TW201405843A - III-V based solar cells having roughened microdome array structure and manufacturing method for the same - Google Patents

III-V based solar cells having roughened microdome array structure and manufacturing method for the same Download PDF

Info

Publication number
TW201405843A
TW201405843A TW101125842A TW101125842A TW201405843A TW 201405843 A TW201405843 A TW 201405843A TW 101125842 A TW101125842 A TW 101125842A TW 101125842 A TW101125842 A TW 101125842A TW 201405843 A TW201405843 A TW 201405843A
Authority
TW
Taiwan
Prior art keywords
semiconductor layer
doped semiconductor
manufacturing
type
doped
Prior art date
Application number
TW101125842A
Other languages
Chinese (zh)
Inventor
Cheng-Han Ho
Jr-Hau He
Original Assignee
Univ Nat Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taiwan filed Critical Univ Nat Taiwan
Priority to TW101125842A priority Critical patent/TW201405843A/en
Publication of TW201405843A publication Critical patent/TW201405843A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

The present invention discloses a III-V based solar cells having roughened microdome array structure and manufacturing method thereof. A n-type (or p-type) semiconductor layer having a roughened microdome array structure is epitaxially grown on an intrinsic semiconductor layer by controlling reaction temperatures and a flow ratio of reactive gases in a process of metal organic chemical vapor deposition (MOCVD) to form the III-V based solar cells of the present invention. In addition to simple processing procedure and low manufacturing cost, the present invention further brings the advantages of high structural robustness, good stability and high photoelectric conversion efficiency.

Description

具有微米鐘粗化陣列結構之三五族太陽能電池及其製造方法 Three-five-type solar cell with micron bell roughening array structure and manufacturing method thereof

本發明係關於一種三五族太陽能電池,特別是有關於一種具有微米鐘粗化陣列結構之三五族太陽能電池及其製造方法。 The present invention relates to a three-five-type solar cell, and more particularly to a three-five-group solar cell having a micron-roughened array structure and a method of fabricating the same.

太陽能電池(Solar cell)是一種能量轉換的光電元件,它是經由太陽光照射後,把光的能量轉換成電能,此種光電元件稱為太陽能電池,亦稱為光伏(Photovoltaic,簡稱PV)電池。 A solar cell is an energy-converting photoelectric element that converts light energy into electrical energy after being irradiated by sunlight. This photoelectric element is called a solar cell, and is also called a photovoltaic (PV) battery. .

各式太陽能電池的種類繁多,其各家製造材料、結構設計各有不同,但太陽能電池最基本的結構包含N型與P型半導體層、抗反射層(Anti-reflection layer)及電極層等三個主要部份。N型與P型半導體層是光伏特效應的來源;抗反射層乃用於減少入射光的反射以增強電流;電極層則是用來連接半導體層和外部負載。 There are many types of solar cells, and the materials and structures are different. However, the most basic structure of solar cells includes N-type and P-type semiconductor layers, anti-reflection layers and electrode layers. The main part. The N-type and P-type semiconductor layers are sources of photovoltaic specific effects; the anti-reflective layer is used to reduce the reflection of incident light to enhance the current; the electrode layer is used to connect the semiconductor layer and the external load.

習知抗反射層的製作方式普遍是藉由黃光微影製程(Photolithography process)及蝕刻技術在太陽能電池的表面額外形成一粗化結構層,該粗化結構層可以係由複數個柱狀體或錐形體等結構所構成。然而,由於該粗化結構層不是一體成型,易於碰撞後斷裂,故整體結構較不堅固,而存在著穩定度不佳的缺點。另外,也會因為後續蝕刻程序使得N型與P型半導體層受到一定程度的損害,從而影響其光電轉換效率。 Conventionally, the anti-reflection layer is generally formed by a yellow light photolithography process and an etching technique to form a roughened structural layer on the surface of the solar cell, and the roughened structural layer can be composed of a plurality of columns or cones. It is composed of a structure such as a body. However, since the roughened structural layer is not integrally formed and is easily broken after collision, the overall structure is less robust, and there is a disadvantage of poor stability. In addition, the N-type and P-type semiconductor layers are also damaged to some extent by the subsequent etching process, thereby affecting the photoelectric conversion efficiency thereof.

上述習知抗反射層的製作方式除了具有加工程序繁瑣、高生產成本的問題以外,更會因為其結構穩定度不佳及蝕刻程序所造成的半導體層損害而致使光電轉換效率不佳等問題。因此,有必要提供一種新式的粗化結構之製造方法,以解決上述問題。 In addition to the problems of cumbersome processing procedures and high production costs, the above-mentioned conventional anti-reflection layer has problems such as poor stability of the semiconductor layer due to poor structural stability and damage of the semiconductor layer caused by the etching process. Therefore, it is necessary to provide a new method of manufacturing a roughened structure to solve the above problems.

有鑑於此,本發明提供一種具有微米鐘粗化陣列結構之三 五族太陽能電池及其製造方法,以改進先前技術中所存在的加工程序繁瑣、高生產成本,以及其結構穩定度不佳與蝕刻程序所造成的半導體層損害而致使光電轉換效率不佳等相關問題。 In view of this, the present invention provides a three-fold roughening array structure A five-group solar cell and a manufacturing method thereof for improving the cumbersome processing procedure and high production cost existing in the prior art, and the poor structural stability and the semiconductor layer damage caused by the etching process, resulting in poor photoelectric conversion efficiency, etc. problem.

為達成本發明之前述目的,本發明提供一種具有微米鐘粗化陣列結構之三五族太陽能電池,其包括:一透明基板;一第一摻雜型半導體層,設置於該透明基板上;一本質型半導體層,設置於該第一摻雜型半導體層上;一第二摻雜型半導體層,設置於該本質型半導體層上,該第二摻雜型半導體層具有一體成型的微米鐘粗化陣列結構;以及一透明電極層,設置於該第二摻雜型半導體層上。 The present invention provides a three-five-type solar cell having a micron-roughened array structure, comprising: a transparent substrate; a first doped semiconductor layer disposed on the transparent substrate; An intrinsic semiconductor layer is disposed on the first doped semiconductor layer; a second doped semiconductor layer is disposed on the intrinsic semiconductor layer, and the second doped semiconductor layer has an integrally formed micron bell And a transparent electrode layer disposed on the second doped semiconductor layer.

在本發明的一實施例中,每一微米鐘的直徑範圍介於0.2微米至1微米之間,而每一微米鐘的高度範圍介於0.2微米至0.8微米之間。 In an embodiment of the invention, each micron clock has a diameter ranging from 0.2 micrometers to 1 micrometer, and each micrometer has a height ranging from 0.2 micrometers to 0.8 micrometers.

在本發明的一實施例中,該第一摻雜型半導體層為P型半導體,而該第二摻雜型半導體層為N型半導體。 In an embodiment of the invention, the first doped semiconductor layer is a P-type semiconductor, and the second doped semiconductor layer is an N-type semiconductor.

在本發明的一實施例中,該第一摻雜型半導體層為N型半導體,而該第二摻雜型半導體層為P型半導體。 In an embodiment of the invention, the first doped semiconductor layer is an N-type semiconductor, and the second doped semiconductor layer is a P-type semiconductor.

在本發明的一實施例中,該第一摻雜型半導體層與該第二摻雜型半導體層之材質為氮化鎵(GaN)。 In an embodiment of the invention, the material of the first doped semiconductor layer and the second doped semiconductor layer is gallium nitride (GaN).

在本發明的一實施例中,該本質型半導體層包括一氮化銦鎵/氮化鎵多層量子井(InGaN/GaN MQW)結構。 In an embodiment of the invention, the intrinsic semiconductor layer comprises an indium gallium nitride/gallium nitride multilayer quantum well (InGaN/GaN MQW) structure.

在本發明的一實施例中,該多層量子井結構係為綠光量子井結構及藍光量子井結構的其中之一者。 In an embodiment of the invention, the multi-layer quantum well structure is one of a green quantum well structure and a blue quantum well structure.

在本發明的一實施例中,該透明基板之材料為玻璃、石英、透明塑膠、藍寶石基板或是透明可撓性的材料。 In an embodiment of the invention, the transparent substrate is made of glass, quartz, transparent plastic, sapphire substrate or transparent flexible material.

在本發明的一實施例中,該透明電極層係由透明導電氧化物所製成。 In an embodiment of the invention, the transparent electrode layer is made of a transparent conductive oxide.

再者,本發明提供一種具有微米鐘粗化陣列結構之三五族 太陽能電池的製造方法,其包括下列步驟:提供一透明基板;在該透明基板上沉積一第一摻雜型半導體層;在該第一摻雜型半導體層上沉積一本質型半導體層;利用有機金屬化學氣相沉積法形成一第二摻雜型半導體層,其係藉由控制有機金屬化學氣相沉積法中反應溫度及反應氣體流量比,於該本質型半導體層上磊晶成長具有微米鐘粗化陣列結構的第二摻雜型半導體層;以及在該第二摻雜型半導體層上沉積一透明電極層。 Furthermore, the present invention provides a three-five family with a micron bell roughening array structure. A method of manufacturing a solar cell, comprising the steps of: providing a transparent substrate; depositing a first doped semiconductor layer on the transparent substrate; depositing an intrinsic semiconductor layer on the first doped semiconductor layer; Metal chemical vapor deposition to form a second doped semiconductor layer by epitaxial growth on the intrinsic semiconductor layer by controlling the reaction temperature of the organometallic chemical vapor deposition method and the reaction gas flow ratio And roughening the second doped semiconductor layer of the array structure; and depositing a transparent electrode layer on the second doped semiconductor layer.

在本發明的一實施例中,該反應溫度介於850℃至950°C之間。 In an embodiment of the invention, the reaction temperature is between 850 ° C and 950 ° C.

在本發明的一實施例中,該反應氣體包含氨氣及三甲基鎵;該氨氣的流量介於3000 sccm至5000 sccm之間,而三甲基鎵的流量介於50 μmol/min至100 μmol/min之間。 In an embodiment of the invention, the reaction gas comprises ammonia gas and trimethyl gallium; the flow rate of the ammonia gas is between 3000 sccm and 5000 sccm, and the flow rate of trimethyl gallium is between 50 μmol/min and Between 100 μmol/min.

在本發明的一實施例中,每一微米鐘的直徑範圍介於0.2微米至1微米之間,而每一微米鐘的高度範圍介於0.2微米至0.8微米之間。 In an embodiment of the invention, each micron clock has a diameter ranging from 0.2 micrometers to 1 micrometer, and each micrometer has a height ranging from 0.2 micrometers to 0.8 micrometers.

在本發明的一實施例中,該第一摻雜型半導體層為P型半導體,而該第二摻雜型半導體層為N型半導體。 In an embodiment of the invention, the first doped semiconductor layer is a P-type semiconductor, and the second doped semiconductor layer is an N-type semiconductor.

在本發明的一實施例中,該第一摻雜型半導體層為N型半導體,而該第二摻雜型半導體層為P型半導體。 In an embodiment of the invention, the first doped semiconductor layer is an N-type semiconductor, and the second doped semiconductor layer is a P-type semiconductor.

在本發明的一實施例中,以氮化鎵形成該第一摻雜型半導體層與該第二摻雜型半導體層。 In an embodiment of the invention, the first doped semiconductor layer and the second doped semiconductor layer are formed of gallium nitride.

在本發明的一實施例中,沉積該本質型半導體層之步驟包括形成具有氮化銦鎵/氮化鎵多層量子井結構之本質型半導體層。 In an embodiment of the invention, the step of depositing the intrinsic semiconductor layer includes forming an intrinsic semiconductor layer having an indium gallium nitride/gallium nitride multilayer quantum well structure.

在本發明的一實施例中,該多層量子井結構係為綠光量子井結構及藍光量子井結構的其中之一者。 In an embodiment of the invention, the multi-layer quantum well structure is one of a green quantum well structure and a blue quantum well structure.

在本發明的一實施例中,該透明基板之材料為玻璃、石英、透明塑膠、藍寶石基板或是透明可撓性的材料。 In an embodiment of the invention, the transparent substrate is made of glass, quartz, transparent plastic, sapphire substrate or transparent flexible material.

在本發明的一實施例中,其中係由透明導電氧化物製成該透明電極層。 In an embodiment of the invention, the transparent electrode layer is made of a transparent conductive oxide.

相較於先前技術,本發明具有明顯的優點和優益的功效。藉由上述技術手段,本發明的具有微米鐘粗化陣列結構之三五族太陽能電池及其製造方法至少具有下列優點及功效:本發明係藉由控制有機金屬化學氣相沉積法中反應溫度及反應氣體流量比,於該本質型半導體層上磊晶成長一具有微米鐘粗化陣列結構的N型或P型半導體層。本發明除了具有加工程序簡易以外,更具有結構堅固及穩定度佳之優勢,從而降低生產成本。 Compared to the prior art, the present invention has significant advantages and advantageous effects. By the above technical means, the tri-five solar cell having the micron bell roughening array structure of the present invention and the manufacturing method thereof have at least the following advantages and effects: the present invention controls the reaction temperature in the organometallic chemical vapor deposition method and The reaction gas flow ratio is epitaxially grown on the intrinsic semiconductor layer to form an N-type or P-type semiconductor layer having a micron-roughened array structure. In addition to the simple processing procedure, the invention has the advantages of strong structure and good stability, thereby reducing production costs.

為詳細說明本發明之技術內容、構造特徵、所達成目的及功效,以下茲舉例並配合圖式詳予說明。 In order to explain the technical content, structural features, objectives and effects of the present invention in detail, the following detailed description is given by way of example.

請參閱第一圖,其係為本發明實施例中具有微米鐘粗化陣列結構之三五族太陽能電池的結構側視圖,該三五族太陽能電池1包含一透明基板10、一第一摻雜型半導體層20、一本質型半導體層30、一第二摻雜型半導體層40及一透明電極層50。該第一摻雜型半導體層20係設置於該透明基板10上,該本質型半導體層30係設置於該第一摻雜型半導體層20上,而該第二摻雜型半導體層40則係設置於該本質型半導體層30上,其中如果該第一摻雜型半導體層20為P型半導體時,該第二摻雜型半導體層40則係為N型半導體;反之,如果該第一摻雜型半導體層20為N型半導體時,該第二摻雜型半導體層40則係為P型半導體。 Referring to FIG. 1 , which is a side view of a structure of a three-five-type solar cell having a micron bell roughening array structure according to an embodiment of the present invention, the three-five solar cell 1 includes a transparent substrate 10 and a first doping. The semiconductor layer 20, an intrinsic semiconductor layer 30, a second doped semiconductor layer 40, and a transparent electrode layer 50. The first doped semiconductor layer 20 is disposed on the transparent substrate 10, the intrinsic semiconductor layer 30 is disposed on the first doped semiconductor layer 20, and the second doped semiconductor layer 40 is And disposed on the intrinsic semiconductor layer 30, wherein if the first doped semiconductor layer 20 is a P-type semiconductor, the second doped semiconductor layer 40 is an N-type semiconductor; When the impurity semiconductor layer 20 is an N-type semiconductor, the second doped semiconductor layer 40 is a P-type semiconductor.

該第二摻雜型半導體層40具有一體成型的微米鐘粗化陣列結構,該微米鐘粗化陣列結構是由複數個微米鐘所構成,請參照第二圖所示之實際的微米鐘粗化陣列結構,該等微米鐘間具有不規則的尺寸大小及形狀,並呈現隨機均勻的排列,其中每一微米鐘的頂部係為一曲面,而每一微米鐘的直徑範圍係介 於0.2微米(μm)至1 μm之間,其高度範圍則係介於0.2 μm至0.8 μm之間。 The second doped semiconductor layer 40 has an integrally formed micron bell roughening array structure, which is composed of a plurality of micrometer clocks. Please refer to the actual micron bell roughening shown in the second figure. Array structure, the micrometer clocks have irregular size and shape, and exhibit a random and uniform arrangement, wherein the top of each micrometer clock is a curved surface, and the diameter range of each micrometer clock is introduced. Between 0.2 micrometers (μm) and 1 μm, the height range is between 0.2 μm and 0.8 μm.

前述透明基板10之材料可以是玻璃、石英、透明塑膠、藍寶石(sapphire)基板及透明可撓性材料的其中之一者。該第一摻雜型半導體層20與該第二摻雜型半導體層40皆係由氮化鎵(GaN)所製成。該本質型半導體層30包括一氮化銦鎵/氮化鎵多層量子井(InGaN/GaN Multiple Quantum Well,MQW)結構,其中該多層量子井結構可以係綠光量子井結構或藍光量子井結構。 The material of the transparent substrate 10 may be one of glass, quartz, transparent plastic, sapphire substrate and transparent flexible material. The first doped semiconductor layer 20 and the second doped semiconductor layer 40 are both made of gallium nitride (GaN). The intrinsic semiconductor layer 30 includes an InGaN/GaN Multiple Quantum Well (MQW) structure, wherein the multilayer quantum well structure can be a green quantum well structure or a blue quantum well structure.

該透明電極層50係設置於該第二摻雜型半導體層40上,該透明電極層50係由透明導電氧化物(Transparent Conductive Oxide,TCO)所製成,該透明導電氧化物如具有透明導電性之氧化物、氮化物或氟化物,像是氧化銦錫(Indium Tin Oxide,ITO)、氧化銻錫(Antimony Tin Oxide,ATO)、氟摻雜氧化錫(Fluorine-doped Tin Oxide,FTO)、鋁摻雜氧化鋅(Aluminum-doped Zinc Oxide,AZO)、鎵摻雜氧化鋅(Gallium-doped Zinc Oxide,GZO)、銦摻雜氧化鋅(Indium-doped Zinc Oxide,IZO)的其中之一或數個組成之族群。 The transparent electrode layer 50 is disposed on the second doped semiconductor layer 40, and the transparent electrode layer 50 is made of Transparent Conductive Oxide (TCO), such as transparent conductive oxide. Oxide, nitride or fluoride, such as Indium Tin Oxide (ITO), Antimony Tin Oxide (ATO), Fluorine-doped Tin Oxide (FTO), One or several of aluminum-doped Zinc Oxide (AZO), gallium-doped Zinc Oxide (GZO), and Indium-doped Zinc Oxide (IZO) a group of people.

請參閱第一圖及第三圖,其分別為本發明實施例中具有微米鐘粗化陣列結構之三五族太陽能電池的製造方法的結構側視圖及其方法步驟流程圖,該製造方法包括下列步驟: Please refer to FIG. 1 and FIG. 3 respectively, which are respectively a side view of a structure of a method for manufacturing a three-five-type solar cell having a micron-roughened array structure and a method step thereof. The manufacturing method includes the following steps. step:

在步驟S11中,提供一透明基板10。在本實施例中,該透明基板10之材料可以為玻璃、石英、透明塑膠、藍寶石基板及透明可撓性材料的其中之一者。 In step S11, a transparent substrate 10 is provided. In this embodiment, the material of the transparent substrate 10 may be one of glass, quartz, transparent plastic, sapphire substrate and transparent flexible material.

在步驟S12中,在該透明基板10上沉積第一摻雜型半導體層20。該第一摻雜型半導體層20係由氮化鎵所製成,且該第一摻雜型半導體層20可以為P型半導體及N型半導體的一種。該第一摻雜型半導體層20的沉積步驟較佳係利用有機金屬化學氣相沉積法(Metal Organic Chemical Vapor Deposition, MOCVD)。 In step S12, a first doped semiconductor layer 20 is deposited on the transparent substrate 10. The first doped semiconductor layer 20 is made of gallium nitride, and the first doped semiconductor layer 20 may be one of a P-type semiconductor and an N-type semiconductor. The deposition step of the first doped semiconductor layer 20 is preferably performed by a metal organic chemical vapor deposition method (Metal Organic Chemical Vapor Deposition, MOCVD).

在步驟S13中,在該第一摻雜型半導體層20上沉積本質型半導體層30。沉積該本質型(I型)半導體層30之步驟包括形成具有氮化銦鎵/氮化鎵多層量子井結構之本質型半導體層,其中該多層量子井結構可以係綠光量子井結構或藍光量子井結構。該本質型半導體層30的沉積步驟較佳係利用有機金屬化學氣相沉積法。 In step S13, the intrinsic semiconductor layer 30 is deposited on the first doped semiconductor layer 20. The step of depositing the intrinsic (I-type) semiconductor layer 30 includes forming an intrinsic semiconductor layer having an indium gallium nitride/gallium nitride multilayer quantum well structure, wherein the multi-layer quantum well structure may be a green quantum well structure or a blue quantum well structure. The deposition step of the intrinsic semiconductor layer 30 is preferably performed by an organometallic chemical vapor deposition method.

在步驟S14中,利用有機金屬化學氣相沉積法在該本質型半導體層30上沉積具有微米鐘粗化陣列結構的第二摻雜型半導體層40,其係藉由控制有機金屬化學氣相沉積法中反應溫度及反應氣體流量比,從而磊晶成長出該微米鐘粗化陣列結構。該第二摻雜型半導體層40例如係由氮化鎵所製成,其沉積步驟係藉由控制有機金屬化學氣相沉積法中反應溫度及反應氣體流量比而成長出微米鐘粗化陣列結構,其中該反應溫度係介於850℃至950℃之間;該反應氣體例如包含氨氣及三甲基鎵,該氨氣的流量係介於3000每分鐘標準立方釐米(standard cubic centimeter per minute,sccm)至5000 sccm之間,該三甲基鎵的流量則係介於50每分鐘微莫耳(μmol/min)至100 μmol/min之間。而磊晶成長出的每一微米鐘的直徑範圍係介於0.2 μm至1 μm之間,其高度範圍則係介於0.2 μm至0.8 μm之間。如果前述步驟S12中之該第一摻雜型半導體層20為P型半導體時,該第二摻雜型半導體層40則係為N型半導體;反之,如果該第一摻雜型半導體層20為N型半導體時,該第二摻雜型半導體層40則係為P型半導體。 In step S14, a second doped semiconductor layer 40 having a micron-roughened array structure is deposited on the intrinsic semiconductor layer 30 by an organometallic chemical vapor deposition method by controlling organometallic chemical vapor deposition. In the method, the reaction temperature and the reaction gas flow ratio are such that the epitaxial growth of the micron-roughened array structure is performed. The second doped semiconductor layer 40 is made, for example, of gallium nitride, and the deposition step is formed by controlling the reaction temperature and the reaction gas flow ratio in the organometallic chemical vapor deposition method to grow the micron bell roughening array structure. Wherein the reaction temperature is between 850 ° C and 950 ° C; the reaction gas comprises, for example, ammonia gas and trimethyl gallium, and the flow rate of the ammonia gas is between 3000 cubic centimeters per minute (standard cubic centimeter per minute, The sccm) is between 5000 sccm and the flow rate of the trimethylgallium is between 50 micromoles (μmol/min) and 100 μmol/min per minute. The diameter of each micrometer grown by epitaxy ranges from 0.2 μm to 1 μm, and the height range is between 0.2 μm and 0.8 μm. If the first doped semiconductor layer 20 in the foregoing step S12 is a P-type semiconductor, the second doped semiconductor layer 40 is an N-type semiconductor; if the first doped semiconductor layer 20 is In the case of an N-type semiconductor, the second doped semiconductor layer 40 is a P-type semiconductor.

在步驟S15中,在該第二摻雜型半導體層40上沉積透明電極層50。該透明電極層50係由透明導電氧化物所製成,該透明導電氧化物如具有透明導電性之氧化物、氮化物或氟化物,像是氧化銦錫(ITO)、氧化銻錫(ATO)、氟摻雜氧化錫(FTO)、鋁摻雜氧化鋅(AZO)、鎵摻雜氧化鋅(GZO)、銦摻雜氧化鋅(IZO)的其中之一或數個組成之族群,其沉積步驟可以包 含塗覆法、電子束蒸鍍法、電漿化學氣相沉積法及濺鍍法等。 In step S15, a transparent electrode layer 50 is deposited on the second doped semiconductor layer 40. The transparent electrode layer 50 is made of a transparent conductive oxide such as an oxide, a nitride or a fluoride having transparent conductivity, such as indium tin oxide (ITO) or antimony tin oxide (ATO). a deposition step of one or more of fluorine-doped tin oxide (FTO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), and indium-doped zinc oxide (IZO) Can pack Coating method, electron beam evaporation method, plasma chemical vapor deposition method and sputtering method.

依上述實施例之製造方法,本發明提出下列具體實施方式:首先在一藍寶石基板上以有機金屬化學氣相沉積法沉積一厚度約2.5 μm之矽摻雜N型氮化鎵半導體層,而後於該矽摻雜N型氮化鎵半導體層之上再以有機金屬化學氣相沉積法沉積一厚度約0.24 μm之I型氮化銦鎵/氮化鎵多層量子井半導體層。接續將沉積有I型氮化銦鎵/氮化鎵多層量子井半導體層的藍寶石基板加熱至900℃,於通入4000 sccm的氨氣及80 μmol/min的三甲基鎵氣體後,藉由有機金屬化學氣相沉積法在該I型氮化銦鎵/氮化鎵多層量子井半導體層上磊晶成長出一厚度約0.5 μm之具有微米鐘粗化陣列結構的鎂摻雜P型氮化鎵半導體層。最後在該鎂摻雜P型氮化鎵半導體層上以電漿化學氣相沉積法沉積一厚度約0.3 μm之氧化銦錫層,以得到一具有微米鐘粗化陣列結構之三五族太陽能電池。 According to the manufacturing method of the above embodiment, the present invention proposes the following specific embodiments: firstly depositing a germanium-doped N-type gallium nitride semiconductor layer having a thickness of about 2.5 μm on a sapphire substrate by organometallic chemical vapor deposition, and then On the germanium-doped N-type gallium nitride semiconductor layer, a type I indium gallium nitride/gallium nitride multilayer quantum well semiconductor layer having a thickness of about 0.24 μm is deposited by organometallic chemical vapor deposition. The sapphire substrate on which the I-type indium gallium nitride/gallium nitride multi-layer quantum well semiconductor layer is deposited is heated to 900 ° C, after introducing 4000 sccm of ammonia gas and 80 μmol/min of trimethyl gallium gas, An organometallic chemical vapor deposition method is used to epitaxially grow a magnesium-doped P-type nitride having a thickness of about 0.5 μm and having a micron bell roughening array structure on the I-type indium gallium nitride/gallium nitride multilayer quantum well semiconductor layer. Gallium semiconductor layer. Finally, an indium tin oxide layer having a thickness of about 0.3 μm is deposited on the magnesium-doped P-type gallium nitride semiconductor layer by plasma chemical vapor deposition to obtain a three-five-type solar cell having a micron-roughened array structure. .

如上所述,本發明的具有微米鐘粗化陣列結構之三五族太陽能電池及其製造方法係藉由控制有機金屬化學氣相沉積法中反應溫度及反應氣體流量比,於該本質型半導體層上直接磊晶成長出一具有微米鐘粗化陣列結構的N型或P型半導體層,用以作為抗反射層。由於該具有微米鐘粗化陣列結構的N型或P型半導體層也同時為抗反射層,故使得一體成型的該抗反射層具備結構堅固及穩定度佳等優勢。本發明除了具有加工程序簡易、低生產成本及上述優勢以外,因為該製造方法所形成的抗反射層結構具有良好的結構均勻度、高斷差及每一微米鐘的頂部係為一不規則之曲面等相關特性,使其更具有良好的電池元件特性(如量子效率、填充因子、光載子分離/收集、壓電性等),從而有效提升其光電轉換效率。 As described above, the three-five-type solar cell having the micron-roughened array structure of the present invention and the method of fabricating the same are used to control the reaction temperature and the reaction gas flow ratio in the organometallic chemical vapor deposition method. An N-type or P-type semiconductor layer having a micron bell roughened array structure is grown directly on the epitaxial layer to serve as an anti-reflection layer. Since the N-type or P-type semiconductor layer having the micron bell roughening array structure is also an anti-reflection layer at the same time, the integrally formed anti-reflection layer has the advantages of strong structure and good stability. The invention has the advantages of simple processing procedure, low production cost and the above advantages, because the anti-reflection layer structure formed by the manufacturing method has good structural uniformity, high breakage and an irregularity of the top of each micrometer clock. Surface and other related characteristics make it more good battery element characteristics (such as quantum efficiency, fill factor, photo-separator separation/collection, piezoelectricity, etc.), thus effectively improving its photoelectric conversion efficiency.

雖然本發明已用較佳實施例揭露如上,然其並非用以限定本發明,本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明 之保護範圍當視後附之申請專利範圍所界定者為準。 While the invention has been described above in terms of the preferred embodiments, the invention is not intended to limit the invention, and the invention may be practiced without departing from the spirit and scope of the invention. Retouching, therefore the invention The scope of protection is subject to the definition of the scope of the patent application.

1‧‧‧三五族太陽能電池 1‧‧‧Three-five solar cells

10‧‧‧透明基板 10‧‧‧Transparent substrate

20‧‧‧第一摻雜型半導體層 20‧‧‧First doped semiconductor layer

30‧‧‧本質型半導體層 30‧‧‧Intrinsic semiconductor layer

40‧‧‧第二摻雜型半導體層 40‧‧‧Second doped semiconductor layer

50‧‧‧透明電極層 50‧‧‧Transparent electrode layer

S11~S15‧‧‧步驟 S11~S15‧‧‧Steps

第一圖為本發明實施例中具有微米鐘粗化陣列結構之三五族太陽能電池的結構側視圖。 The first figure is a side view of the structure of a three-five-type solar cell having a micron-roughened array structure in an embodiment of the present invention.

第二圖為本發明之手段製作出的三五族太陽能電池之第二摻雜型半導體層的掃描式電子顯微鏡(SEM)照片。 The second figure is a scanning electron microscope (SEM) photograph of a second doped semiconductor layer of a three-five solar cell fabricated by the method of the present invention.

第三圖為本發明實施例中具有微米鐘粗化陣列結構之三五族太陽能電池的製造方法的步驟流程圖。 The third figure is a flow chart of the steps of the method for manufacturing the three-five-type solar cell having the micron bell roughening array structure in the embodiment of the present invention.

1‧‧‧三五族太陽能電池 1‧‧‧Three-five solar cells

10‧‧‧透明基板 10‧‧‧Transparent substrate

20‧‧‧第一摻雜型半導體層 20‧‧‧First doped semiconductor layer

30‧‧‧本質型半導體層 30‧‧‧Intrinsic semiconductor layer

40‧‧‧第二摻雜型半導體層 40‧‧‧Second doped semiconductor layer

50‧‧‧透明電極層 50‧‧‧Transparent electrode layer

Claims (20)

一種具有微米鐘粗化陣列結構之三五族太陽能電池,其包括:一透明基板;一第一摻雜型半導體層,設置於該透明基板上;一本質型半導體層,設置於該第一摻雜型半導體層上;一第二摻雜型半導體層,設置於該本質型半導體層上,該第二摻雜型半導體層具有一體成型的微米鐘粗化陣列結構;以及一透明電極層,設置於該第二摻雜型半導體層上。 A three-five-type solar cell having a micron-roughened array structure, comprising: a transparent substrate; a first doped semiconductor layer disposed on the transparent substrate; and an intrinsic semiconductor layer disposed on the first doped a second doped semiconductor layer disposed on the intrinsic semiconductor layer, the second doped semiconductor layer having an integrally formed micron-roughened array structure; and a transparent electrode layer disposed On the second doped semiconductor layer. 如申請專利範圍第1項所述之三五族太陽能電池,其中每一微米鐘的直徑範圍介於0.2微米至1微米之間,而每一微米鐘的高度範圍介於0.2微米至0.8微米之間。 The three or five solar cells of claim 1, wherein each micrometer has a diameter ranging from 0.2 micrometers to 1 micrometer, and each micrometer has a height ranging from 0.2 micrometers to 0.8 micrometers. between. 如申請專利範圍第1項所述之三五族太陽能電池,其中該第一摻雜型半導體層為P型半導體,而該第二摻雜型半導體層為N型半導體。 The three-five-type solar cell according to claim 1, wherein the first doped semiconductor layer is a P-type semiconductor, and the second doped semiconductor layer is an N-type semiconductor. 如申請專利範圍第1項所述之三五族太陽能電池,其中該第一摻雜型半導體層為N型半導體,而該第二摻雜型半導體層為P型半導體。 The three-five-type solar cell according to claim 1, wherein the first doped semiconductor layer is an N-type semiconductor, and the second doped semiconductor layer is a P-type semiconductor. 如申請專利範圍第1項所述之三五族太陽能電池,其中該第一摻雜型半導體層與該第二摻雜型半導體層之材質為氮化鎵(GaN)。 The three-five-type solar cell according to claim 1, wherein the material of the first doped semiconductor layer and the second doped semiconductor layer is gallium nitride (GaN). 如申請專利範圍第1項所述之三五族太陽能電池,其中該本質型半導體層包括一氮化銦鎵/氮化鎵多層量子井(InGaN/GaN MQW)結構。 The three-five-type solar cell according to claim 1, wherein the intrinsic semiconductor layer comprises an indium gallium nitride/gallium nitride multilayer quantum well (InGaN/GaN MQW) structure. 如申請專利範圍第6項所述之三五族太陽能電池,其中該多層量子井結構係為綠光量子井結構及藍光量子井結構的其中之一者。 For example, the three-five-type solar cell described in claim 6 wherein the multi-layer quantum well structure is one of a green quantum well structure and a blue quantum well structure. 如申請專利範圍第1項所述之三五族太陽能電池,其中該透明基板之材料為玻璃、石英、透明塑膠、藍寶石基板或是透 明可撓性的材料。 For example, the three or five solar cells described in claim 1 wherein the transparent substrate is made of glass, quartz, transparent plastic, sapphire substrate or Flexible material. 如申請專利範圍第1項所述之三五族太陽能電池,其中該透明電極層係由透明導電氧化物所製成。 The three-five-type solar cell of claim 1, wherein the transparent electrode layer is made of a transparent conductive oxide. 一種具有微米鐘粗化陣列結構之三五族太陽能電池的製造方法,包括下列步驟:提供一透明基板;在該透明基板上沉積一第一摻雜型半導體層;在該第一摻雜型半導體層上沉積一本質型半導體層;利用有機金屬化學氣相沉積法形成一第二摻雜型半導體層,其係藉由控制有機金屬化學氣相沉積法中反應溫度及反應氣體流量比,於該本質型半導體層上磊晶成長具有微米鐘粗化陣列結構的第二摻雜型半導體層;以及在該第二摻雜型半導體層上沉積一透明電極層。 A method for manufacturing a three-five-type solar cell having a micron-roughened array structure, comprising the steps of: providing a transparent substrate; depositing a first doped semiconductor layer on the transparent substrate; and forming the first doped semiconductor on the transparent substrate Depositing an intrinsic semiconductor layer on the layer; forming a second doped semiconductor layer by organometallic chemical vapor deposition by controlling the reaction temperature and the reaction gas flow ratio in the organometallic chemical vapor deposition method A second doped semiconductor layer having a micron bell roughened array structure is epitaxially grown on the intrinsic semiconductor layer; and a transparent electrode layer is deposited on the second doped semiconductor layer. 如申請專利範圍第10項所述之製造方法,其中該反應溫度介於850℃至950℃之間。 The manufacturing method according to claim 10, wherein the reaction temperature is between 850 ° C and 950 ° C. 如申請專利範圍第10項所述之製造方法,其中該反應氣體包含氨氣及三甲基鎵;該氨氣的流量介於3000 sccm至5000 sccm之間,而三甲基鎵的流量介於50 μmol/min至100 μmol/min之間。 The manufacturing method according to claim 10, wherein the reaction gas comprises ammonia gas and trimethyl gallium; the flow rate of the ammonia gas is between 3000 sccm and 5000 sccm, and the flow rate of trimethyl gallium is between Between 50 μmol/min and 100 μmol/min. 如申請專利範圍第10項所述之製造方法,其中每一微米鐘的直徑範圍介於0.2微米至1微米之間,而每一微米鐘的高度範圍介於0.2微米至0.8微米之間。 The manufacturing method of claim 10, wherein each micrometer has a diameter ranging from 0.2 micrometers to 1 micrometer, and each micrometer has a height ranging from 0.2 micrometers to 0.8 micrometers. 如申請專利範圍第10項所述之製造方法,其中該第一摻雜型半導體層為P型半導體,而該第二摻雜型半導體層為N型半導體。 The manufacturing method according to claim 10, wherein the first doped semiconductor layer is a P-type semiconductor, and the second doped semiconductor layer is an N-type semiconductor. 如申請專利範圍第10項所述之製造方法,其中該第一摻雜型半導體層為N型半導體,而該第二摻雜型半導體層為P型半導體。 The manufacturing method according to claim 10, wherein the first doped semiconductor layer is an N-type semiconductor, and the second doped semiconductor layer is a P-type semiconductor. 如申請專利範圍第10項所述之製造方法,其中以氮化鎵形成該第一摻雜型半導體層與該第二摻雜型半導體層。 The manufacturing method according to claim 10, wherein the first doped semiconductor layer and the second doped semiconductor layer are formed of gallium nitride. 如申請專利範圍第10項所述之製造方法,其中沉積該本質型半導體層之步驟包括形成具有氮化銦鎵/氮化鎵多層量子井結構之本質型半導體層。 The manufacturing method of claim 10, wherein the depositing the intrinsic semiconductor layer comprises forming an intrinsic semiconductor layer having an indium gallium nitride/gallium nitride multilayer quantum well structure. 如申請專利範圍第17項所述之製造方法,其中該多層量子井結構係為綠光量子井結構及藍光量子井結構的其中之一者。 The manufacturing method according to claim 17, wherein the multi-layer quantum well structure is one of a green quantum well structure and a blue quantum well structure. 如申請專利範圍第10項所述之製造方法,其中該透明基板之材料為玻璃、石英、透明塑膠、藍寶石基板或是透明可撓性的材料。 The manufacturing method according to claim 10, wherein the transparent substrate is made of glass, quartz, transparent plastic, sapphire substrate or transparent flexible material. 如申請專利範圍第10項所述之製造方法,其中係由透明導電氧化物製成該透明電極層。 The manufacturing method according to claim 10, wherein the transparent electrode layer is made of a transparent conductive oxide.
TW101125842A 2012-07-18 2012-07-18 III-V based solar cells having roughened microdome array structure and manufacturing method for the same TW201405843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101125842A TW201405843A (en) 2012-07-18 2012-07-18 III-V based solar cells having roughened microdome array structure and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101125842A TW201405843A (en) 2012-07-18 2012-07-18 III-V based solar cells having roughened microdome array structure and manufacturing method for the same

Publications (1)

Publication Number Publication Date
TW201405843A true TW201405843A (en) 2014-02-01

Family

ID=50550134

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101125842A TW201405843A (en) 2012-07-18 2012-07-18 III-V based solar cells having roughened microdome array structure and manufacturing method for the same

Country Status (1)

Country Link
TW (1) TW201405843A (en)

Similar Documents

Publication Publication Date Title
US10944017B2 (en) Stacked photoelectric conversion device and method for producing same
US20100300507A1 (en) High efficiency low cost crystalline-si thin film solar module
TWI463682B (en) Heterojunction solar cell having intrinsic amorphous silicon film
WO2008062685A1 (en) Substrate provided with transparent conductive film for photoelectric conversion device, method for manufacturing the substrate, and photoelectric conversion device using the substrate
JP6125594B2 (en) Method for manufacturing photoelectric conversion device
KR101371799B1 (en) Photovoltaic device and manufacturing method for same
KR101897723B1 (en) Photovoltaic device and manufacturing method thereof
JP5001985B2 (en) A method of forming a GexSi1-x buffer layer of a solar energy battery on a silicon wafer.
KR101086074B1 (en) Method for fabricating silicon nano wire, solar cell including silicon nano wire and method for fabricating solar cell
US20110308589A1 (en) Photoelectric conversion device and method for manufacturing the same
JP5307688B2 (en) Crystalline silicon solar cell
JP2012023348A (en) Photoelectric conversion device and method of producing the same
JP2015185593A (en) Solar cell and manufacturing method of the same
JP2009267222A (en) Manufacturing method of substrate with transparent conductive film for thin-film photoelectric converter
JP2012023347A (en) Photoelectric conversion device and method of producing the same
TWI470812B (en) Heterojunction solar cell and electrode thereof
CN103107240B (en) Multi-crystal silicon film solar battery and preparation method thereof
JP2012023342A (en) Photoelectric conversion device and method of producing the same
TW201405843A (en) III-V based solar cells having roughened microdome array structure and manufacturing method for the same
JP5934073B2 (en) Thin film solar cell and manufacturing method thereof
TW201123511A (en) Method for fabricating thin film solar cell and thin film solar cell
TWI483405B (en) Photovoltaic cell and method of manufacturing a photovoltaic cell
KR20100093291A (en) Method of fabricating solar sell
KR101303594B1 (en) Thin film type solar cell using glass substrate with surface texture and preparation method thereof
CN202977493U (en) Polysilicon thin-film solar cell