TW201407739A - Conductive line of semiconductor device - Google Patents

Conductive line of semiconductor device Download PDF

Info

Publication number
TW201407739A
TW201407739A TW101128555A TW101128555A TW201407739A TW 201407739 A TW201407739 A TW 201407739A TW 101128555 A TW101128555 A TW 101128555A TW 101128555 A TW101128555 A TW 101128555A TW 201407739 A TW201407739 A TW 201407739A
Authority
TW
Taiwan
Prior art keywords
layer
wire
semiconductor device
etching process
conductive
Prior art date
Application number
TW101128555A
Other languages
Chinese (zh)
Other versions
TWI539571B (en
Inventor
Mu-Chin Chen
Yuan-Sheng Chiang
Chi-Sheng Hsiung
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW101128555A priority Critical patent/TWI539571B/en
Publication of TW201407739A publication Critical patent/TW201407739A/en
Application granted granted Critical
Publication of TWI539571B publication Critical patent/TWI539571B/en

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

A conductive line of a semiconductor device includes a conductive layer disposed on a semiconductor substrate. A thickness of the conductive layer is substantially larger than 10000 angstrom ( Å ), and at least a side of the conductive layer has at least two different values of curvature.

Description

半導體裝置的導線 Conductor wire

本發明係關於一種半導體裝置的導線及其製作方法,尤指一種具有至少兩種不同曲率之側邊的半導體裝置的導線及其製作方法。 The present invention relates to a wire for a semiconductor device and a method of fabricating the same, and more particularly to a wire of a semiconductor device having at least two sides of different curvatures and a method of fabricating the same.

積體電路(integrated circuit,IC)是藉由形成於基底或不同膜層中的圖案化特徵(feature)構成的元件裝置以及內連線結構所建構。當積體電路元件裝置的積集度增加時,連結元件裝置與元件裝置之間的內連線結構製程也越顯重要。內連線結構通常包含交替的介電層及金屬層,一般而言,多重金屬內連線(multi-level interconnects)的製作程序包括:於基底上形成圖案化的金屬導線層後,沈積一層覆蓋金屬導線層的介電層,接著,在介電層中形成複數個與各金屬導線層電性連接的接觸窗插塞(contact plug),然後,在介電層上形成與接觸窗插塞電性連接的下一層金屬導線層,最後再選擇性覆蓋一層保護層以完成金屬內連線之製作。 An integrated circuit (IC) is constructed by a device device and an interconnect structure formed by patterned features formed on a substrate or different film layers. As the degree of integration of the integrated circuit component device increases, the interconnect structure process between the component device and the component device becomes more important. The interconnect structure generally comprises alternating dielectric layers and metal layers. Generally, the fabrication process of the multi-level interconnects includes: depositing a layer of a patterned metal wire layer on the substrate a dielectric layer of the metal wiring layer, and then a plurality of contact plugs electrically connected to the metal wiring layers are formed in the dielectric layer, and then the contact plug is formed on the dielectric layer. The next layer of metal wire is connected, and finally a layer of protective layer is selectively covered to complete the fabrication of the metal interconnect.

介電層與保護層主要係用以提供絕緣與保護等功能,且介電層與保護層的材料之選擇必須考慮到介電常數的大小、結構強度以及介電層本身與其他材質之應力問題等。一般常作為介電層與保護層之材質主要包含有氧化矽與氮化矽等,其中氮化矽由於本身材質結構較緻密,常用作為半導體元件裝置之保護層。隨著半導體製程的需 求多樣化,當金屬導線層厚度過厚和/或積集度過高時,可能導致金屬導線層上方的介電層或保護層階梯覆蓋(step coverage)效果不佳,使得介電層或保護層在填入兩金屬導線層之間的空間時發生懸突(overhang)的現象,或是介電層或保護層在金屬導線層的轉角處因應力集中而發生破裂(crack)的現象。 The dielectric layer and the protective layer are mainly used to provide functions such as insulation and protection, and the materials of the dielectric layer and the protective layer must be selected in consideration of the dielectric constant, the structural strength, and the stress problem of the dielectric layer itself and other materials. Wait. Generally, the material of the dielectric layer and the protective layer mainly includes yttrium oxide and tantalum nitride, and the tantalum nitride is generally used as a protective layer of a semiconductor device device because of its dense material structure. With the needs of semiconductor manufacturing Diversification, when the thickness of the metal wire layer is too thick and/or the degree of accumulation is too high, the dielectric layer or the protective layer over the metal wire layer may have poor step coverage effect, so that the dielectric layer or protection The phenomenon of overhang occurs when the layer fills the space between the two metal wire layers, or the dielectric layer or the protective layer cracks due to stress concentration at the corners of the metal wire layer.

因此,如何避免過厚的金屬導線層造成介電層或保護層毀損以改善半導體裝置的電性表現實為相關技術者所欲改進之課題。 Therefore, how to avoid the damage of the dielectric layer or the protective layer caused by the excessively thick metal wire layer to improve the electrical performance of the semiconductor device is a problem that the related art desires to improve.

本發明之目的之一在於提供一種半導體裝置的導線及其製作方法,以避免導線層的輪廓造成設置於導線層上方之介電層的毀損。 It is an object of the present invention to provide a wire for a semiconductor device and a method of fabricating the same that avoids the damage of the dielectric layer disposed over the wire layer by the contour of the wire layer.

本發明之一較佳實施例是提供一種半導體裝置的導線,包括一導電層以及一半導體基底。導電層設置於半導體基底上,其中導電層具有一厚度係實質上大於10000埃(angstrom,Å),且導電層之至少一側邊包括至少兩種不同曲率。 A preferred embodiment of the present invention provides a wire for a semiconductor device including a conductive layer and a semiconductor substrate. The conductive layer is disposed on the semiconductor substrate, wherein the conductive layer has a thickness system substantially greater than 10,000 angstroms (Åstrom), and at least one side of the conductive layer includes at least two different curvatures.

本發明之另一較佳實施例是提供一種製作半導體裝置的導線的方法,包括下列步驟。首先,依序形成一導電材料層以及一遮罩層於一半導體基底上,且導電材料層的厚度係實質上大於10000埃。接著,進行一第一蝕刻製程移除部分導電材料層,以形成至少一上側邊,然後,進行一第二蝕刻製程移除部分導電材料層,以形成至 少一下側邊,其中上側邊之一曲率係實質上不同於下側邊之一曲率。 Another preferred embodiment of the present invention provides a method of fabricating a wire for a semiconductor device comprising the following steps. First, a layer of conductive material and a mask layer are sequentially formed on a semiconductor substrate, and the thickness of the layer of conductive material is substantially greater than 10,000 angstroms. Then, a first etching process is performed to remove a portion of the conductive material layer to form at least one upper side, and then a second etching process is performed to remove a portion of the conductive material layer to form The side edges are less, wherein one of the curvatures of the upper side is substantially different from the curvature of one of the lower sides.

本發明藉由進行多段式蝕刻製程以調整導電層之至少一側邊的輪廓,使形成的導線之至少一側邊具有至少兩種不同曲率,包含一內凹弧狀的上側邊以及一線狀的下側邊,據此,導線可具有上側邊提供的內凹弧狀輪廓取代常見的垂直輪廓,避免當介電層覆蓋於導線時,因應力過度集中於導線的邊角,而損毀介電層,有助於提升介電層的絕緣與保護之效果,以進一步改善半導體裝置的電性表現。 The present invention adjusts the profile of at least one side of the conductive layer by performing a multi-stage etching process such that at least one side of the formed wire has at least two different curvatures, including a concave arc-shaped upper side and a line The lower side, according to which the wire can have a concave arc profile provided by the upper side instead of the common vertical profile, avoiding excessive stress concentration on the corner of the wire when the dielectric layer covers the wire, and the damage is The electrical layer helps to improve the insulation and protection of the dielectric layer to further improve the electrical performance of the semiconductor device.

為使熟習本發明所屬技術領域之一般技藝者能更進一步了解本發明,下文特列舉本發明之較佳實施例,並配合所附圖式,詳細說明本發明的構成內容及所欲達成之功效。 The present invention will be further understood by those of ordinary skill in the art to which the present invention pertains. .

請參考第1圖。第1圖繪示了本發明之一較佳實施例之半導體裝置的導線的示意圖。如第1圖所示,導線包括一圖案化的導電層104設置於一半導體基底100上。半導體基底100可包含例如一由矽、砷化鎵、矽覆絕緣(SOI)層、磊晶層、矽鍺層或其他半導體材料所構成的基底。半導體基底100內可設置有至少一導電部102以及/或其他半導體元件(圖未示),其中導電部102可為閘極、汲極、源極、接觸插塞(contact plug)、介層插塞(via plug)、導線等之各式導電單元或金屬接點(metal contact)等,故可包含摻雜半導體、金屬矽化物或金屬等材料。此外,導電部102更可依實際需要而設置在半導體基 底100表面或半導體基底100上之一介電層(圖未示)中。導電層104由導電材料所組成,與上述的至少一導電部102以及/或其他半導體元件電性連接,其中導電材料可包括不透明的金屬例如:鋁、鉬、鉻、鎢、銅或上述金屬之組合,或其他適合的透明導電材料。在本較佳實施例中,導電層104係為金屬內連線或用來當做輸出/輸入的連接墊,通常由鋁金屬材料組成,且導電層104之厚度H實質上大於10000埃(angstrom),較佳係介於30000埃與90000埃之間。另外,一介電層106設置於導電層104上,以提供絕緣效果,或用來當作保護層,介電層106可包含半導體製程中常用的介電材料、低介電常數(dielectric constant,k)材料(介電常數值小於3.9)、超低介電常數(ultra low-k,以下簡稱為ULK)材料(介電常數值小於2.6)、或多孔性超低介電常數(porous ULK)材料,例如可為氧化矽或氮化矽等。此外,一阻障層108選擇性設置於導電層104與半導體基底100之間,可用於避免導電層104的金屬原子擴散至導電部102,阻障層108包括由鈦、氮化鈦或其他適合材料組成的單層結構或多層結構。 Please refer to Figure 1. 1 is a schematic view showing a wire of a semiconductor device in accordance with a preferred embodiment of the present invention. As shown in FIG. 1, the wire includes a patterned conductive layer 104 disposed on a semiconductor substrate 100. The semiconductor substrate 100 can comprise, for example, a substrate composed of germanium, gallium arsenide, a germanium-on-insulator (SOI) layer, an epitaxial layer, a germanium layer, or other semiconductor material. The semiconductor substrate 100 may be provided with at least one conductive portion 102 and/or other semiconductor components (not shown), wherein the conductive portion 102 may be a gate, a drain, a source, a contact plug, and a via plug. Various types of conductive elements such as via plugs and wires, or metal contacts, etc., may include materials such as doped semiconductors, metal tellurides or metals. In addition, the conductive portion 102 can be disposed on the semiconductor base according to actual needs. The bottom 100 surface or a dielectric layer (not shown) on the semiconductor substrate 100. The conductive layer 104 is composed of a conductive material and is electrically connected to the at least one conductive portion 102 and/or other semiconductor elements, wherein the conductive material may include an opaque metal such as aluminum, molybdenum, chromium, tungsten, copper or the above metal. Combination, or other suitable transparent conductive material. In the preferred embodiment, the conductive layer 104 is a metal interconnect or a connection pad for output/input, usually composed of an aluminum metal material, and the thickness H of the conductive layer 104 is substantially greater than 10,000 angstroms. Preferably, it is between 30,000 angstroms and 90,000 angstroms. In addition, a dielectric layer 106 is disposed on the conductive layer 104 to provide an insulating effect, or used as a protective layer. The dielectric layer 106 may include a dielectric material commonly used in a semiconductor process, and a low dielectric constant (dielectric constant). k) material (dielectric constant value less than 3.9), ultra low dielectric constant (ULL) material (dielectric constant value less than 2.6), or porous ultra low dielectric constant (porous ULK) The material may be, for example, ruthenium oxide or tantalum nitride. In addition, a barrier layer 108 is selectively disposed between the conductive layer 104 and the semiconductor substrate 100, and can be used to prevent metal atoms of the conductive layer 104 from diffusing to the conductive portion 102. The barrier layer 108 includes titanium, titanium nitride or other suitable A single layer structure or a multilayer structure composed of materials.

值得注意的是,在本較佳實施例中,導電層104之至少一側邊S包括至少兩種不同曲率,也就是說,導電層104之側邊S並非僅由同一線段構成,而可由不同傾斜程度或不同形狀的子側邊共同構成,更詳細地說,導電層104之側邊S可包括至少一上側邊S1以及至少一下側邊S2,上側邊S1係位於下側邊S2上,且上側邊S1與下側邊S2具有不同的形狀,使得上側邊S1與下側邊S2的交點係一轉折點P,其中,上側邊S1的一曲率較佳係實質上大於下側邊 S2的一曲率。在本實施例中,上側邊S1的曲率係實質上接近1,下側邊S2的曲率係實質上接近0,也就是說,上側邊S1之形狀與四分之一的圓弧相近,亦即一弧狀側邊,而下側邊S2之形狀與直線相近,亦即一線狀側邊,且上側邊S1在導電層104之一底面B沿水平方向D1的投影長度WS1係實質上大於下側邊S2在導電層104之底面B沿水平方向D1的投影長度(趨近於0),其中,上側邊S1較佳係內凹弧狀側邊,也就是說,上側邊S1是具有一內凹方向D2朝向半導體基底100的弧狀側邊。 It should be noted that, in the preferred embodiment, at least one side S of the conductive layer 104 includes at least two different curvatures, that is, the side edges S of the conductive layer 104 are not only composed of the same line segment, but may be different. The sides of the inclined or different shapes are formed together. In more detail, the side S of the conductive layer 104 may include at least one upper side S1 and at least one lower side S2, and the upper side S1 is located on the lower side S2. The upper side S1 and the lower side S2 have different shapes, such that the intersection of the upper side S1 and the lower side S2 is a turning point P, wherein a curvature of the upper side S1 is preferably substantially larger than the lower side. A curvature of the edge S2. In this embodiment, the curvature of the upper side S1 is substantially close to 1, and the curvature of the lower side S2 is substantially close to 0, that is, the shape of the upper side S1 is similar to that of the quarter arc. That is, an arc-shaped side, and the shape of the lower side S2 is close to a straight line, that is, a linear side, and the projection length W S1 of the upper side S1 in the horizontal direction D1 of the bottom surface B of the conductive layer 104 is substantially The upper side is larger than the lower side S2 in the horizontal direction D1 of the bottom surface B of the conductive layer 104 in the horizontal direction D1 (close to 0), wherein the upper side S1 preferably has a concave arc-shaped side, that is, the upper side S1 is an arcuate side having a concave direction D2 toward the semiconductor substrate 100.

此外,導電層104的一頂面寬度W1將實質上小於導電層104的一底面寬度W2,使導電層104具有一近似凸字形之剖面,且頂面寬度W1較佳係實質上大於或等於導電層104的底面寬度W2的三分之一。在本實施例中,導電層104的頂面寬度W1係實質上約為40000埃,底面寬度W2係實質上約為120000埃,且厚度H係實質上約為60000埃,也就是說,導電層104的厚度H與最大寬度之比值實質上係0.5。還有,導電層104之側邊S與介電層106接觸的部分具有一半Y字形輪廓,也就是說,導電層104之上側邊S1可提供一內凹弧狀輪廓取代常見的垂直輪廓,避免覆蓋於導電層104上的介電層106因應力過度集中於導電層104的邊角而發生損毀(crack)的情形。 In addition, a top surface width W1 of the conductive layer 104 will be substantially smaller than a bottom surface width W2 of the conductive layer 104, such that the conductive layer 104 has an approximately convex-shaped cross section, and the top surface width W1 is preferably substantially greater than or equal to conductive. The bottom surface of layer 104 has a width of one third of W2. In the present embodiment, the top surface width W1 of the conductive layer 104 is substantially about 40,000 angstroms, the bottom surface width W2 is substantially about 120,000 angstroms, and the thickness H is substantially about 60,000 angstroms, that is, the conductive layer. The ratio of the thickness H to the maximum width of 104 is substantially 0.5. Also, the portion of the conductive layer 104 that is in contact with the dielectric layer 106 has a half Y-shaped profile, that is, the upper side S1 of the conductive layer 104 provides a concave arc profile instead of the common vertical profile. The dielectric layer 106 overlying the conductive layer 104 is prevented from being cracked due to excessive stress concentration on the corners of the conductive layer 104.

本發明亦提供一種製作半導體裝置的導線的方法以形成上述導線結構。請參考第2圖至第6圖。第2圖至第6圖繪示了本發明之 一較佳實施例之製作半導體裝置的導線的方法之示意圖。如第2圖所示,首先,提供一半導體基底200,半導體基底200內可設置有複數個導電部202以及/或其他半導體元件(圖未示)。半導體基底200可包含例如一由矽、砷化鎵、矽覆絕緣(SOI)層、磊晶層、矽鍺層或其他半導體材料所構成的基底,且導電部202可為閘極、汲極、源極、接觸插塞(contact plug)、介層插塞(via plug)、導線等之各式導電單元或金屬接點(metal contact)。形成導電部202以及其他半導體元件的方法係為習知該項技藝者與通常知識者所熟知,且導電部202的材質與設置的實際位置如圖1之102,故在此不再多加贅述。 The present invention also provides a method of fabricating a wire of a semiconductor device to form the above-described wire structure. Please refer to Figures 2 to 6. 2 to 6 illustrate the present invention A schematic diagram of a method of fabricating a wire for a semiconductor device in a preferred embodiment. As shown in FIG. 2, first, a semiconductor substrate 200 is provided. A plurality of conductive portions 202 and/or other semiconductor elements (not shown) may be disposed in the semiconductor substrate 200. The semiconductor substrate 200 may comprise, for example, a substrate composed of germanium, gallium arsenide, a germanium-on-insulator (SOI) layer, an epitaxial layer, a germanium layer or other semiconductor material, and the conductive portion 202 may be a gate or a drain. Various types of conductive elements or metal contacts of sources, contact plugs, via plugs, wires, and the like. The method of forming the conductive portion 202 and other semiconductor elements is well known to those skilled in the art and the general knowledge, and the actual position of the material and the arrangement of the conductive portion 202 is as shown in FIG. 1 and 102, and thus will not be further described herein.

接著,依序形成一阻障層203、一導電材料204層以及一圖案化的遮罩層206於半導體基底200上。阻障層203包括由鈦、氮化鈦或其他適合材料組成的單層結構或多層結構,可由濺鍍(sputtering)或其他薄膜沈積技術所形成。導電材料層204係由導電材料所組成,包括不透明的金屬例如:鋁、鉬、鉻、鎢、銅或上述金屬之組合,但不以此為限,或其他適合的透明導電材料。形成導電材料層204的方法可包括藉由物理氣相沉積例如濺鍍(sputtering)、蒸鍍(evaporation),或化學氣相沉積或其他薄膜沈積技術於半導體基底200上全面性形成一厚度係實質上大於10000埃的導電材料層204,且導電材料層204之厚度較佳係介於30000埃與90000埃之間。在本實施例中,導電材料層204係由鋁金屬材料組成,且導電材料層204之厚度係實質上於60000埃。此外,遮罩層206可包括一圖案化光阻層,或具有由其他材料組成的單層結構或至少二種材料組成 的複合膜層結構之硬遮罩層,形成遮罩層206的方法係為習知該項技藝者與通常知識者所熟知,在此不多加贅述。在本實施例中,遮罩層206之寬度W3係實質上約120000埃。 Next, a barrier layer 203, a layer of conductive material 204, and a patterned mask layer 206 are sequentially formed on the semiconductor substrate 200. The barrier layer 203 comprises a single layer structure or a multilayer structure composed of titanium, titanium nitride or other suitable material, which may be formed by sputtering or other thin film deposition techniques. The conductive material layer 204 is composed of a conductive material, including an opaque metal such as aluminum, molybdenum, chromium, tungsten, copper or a combination of the above metals, but not limited thereto, or other suitable transparent conductive materials. The method of forming the conductive material layer 204 may include forming a thickness system substantially on the semiconductor substrate 200 by physical vapor deposition such as sputtering, evaporation, or chemical vapor deposition or other thin film deposition techniques. The conductive material layer 204 is greater than 10,000 angstroms, and the thickness of the conductive material layer 204 is preferably between 30,000 angstroms and 90,000 angstroms. In the present embodiment, the conductive material layer 204 is composed of an aluminum metal material, and the conductive material layer 204 has a thickness of substantially 60,000 angstroms. In addition, the mask layer 206 may comprise a patterned photoresist layer or have a single layer structure composed of other materials or at least two materials. The hard mask layer of the composite film structure, the method of forming the mask layer 206 is well known to those skilled in the art and will not be further described herein. In the present embodiment, the width W3 of the mask layer 206 is substantially about 120,000 angstroms.

然後,如第3圖所示,以遮罩層206作為圖案化遮罩,進行一第一蝕刻製程移除部分導電材料層204,以形成至少一上側邊S3,且遮罩層206仍暴露部分剩餘的導電材料層204’。其中第一蝕刻製程係一等向性蝕刻製程。此外,可採用時間模式(time mode)來調整第一蝕刻製程的操作條件例如製程時間(processing time)以決定去除的導電材料層204的部份厚度而不蝕穿導電材料層204。在本實施例中,第一蝕刻製程係一濕蝕刻製程,蝕刻液較佳為含有適當比例之硝酸(nitric acid)、磷酸(phosphoric acid)以及醋酸(acetic acid)的混合溶液等,且部分剩餘的導電材料層204’仍保留於遮罩層206未重疊的半導體基底200上,使此部分的半導體基底200未被暴露。 Then, as shown in FIG. 3, using the mask layer 206 as a patterned mask, a first etching process is performed to remove a portion of the conductive material layer 204 to form at least one upper side S3, and the mask layer 206 is still exposed. A portion of the remaining conductive material layer 204'. The first etching process is an isotropic etching process. Additionally, a time mode can be employed to adjust operating conditions of the first etch process, such as processing time, to determine a portion of the thickness of the removed conductive material layer 204 without etching through the conductive material layer 204. In this embodiment, the first etching process is a wet etching process, and the etching liquid is preferably a mixed solution containing nitri acid, phosphoric acid, and acetic acid in an appropriate ratio, and partially remaining The conductive material layer 204' remains on the semiconductor substrate 200 where the mask layer 206 is not overlapped, leaving the semiconductor substrate 200 of this portion unexposed.

值得注意的是,由於第一蝕刻製程係等向性蝕刻製程,除了未被遮罩層206覆蓋的導電材料層204會被去除之外,部分被遮罩層206覆蓋的導電材料層204也會因橫向蝕刻而被去除,因此,在進行第一蝕刻製程後,剩餘的導電材料層204’之一頂面寬度W4將實質上小於遮罩層206之寬度W3,且形成弧狀上側邊S3在遮罩層206與遮罩層206重疊的半導體基底200之間。在本實施例中,進行第一蝕刻製程後,未進行後續的第二蝕刻製程之前,在遮罩層206下方被去除的導電層之寬度W5實質上與被去除的導電層之厚度H1相 等,在遮罩層206下方被去除的導電層之寬度W5實質上相等於遮罩層206之寬度W3的三分之一,被去除的導電層之厚度H1相等於導電材料層204之原始厚度的三分之二。也就是說,當遮罩層206之寬度W3係實質上約120000埃,且導電材料層204之原始厚度係實質上於60000埃,被去除的導電層之寬度W5實質上相等剩餘的導電材料層204’之頂面寬度W4,亦即均係實質上於40000埃。而被去除的導電層之厚度H1也係實質上於40000埃。另外,所形成的上側邊S3的曲率將實質上接近1,也就是說,上側邊S3的形狀與一圓之左下半側或右下半側的四分之一的圓弧相近,且此圓的圓心不會位於剩餘的導電材料層204’中,因此上側邊S3係具有一內凹方向D3朝向半導體基底200,但不以此為限。在不同的製程世代或在不同的考量點下,上側邊S3可有其他的曲率且上述的寬度比、厚度比皆可因此改變。 It should be noted that, because the first etching process is an isotropic etching process, in addition to the conductive material layer 204 not covered by the mask layer 206, the conductive material layer 204 partially covered by the mask layer 206 may also be removed. Because of the lateral etching, the top surface width W4 of the remaining conductive material layer 204' will be substantially smaller than the width W3 of the mask layer 206 after forming the first etching process, and the arcuate upper side S3 is formed. Between the semiconductor substrate 200 in which the mask layer 206 overlaps the mask layer 206. In this embodiment, after the first etching process is performed, the width W5 of the conductive layer removed under the mask layer 206 is substantially opposite to the thickness H1 of the removed conductive layer before the subsequent second etching process is performed. The width W5 of the conductive layer removed under the mask layer 206 is substantially equal to one third of the width W3 of the mask layer 206, and the thickness H1 of the removed conductive layer is equal to the original thickness of the conductive material layer 204. Two-thirds. That is, when the width W3 of the mask layer 206 is substantially about 120,000 angstroms, and the original thickness of the conductive material layer 204 is substantially 60,000 angstroms, the width W5 of the removed conductive layer is substantially equal to the remaining conductive material layer. The top surface width W4 of 204', that is, is substantially 40,000 angstroms. The thickness H1 of the removed conductive layer is also substantially 40,000 angstroms. In addition, the curvature of the formed upper side S3 will be substantially close to 1, that is, the shape of the upper side S3 is similar to the arc of a quarter of the lower left side or the lower right side of a circle, and this The center of the circle is not located in the remaining conductive material layer 204'. Therefore, the upper side S3 has a concave direction D3 toward the semiconductor substrate 200, but is not limited thereto. The upper side S3 may have other curvatures at different process generations or at different points of consideration, and the width ratio and thickness ratio described above may be changed accordingly.

接下來,如第4圖所示,在進行第一蝕刻製程之後,進行第二蝕刻製程進一步移除部分阻障層203以及部分剩餘的導電材料層204’,以形成至少一下側邊S4,且較佳係完全移除遮罩層206所暴露的阻障層203以及遮罩層206所暴露的剩餘的導電材料層204’,此時,由於第二蝕刻製程不同於第二蝕刻製程且較佳係為一非等向性蝕刻製程,故形成的下側邊S4之一曲率將實質上不同於上側邊S3之一曲率。此外,第二蝕刻製程亦可採用終點偵測模式(end point mode),或者是停止於剩餘的導電材料層204’下方的半導體基底200或剩餘的導電材料層204’與半導體基底200之間的一蝕刻停止層(圖 未示),來達到較佳蝕刻效果。在本實施例中,第二蝕刻製程係一乾蝕刻製程,蝕刻劑較佳為含有適當比例之氯氣(chlorine,Cl2)以及三氯化硼(boron trichloride,BCl3)的混合氣體等,進行第二蝕刻製程可沿垂直方向完全去除遮罩層206所暴露的阻障層203以及遮罩層206所暴露的剩餘的導電材料層204’。之後,如第5圖所示,去除遮罩層206,並搭配一適當之清洗製程,以完成至少一半導體裝置的導線208,導線208可與至少一導電部202以及/或至少一其他半導體元件電性連接,此外,導線208之個數及相對位置不以此為限。如第6圖所示,可形成一介電層210以覆蓋導線208,由於導線208之上側邊S3係提供一內凹弧狀輪廓取代常見的垂直輪廓,因此可避免介電層210覆蓋導線208時,因應力過度集中於導線208的邊角,而造成介電層210的損傷。 Next, as shown in FIG. 4, after performing the first etching process, performing a second etching process to further remove a portion of the barrier layer 203 and a portion of the remaining conductive material layer 204' to form at least the lower side S4, and Preferably, the barrier layer 203 exposed by the mask layer 206 and the remaining conductive material layer 204 ′ exposed by the mask layer 206 are completely removed. At this time, since the second etching process is different from the second etching process and is preferred It is an anisotropic etching process, so that the curvature of one of the lower sides S4 formed will be substantially different from the curvature of the upper side S3. In addition, the second etching process may also adopt an end point mode, or stop between the semiconductor substrate 200 under the remaining conductive material layer 204' or the remaining conductive material layer 204' and the semiconductor substrate 200. An etch stop layer (not shown) is used to achieve a better etching effect. In this embodiment, the second etching process is a dry etching process, and the etchant is preferably a mixed gas containing chlorine (Cl 2 ) and boron trichloride (BCl 3 ) in an appropriate ratio. The second etching process can completely remove the barrier layer 203 exposed by the mask layer 206 and the remaining conductive material layer 204' exposed by the mask layer 206 in the vertical direction. Thereafter, as shown in FIG. 5, the mask layer 206 is removed and combined with a suitable cleaning process to complete the wires 208 of at least one semiconductor device, the wires 208 being connectable to the at least one conductive portion 202 and/or at least one other semiconductor device. Electrical connection, in addition, the number and relative position of the wires 208 are not limited thereto. As shown in FIG. 6, a dielectric layer 210 can be formed to cover the wires 208. Since the upper side S3 of the wires 208 provides a concave arc profile instead of the common vertical profile, the dielectric layer 210 can be prevented from covering the wires. At 208, damage to the dielectric layer 210 is caused by excessive stress concentration on the corners of the wires 208.

值得注意的是,由於第二蝕刻製程係非等向性蝕刻製程,只有未被遮罩層206覆蓋的剩餘的導電材料層204’會被去除,因此,在進行第二蝕刻製程後,剩餘的導電材料層204”之一底面寬度W6將實質上等於遮罩層206之寬度W3,且形成線狀下側邊S4在遮罩層206與遮罩層206重疊的半導體基底200之間。另外,剩餘的阻障層203’之寬度也係實質上等於遮罩層206之寬度W3。藉由第一蝕刻製程與第二蝕刻製程之製程特性不同,可調整形成的上側邊S3的曲率將實質上大於形成的下側邊S4的曲率。在本實施例中,進行第二蝕刻製程後,剩餘的導電材料層204”之底面寬度W6係實質上於120000埃,也就是說,導線208的頂面寬度係實質上小於導線208的底面 寬度。此外,下側邊S4的形狀與直線相近,亦即下側邊的曲率實質上接近0,但不以此為限。 It should be noted that since the second etching process is an anisotropic etching process, only the remaining conductive material layer 204' not covered by the mask layer 206 is removed, and therefore, after the second etching process is performed, the remaining One of the bottom surface widths W6 of the conductive material layer 204" will be substantially equal to the width W3 of the mask layer 206, and the linear lower side S4 is formed between the semiconductor layer 200 in which the mask layer 206 overlaps the mask layer 206. The width of the remaining barrier layer 203' is also substantially equal to the width W3 of the mask layer 206. The curvature of the upper side S3 can be adjusted substantially by the process characteristics of the first etching process and the second etching process. The upper surface is larger than the curvature of the formed lower side S4. In this embodiment, after the second etching process, the bottom surface width W6 of the remaining conductive material layer 204" is substantially 120,000 angstroms, that is, the top of the wire 208. The width of the face is substantially smaller than the bottom surface of the wire 208 width. In addition, the shape of the lower side S4 is similar to the straight line, that is, the curvature of the lower side is substantially close to 0, but is not limited thereto.

綜上所述,本發明藉由進行多段式蝕刻製程以調整導電層之至少一側邊的輪廓,使形成的導線之至少一側邊具有至少兩種不同曲率,包含一內凹弧狀的上側邊以及一線狀的下側邊,據此,導線可具有上側邊提供的內凹弧狀輪廓取代常見的垂直輪廓,避免當介電層覆蓋於導線時,因應力過度集中於導線的邊角,而損毀介電層,有助於提升介電層的絕緣與保護之效果,以進一步改善半導體裝置的電性表現。 In summary, the present invention adjusts the profile of at least one side of the conductive layer by performing a multi-stage etching process such that at least one side of the formed wire has at least two different curvatures, including a concave arc-shaped upper surface. The side edges and the lower side of the line, according to which the wire can have a concave arc profile provided by the upper side instead of the common vertical profile, avoiding excessive stress concentration on the side of the wire when the dielectric layer covers the wire. The corners, which damage the dielectric layer, help to improve the insulation and protection of the dielectric layer to further improve the electrical performance of the semiconductor device.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

100,200‧‧‧半導體基底 100,200‧‧‧Semiconductor substrate

102,202‧‧‧導電部 102,202‧‧‧Electrical Department

104‧‧‧導電層 104‧‧‧ Conductive layer

106,210‧‧‧介電層 106,210‧‧‧ dielectric layer

108,203,203’‧‧‧阻障層 108,203,203'‧‧‧ barrier layer

204,204’,204”‧‧‧導電材料層 204,204',204"‧‧‧ Conductive material layer

206‧‧‧遮罩層 206‧‧‧mask layer

208‧‧‧導線 208‧‧‧ wire

B‧‧‧底面 B‧‧‧ bottom

D1‧‧‧水平方向 D1‧‧‧ horizontal direction

D2,D3‧‧‧內凹方向 D2, D3‧‧‧ concave direction

H,H1‧‧‧厚度 H, H1‧‧‧ thickness

P‧‧‧轉折點 P‧‧‧ turning point

S‧‧‧側邊 S‧‧‧ side

S1,S3‧‧‧上側邊 S1, S3‧‧‧ upper side

S2,S4‧‧‧下側邊 S2, S4‧‧‧ lower side

WS1‧‧‧投影長度 W S1 ‧‧‧projection length

W1,W2,W3,W4,W5,W6‧‧‧寬度 W1, W2, W3, W4, W5, W6‧‧ Width

第1圖繪示了本發明之一較佳實施例之半導體裝置的導線的示意圖。 1 is a schematic view showing a wire of a semiconductor device in accordance with a preferred embodiment of the present invention.

第2圖至第6圖繪示了本發明之一較佳實施例之製作半導體裝置的導線的方法之示意圖。 2 to 6 are schematic views showing a method of fabricating a wire of a semiconductor device in accordance with a preferred embodiment of the present invention.

100‧‧‧半導體基底 100‧‧‧Semiconductor substrate

102‧‧‧導電部 102‧‧‧Electrical Department

104‧‧‧導電層 104‧‧‧ Conductive layer

106‧‧‧介電層 106‧‧‧Dielectric layer

108‧‧‧阻障層 108‧‧‧Barrier layer

B‧‧‧底面 B‧‧‧ bottom

D1‧‧‧水平方向 D1‧‧‧ horizontal direction

D2‧‧‧內凹方向 D2‧‧‧ concave direction

H‧‧‧厚度 H‧‧‧thickness

P‧‧‧轉折點 P‧‧‧ turning point

S‧‧‧側邊 S‧‧‧ side

S1‧‧‧上側邊 S1‧‧‧ upper side

S2‧‧‧下側邊 S2‧‧‧ lower side

W1,W2‧‧‧寬度 W1, W2‧‧‧ width

WS1‧‧‧投影長度 W S1 ‧‧‧projection length

Claims (20)

一種半導體裝置的導線,包括:一導電層設置於一半導體基底上,該導電層具有一厚度係實質上大於10000埃(angstrom,Å),且該導電層之至少一側邊包括至少兩種不同曲率。 A wire of a semiconductor device comprising: a conductive layer disposed on a semiconductor substrate, the conductive layer having a thickness substantially greater than 10,000 angstroms (Åstrom), and at least one side of the conductive layer comprising at least two different Curvature. 如請求項1所述之半導體裝置的導線,其中該導電層之該側邊包括至少一上側邊以及至少一下側邊,且該上側邊位於該下側邊上。 The wire of the semiconductor device of claim 1, wherein the side of the conductive layer comprises at least one upper side and at least one lower side, and the upper side is located on the lower side. 如請求項2所述之半導體裝置的導線,其中該上側邊的一曲率係實質上大於該下側邊的一曲率。 The wire of the semiconductor device of claim 2, wherein a curvature of the upper side is substantially greater than a curvature of the lower side. 如請求項2所述之半導體裝置的導線,其中該上側邊的一曲率係實質上接近1,且該下側邊的一曲率係實質上接近0。 The wire of the semiconductor device of claim 2, wherein a curvature of the upper side is substantially close to 1, and a curvature of the lower side is substantially close to zero. 如請求項2所述之半導體裝置的導線,其中該上側邊包括一內凹弧狀側邊,且該下側邊包括一線狀側邊。 The wire of the semiconductor device of claim 2, wherein the upper side includes a concave arcuate side and the lower side includes a linear side. 如請求項1所述之半導體裝置的導線,其中該導電層的一頂面寬度係實質上小於該導電層的一底面寬度。 The wire of the semiconductor device of claim 1, wherein a width of a top surface of the conductive layer is substantially smaller than a width of a bottom surface of the conductive layer. 如請求項1所述之半導體裝置的導線,其中該導電層的一頂面寬 度係實質上大於或等於該導電層的一底面寬度的三分之一。 The wire of the semiconductor device of claim 1, wherein a top surface of the conductive layer is wide The degree is substantially greater than or equal to one third of the width of a bottom surface of the conductive layer. 如請求項1所述之半導體裝置的導線,其中該導電層的材料包括鋁。 The wire of the semiconductor device of claim 1, wherein the material of the conductive layer comprises aluminum. 如請求項1所述之半導體裝置的導線,另包括一阻障層設置於該導電層與該半導體基底之間。 The lead wire of the semiconductor device of claim 1, further comprising a barrier layer disposed between the conductive layer and the semiconductor substrate. 一種製作半導體裝置的導線的方法,包括:依序形成一導電材料層以及一遮罩層於一半導體基底上,且該導電材料層的厚度係實質上大於10000埃(angstrom,Å);進行一第一蝕刻製程移除部分該導電材料層,以形成至少一上側邊;以及進行一第二蝕刻製程移除部分該導電材料層,以形成至少一下側邊,其中該上側邊之一曲率係實質上不同於該下側邊之一曲率。 A method of fabricating a wire of a semiconductor device, comprising: sequentially forming a conductive material layer and a mask layer on a semiconductor substrate, and the conductive material layer has a thickness substantially greater than 10,000 angstroms (Åstrom); The first etching process removes a portion of the conductive material layer to form at least one upper side; and performs a second etching process to remove a portion of the conductive material layer to form at least a lower side, wherein the upper side has a curvature The system is substantially different from the curvature of one of the lower sides. 如請求項10所述之製作半導體裝置的導線的方法,其中該第一蝕刻製程包括一等向性蝕刻製程,且該第二蝕刻製程包括一非等向性蝕刻製程。 The method of fabricating a wire of a semiconductor device according to claim 10, wherein the first etching process comprises an isotropic etching process, and the second etching process comprises an anisotropic etching process. 如請求項10所述之製作半導體裝置的導線的方法,其中進行該第一蝕刻製程之後,進行該第二蝕刻製程。 The method of fabricating a wire of a semiconductor device according to claim 10, wherein the second etching process is performed after the first etching process. 如請求項10所述之製作半導體裝置的導線的方法,其中該上側邊的該曲率實質上大於該下側邊的該曲率。 A method of fabricating a wire of a semiconductor device according to claim 10, wherein the curvature of the upper side is substantially greater than the curvature of the lower side. 如請求項10所述之製作半導體裝置的導線的方法,其中該上側邊的該曲率實質上接近1,且該下側邊的該曲率實質上接近0。 A method of fabricating a wire of a semiconductor device according to claim 10, wherein the curvature of the upper side is substantially close to 1, and the curvature of the lower side is substantially close to zero. 如請求項10所述之製作半導體裝置的導線的方法,其中該上側邊包括一內凹弧狀側邊,且該下側邊包括一線狀側邊。 A method of fabricating a wire for a semiconductor device according to claim 10, wherein the upper side includes a concave arcuate side and the lower side includes a linear side. 如請求項10所述之製作半導體裝置的導線的方法,其中在進行該第一蝕刻製程後,該導電材料層之一頂面寬度係實質上小於該遮罩層之一寬度。 The method of fabricating a wire of a semiconductor device according to claim 10, wherein after the first etching process, a top surface width of the conductive material layer is substantially smaller than a width of the mask layer. 如請求項10所述之製作半導體裝置的導線的方法,其中在進行該第二蝕刻製程後,該導電材料層之一底面寬度係實質上等於該遮罩層之一寬度。 A method of fabricating a wire of a semiconductor device according to claim 10, wherein after the second etching process, a bottom surface of the conductive material layer has a width substantially equal to a width of the mask layer. 如請求項10所述之製作半導體裝置的導線的方法,其中該導電材料層的材料包括鋁。 A method of fabricating a wire of a semiconductor device according to claim 10, wherein the material of the layer of conductive material comprises aluminum. 如請求項10所述之製作半導體裝置的導線的方法,另包括形成一阻障層於該導電材料層以及該半導體基底之間。 The method of fabricating a wire of a semiconductor device according to claim 10, further comprising forming a barrier layer between the conductive material layer and the semiconductor substrate. 如請求項19所述之製作半導體裝置的導線的方法,另包括進行該第二蝕刻製程移除部分該阻障層。 The method of fabricating a wire of a semiconductor device according to claim 19, further comprising performing the second etching process to remove a portion of the barrier layer.
TW101128555A 2012-08-08 2012-08-08 Conductive line of semiconductor device and methid for fabricating the same TWI539571B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101128555A TWI539571B (en) 2012-08-08 2012-08-08 Conductive line of semiconductor device and methid for fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101128555A TWI539571B (en) 2012-08-08 2012-08-08 Conductive line of semiconductor device and methid for fabricating the same

Publications (2)

Publication Number Publication Date
TW201407739A true TW201407739A (en) 2014-02-16
TWI539571B TWI539571B (en) 2016-06-21

Family

ID=50550575

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101128555A TWI539571B (en) 2012-08-08 2012-08-08 Conductive line of semiconductor device and methid for fabricating the same

Country Status (1)

Country Link
TW (1) TWI539571B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021212559A1 (en) * 2020-04-23 2021-10-28 深圳市华星光电半导体显示技术有限公司 Goa array substrate, display device, and manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021212559A1 (en) * 2020-04-23 2021-10-28 深圳市华星光电半导体显示技术有限公司 Goa array substrate, display device, and manufacturing method
US11742360B2 (en) 2020-04-23 2023-08-29 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Gate driver on array (GOA) substrate, method for fabricating same, and display device comprising same

Also Published As

Publication number Publication date
TWI539571B (en) 2016-06-21

Similar Documents

Publication Publication Date Title
US7544601B2 (en) Semiconductor device and a method for manufacturing the same
TWI531039B (en) A semiconductor device and a method for manufacturing a semiconductor device
US20200051856A1 (en) Contact Plug without Seam Hole and Methods of Forming the Same
TW201810591A (en) Semiconductor device and method for manufacturing the same
JP2004356521A (en) Semiconductor device and its manufacturing method
US20080174018A1 (en) Semiconductor device and method for fabricating the same
US9318381B2 (en) Method of fabricating conductive line of a semiconductor device
JP2007027343A (en) Semiconductor device and its manufacturing method
US9111942B2 (en) Local interconnect structure and fabrication method
US20210210594A1 (en) Metal insulator metal (mim) structure and manufacturing method thereof
US11728262B2 (en) Metal plate corner structure on metal insulator metal
US8853095B1 (en) Hybrid hard mask for damascene and dual damascene
US11916018B2 (en) Manufacturing method of connection structure of semiconductor device
US11521915B2 (en) Front-end-of-line (FEOL) through semiconductor-on-substrate via (TSV)
TWI539571B (en) Conductive line of semiconductor device and methid for fabricating the same
JP2009004633A (en) Multilayer interconnection structure and method of manufacturing the same
TWI717173B (en) Memory devices and methods for forming the same
CN113223998B (en) Method for manufacturing semiconductor element with inter-metal dielectric pattern
US20120264297A1 (en) Method for creating via in ic manufacturing process
US7314813B2 (en) Methods of forming planarized multilevel metallization in an integrated circuit
TWI844958B (en) Semiconductor device and manufacturing method thereof
TWI512894B (en) Metal interconnect structure and process thereof
US20230369111A1 (en) Integrated circuit devices including metal structures having a curved interface and methods of forming the same
TWI835189B (en) Semiconductor device with pad structure resistant to plasma damage and manufacturing method thereof
CN115954324B (en) Semiconductor structure and manufacturing method thereof