the first and second timing signals, and including a reference delay circuit for generating the first timing signal having a reference delay And a delayed analog power generating the second timing signal having a delay analog associated with the output buffer delay road.

本發明的其它目的和優點,會在下列實施方式以及申請專利範圍的章節中搭配圖式被描述。 Other objects and advantages of the present invention will be described in conjunction with the drawings in the following embodiments and the scope of the claims.

為進一步說明各實施例,本發明之實施例乃提供有圖式第1圖到第13圖。此些圖式乃為本發明揭露內容之一部分,其主要係用以說明實施例,並可配合說明書之相關描述來解釋實施例的運作原理。配合參考這些內容,本領域具有通常知識者應能理解其他可能的實施方式以及本發明之優點。 To further illustrate the various embodiments, embodiments of the present invention are provided with Figures 1 through 13 of the drawings. The drawings are a part of the disclosure of the present invention, and are mainly used to explain the embodiments, and the operation of the embodiments may be explained in conjunction with the related description of the specification. With reference to such content, those of ordinary skill in the art should be able to understand other possible embodiments and advantages of the present invention.

第1A圖顯示一傳統輸出緩衝器160的設計範例。此輸出緩衝器包括一N型金氧半電晶體(NMOS)140及一PMOS 120串聯在一起。此NMOS 140具有一控制終端、一汲極終端與一源極終端和地電位連接。此PMOS 120具有一控制終端、一汲極終端與一源極終端和一固定參考電壓VDD連接。一輸入信號IN與電晶體120和140兩者的控制終端並聯耦接。一輸出信號OUT1與電晶體120和140兩者的汲極終端耦接。一電容器180代表此輸出緩衝器160的外部負載。 FIG. 1A shows a design example of a conventional output buffer 160. The output buffer includes an N-type MOS transistor 140 and a PMOS 120 connected in series. The NMOS 140 has a control terminal, a drain terminal and a source terminal and a ground potential connection. The PMOS 120 has a control terminal, a drain terminal connected to a source terminal and a fixed reference voltage VDD. An input signal IN is coupled in parallel with the control terminals of both transistors 120 and 140. An output signal OUT1 is coupled to the drain terminals of both transistors 120 and 140. A capacitor 180 represents the external load of this output buffer 160.

第1B圖顯示與第1A圖中輸出緩衝器160相關的波形圖,係顯示輸入信號IN與輸出信號OUT1的波形圖。Tdat是輸入信號IN的資料正確窗口。於某些特定製程邊界、溫度、電壓條件下,輸出緩衝器160可以對輸出信號OUT1提供與輸入信號IN相同的資料正確窗口Tdat。然而,在其他的條件下之製程邊界、溫度、電壓 至少其中一者改變,輸出緩衝器160的驅動能力會減少/增加,將輸出信號OUT1的脈衝上升及下降邊緣延長/加速,且因此將輸出信號OUT1的資料正確窗口自Tdat減少為Tvalid。每一個脈衝之Tvalid與Tdat之間的差值是Tinvalid的兩倍,因為其上升邊緣減少Tinvalid而下降邊緣也是減少Tinvalid。 Fig. 1B shows a waveform diagram relating to the output buffer 160 in Fig. 1A, showing a waveform diagram of the input signal IN and the output signal OUT1. Tdat is the correct window for the input signal IN. The output buffer 160 can provide the same data correct window Tdat as the input signal IN to the output signal OUT1 under certain process boundary, temperature, and voltage conditions. However, process boundaries, temperatures, and voltages under other conditions At least one of them changes, the driving capability of the output buffer 160 is reduced/increased, the pulse rising and falling edges of the output signal OUT1 are lengthened/accelerated, and thus the data correct window of the output signal OUT1 is reduced from Tdat to Tvalid. The difference between Tvalid and Tdat for each pulse is twice that of Tinvalid, because its rising edge reduces Tinvalid and the falling edge also reduces Tinvalid.

第2A圖顯示一範例積體電路200的方塊圖。此範例積體電路200包括一輸出緩衝器260及一控制電路300。此輸出緩衝器260包括一信號輸入、一信號輸出及一組控制輸入。此輸出緩衝器260具有一輸出緩衝器级和一驅動能力致能區塊可調整以響應施加至此組控制輸入的控制信號CTRL。一輸入信號IN與輸出緩衝器260的信號輸入耦接。一輸出信號OUT與輸出緩衝器260的信號輸出耦接。一電容器280與此輸出緩衝器260的信號輸出耦接,代表此輸出緩衝器260的電容性負載。此控制電路300與一參考信號REF電性耦接。 FIG. 2A shows a block diagram of a sample integrated circuit 200. The example integrated circuit 200 includes an output buffer 260 and a control circuit 300. The output buffer 260 includes a signal input, a signal output, and a set of control inputs. The output buffer 260 has an output buffer stage and a drive capability enable block tunable in response to a control signal CTRL applied to the set of control inputs. An input signal IN is coupled to the signal input of the output buffer 260. An output signal OUT is coupled to the signal output of the output buffer 260. A capacitor 280 is coupled to the signal output of the output buffer 260 to represent the capacitive load of the output buffer 260. The control circuit 300 is electrically coupled to a reference signal REF.

第一電晶體240與第二電晶體220中的箭頭指示此輸出緩衝器260的驅動能力是可以調整的。兩個電阻的標記與第一電晶體240和第二電晶體220串聯指示此輸出緩衝器的驅動能力是可以使用輸出電阻的方式調整。 The arrows in the first transistor 240 and the second transistor 220 indicate that the driving capability of the output buffer 260 is adjustable. The marking of the two resistors in series with the first transistor 240 and the second transistor 220 indicates that the driving capability of the output buffer can be adjusted using the output resistance.

此輸出緩衝器260包括複數個輸出驅動器。在此輸出緩衝器260中的每一個驅動器包括一第一電晶體240及一第二電晶體220。此輸出緩衝器260中的第一電晶體240具有一第一導通終端與一第一固定參考電壓GND電性耦接、一第二導通終端與此輸出緩衝器260的輸出終端電性耦接,及一控制終端與輸出緩衝器260的輸入終端電性耦接。此第一電晶體具有第一通道型 態,在一應用中,包括一N型金氧半電晶體(NMOS)。 This output buffer 260 includes a plurality of output drivers. Each of the output buffers 260 includes a first transistor 240 and a second transistor 220. The first transistor 240 of the output buffer 260 has a first conductive terminal electrically coupled to a first fixed reference voltage GND, and a second conductive terminal electrically coupled to an output terminal of the output buffer 260. And a control terminal is electrically coupled to the input terminal of the output buffer 260. The first transistor has a first channel type State, in one application, includes an N-type metal oxide semi-transistor (NMOS).

此輸出緩衝器260中的第二電晶體220具有一第一導通終端與一第二固定參考電壓VDD電性耦接、一第二導通終端與此輸出緩衝器260的輸出終端電性耦接,及一控制終端與輸出緩衝器260的輸入終端電性耦接。此第二電晶體具有一通道型態與第一電晶體的通道型態相反,且在一應用中,包括一P型金氧半電晶體(PMOS)。 The second transistor 220 of the output buffer 260 has a first conductive terminal electrically coupled to a second fixed reference voltage VDD, and a second conductive terminal electrically coupled to the output terminal of the output buffer 260. And a control terminal is electrically coupled to the input terminal of the output buffer 260. The second transistor has a channel type opposite the channel pattern of the first transistor and, in one application, a P-type metal oxide semiconductor (PMOS).

第2B圖顯示包括複數個並聯輸出驅動器的輸出緩衝器260。控制信號CTRL將所選取的輸出驅動器致能與失能以調整此輸出緩衝器260的驅動能力。輸入信號IN提供至複數個並聯輸出驅動器。關於控制信號CTRL如何選取輸出驅動器會搭配第9圖描述。 Figure 2B shows an output buffer 260 comprising a plurality of parallel output drivers. The control signal CTRL enables and disables the selected output driver to adjust the drive capability of the output buffer 260. The input signal IN is provided to a plurality of parallel output drivers. How to select the output driver for the control signal CTRL will be described in conjunction with Figure 9.

在第2B圖中,每一個輸出驅動器是一個180歐姆的輸出驅動器,且在每一個輸出緩衝器260中有四個如此的輸出驅動器並聯在一起。根據歐姆定律,輸出緩衝器260的驅動能力會分別隨著輸出緩衝器260的較高/較低整體電阻而降低/增加。輸出緩衝器260的整體電阻係由多少個輸出驅動器開啟而決定。一般而言,輸出緩衝器260的整體電阻是每一個開啟輸出驅動器的電阻總合。假如輸出驅動器具有相同的電阻,則所有輸出驅動器具有的電阻總合是每一個開啟輸出驅動器的電阻除上開啟輸出驅動器的數目。舉例而言,180歐姆的輸出驅動器而言,假如是開啟1、2、3、或4個輸出驅動器,則輸出緩衝器260的整體電阻分別是180、90、60、或45歐姆。因此,具有45歐姆之整體電阻輸出緩衝器260有著最強的驅動能力,而具有180歐姆之整體電阻 輸出緩衝器260則有著最弱的驅動能力。 In Figure 2B, each of the output drivers is a 180 ohm output driver, and four such output drivers are connected in parallel in each of the output buffers 260. According to Ohm's law, the drive capability of the output buffer 260 will decrease/increase with the higher/lower overall resistance of the output buffer 260, respectively. The overall resistance of the output buffer 260 is determined by how many output drivers are turned on. In general, the overall resistance of the output buffer 260 is the sum of the resistances of each of the open output drivers. If the output drivers have the same resistance, then the sum of the resistors of all output drivers is the number of resistors that open each of the output drivers divided by the number of open output drivers. For example, for a 180 ohm output driver, if the 1, 2, 3, or 4 output drivers are turned on, the overall resistance of the output buffer 260 is 180, 90, 60, or 45 ohms, respectively. Therefore, the overall resistance output buffer 260 with 45 ohms has the strongest driving capability and has an overall resistance of 180 ohms. Output buffer 260 has the weakest drive capability.

調整驅動能力的解析度係與每一個輸出緩衝器260中的輸出驅動器數目相關。較多數量的輸出驅動器則具有較高的解析度。當具有四個輸出驅動器時,此輸出緩衝器的驅動能力調整可以具有四個階級。假設每一個輸出驅動器具有相同的大小,當具有16個輸出驅動器時,則此輸出緩衝器的驅動能力調整可以具有16個階級。在其他的實施例中,驅動器的大小是可以變動的,例如包括1x驅動器、2x驅動器、4x驅動器和8x驅動器,且解碼電路可以用來選取具有最佳調整整體驅動能力的驅動器組合。此外,在其他的實施例中,驅動器也可以使用類比控制信號來調整其驅動能力。 The resolution of the adjustment drive capability is related to the number of output drivers in each output buffer 260. A larger number of output drivers have higher resolution. When there are four output drivers, the drive capability adjustment of this output buffer can have four classes. Assuming that each of the output drivers has the same size, when there are 16 output drivers, the drive capacity adjustment of this output buffer can have 16 classes. In other embodiments, the size of the drive can vary, including, for example, a 1x driver, a 2x driver, a 4x driver, and an 8x driver, and the decoding circuitry can be used to select a driver combination with optimally adjusted overall drive capability. Moreover, in other embodiments, the driver can also use analog control signals to adjust its drive capability.

第2C圖顯示與第2A圖中輸出緩衝器260相關的波形圖。為了比較的目的,其係顯示與第1B圖中相同的輸入信號IN與輸出信號OUT1的波形圖。圖中所示由輸出緩衝器260產生之輸出信號OUT1的波形圖具有資料正確窗口Tvalid2。Tvalid2由輸出緩衝器260根據特定製程邊界、電壓、溫度(PVT)條件加以調整。結果是,Tvalid2較第1B圖中由輸出緩衝器160沒有根據特定製程邊界、電壓、溫度(PVT)條件加以調整的輸出信號OUT1所產生之較窄資料正確窗口Tvalid1更寬。Tvalid2較Tvalid1更接近Tdat但仍是與Tdat之間相差Tinvalid2的兩倍,因為其上升邊緣減少Tinvalid2而下降邊緣也是減少Tinvalid2。 Figure 2C shows a waveform diagram associated with output buffer 260 in Figure 2A. For the purpose of comparison, it shows a waveform diagram of the same input signal IN and output signal OUT1 as in FIG. 1B. The waveform diagram of the output signal OUT1 generated by the output buffer 260 shown in the figure has a data correct window Tvalid2. Tvalid2 is adjusted by output buffer 260 according to specific process boundary, voltage, temperature (PVT) conditions. As a result, Tvalid2 is wider than the narrower data correct window Tvalid1 produced by output signal OUT1, which is not adjusted by output buffer 160 according to a particular process boundary, voltage, temperature (PVT) condition, in FIG. 1B. Tvalid2 is closer to Tdat than Tvalid1 but still twice the difference between Tinvalid2 and Tdat, because its rising edge reduces Tinvalid2 and the falling edge also reduces Tinvalid2.

第3圖是第2A圖中的積體電路200所使用之控制電路300的方塊圖。此控制電路300與輸出緩衝器260的該組控制輸入連接。此控制電路300使用第一及第二時 序信號TS1和TS2產生控制信號,且包括產生具有一參考延遲的第一時序信號TS1的參考延遲電路400及與此輸出緩衝器延遲相關的產生具有模擬延遲的第二時序信號TS2的一延遲模擬電路310。 Fig. 3 is a block diagram of a control circuit 300 used in the integrated circuit 200 in Fig. 2A. This control circuit 300 is coupled to the set of control inputs of the output buffer 260. The control circuit 300 uses the first and second time The sequence signals TS1 and TS2 generate control signals and include a reference delay circuit 400 that generates a first timing signal TS1 having a reference delay and a delay associated with the output buffer delay that produces a second timing signal TS2 having an analog delay. Analog circuit 310.

此參考延遲電路400係回應一參考信號以產生具有一參考延遲的第一時序信號TS1,且其中參考延遲電路400基本上對製程邊界、電壓、溫度(PVT)條件不敏感。延遲模擬電路310係回應其輸入的參考信號REF而在其輸出產生具有模擬延遲的第二時序信號TS2,且其中延遲模擬是製程邊界、電壓、溫度(PVT)條件或是製程邊界、電壓、溫度(PVT)之一者的改變而產生對應的輸出緩衝延遲。 The reference delay circuit 400 is responsive to a reference signal to generate a first timing signal TS1 having a reference delay, and wherein the reference delay circuit 400 is substantially insensitive to process boundary, voltage, temperature (PVT) conditions. The delay analog circuit 310 generates a second timing signal TS2 having an analog delay at its output in response to its input reference signal REF, and wherein the delay simulation is a process boundary, voltage, temperature (PVT) condition or process boundary, voltage, temperature A change in one of the (PVT) results in a corresponding output buffer delay.

此控制電路300也包括一延遲線320及邏輯330。此邏輯330具有一第一輸入終端與第一時序信號TS1電性耦接,及具有一第二輸入終端通過此延遲線320與第二時序信號TS2電性耦接。此邏輯330比較自參考延遲電路400的第一時序信號TS1抵達時間與自延遲模擬電路310的第二時序信號TS2抵達時間以產生控制信號CTRL。 The control circuit 300 also includes a delay line 320 and logic 330. The logic 330 has a first input terminal electrically coupled to the first timing signal TS1 and has a second input terminal electrically coupled to the second timing signal TS2 via the delay line 320. This logic 330 compares the arrival time of the first timing signal TS1 from the reference delay circuit 400 with the arrival time of the second timing signal TS2 of the self-delay analog circuit 310 to generate the control signal CTRL.

此參考信號REF必須在輸入信號IN和輸出緩衝器260具有類似的電氣特性,使得參考信號REF搭配延遲模擬電路310可以產生與此輸出緩衝器260的時序相關的時序。這些電氣特性可以包括有效邊緣的時序及電壓幅度。有效邊緣可以是上升邊緣或是下降邊緣。此參考信號REF可以自積體電路內部或外部的來源產生。此參考信號REF可以具有一個頻率或頻率範圍適合在一積體電路中對輸出緩緩衝器的輸出驅動能力進行自我 校正。 This reference signal REF must have similar electrical characteristics at input signal IN and output buffer 260 such that reference signal REF in conjunction with delay analog circuit 310 can produce timing associated with the timing of this output buffer 260. These electrical characteristics can include the timing and voltage amplitude of the active edges. The effective edge can be a rising edge or a falling edge. This reference signal REF can be generated from sources internal or external to the integrated circuit. The reference signal REF can have a frequency or frequency range suitable for self-output drive capability of the output buffer in an integrated circuit. Correction.

第4圖是第3圖中的參考延遲電路400的方塊圖。此參考延遲電路400包括一第一延遲子電路410,其具有一輸入終端與參考信號REF電性耦接,及具有一輸出終端。此參考延遲電路400也包括一第二延遲子電路460,其具有一輸入終端與第一延遲子電路410的輸出終端電性耦接,及具有一輸出終端與第一時序信號TS1電性耦接。 Fig. 4 is a block diagram of the reference delay circuit 400 in Fig. 3. The reference delay circuit 400 includes a first delay sub-circuit 410 having an input terminal electrically coupled to the reference signal REF and having an output terminal. The reference delay circuit 400 also includes a second delay sub-circuit 460 having an input terminal electrically coupled to the output terminal of the first delay sub-circuit 410 and having an output terminal electrically coupled to the first timing signal TS1. Pick up.

此第一延遲子電路410可以包含一電阻電容(RC)延遲電路,而此第二延遲子電路460可以包含金氧半(MOS)延遲電路。替代地,此第一延遲子電路410可以包含一金氧半(MOS)延遲電路,而此第二延遲子電路460可以包含電阻電容(RC)延遲電路。 The first delay sub-circuit 410 can include a resistor-capacitor (RC) delay circuit, and the second delay sub-circuit 460 can include a MOS delay circuit. Alternatively, the first delay sub-circuit 410 may include a MOS delay circuit, and the second delay sub-circuit 460 may include a resistor-capacitor (RC) delay circuit.

此電阻電容(RC)延遲電路或許包括一PMOS電晶體412及一NMOS電晶體414串聯在一起。此PMOS 412具有一控制終端、一汲極終端與一源極終端和第二參考電壓VDD2連接。此NMOS 414具有一控制終端、一汲極終端與一源極終端。此PMOS電晶體412及NMOS電晶體414的控制終端並聯地與第一延遲子電路410的輸入終端電性耦接。此PMOS電晶體412及NMOS電晶體414的汲極終端與第一延遲子電路410的輸出終端和一信號450電性耦接。一第二NMOS電晶體416具有一控制終端與一偏壓電壓電性耦接,一汲極終端與NMOS電晶體414的源極終端耦接,及一源極終端與一地電位耦接。此偏壓電壓可以由一類比電路產生,且提供一定電流。一電容器418經由信號450與PMOS電晶體412和NMOS電晶體414的汲源極終端耦接。 The resistor-capacitor (RC) delay circuit may include a PMOS transistor 412 and an NMOS transistor 414 connected in series. The PMOS 412 has a control terminal, a drain terminal connected to a source terminal and a second reference voltage VDD2. The NMOS 414 has a control terminal, a drain terminal and a source terminal. The control terminals of the PMOS transistor 412 and the NMOS transistor 414 are electrically coupled in parallel with the input terminals of the first delay sub-circuit 410. The PMOS transistor 412 and the drain terminal of the NMOS transistor 414 are electrically coupled to the output terminal of the first delay sub-circuit 410 and a signal 450. A second NMOS transistor 416 has a control terminal electrically coupled to a bias voltage, a drain terminal coupled to the source terminal of the NMOS transistor 414, and a source terminal coupled to a ground potential. This bias voltage can be generated by an analog circuit and provides a certain current. A capacitor 418 is coupled to the PMOS transistor 412 and the NMOS terminal of the NMOS transistor 414 via signal 450.

此MOS延遲電路可以包括複數個串聯的延遲元件。信號450與此複數個串聯的延遲元件中的第一延遲元件462的輸入終端耦接。此複數個串聯的延遲元件中的最後一個延遲元件468的輸出終端與第二延遲子電路460的輸出終端耦接。如同第5A~5C圖中所描述的,此電阻電容(RC)延遲電路及金氧半(MOS)延遲電路彼此補償使得通過參考延遲電路400的整體延遲在變動的製程邊界、電壓、溫度(PVT)條件下大致仍保持定值。 The MOS delay circuit can include a plurality of delay elements connected in series. Signal 450 is coupled to the input terminal of first delay element 462 of the plurality of series connected delay elements. An output terminal of the last one of the plurality of series connected delay elements 468 is coupled to an output terminal of the second delay sub-circuit 460. As described in FIGS. 5A-5C, the resistor-capacitor (RC) delay circuit and the MOS delay circuit compensate each other such that the overall delay through the reference delay circuit 400 is at varying process boundaries, voltages, and temperatures (PVT). Under the conditions, the value remains roughly constant.

第5A~5C圖包括一組描述第4圖中的參考延遲電路如何補償因為變動的製程邊界、電壓、溫度(PVT)條件下所造成的時序變動的圖示。名義上的製程邊界、電壓、溫度(PVT)條件包括名義上的製程邊界、名義上的電壓、及名義上的溫度。一個名義上的電壓係與積體電路相關。舉例而言,在一積體電路中的名義上的電壓或許是3.3V而在另一積體電路中的名義上的電壓或許是1.5V。一個名義上的溫度可以是攝氏25度。一個名義上的製程邊界可以是典型-典型(TT)。製程邊界會在第5C圖中描述。 Figures 5A-5C include a set of illustrations depicting how the reference delay circuit in Figure 4 compensates for timing variations due to varying process boundary, voltage, temperature (PVT) conditions. Nominal process boundary, voltage, temperature (PVT) conditions include nominal process boundaries, nominal voltages, and nominal temperatures. A nominal voltage is associated with the integrated circuit. For example, the nominal voltage in an integrated circuit may be 3.3V and the nominal voltage in another integrated circuit may be 1.5V. A nominal temperature can be 25 degrees Celsius. A nominal process boundary can be typical-typical (TT). The process boundary will be described in Figure 5C.

此延遲模擬電路310的一個名義上的延遲是在名義的製程邊界、電壓、溫度(PVT)條件下通過此延遲模擬電路310的延遲。一般而言,通過此延遲模擬電路310的延遲會隨著製程邊界、電壓、溫度(PVT)條件而變動,且是大於或小於名義上的延遲。此參考延遲電路400的整體延遲在變動的製程邊界、電壓、溫度(PVT)條件下最好是大致仍保持定值,如同以下第5A~5C圖中所描述的。用來描述參考延遲電路的名詞,對一個作為輸出緩衝器輸出驅動能力之自我校正的時間延遲參考的參 考延遲電路400而言,假如通過此參考延遲電路400的延遲在變動的製程邊界、電壓、溫度(PVT)條件下在一段時間中相對於一個例如是此輸出緩衝器的模擬電路之製程邊界、電壓、溫度(PVT)條件敏感元件在相同的製程邊界、電壓、溫度(PVT)條件下是很小的,則可以稱為"大致定值"或是此電路是"大致不敏感的"。在現實中,一參考延遲電路應該提供對製程邊界、電壓、溫度(PVT)其中一者或多者的變動相較於正在校正之輸出緩衝器的模擬電路較不敏感的參考延遲。一個較不敏感的參考延遲可以改善其表現,即使是在此參考延遲電路400的延遲並不是保持定值的情況下。 One nominal delay of this delay analog circuit 310 is the delay through this delay analog circuit 310 under nominal process boundary, voltage, temperature (PVT) conditions. In general, the delay through this delay analog circuit 310 will vary with process boundary, voltage, temperature (PVT) conditions and is greater or less than the nominal delay. The overall delay of the reference delay circuit 400 preferably remains substantially constant under varying process boundary, voltage, temperature (PVT) conditions, as described in Figures 5A-5C below. A noun used to describe a reference delay circuit, a reference to a time-delayed reference for self-correction of the output buffer output drive capability Considering the delay circuit 400, if the delay of the reference delay circuit 400 is over a period of time in a variable process boundary, voltage, temperature (PVT) condition, relative to a process boundary of an analog circuit such as the output buffer, Voltage, temperature (PVT) conditional components are small at the same process boundary, voltage, temperature (PVT) conditions, and can be referred to as "roughly fixed" or the circuit is "substantially insensitive." In reality, a reference delay circuit should provide a reference delay that is less sensitive to changes in one or more of the process boundary, voltage, temperature (PVT) than the analog circuit of the output buffer being calibrated. A less sensitive reference delay can improve its performance even if the delay of the reference delay circuit 400 is not constant.

第5A圖顯示當溫度增加,通過RC延遲電路的RC延遲減少,而通過MOS延遲電路的MOS延遲增加。所以因為溫度的變動產生之RC延遲減少和MOS延遲增加的淨效果是使得RC延遲電路和MOS延遲電路的整體延遲大致是定值,導致此電路大致對於溫度的變動不敏感。 Figure 5A shows that as the temperature increases, the RC delay through the RC delay circuit decreases, while the MOS delay through the MOS delay circuit increases. Therefore, the net effect of the RC delay reduction and the MOS delay increase due to the temperature variation is such that the overall delay of the RC delay circuit and the MOS delay circuit is substantially constant, resulting in the circuit being substantially insensitive to temperature variations.

第5B圖顯示當供應電壓增加,通過RC延遲電路的RC延遲增加,而通過MOS延遲電路的MOS延遲減少。所以因為供應電壓的變動產生之RC延遲減少和MOS延遲增加的淨效果是使得RC延遲電路和MOS延遲電路的整體延遲大致是定值,導致此電路大致對於供應電壓的變動不敏感。 Fig. 5B shows that as the supply voltage increases, the RC delay through the RC delay circuit increases, while the MOS delay through the MOS delay circuit decreases. Therefore, the net effect of the RC delay reduction and the MOS delay increase due to variations in the supply voltage is such that the overall delay of the RC delay circuit and the MOS delay circuit is substantially constant, resulting in the circuit being substantially insensitive to fluctuations in the supply voltage.

第5C圖顯示製程邊界對於RC延遲和MOS延遲的影響。製程邊界代表積體電路製程中參數的變動。在不同製程邊界中所製造出的電路可以於較快或較慢的速度下操作。一種對製程邊界的命名方式對N通道MOS 邊界以第一字母表示而對P通道MOS邊界以第二字母表示。通常而言,S、T和F等字母分別代表緩慢、典型和快速邊界。舉例而言,FF邊界代表快速N通道MOS裝置以及快速P通道MOS裝置。 Figure 5C shows the effect of process boundaries on RC delay and MOS delay. The process boundary represents the variation of the parameters in the integrated circuit process. Circuits fabricated in different process boundaries can operate at faster or slower speeds. A method for naming process boundaries to N-channel MOS The boundary is represented by the first letter and the P channel MOS boundary is represented by the second letter. In general, letters such as S, T, and F represent slow, typical, and fast boundaries, respectively. For example, the FF boundary represents a fast N-channel MOS device and a fast P-channel MOS device.

第5C圖顯示在緩慢-緩慢(SS)製程邊界中通過RC延遲電路的RC延遲小於較在快速-快速(FF)製程邊界中通過RC延遲電路的RC延遲,而在緩慢-緩慢(SS)製程邊界中通過MOS延遲電路的MOS延遲則是大於較在快速-快速(FF)製程邊界中通過MOS延遲電路的MOS延遲。所以因為製程邊界的變動產生之RC延遲增加和MOS延遲減少的淨效果是使得RC延遲電路和MOS延遲電路的整體延遲大致是定值,導致此電路大致對於製程邊界的變動不敏感。 Figure 5C shows that the RC delay through the RC delay circuit in the slow-slow (SS) process boundary is less than the RC delay through the RC delay circuit in the fast-fast (FF) process boundary, while in the slow-slow (SS) process The MOS delay through the MOS delay circuit in the boundary is greater than the MOS delay through the MOS delay circuit in the fast-fast (FF) process boundary. Therefore, the net effect of the RC delay increase and the MOS delay reduction due to variations in the process boundary is such that the overall delay of the RC delay circuit and the MOS delay circuit is substantially constant, resulting in the circuit being substantially insensitive to variations in process boundaries.

假如第一時序信號TS1相對於第二時序信號TS2是發生在介於第一延遲臨界與第二延遲臨界間的時間區間內,控制信號CTRL具有第一值;假如第一時序信號TS1相對於第二時序信號TS2是發生在早於第一延遲臨界,控制信號CTRL具有第二值;假如第一時序信號TS1相對於第二時序信號TS2是發生在晚於第二延遲臨界,則控制信號CTRL具有第三值。 If the first timing signal TS1 is within a time interval between the first delay threshold and the second delay threshold with respect to the second timing signal TS2, the control signal CTRL has a first value; if the first timing signal TS1 is relative to The second timing signal TS2 occurs earlier than the first delay threshold, and the control signal CTRL has a second value; if the first timing signal TS1 occurs later than the second delay threshold with respect to the second timing signal TS2, then control Signal CTRL has a third value.

在一實施方式中,第一值可以指示並不需要增加或減少此輸出緩衝器260的驅動能力。第二值可以指示需要增加此輸出緩衝器260的驅動能力,而第三值可以指示需要減少此輸出緩衝器260的驅動能力。此控制電路300會持續地觀測製程邊界、電壓、溫度(PVT)條件且產生控制信號CTRL。輸出緩衝器260則會根據控制信號CTRL的值來調整其輸出強度。 In an embodiment, the first value may indicate that there is no need to increase or decrease the drive capability of the output buffer 260. The second value may indicate that the drive capability of the output buffer 260 needs to be increased, while the third value may indicate that the drive capability of the output buffer 260 needs to be reduced. This control circuit 300 continuously observes process boundary, voltage, temperature (PVT) conditions and generates a control signal CTRL. Output buffer 260 then adjusts its output strength based on the value of control signal CTRL.

第6圖是第3圖中的控制電路300更詳細的電路圖。除了此參考延遲電路400和延遲模擬電路310之外,控制電路300還包括一延遲線320和邏輯330。此延遲線320具有一輸入與延遲模擬電路310耦接。此延遲線320具有一第一接頭TP1與第一延遲臨界對應及一第二接頭TP2與第二延遲臨界對應。此邏輯330與延遲線320的第一接頭TP1及一第二接頭TP2耦接,且與參考延遲電路400耦接。此邏輯330產生控制信號CTRL。 Fig. 6 is a more detailed circuit diagram of the control circuit 300 in Fig. 3. In addition to this reference delay circuit 400 and delay analog circuit 310, control circuit 300 also includes a delay line 320 and logic 330. The delay line 320 has an input coupled to the delay analog circuit 310. The delay line 320 has a first junction TP1 corresponding to a first delay threshold and a second junction TP2 corresponding to a second delay threshold. The logic 330 is coupled to the first connector TP1 and the second connector TP2 of the delay line 320 and coupled to the reference delay circuit 400. This logic 330 produces a control signal CTRL.

延遲線320包括第一延遲緩衝電路610和第二延遲緩衝電路620。第一延遲緩衝電路610具有一輸入終端經由第二時序信號TS2而與延遲模擬電路310的輸出終端電性耦接。第二延遲緩衝電路620具有一輸入終端經由第一接頭TP1而與第一緩衝電路610的輸出終端電性耦接,及具有一輸入終端與第二接頭TP2電性耦接。 The delay line 320 includes a first delay buffer circuit 610 and a second delay buffer circuit 620. The first delay buffer circuit 610 has an input terminal electrically coupled to the output terminal of the delay analog circuit 310 via the second timing signal TS2. The second delay buffer circuit 620 has an input terminal electrically coupled to the output terminal of the first buffer circuit 610 via the first connector TP1, and has an input terminal electrically coupled to the second connector TP2.

第一延遲緩衝電路610具有一第一時間延遲通過第一延遲緩衝電路。第二延遲緩衝電路620具有一第二時間延遲通過第二延遲緩衝電路。第一延遲緩衝電路610是進行信號恢復,將第二時序信號TS2的上升或下降邊緣變的更陡峭。如此使得第一延遲時間變的越短越好。第二延遲定義邏輯330的時序區間。此時序區間可以由量測自第一接頭TP1的上升邊緣至第二接頭TP2的下一個上升邊緣間,或是介於其各自的下降邊緣的延遲決定。第二延遲緩衝電路620可以包括例如是8個或10個的串聯反向器。假如這些反向器具有相同的延遲,則若是在第二延遲緩衝電路620中的反向器數目加倍的話,整體延遲也會加倍。第11~13圖中將會描述時序 區間、第一時序信號TS1、第二時序信號TS2間的時序關係。 The first delay buffer circuit 610 has a first time delay through the first delay buffer circuit. The second delay buffer circuit 620 has a second time delay through the second delay buffer circuit. The first delay buffer circuit 610 performs signal recovery to make the rising or falling edge of the second timing signal TS2 steeper. This makes the first delay time as short as possible. The second delay defines the timing interval of logic 330. This timing interval can be determined by measuring the delay from the rising edge of the first joint TP1 to the next rising edge of the second joint TP2, or between their respective falling edges. The second delay buffer circuit 620 can include, for example, 8 or 10 series inverters. If these inverters have the same delay, the overall delay is doubled if the number of inverters in the second delay buffer circuit 620 is doubled. Timing will be described in Figures 11~13 The timing relationship between the interval, the first timing signal TS1, and the second timing signal TS2.

在控制電路300中的邏輯330包括第一儲存電路615、第二儲存電路625及一解碼器650。此第一儲存電路615具有一時鐘輸入終端C與參考延遲電路400電性耦接以接收第一時序信號TS1,一資料輸入終端D與延遲線320的第一接頭TP1電性耦接、及具有一輸出終端。此第二儲存電路625具有一時鐘輸入終端C與參考延遲電路400電性耦接以接收第一時序信號TS1,一資料輸入終端D與延遲線320的第二接頭TP2電性耦接、及具有一輸出終端。此解碼器650與第一儲存電路615和第二儲存電路625的輸出耦接以產生控制信號CTRL。 The logic 330 in the control circuit 300 includes a first storage circuit 615, a second storage circuit 625, and a decoder 650. The first storage circuit 615 has a clock input terminal C electrically coupled to the reference delay circuit 400 to receive the first timing signal TS1, and a data input terminal D is electrically coupled to the first connector TP1 of the delay line 320, and Has an output terminal. The second storage circuit 625 has a clock input terminal C electrically coupled to the reference delay circuit 400 to receive the first timing signal TS1, a data input terminal D and the second connector TP2 of the delay line 320 are electrically coupled, and Has an output terminal. This decoder 650 is coupled to the outputs of the first storage circuit 615 and the second storage circuit 625 to generate a control signal CTRL.

例如第一儲存電路615或第二儲存電路625的儲存電路,在時鐘輸入終端C耦接之時鐘信號在上升邊緣或是下降邊緣時,儲存與其資料輸入終端D耦接之信號的邏輯準位,且在其輸出終端Y持續輸出其邏輯準位直到其時鐘輸入終端C耦接之時鐘信號的下一個上升邊緣或是下降邊緣為止。 For example, the storage circuit of the first storage circuit 615 or the second storage circuit 625 stores the logic level of the signal coupled to the data input terminal D when the clock signal coupled to the clock input terminal C is at the rising edge or the falling edge. And at its output terminal Y continues to output its logic level until the next rising edge or falling edge of the clock signal to which its clock input terminal C is coupled.

如第6圖所示,此輸出緩衝器260的縮小電路326係位於延遲模擬電路310之內,包括此輸出緩衝器260的第一電晶體240之第一縮小電路324及第二電晶體220之第二縮小電路322。 As shown in FIG. 6, the reduction circuit 326 of the output buffer 260 is located in the delay analog circuit 310, and includes the first reduction circuit 324 and the second transistor 220 of the first transistor 240 of the output buffer 260. The second reduction circuit 322.

此第一縮小電路324具有第一導通終端與第一固定參考電壓GND電性耦接、第二導通終端與延遲模擬電路310的輸出終端電性耦接、及控制終端與延遲模擬電 路310的輸入終端電性耦接。此第二縮小電路322具有第一導通終端與第二固定參考電壓VDD2電性耦接、第二導通終端與延遲模擬電路310的輸出終端電性耦接、及控制終端與延遲模擬電路310的輸入終端電性耦接。為了設計的簡便,對輸出緩衝器260(第2A圖)第二固定參考電壓VDD2可以與此固定參考電壓VDD相等。另外,若是延遲模擬電路310(第6圖)可以模擬輸出緩衝器260(第2A圖)的行為,第二固定參考電壓VDD2也可以與此固定參考電壓VDD不相同。 The first reduction circuit 324 has a first conductive terminal electrically coupled to the first fixed reference voltage GND, the second conductive terminal is electrically coupled to the output terminal of the delay analog circuit 310, and the control terminal and the delayed analog power The input terminal of the path 310 is electrically coupled. The second reduction circuit 322 has a first conductive terminal electrically coupled to the second fixed reference voltage VDD2, the second conductive terminal is electrically coupled to the output terminal of the delay analog circuit 310, and the input of the control terminal and the delay analog circuit 310. The terminal is electrically coupled. For ease of design, the second fixed reference voltage VDD2 to the output buffer 260 (FIG. 2A) may be equal to the fixed reference voltage VDD. In addition, if the delay analog circuit 310 (FIG. 6) can simulate the behavior of the output buffer 260 (FIG. 2A), the second fixed reference voltage VDD2 can also be different from the fixed reference voltage VDD.

如第6圖所示,此延遲模擬電路310的第一縮小電路324及第二縮小電路322包括一縮小NMOS電晶體及一縮小PMOS電晶體,分別輸出緩衝器260中的第一電晶體240及第二電晶體220。參考信號REF與延遲模擬電路310的輸入終端耦接。第二時序信號TS2與延遲模擬電路310的輸出終端耦接。 As shown in FIG. 6, the first reduction circuit 324 and the second reduction circuit 322 of the delay analog circuit 310 include a reduced NMOS transistor and a reduced PMOS transistor, respectively outputting the first transistor 240 in the buffer 260 and The second transistor 220. The reference signal REF is coupled to the input terminal of the delay analog circuit 310. The second timing signal TS2 is coupled to the output terminal of the delay analog circuit 310.

此延遲模擬電路310也包含一電容器328與延遲模擬電路310的輸出終端耦接。此電容器328具有將由電容器280(第2A圖)所代表在輸出緩衝器260的輸出終端之電容性負載的縮小電容值。舉例而言,第2A圖中的在輸出緩衝器260的輸出終端之電容器280具有30pF的電容值及輸出緩衝器260具有30歐姆的電阻值,產生900pS的時間常數。對應的是,在第6圖中,在縮小電路326的輸出終端之電容器328被縮小為5pF的電容值且縮小電路326的電阻值被放大為180歐姆,以模擬900pS的時間常數。 The delay analog circuit 310 also includes a capacitor 328 coupled to the output terminal of the delay analog circuit 310. This capacitor 328 has a reduced capacitance value that will be represented by capacitor 280 (Fig. 2A) at the capacitive load of the output terminal of output buffer 260. For example, capacitor 280 at the output terminal of output buffer 260 in FIG. 2A has a capacitance value of 30 pF and output buffer 260 has a resistance value of 30 ohms, resulting in a time constant of 900 pS. Correspondingly, in Fig. 6, the capacitor 328 at the output terminal of the reduction circuit 326 is reduced to a capacitance value of 5 pF and the resistance value of the reduction circuit 326 is amplified to 180 ohms to simulate a time constant of 900 pS.

第7圖是一個與第6圖中的控制電路300相關的範例真值表,顯示一範例解碼操作。當信號FY1和FY2 分別在邏輯高準位和低準位時,控制信號CTRL指示輸出緩衝器260的驅動能力(強度)並不需要被增加或減少。當信號FY1和FY2兩者皆在邏輯高準位時,控制信號CTRL指示輸出緩衝器260的驅動能力需要被減少。當信號FY1和FY2兩者皆在邏輯低準位時,控制信號CTRL指示輸出緩衝器260的驅動能力需要被增加。 Figure 7 is an example truth table associated with control circuit 300 of Figure 6, showing an example decoding operation. When signals FY1 and FY2 The control signal CTRL indicates that the driving capability (intensity) of the output buffer 260 does not need to be increased or decreased at the logic high level and the low level, respectively. When both signals FY1 and FY2 are at a logic high level, control signal CTRL indicates that the drive capability of output buffer 260 needs to be reduced. When both signals FY1 and FY2 are at a logic low level, control signal CTRL indicates that the drive capability of output buffer 260 needs to be increased.

第6圖中所示的控制電路300及第7圖中所示的真值表顯示此處所揭露技術的一種實施方式。對於熟知此技藝人士而言,此實施方式可以有許多變化。舉例而言,第一儲存電路615和第二儲存電路625可以在時鐘輸入終端C下降邊緣時而不是上升邊緣時陣存資料。解碼器650可以使用不同的解碼機制,例如是在當信號FY1和FY2分別在邏輯低準位和高準位時而不是分別在邏輯高準位和低準位時不要改變驅動能力的解碼機制。 The control circuit 300 shown in FIG. 6 and the truth table shown in FIG. 7 show an embodiment of the technology disclosed herein. There are many variations to this embodiment for those skilled in the art. For example, the first storage circuit 615 and the second storage circuit 625 can store data when the clock input terminal C descends the edge instead of the rising edge. The decoder 650 can use different decoding mechanisms, such as a decoding mechanism that does not change the driving capability when the signals FY1 and FY2 are at a logic low level and a high level, respectively, rather than at logic high and low levels, respectively.

第8圖中的控制電路800是第6圖中的控制電路300的替代實施方式。第6圖中對於延遲線320和邏輯330的描述大致上也適用於第8圖的控制電路800中。此替代控制電路800包括指示複數個時序區間中第一時序信號相對於第二時序信號發生的時序區間,及邏輯900產生響應所指示時序區間的控制信號CTRL。 The control circuit 800 in Fig. 8 is an alternative embodiment of the control circuit 300 in Fig. 6. The description of delay line 320 and logic 330 in FIG. 6 is also generally applicable to control circuit 800 of FIG. The alternate control circuit 800 includes a timing interval indicating that a first timing signal in the plurality of timing intervals occurs relative to the second timing signal, and the logic 900 generates a control signal CTRL in response to the indicated timing interval.

替代控制電路800包括一延遲線880和邏輯890。此延遲線880具有一輸入經由第二時序信號TS2與延遲模擬電路310(第6圖)耦接。此延遲線320具有複數個接頭,例如一接頭TP1、TP2、TP3、TP4分別與複數個時序區間對應。此邏輯890與延遲線880上的複數個接 頭耦接,且經由第一時序信號TS1與參考延遲電路400(第6圖)耦接。此邏輯890產生控制信號CTRL。 The alternate control circuit 800 includes a delay line 880 and logic 890. The delay line 880 has an input coupled to the delay analog circuit 310 (FIG. 6) via the second timing signal TS2. The delay line 320 has a plurality of connectors. For example, a connector TP1, TP2, TP3, and TP4 respectively correspond to a plurality of timing intervals. This logic 890 is connected to a plurality of connections on the delay line 880. The head is coupled and coupled to the reference delay circuit 400 (FIG. 6) via the first timing signal TS1. This logic 890 generates a control signal CTRL.

複數個時序區間及複數個接頭相較於第6圖中所式的單一時序區間及兩個接頭的方式提供調整輸出驅動能力更精確的控制。此替代控制電路800包括第一延遲緩衝電路810、第二延遲緩衝電路820、第一儲存電路815、第二儲存電路825及一解碼器850分別與第6圖中的第一延遲緩衝電路610、第二延遲緩衝電路620、第一儲存電路615、第二儲存電路625及一解碼器650對應。第8圖中的信號TP1、TP2、FY1和FY2分別與第6圖中的TP1、TP2、FY1和FY2對應。 The plurality of timing intervals and the plurality of joints provide more precise control of the adjustment output drive capability than the single timing interval and the two joints described in FIG. The replacement control circuit 800 includes a first delay buffer circuit 810, a second delay buffer circuit 820, a first storage circuit 815, a second storage circuit 825, and a decoder 850, respectively, and a first delay buffer circuit 610 in FIG. 6, The second delay buffer circuit 620, the first storage circuit 615, the second storage circuit 625, and a decoder 650 correspond to each other. The signals TP1, TP2, FY1, and FY2 in Fig. 8 correspond to TP1, TP2, FY1, and FY2 in Fig. 6, respectively.

此外,此替代控制電路800包括第三緩衝電路830、第四緩衝電路840、第三儲存電路835、第四儲存電路845。第三緩衝電路830具有一輸入終端與第二時序信號TS2電性耦接,及具有一輸出終端與第三接頭TP3電性耦接。第一緩衝電路810具有一輸入終端與第三接頭TP3電性耦接,及具有一輸出終端與第一接頭TP1電性耦接。第二緩衝電路820具有一輸入終端與第一接頭TP1電性耦接,及具有一輸出終端與第二接頭TP2電性耦接。第四緩衝電路840具有一輸入終端與第二接頭TP2電性耦接,及具有一輸出終端與第四接頭TP4電性耦接。 In addition, the alternative control circuit 800 includes a third buffer circuit 830, a fourth buffer circuit 840, a third storage circuit 835, and a fourth storage circuit 845. The third buffer circuit 830 has an input terminal electrically coupled to the second timing signal TS2 and has an output terminal electrically coupled to the third connector TP3. The first buffer circuit 810 has an input terminal electrically coupled to the third connector TP3, and has an output terminal electrically coupled to the first connector TP1. The second buffer circuit 820 has an input terminal electrically coupled to the first connector TP1 and has an output terminal electrically coupled to the second connector TP2. The fourth buffer circuit 840 has an input terminal electrically coupled to the second connector TP2, and has an output terminal electrically coupled to the fourth connector TP4.

第三緩衝電路830是進行信號恢復,將第二時序信號TS2的上升或下降邊緣變的更陡峭。如此使得通過第三緩衝電路830的延遲時間變得越短越好。 The third buffer circuit 830 performs signal recovery to make the rising or falling edge of the second timing signal TS2 steeper. This makes the delay time by the third buffer circuit 830 as short as possible.

此複數個時序區間的第一時序區間由通過第二緩衝 電路820的延遲時間定義。此第一時序區間可以由量測自第一接頭TP1的上升邊緣至第二接頭TP2的下一個上升邊緣間,或是介於其各自的下降邊緣的延遲決定。 The first time interval of the plurality of time intervals is passed through the second buffer The delay time of circuit 820 is defined. This first time interval may be determined by the delay from the rising edge of the first joint TP1 to the next rising edge of the second joint TP2 or between their respective falling edges.

此複數個時序區間的第二時序區間由通過第一緩衝電路810的延遲時間定義。此第二時序區間可以由量測自第三接頭TP3的上升邊緣至第四接頭TP4的下一個上升邊緣間,或是介於其各自的下降邊緣的延遲決定。舉例而言,假如具有4個反向器、8個反向器、4個反向器的第一緩衝電路810、第二緩衝電路820、第四緩衝電路840具有相同的延遲,則第二時序區間會是第一時序區間的兩倍寬。 The second timing interval of the plurality of timing intervals is defined by the delay time through the first buffer circuit 810. This second time interval may be determined by the delay from the rising edge of the third joint TP3 to the next rising edge of the fourth joint TP4 or between their respective falling edges. For example, if the first buffer circuit 810, the second buffer circuit 820, and the fourth buffer circuit 840 having four inverters, eight inverters, and four inverters have the same delay, the second timing The interval will be twice as wide as the first time interval.

更多的時序區間可由加入更多成對的串聯緩衝電路的延遲時間來定義。具有一個時序區間時,此輸出緩衝器260的驅動能力可以響應根據偵測一個時序區間來增加或減少一個步階。具有兩個時序區間時,此輸出緩衝器260的驅動能力可以響應根據偵測兩個時序區間來增加或減少兩個步階。一般而言,多重時序區間可以採用多個步階及更正確地調整輸出緩衝器的驅動能力。 More timing intervals can be defined by the delay time of adding more pairs of series buffer circuits. With one timing interval, the drive capability of the output buffer 260 can be increased or decreased by one step in response to detecting a timing interval. With two timing intervals, the drive capability of the output buffer 260 can be increased or decreased by two steps in response to detecting two timing intervals. In general, multiple timing intervals can take multiple steps and more accurately adjust the drive capability of the output buffer.

類似於控制電路300,此第一儲存電路815具有一時鐘輸入終端C與第一時序信號TS1電性耦接,一資料輸入終端D與第一接頭TP1電性耦接、及具有一輸出終端。此第二儲存電路825具有一時鐘輸入終端C與第一時序信號TS1電性耦接,一資料輸入終端D與第二接頭TP2電性耦接、及具有一輸出終端。 Similar to the control circuit 300, the first storage circuit 815 has a clock input terminal C electrically coupled to the first timing signal TS1, a data input terminal D is electrically coupled to the first connector TP1, and has an output terminal. . The second storage circuit 825 has a clock input terminal C electrically coupled to the first timing signal TS1, a data input terminal D electrically coupled to the second connector TP2, and an output terminal.

此外,在第8圖所示的替代控制電路800中,第三儲存電路835具有一時鐘輸入終端C與第一時序信號 TS1電性耦接,一資料輸入終端D與第三接頭TP3電性耦接、及具有一輸出終端與信號FY3電性耦接。此第四儲存電路845具有一時鐘輸入終端C與第一時序信號TS1電性耦接,一資料輸入終端D與第四接頭TP4電性耦接、及具有一輸出終端與信號FY4電性耦接。 In addition, in the alternative control circuit 800 shown in FIG. 8, the third storage circuit 835 has a clock input terminal C and a first timing signal. The TS1 is electrically coupled, and the data input terminal D is electrically coupled to the third connector TP3 and has an output terminal electrically coupled to the signal FY3. The fourth storage circuit 845 has a clock input terminal C electrically coupled to the first timing signal TS1, a data input terminal D is electrically coupled to the fourth connector TP4, and has an output terminal electrically coupled to the signal FY4. Pick up.

此邏輯890具有解碼器850。此解碼器850與第一儲存電路815、第二儲存電路825、第三儲存電路835和第四儲存電路845的輸出耦接以產生控制信號CTRL。此解碼器850根據解碼此四個儲存電路輸出終端所提供的信號來產生控制信號CTRL。此控制信號CTRL指示以下三種情況之一:一個或多個輸出緩衝器260的輸出驅動能力要增加、減少或不改變。 This logic 890 has a decoder 850. The decoder 850 is coupled to the outputs of the first storage circuit 815, the second storage circuit 825, the third storage circuit 835, and the fourth storage circuit 845 to generate a control signal CTRL. The decoder 850 generates a control signal CTRL based on the signals provided by the decoding of the four storage circuit output terminals. This control signal CTRL indicates one of three conditions: the output drive capability of one or more of the output buffers 260 is to be increased, decreased, or not changed.

第9圖顯示一控制輸出緩衝器的驅動能力調整之範例電路圖。在一實施方式中,輸出緩衝器260具有複數個並聯輸出驅動器960,例如輸出驅動器961、962、963和964以及控制信號CTRL致能與失能選取的複數個並聯輸出驅動器960中的輸出驅動器,以調整輸出緩衝器260的輸出驅動能力。 Figure 9 shows an example circuit diagram of the drive capability adjustment of a control output buffer. In one embodiment, the output buffer 260 has a plurality of parallel output drivers 960, such as output drivers 961, 962, 963, and 964, and an output driver in the plurality of parallel output drivers 960 that enable and disable the control signal CTRL. To adjust the output drive capability of the output buffer 260.

控制信號CTRL包括向左偏移信號SL及向右偏移信號SR。向左偏移信號SL及向右偏移信號SR與多階向左-向右偏移暫存器910耦接。為了描述簡便起見,在第9圖中的範例向左-向右偏移暫存器910具有四位元寬度。然而,也可以使用其他的應用如8、16、32、64位元等。作為一個範例之用,向左-向右偏移暫存器910具有四位元寬度的輸出終端與四位元致能信號SET<1:4>耦接。四個三態緩衝器與多階向左-向右偏移暫存器910及輸入信號IN耦接。此三態緩衝器可以是 反向或非反向的緩衝器。此三態緩衝器中的每一個具有資料輸入與輸入信號IN耦接,一控制輸入與對應的致能信號耦接及一輸出終端。當此三態緩衝器由其控制輸入之四位元致能信號SET<1:4>的一個對應位元開啟時,此三態緩衝器傳輸輸入信號IN致其輸出終端。舉例而言,當三態緩衝器923由其控制輸入之對應位元SET<3>開啟時,此三態緩衝器923傳輸輸入信號IN致其輸出終端。 The control signal CTRL includes a leftward offset signal SL and a rightward offset signal SR. The leftward offset signal SL and the rightward offset signal SR are coupled to the multi-order left-to-right offset register 910. For simplicity of description, the example left-to-right offset register 910 in FIG. 9 has a four-bit width. However, other applications such as 8, 16, 32, 64 bits, etc. can also be used. As an example, the left-to-right offset register 910 has a four-bit width output terminal coupled to the four-bit enable signal SET<1:4>. The four tristate buffers are coupled to the multi-order left-to-right offset register 910 and the input signal IN. This tristate buffer can be Reverse or non-inverting buffer. Each of the tristate buffers has a data input coupled to the input signal IN, a control input coupled to the corresponding enable signal, and an output terminal. When the tristate buffer is turned on by a corresponding bit of the four bit enable signal SET<1:4> of its control input, the tristate buffer transmits the input signal IN to its output terminal. For example, when the tristate buffer 923 is turned on by the corresponding bit SET<3> of its control input, the tristate buffer 923 transmits the input signal IN to its output terminal.

作為一個範例之用,此四位元寬的信號SET<1:4>之初始狀態為"1100",其中"1"代表"開啟"而"0"代表"關閉",以開啟或關閉輸出緩衝器260的對應輸出驅動器。在替代的實施方式中,"1"可以代表"關閉"而"0"代表"開啟"。當具有"1100"的初始狀態,此輸出緩衝器260中的兩個輸出驅動器開啟及兩個輸出驅動器關閉。對兩個180歐姆的輸出驅動器而言,此輸出緩衝器260的整體電阻值因此是90歐姆。 As an example, the initial state of the four-bit wide signal SET<1:4> is "1100", where "1" stands for "on" and "0" stands for "off" to turn the output buffer on or off. Corresponding output driver of 260. In an alternative embodiment, "1" may represent "off" and "0" represents "on". When having an initial state of "1100", the two output drivers in this output buffer 260 are turned on and the two output drivers are turned off. For two 180 ohm output drivers, the overall resistance of this output buffer 260 is therefore 90 ohms.

當此邏輯330偵測到需要增加輸出驅動能力時,此邏輯在信號SR產生脈衝。為了響應,此四位元寬的信號SET<1:4>之狀態自"1100"變為"1110",並且此輸出緩衝器260中的一個輸出驅動器開啟及三個輸出驅動器關閉。對三個180歐姆的輸出驅動器而言,此輸出緩衝器260的整體電阻值因此是60歐姆。其結果是,輸出驅動能力因為整體電阻值的減少而增加。 When the logic 330 detects the need to increase the output drive capability, the logic generates a pulse at the signal SR. In response, the state of the four-bit wide signal SET<1:4> changes from "1100" to "1110", and one of the output buffers 260 is turned on and the three output drivers are turned off. For three 180 ohm output drivers, the overall resistance of this output buffer 260 is therefore 60 ohms. As a result, the output drive capability increases due to the decrease in the overall resistance value.

當此邏輯330偵測到需要減少輸出驅動能力時,此邏輯在信號SR產生脈衝。為了響應,此四位元寬的信號SET<1:4>之狀態自"1100"變為"1000",並且此輸出緩衝器260中的三個輸出驅動器開啟及一個輸出驅動器 關閉。對一個180歐姆的輸出驅動器而言,此輸出緩衝器260的整體電阻值因此是180歐姆。其結果是,輸出驅動能力因為整體電阻值的增加而減少。 When the logic 330 detects the need to reduce the output drive capability, the logic generates a pulse at the signal SR. In response, the state of the four-bit wide signal SET<1:4> changes from "1100" to "1000", and three output drivers in the output buffer 260 are turned on and an output driver shut down. For a 180 ohm output driver, the overall resistance of this output buffer 260 is therefore 180 ohms. As a result, the output drive capability is reduced due to an increase in the overall resistance value.

當此輸出緩衝器260不在一操作模式或是並沒有驅動一信號時,可以改變此四位元寬的信號SET<1:4>以調整輸出緩衝器260的輸出驅動能力以避免此輸出緩衝器的切換雜訊。在一實施方式中,當資料線被關閉時,例如一積體電路是在一強度調整模式而不是在一操作模式時,可以改變此四位元寬的信號SET<1:4>以調整輸出緩衝器260的輸出驅動能力。在一操作模式時,此輸出緩衝器僅在需要時被致能,而且信號SET<1:4>並不允許在信號傳輸時被改變。於此輸出緩衝器被致能之前,此積體電路必須在一命令周期時接收命令。某些命令也許需要指定哪一個輸出緩衝器被致能的位址。在第二種實施方式中,於命令周期時信號SET<1:4>可以允許被改變以導致輸出緩衝器對於其驅動能力的自我校正。在第三種實施方式中,當此積體電路被解除選取或並未選取時信號SET<1:4>也可以允許被改變。 When the output buffer 260 is not in an operation mode or does not drive a signal, the four-bit wide signal SET<1:4> can be changed to adjust the output drive capability of the output buffer 260 to avoid the output buffer. Switching noise. In an embodiment, when the data line is turned off, for example, an integrated circuit is in an intensity adjustment mode instead of an operation mode, the four-bit wide signal SET<1:4> can be changed to adjust the output. The output drive capability of the buffer 260. In an operational mode, this output buffer is enabled only when needed, and the signals SET<1:4> are not allowed to be changed during signal transmission. The integrated circuit must receive the command at a command cycle before the output buffer is enabled. Some commands may need to specify which output buffer is enabled. In a second embodiment, the signal SET<1:4> may be allowed to be changed at the command cycle to cause the output buffer to self-correct for its drive capability. In a third embodiment, the signal SET<1:4> may also be allowed to be changed when the integrated circuit is deselected or not selected.

第10圖顯示此範例積體電路200的晶片安排圖示。此積體電路200包括寫入終端組態為將電路連接至積體電路200之外,且其中輸出緩衝器的輸出與寫入終端連接。寫入終端可以包含一積體電路封裝的打線墊,覆晶封裝的"凸塊",通過堆疊積體電路中的矽介層孔及其他終端組態為將輸出緩衝器的輸出進行晶片外的通訊。在此範例中的積體電路200包括經由打線墊1040而與輸出緩衝器260耦接的記憶陣列1020。在其他的範例中,積體電路200可以包括處理器、邏輯、類比電 路等等單獨存在或是其他積體電路元件搭配。圓圈1090顯示輸出緩衝器260的輸出與寫入終端1080耦接。 FIG. 10 shows a wafer arrangement diagram of the example integrated circuit 200 of this example. The integrated circuit 200 includes a write terminal configured to connect the circuit to the integrated circuit 200, and wherein the output of the output buffer is coupled to the write terminal. The write terminal may include a wire pad of the integrated circuit package, and the "bump" of the flip chip package is configured to stack the output of the output buffer by off-chip by stacking the via holes in the integrated circuit and other terminals. communication. The integrated circuit 200 in this example includes a memory array 1020 coupled to an output buffer 260 via a wire pad 1040. In other examples, the integrated circuit 200 can include a processor, logic, analog power Roads and the like exist alone or in combination with other integrated circuit components. Circle 1090 shows that the output of output buffer 260 is coupled to write terminal 1080.

此積體電路200具有包括輸出緩衝器260的複數個輸出緩衝器。這些輸出緩衝器根據控制信號CTRL來調整輸出緩衝器的輸出驅動能力。這些控制信號CTRL是由控制電路300產生來控制此複數個輸出緩衝器。這些由一個控制電路300產生的控制信號CTRL可以送至此複數個輸出緩衝器中超過一個以上的輸出緩衝器之一組控制輸入中。如第2A圖中所示,一個控制電路300與一個輸出緩衝器260耦接。一般而言,一個控制電路300可以與一個或多個輸出緩衝器260耦接。此外,積體電路200可以具有多個控制電路,每一個控制電路與一個或多個輸出緩衝器耦接。與一個控制電路耦接的輸出緩衝器數目可以與另一個控制電路耦接的輸出緩衝器數目是不相同的。 This integrated circuit 200 has a plurality of output buffers including an output buffer 260. These output buffers adjust the output drive capability of the output buffer based on the control signal CTRL. These control signals CTRL are generated by control circuit 300 to control the plurality of output buffers. These control signals CTRL generated by a control circuit 300 can be sent to a group control input of more than one of the output buffers of the plurality of output buffers. As shown in FIG. 2A, a control circuit 300 is coupled to an output buffer 260. In general, one control circuit 300 can be coupled to one or more output buffers 260. Additionally, integrated circuit 200 can have multiple control circuits, each coupled to one or more output buffers. The number of output buffers coupled to one control circuit may be different from the number of output buffers coupled to another control circuit.

第11~13圖顯示一種控制輸出緩衝器的方法,在其中輸出緩衝器具有輸出緩衝器延遲。此方法包括產生具有參考延遲D1的第一時序信號TS1,及產生具有與輸出緩衝器延遲相關之模擬延遲D2的第二時序信號TS2。此方法也包括響應該第一時序信號TS1及第二時序信號TS2而調整輸出緩衝器的輸出驅動能力。 Figures 11 through 13 show a method of controlling an output buffer in which the output buffer has an output buffer delay. The method includes generating a first timing signal TS1 having a reference delay D1 and generating a second timing signal TS2 having an analog delay D2 associated with an output buffer delay. The method also includes adjusting an output drive capability of the output buffer in response to the first timing signal TS1 and the second timing signal TS2.

第11~13圖所示的波形係與第6圖中的控制電路300及第7圖中的真值表之解碼操作相關。為了描述簡便起見,信號的轉變係發生於第11~13圖中的上升邊緣。對於熟知此技術的人士而言,也應知悉本發明之技術也可以應用於下降邊緣。 The waveforms shown in Figs. 11 to 13 are related to the decoding operation of the control circuit 300 in Fig. 6 and the truth table in Fig. 7. For the sake of simplicity of description, the signal transition occurs at the rising edge of Figures 11-13. It will also be appreciated by those skilled in the art that the techniques of the present invention can also be applied to falling edges.

因此,此處所揭露的方法包括使用一參考延遲電路400其係響應產生第一時序信號TS1的參考信號REF,且其中參考延遲電路400大致對製程邊界、電壓、溫度(PVT)條件或是至少對製程邊界、電壓、溫度其中一者不敏感。此方法也包括使用一延遲模擬電路310其係響應產生第二時序信號TS2的參考信號REF,且其中模擬延遲係與由製程邊界、電壓、溫度(PVT)條件或是至少對製程邊界、電壓、溫度其中一者導致的輸出緩衝器延遲的改變相關。 Accordingly, the method disclosed herein includes using a reference delay circuit 400 responsive to generating a reference signal REF of the first timing signal TS1, and wherein the reference delay circuit 400 is substantially for process boundary, voltage, temperature (PVT) conditions, or at least Not sensitive to one of the process boundaries, voltage, and temperature. The method also includes using a delay analog circuit 310 in response to generating a reference signal REF of the second timing signal TS2, and wherein the analog delay is associated with a process boundary, voltage, temperature (PVT) condition or at least a process boundary, voltage, The change in output buffer delay caused by one of the temperatures is related.

此方法更包含產生控制信號CTRL以響應第一時序信號TS1及第二時序信號TS2,以及使用控制信號CTRL來調整輸出緩衝器的輸出驅動能力。假如第一時序信號TS1相對於第二時序信號TS2是發生在介於第一延遲臨界與第二延遲臨界間的時間區間W1內,控制信號CTRL具有第一值,假如第一時序信號TS1相對於第二時序信號TS2是發生在早於第一延遲臨界,控制信號CTRL具有第二值,假如第一時序信號TS1相對於第二時序信號TS2是發生在晚於第二延遲臨界,則控制信號CTRL具有第三值。 The method further includes generating a control signal CTRL in response to the first timing signal TS1 and the second timing signal TS2, and using the control signal CTRL to adjust an output drive capability of the output buffer. If the first timing signal TS1 is within the time interval W1 between the first delay threshold and the second delay threshold relative to the second timing signal TS2, the control signal CTRL has a first value, if the first timing signal TS1 Relative to the second timing signal TS2 occurring earlier than the first delay threshold, the control signal CTRL has a second value, if the first timing signal TS1 occurs later than the second delay threshold with respect to the second timing signal TS2, then The control signal CTRL has a third value.

此方法可以包括使用延遲線320與第一時序信號和第二時序信號之一者耦接。此延遲線320具有一第一接頭TP1與第一延遲臨界對應及一第二接頭TP2與第二延遲臨界對應。此方法可以包括使用延遲線320的第一接頭TP1及一第二接頭TP2產生控制信號CTRL。時間區間W1是介於與第一接頭TP1對應的第一延遲臨界和與第二接頭TP2對應的第二延遲臨界之間。 The method can include coupling the one of the first timing signal and the second timing signal using the delay line 320. The delay line 320 has a first junction TP1 corresponding to a first delay threshold and a second junction TP2 corresponding to a second delay threshold. The method can include generating a control signal CTRL using the first joint TP1 of the delay line 320 and a second joint TP2. The time interval W1 is between a first delay threshold corresponding to the first joint TP1 and a second delay critical corresponding to the second joint TP2.

此方法也包括使用第一時序信號TS1提供時脈給第 一儲存電路615,第一儲存電路615的資料輸入接收延遲線的第一接頭TP1,使用第二時序信號TS2提供時脈給第二儲存電路625,第二儲存電路625的資料輸入接收延遲線的第二接頭TP2,及使用第一儲存電路615和第二儲存電路625的輸出來產生控制信號CTRL。 The method also includes providing a clock to the first timing signal TS1 a storage circuit 615, the data input of the first storage circuit 615 is input to the first connector TP1 of the delay line, the second timing signal TS2 is used to provide the clock to the second storage circuit 625, and the data input of the second storage circuit 625 is received by the delay line. The second connector TP2, and the outputs of the first storage circuit 615 and the second storage circuit 625 are used to generate the control signal CTRL.

在第11~13圖中,在時間t0,第11圖中之波形中的所有信號是在邏輯低準位。在時間t1,如同上升邊緣1110所指示的參考信號REF自邏輯低準位轉變為邏輯高準位。在時間t2,為了響應上升邊緣1110,於參考延遲D1通過參考延遲電路400之後,如同上升邊緣1120所指示的第一時序信號TS1自邏輯低準位轉變為邏輯高準位。也是為了響應上升邊緣1110,於模擬延遲D2通過參考延遲電路400之後,如同上升邊緣1130所指示的第二時序信號TS2自邏輯低準位轉變為邏輯高準位。為了響應第二時序信號TS2的上升邊緣1130,分別如同上升邊緣1140和1150所指示的,第一接頭TP1和第二接頭TP2自邏輯低準位轉變為邏輯高準位。 In Figures 11-13, at time t0, all of the signals in the waveform in Figure 11 are at a logic low level. At time t1, the reference signal REF as indicated by the rising edge 1110 transitions from a logic low level to a logic high level. At time t2, in response to rising edge 1110, after reference delay D1 is passed through reference delay circuit 400, first timing signal TS1, as indicated by rising edge 1120, transitions from a logic low level to a logic high level. Also in response to rising edge 1110, after analog delay D2 passes reference delay circuit 400, second timing signal TS2, as indicated by rising edge 1130, transitions from a logic low level to a logic high level. In response to rising edge 1130 of second timing signal TS2, first junction TP1 and second junction TP2 transition from a logic low level to a logic high level as indicated by rising edges 1140 and 1150, respectively.

在第一時序信號TS1的上升邊緣1120,第一儲存電路615和第二儲存電路625分別提供時脈給第一接頭TP1和第二接頭TP2。在第一接頭TP1和第二接頭TP2的資料輸入終端D所接收的邏輯準位分別提供至第一儲存電路615和第二儲存電路625的輸出FY1和FY2。 At the rising edge 1120 of the first timing signal TS1, the first storage circuit 615 and the second storage circuit 625 provide clocks to the first header TP1 and the second header TP2, respectively. The logic levels received at the data input terminal D of the first connector TP1 and the second connector TP2 are supplied to the outputs FY1 and FY2 of the first storage circuit 615 and the second storage circuit 625, respectively.

如第11圖所示,第一時序信號TS1的上升邊緣1120係發生於介於與第一接頭TP1上升邊緣1140對應的第一延遲臨界和與第二接頭TP2上升邊緣1150對應的第二延遲臨界之間的時間區間W1之內。因此,在時間t2,第一接頭TP1是邏輯高準位而第二接頭TP2是邏輯低 準位。其結果是,第一儲存電路615的輸出FY1於時間t2的上升邊緣1160之後轉變為邏輯高準位,而第二儲存電路625的輸出FY2仍保持在邏輯低準位。 As shown in FIG. 11, the rising edge 1120 of the first timing signal TS1 occurs at a first delay threshold corresponding to the rising edge 1140 of the first joint TP1 and a second delay corresponding to the rising edge 1150 of the second joint TP2. Within the time interval between the thresholds W1. Therefore, at time t2, the first connector TP1 is at a logic high level and the second connector TP2 is at a logic low. Level. As a result, the output FY1 of the first storage circuit 615 transitions to a logic high level after the rising edge 1160 of time t2, while the output FY2 of the second storage circuit 625 remains at the logic low level.

在第7圖的真值表中所示的一個範例,當FY1在邏輯高準位而FY2在邏輯低準位時,輸出緩衝器的驅動能力並不需要被增加或減少。因此,此方法可以產生具有第一值的控制信號以指示輸出緩衝器的驅動能力並不需要被增加或減少。舉例而言,此控制信號中可以包含向左偏移信號SL及向右偏移信號SR,如同第9圖所描述的。第一值可以向左偏移信號SL及向右偏移信號SR中並沒有脈衝來代表。 In an example shown in the truth table of Figure 7, when FY1 is at a logic high level and FY2 is at a logic low level, the drive capability of the output buffer does not need to be increased or decreased. Therefore, this method can generate a control signal having a first value to indicate that the driving capability of the output buffer does not need to be increased or decreased. For example, the control signal may include a leftward offset signal SL and a rightward offset signal SR, as described in FIG. The first value can be represented by the left offset signal SL and the rightward offset signal SR without a pulse.

如第12圖所示,第一時序信號TS1相對於第二時序信號TS2是發生在早於與第一接頭TP1上升邊緣1140對應的第一延遲臨界。因此,在時間t2,第一接頭TP1是邏輯低準位而第二接頭TP2是邏輯低準位。其結果是,於時間t2時第一儲存電路615的輸出FY1和第二儲存電路625的輸出FY2皆保持在邏輯低準位。 As shown in FIG. 12, the first timing signal TS1 occurs at a first delay threshold corresponding to the rising edge 1140 of the first joint TP1 with respect to the second timing signal TS2. Therefore, at time t2, the first tap TP1 is at a logic low level and the second tap TP2 is at a logic low level. As a result, at time t2, the output FY1 of the first storage circuit 615 and the output FY2 of the second storage circuit 625 are both maintained at a logic low level.

在第7圖的真值表中所示的一個範例,當FY1和FY2兩者皆在邏輯低準位時,輸出緩衝器的驅動能力需要被增加。因此,此方法可以產生具有第二值的控制信號以指示輸出緩衝器的驅動能力需要被增加。舉例而言,第二值可以向左偏移信號SL具有脈衝而向右偏移信號SR中並沒有脈衝來代表。 In an example shown in the truth table of Figure 7, when both FY1 and FY2 are at a logic low level, the drive capability of the output buffer needs to be increased. Therefore, this method can generate a control signal having a second value to indicate that the drive capability of the output buffer needs to be increased. For example, the second value may have a pulse to the left offset signal SL and a pulse to the right offset signal SR.

如第13圖所示,第一時序信號TS1相對於第二時序信號TS2是發生在晚於與第二接頭TP2上升邊緣1150對應的第二延遲臨界。因此,在時間t2,第一接頭TP1 是邏輯高準位而第二接頭TP2是邏輯高準位。其結果是,於時間t2時,第一儲存電路615的輸出FY1和第二儲存電路625的輸出FY2分別在上升邊緣1160和上升邊緣1170是在邏輯高準位。 As shown in FIG. 13, the first timing signal TS1 occurs later than the second delay signal corresponding to the rising edge 1150 of the second joint TP2 with respect to the second timing signal TS2. Therefore, at time t2, the first joint TP1 It is a logic high level and the second connector TP2 is a logic high level. As a result, at time t2, the output FY1 of the first storage circuit 615 and the output FY2 of the second storage circuit 625 are at a logic high level at the rising edge 1160 and the rising edge 1170, respectively.

在第7圖的真值表中所示的一個範例,當FY1和FY2兩者皆在邏輯高準位時,輸出緩衝器的驅動能力需要被減少。因此,此方法可以產生具有第三值的控制信號以指示輸出緩衝器的驅動能力需要被減少。舉例而言,第三值可以代表向左偏移信號SL和向右偏移信號SR中皆具有脈衝來代表。 In an example shown in the truth table of Figure 7, when both FY1 and FY2 are at a logic high level, the drive capability of the output buffer needs to be reduced. Therefore, this method can generate a control signal having a third value to indicate that the drive capability of the output buffer needs to be reduced. For example, the third value may be represented by a pulse having both the leftward offset signal SL and the rightward offset signal SR.

此方法也包括決定在複數個時間區間中的一時間區間其中第一時序信號相對於第二時序信號是在何時發生,且響應所決定之時間區間產生控制信號。舉例而言,第一時間區間可以藉由通過第8圖中第二緩衝電路820的延遲定義,而第二時間區間可以藉由通過第8圖中第一緩衝電路810、第二緩衝電路820和第三緩衝電路830的整體延遲定義。此方法也包括響應第一時間區間、或是第二時間區間或是兩者產生控制信號。 The method also includes determining when a first timing signal occurs relative to the second timing signal over a time interval of the plurality of time intervals, and generating a control signal in response to the determined time interval. For example, the first time interval can be defined by the delay of the second buffer circuit 820 in FIG. 8, and the second time interval can be passed through the first buffer circuit 810, the second buffer circuit 820, and The overall delay definition of the third buffer circuit 830. The method also includes generating a control signal in response to the first time interval, or the second time interval, or both.

此方法也包括使用與第一時序信號和第二時序信號之一耦接的延遲線,而且具有與複數個時間區間對應的複數個接頭,以及使用複數個接頭產生控制信號。舉例而言,延遲線880與第二時序信號TS2耦接,且具有複數個接頭TP1、TP2、TP3和TP4,如第8圖所示。介於TP1和TP2之間的延遲與第一時序區間對應,而介於TP3和TP4之間的延遲與第二時序區間對應。 The method also includes using a delay line coupled to one of the first timing signal and the second timing signal, and having a plurality of joints corresponding to the plurality of time intervals, and generating a control signal using the plurality of joints. For example, the delay line 880 is coupled to the second timing signal TS2 and has a plurality of connectors TP1, TP2, TP3, and TP4 as shown in FIG. The delay between TP1 and TP2 corresponds to the first time interval, and the delay between TP3 and TP4 corresponds to the second time interval.

這些輸出緩出器包括複數個並聯的輸出驅動器的方 法中可以使用控制信號致能與失能所選取輸出驅動器來調整此輸出緩衝器的驅動能力。如第9圖中所示,輸出緩出器260包括複數個並聯的輸出驅動器960,例如驅動器961、962、963和964。此方法可以使用包含向左偏移信號SL及向右偏移信號SR的控制信號CTRL,致能與失能所選取輸出驅動器來調整此輸出緩衝器的驅動能力。 These output buffers include a plurality of parallel output drivers The output driver of the control signal enable and disable can be used to adjust the drive capability of the output buffer. As shown in FIG. 9, output evaluator 260 includes a plurality of parallel output drivers 960, such as drivers 961, 962, 963, and 964. This method can use the control signal CTRL including the left shift signal SL and the right shift signal SR to enable and disable the selected output driver to adjust the drive capability of the output buffer.

這些輸出緩衝器於包括寫入終端組態為將電路連接至積體電路200之外的積體電路之上的方法,可以提出輸出緩衝器的輸出至此寫入終端。如第10圖中所示,此積體電路200包括與例如是輸出緩衝器260耦接的記憶陣列1020。輸出緩衝器260係位於包括寫入終端1080組態為將電路連接至積體電路200之外的積體電路200之上。此方法可以提出輸出緩衝器260的輸出至此寫入終端1080。 These output buffers may include an output of the output buffer to the write terminal, including a method in which the write terminal is configured to connect the circuit to an integrated circuit other than the integrated circuit 200. As shown in FIG. 10, the integrated circuit 200 includes a memory array 1020 coupled to, for example, an output buffer 260. The output buffer 260 is located above the integrated circuit 200 including the write terminal 1080 configured to connect the circuit to the integrated circuit 200. This method can present the output of output buffer 260 to this write terminal 1080.

此方法可以包括使用由控制電路300所產生的控制信號來調整此複數個輸出緩衝器中一個以上輸出緩衝器的驅動能力,而控制複數個包含此輸出緩衝器的輸出緩衝器。這些控制信號是由控制電路產生以控制複數個輸出緩衝器。其中控制電路和複數個輸出緩衝器之間的對應關係可以是一對一或一對多。如第2A圖中所示,一個控制電路300是與一個輸出緩衝器260耦接。一般而言,一個控制電路300可以與一個或多個輸出緩衝器260耦接。進一步而言,積體電路中可以包含複數個控制電路,而每一個控制電路與一個或多個輸出緩衝器耦接。一個控制電路與輸出緩衝器耦接的數目可以與另一個控制電路與輸出緩衝器耦接的數目是不同的。 The method can include using a control signal generated by control circuit 300 to adjust the drive capability of more than one of the plurality of output buffers, and controlling a plurality of output buffers including the output buffer. These control signals are generated by the control circuit to control a plurality of output buffers. The correspondence between the control circuit and the plurality of output buffers may be one-to-one or one-to-many. As shown in FIG. 2A, a control circuit 300 is coupled to an output buffer 260. In general, one control circuit 300 can be coupled to one or more output buffers 260. Further, the integrated circuit may include a plurality of control circuits, and each control circuit is coupled to one or more output buffers. The number of one control circuit coupled to the output buffer can be different from the number of other control circuits coupled to the output buffer.

本發明之較佳實施例與範例詳細揭露如上,惟應瞭解為上述範例僅作為範例,非用以限制專利之範圍。就熟知技藝之人而言,自可輕易依據下列申請專利範圍對相關技術進行修改與組合。 The preferred embodiments and examples of the present invention are disclosed in detail above, but it should be understood that the above examples are merely exemplary and are not intended to limit the scope of the patent. For those skilled in the art, the related art can be modified and combined easily according to the scope of the following patent application.

120、220、412‧‧‧P型金氧半電晶體(PMOS) 120, 220, 412‧‧‧P type MOS semi-transistor (PMOS)

140、240、414、416‧‧‧N型金氧半電晶體(NMOS) 140, 240, 414, 416‧‧‧N type MOS semi-transistor (NMOS)

160、260‧‧‧輸出緩衝器 160, 260‧‧‧ output buffer

180、280、418、328‧‧‧電容器 180, 280, 418, 328‧ ‧ capacitors

200‧‧‧積體電路 200‧‧‧ integrated circuit

300、800‧‧‧控制電路 300, 800‧‧‧ control circuit

310‧‧‧延遲模擬電路 310‧‧‧delay analog circuit

320、880‧‧‧延遲線 320, 880‧‧‧ delay line

322、324、326‧‧‧縮小電路 322, 324, 326‧‧‧ reduce the circuit

330、890‧‧‧邏輯 330, 890‧‧ ‧ Logic

400‧‧‧參考延遲電路 400‧‧‧reference delay circuit

410‧‧‧第一延遲子電路 410‧‧‧First delay subcircuit

450‧‧‧信號 450‧‧‧ signal

460‧‧‧第二延遲子電路 460‧‧‧second delay subcircuit

462、468‧‧‧延遲元件 462, 468‧‧‧ delay elements

610、620‧‧‧延遲緩衝電路 610, 620‧‧‧ delay buffer circuit

615、625‧‧‧儲存電路 615, 625‧‧‧ storage circuits

650‧‧‧解碼器 650‧‧‧Decoder

810、820、830、840‧‧‧延遲緩衝電路 810, 820, 830, 840‧‧‧ delay buffer circuit

815、825、835、845‧‧‧儲存電路 815, 825, 835, 845‧‧‧ storage circuits

850‧‧‧解碼器 850‧‧‧Decoder

910‧‧‧向左-向右偏移暫存器 910‧‧‧Left-to-right offset register

921、922、923、924‧‧‧三態緩衝器 921, 922, 923, 924‧‧‧ tristate buffers

960、961、962、963、964‧‧‧輸出驅動器 960, 961, 962, 963, 964‧‧‧ output drivers

1020‧‧‧記憶陣列 1020‧‧‧ memory array

1040‧‧‧打線墊 1040‧‧‧Line mat

1080‧‧‧輸出與寫入終端 1080‧‧‧Output and write terminal

第1A圖顯示一傳統輸出緩衝器的設計範例。。 Figure 1A shows a design example of a conventional output buffer. .

第1B圖顯示與第1A圖中輸出緩衝器相關的波形圖。 Figure 1B shows a waveform diagram associated with the output buffer of Figure 1A.

第2A圖顯示一範例積體電路的方塊圖。此範例積體電路包括一具有自我校正輸出驅動能力的輸出緩衝器。 Figure 2A shows a block diagram of a sample integrated circuit. This example integrated circuit includes an output buffer with self-correcting output drive capability.

第2B圖顯示包括複數個並聯輸出驅動器的輸出緩衝器。 Figure 2B shows an output buffer that includes a plurality of parallel output drivers.

第2C圖顯示與第2A圖中輸出緩衝器相關的波形圖。 Figure 2C shows a waveform diagram associated with the output buffer in Figure 2A.

第3圖是第2A圖中的積體電路所使用之控制電路的方塊圖。 Fig. 3 is a block diagram showing a control circuit used in the integrated circuit in Fig. 2A.

第4圖是第3圖中的參考延遲電路的方塊圖。 Fig. 4 is a block diagram of the reference delay circuit in Fig. 3.

第5A~5C圖包括一組描述第4圖中的參考延遲電路如何補償因為變動的製程邊界、電壓、溫度(PVT)條件下所造成的時序變動的圖示。 Figures 5A-5C include a set of illustrations depicting how the reference delay circuit in Figure 4 compensates for timing variations due to varying process boundary, voltage, temperature (PVT) conditions.

第6圖是第3圖中的控制電路更詳細的電路圖。 Fig. 6 is a more detailed circuit diagram of the control circuit in Fig. 3.

第7圖是一個與第6圖中的控制電路相關的範例真值表。 Figure 7 is an example truth table associated with the control circuit of Figure 6.

第8圖顯示一替代的控制電路。 Figure 8 shows an alternative control circuit.

第9圖顯示一控制輸出緩衝器的驅動能力調整之範例電路圖。 Figure 9 shows an example circuit diagram of the drive capability adjustment of a control output buffer.

第10圖顯示此範例積體電路的晶片安排圖示。 Figure 10 shows a wafer arrangement diagram of the integrated circuit of this example.

第11~13圖顯示與控制一輸出緩衝器方法相關的範例波形圖。 Figures 11 through 13 show example waveform diagrams associated with controlling an output buffer method.

300‧‧‧控制電路 300‧‧‧Control circuit

310‧‧‧延遲模擬電路 310‧‧‧delay analog circuit

320‧‧‧延遲線 320‧‧‧delay line

330‧‧‧邏輯 330‧‧‧Logic

400‧‧‧參考延遲電路 400‧‧‧reference delay circuit

Claims (20)

一種積體電路,包含:一輸出緩衝器,具有一信號輸入、一信號輸出及一組控制輸入,該輸出緩衝器具有輸出緩衝延遲,且響應施加至該組控制輸入的控制信號而調整其驅動能力;以及一控制電路與該輸出緩衝器的該組控制輸入連接,該控制電路使用第一及第二時序信號產生該些控制信號,且包括一參考延遲電路,該參考延遲電路產生具有參考延遲的該第一時序信號,及一延遲模擬電路,該延遲模擬電路產生具有延遲模擬的該第二時序信號,該延遲模擬與該輸出緩衝延遲相關。 An integrated circuit comprising: an output buffer having a signal input, a signal output, and a set of control inputs, the output buffer having an output buffer delay and adjusting the drive in response to a control signal applied to the set of control inputs And a control circuit coupled to the set of control inputs of the output buffer, the control circuit generating the control signals using the first and second timing signals, and including a reference delay circuit, the reference delay circuit generating a reference delay The first timing signal, and a delay analog circuit, the delay analog circuit generates the second timing signal with a delay analog, the delay simulation being related to the output buffer delay. 如申請專利範圍第1項之積體電路,其中:該參考延遲電路響應一參考信號以產生該具有參考延遲的該第一時序信號,且其中該參考延遲電路大致上對製程邊界、電壓、溫度(PVT)條件之至少一者不敏感;該延遲模擬電路響應其輸入的該參考信號以在其輸出產生該具有延遲模擬的該第二時序信號,且其中該模擬延遲與根據該製程邊界、電壓、溫度(PVT)條件之至少一者在該輸出緩衝延遲所產生的改變對應。 The integrated circuit of claim 1, wherein: the reference delay circuit is responsive to a reference signal to generate the first timing signal having a reference delay, and wherein the reference delay circuit substantially corresponds to a process boundary, a voltage, At least one of temperature (PVT) conditions is insensitive; the delay analog circuit is responsive to its input of the reference signal to produce the second timing signal having a delayed analog at its output, and wherein the analog delay is based on the process boundary, At least one of the voltage, temperature (PVT) conditions corresponds to a change in the output buffer delay. 如申請專利範圍第1項之積體電路,其中該控制信號具有第一值假如該第一時序信號相對於該第二時序信號是發生在介於一第一延遲臨界與一第二延遲臨界間的第一時間區間內,假如該第一時序信號相對於該第二時序信號是發生在早於該第一延遲臨界該控制信號具有第二值,假如該第一時序信號相對於該第二時序信號是發生在晚於該第二延遲臨界則該控制信號具有第三值。 The integrated circuit of claim 1, wherein the control signal has a first value if the first timing signal is generated between a first delay threshold and a second delay threshold relative to the second timing signal In the first time interval, if the first timing signal occurs with respect to the second timing signal, the control signal has a second value earlier than the first delay threshold, if the first timing signal is relative to the The second timing signal occurs later than the second delay threshold and the control signal has a third value. 如申請專利範圍第3項之積體電路,其中該控制電路包括:一延遲線,具有一輸入與該延遲模擬電路耦接,且具有一第一接頭與該第一延遲臨界對應及一第二接頭與該第二延遲臨界對應;以及邏輯與該延遲線的該第一接頭及該第二接頭耦接,且與該參考延遲電路耦接,該邏輯產生該控制信號。 The integrated circuit of claim 3, wherein the control circuit comprises: a delay line having an input coupled to the delay analog circuit, and having a first connector corresponding to the first delay threshold and a second The connector is coupled to the second delay threshold; and the logic is coupled to the first connector and the second connector of the delay line and coupled to the reference delay circuit, the logic generating the control signal. 如申請專利範圍第4項之積體電路,其中該邏輯包括:一第一儲存電路,具有一時鐘輸入終端與該參考延遲電路電性耦接以接收該第一時序信號,一資料輸入終端與該延遲線的該第一接頭電性耦接、及具有一輸出終端;一第二儲存電路,具有一時鐘輸入終端與該參考延遲電路電性耦接以接收該第一時序信號,一資料輸入終端與該延遲線的該第二接頭電性耦接、及具有一輸出終端;以及一解碼器與該第一儲存電路和該第二儲存電路的該輸出耦接以產生該控制信號。 The integrated circuit of claim 4, wherein the logic comprises: a first storage circuit having a clock input terminal electrically coupled to the reference delay circuit to receive the first timing signal, a data input terminal Electrically coupled to the first terminal of the delay line and having an output terminal; a second storage circuit having a clock input terminal electrically coupled to the reference delay circuit to receive the first timing signal, The data input terminal is electrically coupled to the second terminal of the delay line and has an output terminal; and a decoder is coupled to the output of the first storage circuit and the second storage circuit to generate the control signal. 如申請專利範圍第1項之積體電路,其中該控制電路指示該複數個時間區間中的一時間區間內之該第一時序信號相對於該第二時序信號發生的時間,且該邏輯響應該所指示的時間區間而產生該控制信號。 The integrated circuit of claim 1, wherein the control circuit indicates a time when the first timing signal occurs in the time interval of the plurality of time intervals relative to the second timing signal, and the logic sounds The control signal should be generated for the indicated time interval. 如申請專利範圍第6項之積體電路,其中該控制電路包括:一延遲線,具有一輸入與該延遲模擬電路耦接,且具有複數個接頭與該複數個時間區間對應對應;以及邏輯與該延遲線的該複數個接頭耦接,且與該參考延 遲電路耦接,該邏輯產生該控制信號。 The integrated circuit of claim 6, wherein the control circuit comprises: a delay line having an input coupled to the delay analog circuit, and having a plurality of joints corresponding to the plurality of time intervals; and a logical AND The plurality of connectors of the delay line are coupled and associated with the reference The late circuit is coupled and the logic generates the control signal. 如申請專利範圍第1項之積體電路,其中該輸出緩衝器包含複數個並聯的輸出驅動器,且該控制信號致能及失能所選取的輸出驅動器調整該輸出緩出器的驅動能力。 The integrated circuit of claim 1, wherein the output buffer comprises a plurality of parallel output drivers, and the output driver selected by the control signal is enabled and disabled to adjust the driving capability of the output buffer. 如申請專利範圍第1項之積體電路,包括一寫入終端,該寫入終端組態為將電路連接至該積體電路之外,且其中該輸出緩衝器的該輸出與該寫入終端連接。 The integrated circuit of claim 1, comprising a write terminal configured to connect the circuit to the integrated circuit, and wherein the output of the output buffer and the write terminal connection. 如申請專利範圍第1項之積體電路,包括複數個輸出緩衝器,其包括響應該控制信號而調整該其驅動能力的該輸出緩衝器,其中該控制信號係施加至該複數個輸出緩衝器中超過一個以上的該輸出緩衝器上的該組控制輸入。 The integrated circuit of claim 1, comprising a plurality of output buffers including an output buffer responsive to the control signal for adjusting its driving capability, wherein the control signal is applied to the plurality of output buffers More than one of the set of control inputs on the output buffer. 一種控制一輸出緩衝器的方法,其中該輸出緩衝器具有輸出緩衝延遲,包括:產生一第一時序信號,該第一時序信號具有一參考延遲;產生一第二時序信號,該第二時序信號具有與該輸出緩衝延遲相關的延遲模擬;以及響應該第一時序信號及該第二時序信號而調整該輸出緩出器的驅動能力。 A method of controlling an output buffer, wherein the output buffer has an output buffer delay, comprising: generating a first timing signal, the first timing signal having a reference delay; generating a second timing signal, the second The timing signal has a delay analog associated with the output buffer delay; and the drive capability of the output buffer is adjusted in response to the first timing signal and the second timing signal. 如申請專利範圍第11項之方法,包括:使用一參考延遲電路響應一參考信號以產生該第一時序信號,且其中該參考延遲電路大致上對製程邊界、電壓、溫度(PVT)條件之至少一者不敏感;以及使用一延遲模擬電路響應該參考信號以產生該第二時序 信號,且其中該模擬延遲與根據該製程邊界、電壓、溫度(PVT)條件之至少一者在該輸出緩衝延遲所產生的改變對應。 The method of claim 11, comprising: responsive to a reference signal using a reference delay circuit to generate the first timing signal, and wherein the reference delay circuit is substantially compliant with process boundary, voltage, temperature (PVT) conditions At least one is insensitive; and responding to the reference signal using a delay analog circuit to generate the second timing a signal, and wherein the analog delay corresponds to a change in the output buffer delay based on at least one of the process boundary, voltage, temperature (PVT) conditions. 如申請專利範圍第11項之方法,更包括:產生控制信號以響應該第一時序信號及該第二時序信號,且使用該控制信號來調整該輸出緩出器的驅動能力,其中該控制信號具有一第一值,假如該第一時序信號相對於該第二時序信號是發生在介於一第一延遲臨界與一第二延遲臨界間的第一時間區間內;一第二值,假如該第一時序信號相對於該第二時序信號是發生在早於該第一延遲臨界;一第三值,假如該第一時序信號相對於該第二時序信號是發生在晚於該第二延遲臨界。 The method of claim 11, further comprising: generating a control signal in response to the first timing signal and the second timing signal, and using the control signal to adjust a driving capability of the output buffer, wherein the controlling The signal has a first value, if the first timing signal is generated in a first time interval between a first delay threshold and a second delay threshold with respect to the second timing signal; a second value, If the first timing signal occurs earlier than the first delay threshold with respect to the second timing signal; a third value, if the first timing signal occurs later than the second timing signal The second delay is critical. 如申請專利範圍第13項之方法,更包括:使用一延遲線,該延遲線與該第一時序信號和該第二時序信號之一耦接,該延遲線具有一第一接頭與該第一延遲臨界對應及一第二接頭與該第二延遲臨界對應,以及使用該延遲線的該第一接頭及該第二接頭產生該控制信號。 The method of claim 13, further comprising: using a delay line coupled to one of the first timing signal and the second timing signal, the delay line having a first connector and the first A delay critical correspondence and a second joint correspond to the second delay threshold, and the first joint and the second joint using the delay line generate the control signal. 如申請專利範圍第14項之方法,更包括:使用該第一時序信號提供時脈至一第一儲存電路,該第一儲存電路具有一資料輸入終端以接收該延遲線的該第一接頭;使用該第二時序信號提供時脈至一第二儲存電路,該第二儲存電路具有一資料輸入終端以接收該延遲線的該 第二接頭;以及使用該第一儲存電路和該第二儲存電路的該輸出產生該控制信號。 The method of claim 14, further comprising: using the first timing signal to provide a clock to a first storage circuit, the first storage circuit having a data input terminal to receive the first connector of the delay line Using the second timing signal to provide a clock to a second storage circuit, the second storage circuit having a data input terminal to receive the delay line a second connector; and generating the control signal using the output of the first storage circuit and the second storage circuit. 如申請專利範圍第11項之方法,更包括:決定複數個時間區間中的一時間區間內之該第一時序信號相對於該第二時序信號發生的時間,且響應該所指示的時間區間而產生該控制信號。 The method of claim 11, further comprising: determining a time period of the first timing signal relative to the second timing signal in a time interval of the plurality of time intervals, and responding to the indicated time interval The control signal is generated. 如申請專利範圍第16項之方法,更包括:使用一延遲線與該第一時序信號和該第二時序信號之一耦接;以及使用該延遲線的該複數個接頭產生該控制信號。 The method of claim 16, further comprising: coupling a delay line to one of the first timing signal and the second timing signal; and generating the control signal using the plurality of connectors of the delay line. 如申請專利範圍第11項之方法,其中該輸出緩衝器包含複數個並聯的輸出驅動器,且使用該控制信號致能及失能所選取的輸出驅動器調整該輸出緩出器的驅動能力。 The method of claim 11, wherein the output buffer comprises a plurality of parallel output drivers, and the output driver selected by the control signal enabling and disabling is used to adjust the driving capability of the output buffer. 如申請專利範圍第11項之方法,其中該輸出緩衝器是於一積體電路中,該積體電路包括一寫入終端組態為將電路連接至該積體電路之外,且提供該輸出緩衝器的該輸出至該寫入終端。 The method of claim 11, wherein the output buffer is in an integrated circuit, the integrated circuit including a write terminal configured to connect the circuit to the integrated circuit, and provide the output This output of the buffer is to the write terminal. 如申請專利範圍第13項之方法,包括控制複數個包含該輸出緩衝器的出緩衝器,使用該控制信號而調整該複數個輸出緩衝器中超過一個以上的該輸出緩衝器上的驅動能力。 The method of claim 13, comprising controlling a plurality of output buffers including the output buffer, and using the control signal to adjust a drive capability of the output buffers of more than one of the plurality of output buffers.
TW101129237A 2012-08-13 2012-08-13 Device of self-calibration of output buffer driving strength and its method TWI517575B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101129237A TWI517575B (en) 2012-08-13 2012-08-13 Device of self-calibration of output buffer driving strength and its method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101129237A TWI517575B (en) 2012-08-13 2012-08-13 Device of self-calibration of output buffer driving strength and its method

Publications (2)

Publication Number Publication Date
TW201407958A true TW201407958A (en) 2014-02-16
TWI517575B TWI517575B (en) 2016-01-11

Family

ID=50550636

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101129237A TWI517575B (en) 2012-08-13 2012-08-13 Device of self-calibration of output buffer driving strength and its method

Country Status (1)

Country Link
TW (1) TWI517575B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI512422B (en) * 2014-10-14 2015-12-11 Univ Nat Sun Yat Sen Output buffer with pvtl compensation and the leakage compensation circuit thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI512422B (en) * 2014-10-14 2015-12-11 Univ Nat Sun Yat Sen Output buffer with pvtl compensation and the leakage compensation circuit thereof

Also Published As

Publication number Publication date
TWI517575B (en) 2016-01-11

Similar Documents

Publication Publication Date Title
US8847635B2 (en) Self-calibration of output buffer driving strength
KR100714486B1 (en) Output driver
US6522160B1 (en) Input buffer with automatic switching point adjustment circuitry, and synchronous DRAM device including same
US7944246B2 (en) Signal detecting circuit
US20130222038A1 (en) Semiconductor integrated circuit
US8390318B2 (en) Semiconductor device having calibration circuit for adjusting output impedance of output buffer circuit
US20020060592A1 (en) Slew rate adjusting circuit and semiconductor device
US7863936B1 (en) Driving circuit with impedence calibration and pre-emphasis functionalities
US6992511B2 (en) Output buffer circuit
US7112989B2 (en) Transmission signal correction circuit
JP2009016390A (en) Semiconductor integrated circuit
JP2011130162A (en) Semiconductor device
US11552626B2 (en) High speed signal adjustment circuit
JP2001016080A (en) Semiconductor device
US20220345114A1 (en) Bias generation circuit, buffer circuit including the bias generation circuit and semiconductor system including the buffer circuit
TWI572138B (en) Integrated circuit including output buffer and method for controlling output buffer
KR100857438B1 (en) Voltage generating circuit and circuit for generating reference voltage of semiconductor memory apparatus using the same
JP2007173893A (en) Semiconductor integrated circuit device
KR100383262B1 (en) Semiconductor memory device and data output method thereof
TWI517575B (en) Device of self-calibration of output buffer driving strength and its method
US20070069762A1 (en) Input buffer with automatic switching point adjustment circuitry, and synchronous DRAM device including same
KR100568875B1 (en) Output driver for use in semiconductor device
US8680923B2 (en) Output circuit
US7486140B2 (en) Differential amplifier
CN110164491B (en) Buffer circuit, and semiconductor device and system including buffer circuit