TW201405273A - Energy converting apparatus and method - Google Patents

Energy converting apparatus and method Download PDF

Info

Publication number
TW201405273A
TW201405273A TW101126954A TW101126954A TW201405273A TW 201405273 A TW201405273 A TW 201405273A TW 101126954 A TW101126954 A TW 101126954A TW 101126954 A TW101126954 A TW 101126954A TW 201405273 A TW201405273 A TW 201405273A
Authority
TW
Taiwan
Prior art keywords
energy
generator
converter
voltage
energy converter
Prior art date
Application number
TW101126954A
Other languages
Chinese (zh)
Other versions
TWI590025B (en
Inventor
Mohamed Papa Talla Fall
Sami Ajram
Original Assignee
Mohamed Papa Talla Fall
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mohamed Papa Talla Fall filed Critical Mohamed Papa Talla Fall
Priority to TW101126954A priority Critical patent/TWI590025B/en
Publication of TW201405273A publication Critical patent/TW201405273A/en
Application granted granted Critical
Publication of TWI590025B publication Critical patent/TWI590025B/en

Links

Classifications

    • Y02E10/566
    • Y02E10/58

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The present invention relates to an energy converter for converting energy received from at least one energy source, wherein the at least one energy source includes a first photovoltaic generator, wherein the energy converter is configured to be connected to a second photovoltaic generator; the energy converter further includes a sensing unit configured to sense an open circuit voltage (VPVSS) of the second photovoltaic generator; and the energy converter is configured to convert energy received from the first photovoltaic generator based on the open circuit voltage sensed by the sensing unit. Moreover, the present invention relates to an energy conversion and storage system including the energy converter and least one energy storage element.

Description

能量轉換裝置和方法 Energy conversion device and method

本發明係關於能量穫取、能量轉換及能量儲存之領域。更具體而言,本發明係關於一種能量轉換器及一種能量轉換及儲存系統。 The invention relates to the field of energy harvesting, energy conversion and energy storage. More specifically, the present invention relates to an energy converter and an energy conversion and storage system.

近來,自環境中穫取能量已成為許多研究之主題。藉由自環境中穫取能量,使用者無需將可攜式裝置的電池再充電,或無需經由一電纜而將可攜式裝置連接至一電源,即可為可攜式裝置供電。此外,若所穫取之能量為可再生能量,則此等裝置之運作不會產生污染。在自環境穫取能量之不同方式中,包括了光電壓產生器(photovoltaic generator)、壓電發電機(piezoelectric generator)及熱電發電機(thermoelectric generator)。 Recently, access to energy from the environment has been the subject of much research. By acquiring energy from the environment, the user can supply power to the portable device without recharging the battery of the portable device or connecting the portable device to a power source without a cable. In addition, if the energy harvested is renewable energy, the operation of such devices will not cause pollution. Among the different ways of obtaining energy from the environment, a photovoltaic generator, a piezoelectric generator, and a thermoelectric generator are included.

為了能夠在可攜式裝置中安裝足夠小的發電機,該等發電機之轉換效率必須夠高。舉例而言,在光電壓產生器之最新發展技術中,能夠達到以高達40%之能量轉換效率。在更為廉價之技術中,此種轉換因數係介於20%至25%範圍內。此外,可自一光伏電池穫取之總功率亦取決於入射光之功率密度。舉例而言,一5×5平方公分之太陽能電池在接收直射陽光時可提供200毫瓦至1000毫瓦之功率,而在室內工作時可提供200微瓦至1毫瓦或10毫瓦之功率。光伏電池用作具有一輸出阻抗之一電流產生器或一電壓產生器,該輸出阻抗會隨負載及所接收太陽能而具有很大的變異量。此外,由光伏電池所產生之輸出電壓隨溫度而變化。 In order to be able to install sufficiently small generators in portable devices, the conversion efficiency of such generators must be high enough. For example, in the latest developments in photovoltage generators, energy conversion efficiencies of up to 40% can be achieved. In less expensive technologies, this conversion factor is in the range of 20% to 25%. In addition, the total power available from a photovoltaic cell also depends on the power density of the incident light. For example, a 5 x 5 cm2 solar cell can provide 200 mW to 1000 mW when receiving direct sunlight, and 200 μW to 1 mW or 10 mW when working indoors. . A photovoltaic cell is used as a current generator or a voltage generator having an output impedance that varies greatly with load and received solar energy. In addition, the output voltage produced by the photovoltaic cell varies with temperature.

為使光電壓產生器達到最高可能之轉換效率,已知的方法為連 續地改變負載阻抗。此種方法被稱為最大功率點追蹤(maximum power point tracking;MPPT)。圖14例示輸出電流9001隨光伏電池之輸出電壓之變化,以及由此種光伏電池所產生之輸出功率9002。如圖14所示,當輸出電壓低於光伏電池所能達到之最大電壓(即,開路電壓9003)時,光伏電池會傳送出最大功率。可看出,當光伏電池之運作使輸出電壓較開路電壓值低15%至20%時,功率9002達到一峰值。 In order for the photovoltage generator to achieve the highest possible conversion efficiency, the known method is Continue to change the load impedance. This method is called maximum power point tracking (MPPT). Figure 14 illustrates the output current 9001 as a function of the output voltage of the photovoltaic cell and the output power 9002 produced by such a photovoltaic cell. As shown in Figure 14, when the output voltage is lower than the maximum voltage that the photovoltaic cell can reach (ie, the open circuit voltage of 9003), the photovoltaic cell will deliver the maximum power. It can be seen that when the operation of the photovoltaic cell causes the output voltage to be 15% to 20% lower than the open circuit voltage value, the power 9002 reaches a peak.

因此,為改良對光伏電池所穫取功率之開發利用性,應將光伏電池之輸出電壓維持在低於開路電壓5%至35%;較佳地,維持在低於開路電壓15%至20%之範圍內,該範圍將根據入射光伏功率而異。最大功率點跟蹤(MPPT)技術能達成此目標。 Therefore, in order to improve the development and utilization of the power obtained by the photovoltaic cell, the output voltage of the photovoltaic cell should be maintained at 5% to 35% lower than the open circuit voltage; preferably, it is maintained at 15% to 20% lower than the open circuit voltage. Within the range, this range will vary depending on the incident photovoltaic power. Maximum Power Point Tracking (MPPT) technology can achieve this goal.

然而,最大功率點跟蹤技術僅適用於當有足夠之功率可用於驅動運用並且執行該最大功率點跟蹤技術之電子電路時。相反,當可用功率低時,功耗將高於所穫取之能量。因此,此種解決方案對於低功率應用而言毫無意義。 However, the maximum power point tracking technique is only applicable when an electronic circuit is available with sufficient power to drive the application and perform the maximum power point tracking technique. Conversely, when the available power is low, the power consumption will be higher than the acquired energy. Therefore, this solution is meaningless for low power applications.

因此,本發明之一目的在於提供一種能量轉換器,該能量轉換器能夠轉換來自至少一光電壓產生器之能量,以確保藉由使用一簡單之設計來確保提高效率,進而減少功耗。 Accordingly, it is an object of the present invention to provide an energy converter that is capable of converting energy from at least one photovoltage generator to ensure improved efficiency and reduced power consumption by using a simple design.

本發明係關於一種能量轉換器,其能夠連接於至少一第一發電機,以用於轉換接收自該至少一第一發電機之能量,其中該能量轉換器能夠連接至一第二發電機;該能量轉換器可更包含一感測單元,其組態以感測該第二發電機之一輸出值,而能夠估測該至 少一第一發電機之一開路電壓;且該能量轉換器組態以根據該感測單元所估測得的該開路電壓以轉換接收自該至少一第一發電機之能量。 The present invention relates to an energy converter that can be coupled to at least a first generator for converting energy received from the at least one first generator, wherein the energy converter can be coupled to a second generator; The energy converter can further include a sensing unit configured to sense an output value of the second generator, and can estimate the An open circuit voltage of one of the first generators is less; and the energy converter is configured to convert the energy received from the at least one first generator according to the open circuit voltage estimated by the sensing unit.

藉由此種方式,本發明之能量轉換器能夠高效地轉換接收自該第一光電壓產生器之能量,同時由於架構簡單而減少功耗量。 In this manner, the energy converter of the present invention is capable of efficiently converting the energy received from the first photovoltage generator while reducing the amount of power consumption due to the simple structure.

在本發明之某些實施例中,該第二發電機之該感測得的輸出值可係為該第二發電機之一開路電壓值。 In some embodiments of the invention, the sensed output value of the second generator may be an open circuit voltage value of the second generator.

藉由量測該第二發電機之該開路電壓,可輕易地決定出該第一發電機之該開路電壓。根據此決定出,可決定出該第一發電機之一最佳化輸出電壓。 The open circuit voltage of the first generator can be easily determined by measuring the open circuit voltage of the second generator. Based on this determination, one of the first generators can be determined to optimize the output voltage.

在本發明之某些實施例中,該感測單元可組態以輸出一最佳化電壓,該最佳化電壓對應於一值,該值處在小於該感測得的開路電壓5%至35%之範圍內;較佳地,該值處在小於該感測得的開路電壓15%至20%之範圍內,且該能量轉換器組態以使該至少第一發電機之一輸出電壓保持在一對應於該最佳化電壓之值。 In some embodiments of the present invention, the sensing unit is configurable to output an optimized voltage corresponding to a value that is less than 5% of the sensed open circuit voltage to Within a range of 35%; preferably, the value is within a range of less than 15% to 20% of the sensed open circuit voltage, and the energy converter is configured to output a voltage to one of the at least first generators Maintained at a value corresponding to the optimized voltage.

將該最佳化電壓之值設定於上述範圍內,能使得該第一發電機可高效地運作。 Setting the value of the optimized voltage within the above range enables the first generator to operate efficiently.

在本發明之某些實施例中,該能量轉換器更可包含一轉換器,該轉換器係為一升壓轉換器、一降壓轉換器、及一降壓-升壓轉換器其中之任一者,該轉換器受控於一控制器,並且該轉換器組態以將該至少第一發電機之該輸出電壓轉換成該能量轉換器之一輸出電壓(VOUT),該輸出電壓(VOUT)對應於一預定參考電壓。 In some embodiments of the present invention, the energy converter may further include a converter, wherein the converter is a boost converter, a buck converter, and a buck-boost converter. In one case, the converter is controlled by a controller, and the converter is configured to convert the output voltage of the at least first generator into an output voltage (V OUT ) of the energy converter, the output voltage ( V OUT ) corresponds to a predetermined reference voltage.

藉由該轉換器,其能夠將該第一發電機所輸出之該電壓轉換成一更適用於所需應用之值。 With the converter, it is possible to convert the voltage output by the first generator into a value more suitable for the desired application.

在本發明之某些實施例中,該能量轉換器更可包含一優先順位仲裁器,該優先順位仲裁器組態以接收由一第一比較器所輸出之一第一誤差訊號,該第一誤差訊號指示出該最佳化電壓與該至少第一發電機之該輸出電壓之一差異值;接收由一第二比較器所輸出之一第二誤差訊號,該第二誤差訊號指示出該參考電壓與該能量轉換器之該輸出電壓之一差異值;以及輸出一控制訊號至該控制器,藉以驅動該轉換器,若該第一誤差訊號處於一預定範圍內,其表示該至少第一發電機能夠提供該轉換器所需之最大量的電力,則優先順位仲裁器確保使該第二誤差訊號最小化,若偵測到該第一誤差訊號處於該預定範圍之外,則確保使該第一誤差訊號最小化。 In some embodiments of the present invention, the energy converter may further include a priority order arbitrator configured to receive a first error signal output by a first comparator, the first The error signal indicates a difference value between the optimized voltage and the output voltage of the at least first generator; receiving a second error signal output by a second comparator, the second error signal indicating the reference And a voltage difference from the output voltage of the energy converter; and outputting a control signal to the controller to drive the converter, if the first error signal is within a predetermined range, indicating the at least first The motor can provide the maximum amount of power required by the converter, and the priority order arbiter ensures that the second error signal is minimized. If the first error signal is detected to be outside the predetermined range, then the first An error signal is minimized.

藉由該優先順位仲裁器,可確保每當在該能量轉換器之輸入處有足夠的功率可用時,該能量轉換器之輸出電壓能符合或對應至參考電壓。同時,可確保該第一發電機之發電量維持於最大可能值。 With the prioritized arbitrator, it is ensured that the output voltage of the energy converter can match or correspond to the reference voltage whenever sufficient power is available at the input of the energy converter. At the same time, it is ensured that the power generation of the first generator is maintained at the maximum possible value.

在本發明之某些實施例中,該能量轉換器更可連接至至少一能量儲存元件。 In some embodiments of the invention, the energy converter is further connectable to at least one energy storage element.

藉由使用一能量儲存元件,可儲存多餘之能量並可根據該第一發電機所提供之能量及負載所需能量而恢復所需能量。 By using an energy storage element, excess energy can be stored and the required energy can be recovered based on the energy provided by the first generator and the energy required by the load.

在本發明之某些實施例中,該至少一個能量儲存元件可包含至 少一電池和/或一超電容。 In some embodiments of the invention, the at least one energy storage element can include One less battery and / or one super capacitor.

在本發明之某些實施例中,該能量轉換器更可包含一穩壓器,該穩壓器組態以藉由自該能量轉換器之該輸出電壓及/或該至少一個能量儲存元件汲取能量而提供該能量轉換器之一穩壓後之輸出電壓。 In some embodiments of the present invention, the energy converter may further include a voltage regulator configured to capture the output voltage from the energy converter and/or the at least one energy storage component. The energy provides a regulated output voltage of one of the energy converters.

藉由該穩壓器,可提供一穩定輸出至負載,且即使當第一發電機所提供之電力不足時,亦可保證負載之運作。 With the voltage regulator, a stable output can be provided to the load, and the operation of the load can be ensured even when the power supplied by the first generator is insufficient.

在本發明之某些實施例中,該第一發電機可包含一第一光電壓產生器,且該第二發電機則可包含一第二光電壓產生器。 In some embodiments of the invention, the first generator may include a first photovoltage generator, and the second generator may include a second photovoltage generator.

藉由使用光電壓產生器作為第一發電機及第二發電機,該能量轉換器可對於該第一光電壓產生器於轉換期間之負載進行調整,以轉換來自該第一光電壓產生器之能量,並能夠使該第一光電壓產生器能夠有效地運作。 By using the photovoltage generator as the first generator and the second generator, the energy converter can adjust the load of the first photovoltage generator during the conversion to convert the first photovoltage generator from the Energy and enabling the first photovoltage generator to operate effectively.

在本發明之某些實施例中,該能量轉換器更可包含至少一第三發電機,其中該至少一第三發電機更可包含一壓電發電機及/或一熱電發電機。 In some embodiments of the present invention, the energy converter may further include at least one third generator, wherein the at least one third generator may further include a piezoelectric generator and/or a thermoelectric generator.

除由該第一光電壓產生器穫取能量之外,或取代由該第一光電壓產生器穫取能量,可藉由該至少一第三發電機而自環境中穫取能量。因此,該轉換器可在變化之環境中穫取能量。 In addition to or instead of harvesting energy from the first photovoltage generator, energy may be extracted from the environment by the at least one third generator. Therefore, the converter can harvest energy in a changing environment.

在本發明之某些實施例中,該第一光電壓產生器及該第二光電壓產生器可係為一單一光伏電池之部分,其中該光伏電池具有一用於該第一光電壓產生器之第一輸出及一用於該第二光電壓產生 器之第二輸出。 In some embodiments of the present invention, the first photovoltage generator and the second photovoltage generator may be part of a single photovoltaic cell, wherein the photovoltaic cell has a first photovoltage generator a first output and a second photovoltage generation The second output of the device.

藉由此種方法,可減小因具有二不同光伏電池而佔用之空間。此外,若該二光電壓產生器係為同一光伏電池之部分,則確保該第二光電壓產生器所輸出之開路電壓與該第一光電壓產生器不存在負載時所輸出之開路電壓相同。由於該第一與第二光電壓產生器係以相同之製程獲得並暴露於相同之太陽能功率,可確保該第二光電壓產生器所輸出之開路電壓與該第一光電壓產生器不存在負載時所輸出之開路電壓相同。 By this method, the space occupied by having two different photovoltaic cells can be reduced. In addition, if the two photovoltage generators are part of the same photovoltaic cell, it is ensured that the open circuit voltage output by the second photovoltage generator is the same as the open circuit voltage outputted when the first photovoltage generator has no load. Since the first and second photovoltage generators are obtained by the same process and exposed to the same solar power, the open circuit voltage output by the second photovoltage generator and the first photovoltage generator are not loaded. The open circuit voltage output is the same.

在本發明之某些實施例中,該能量轉換器可更包含至少一第三發電機,其中該至少一第三發電機可更包含一壓電發電機及/或一熱電發電機。 In some embodiments of the present invention, the energy converter may further include at least one third generator, wherein the at least one third generator may further include a piezoelectric generator and/or a thermoelectric generator.

藉由該至少一第三發電機,可自環境中穫取更多電力。 With the at least one third generator, more power can be obtained from the environment.

本發明可關於一種能量轉換器,其能夠連接於至少一第一發電機,以用於轉換接收自該至少一個第一發電機之能量,其中該能量轉換器可能夠連接至複數個能量儲存元件,該能量轉換器可包含一充電排序器,該充電排序器組態以管理該等能量儲存元件其中之每一者之充電及放電次序,以使一第一能量儲存元件放電,該第一能量儲存元件係為該等能量儲存元件中具有一最高充電值者,及/或使一第二能量儲存元件充電,該第二能量儲存元件係為該等能量儲存元件中具有一最低充電值者。 The invention may be directed to an energy converter connectable to at least a first generator for converting energy received from the at least one first generator, wherein the energy converter may be connectable to a plurality of energy storage elements The energy converter can include a charge sequencer configured to manage a charge and discharge sequence of each of the energy storage elements to discharge a first energy storage element, the first energy The storage element is one of the energy storage elements having a highest charge value and/or charging a second energy storage element, the second energy storage element having a lowest charge value among the energy storage elements.

藉由此種方式,本發明之能量轉換器能夠管理複數個能量儲存元件之充電及放電循環,以延長該等能量儲存元件之使用壽命。 In this manner, the energy converter of the present invention is capable of managing the charging and discharging cycles of a plurality of energy storage elements to extend the useful life of the energy storage elements.

此外,本發明可關於一種能量轉換及儲存系統,其包含:如上所述之一能量轉換器;至少一能量儲存元件,其連接至該能量轉換器,其中該至少一能量儲存元件包含至少一電池、或至少一超電容。 Furthermore, the invention may be directed to an energy conversion and storage system comprising: an energy converter as described above; at least one energy storage component coupled to the energy converter, wherein the at least one energy storage component comprises at least one battery , or at least one super capacitor.

在本發明之某些實施例中,該能量轉換器及該至少一個能量儲存元件可以生物相容性材料製造而成。 In certain embodiments of the invention, the energy converter and the at least one energy storage element can be fabricated from a biocompatible material.

在此種情形中,該轉換器可配備用於勘察環境(例如,水質、動物之遷徙、暖通與空氣調節(Heating Ventilating Air Conditioning;HVAC)、無線感測器網路(Wireless Sensor Network;WSN)、建築自動化或家庭自動化等)之裝置,而且,若該等裝置在使用後未被收集並回收,亦不會有危害環境之風險。 In this case, the converter can be equipped for surveying the environment (eg, water quality, animal migration, heating ventilation and air conditioning (HVAC), wireless sensor network (WSN) ), installation automation or home automation, etc., and if such devices are not collected and recycled after use, there is no risk of harm to the environment.

此外,本發明可關於一種能量轉換方法,用於轉換接收自至少一第一發電機之能量,該方法包含:一感測步驟,用以感測一第二發電機之一輸出值;一估測步驟,用以根據該第二發電機之該所感測得的輸出電壓以估測該至少一第一發電機之一開路電壓;以及一轉換步驟,用以根據該估測得的開路電壓以轉換自接收自至少一第一發電機之能量。 Furthermore, the present invention may be directed to an energy conversion method for converting energy received from at least one first generator, the method comprising: a sensing step of sensing an output value of a second generator; a measuring step of estimating an open circuit voltage of the at least one first generator according to the sensed output voltage of the second generator; and a converting step for determining the open circuit voltage according to the estimated Converted from energy received from at least one first generator.

此外,本發明可關於一種能量轉換方法,用於轉換接收自至少一個第一發電機之能量,該方法包含一用於管理複數個能量儲存元件其中之每一者之一充電及放電次序之管理步驟,該管理步驟包含以下步驟:使一第一能量儲存元件放電,該第一能量儲存元件係為該等能量儲存元件中具有一最高充電值者,及/或使一第二能量儲存元件充電,該第二能量儲存元件係為該等能量儲存元件 中具有一最低充電值者。 Furthermore, the invention may be directed to an energy conversion method for converting energy received from at least one first generator, the method comprising managing a charge and discharge sequence of one of each of the plurality of energy storage elements The step of managing includes the steps of discharging a first energy storage element, wherein the first energy storage element has a highest charge value in the energy storage elements, and/or charging a second energy storage element The second energy storage element is the energy storage element There is a minimum charge value in the middle.

作為本發明之一實例性實施例,圖1例示一使用一市售升壓轉換器7之能量轉換器。一光伏電池12經由一開關13而連接至升壓轉換器之輸入VIN。輸出L經由一電感6(例如,其值係為2.2微亨)亦連接至升壓轉換器之輸入VIN。一負載11連接至升壓轉換器之輸出VOUT。一電容器10(例如,其值係為20微法)以及一由電阻器8及電阻器9(例如,其值分別係為390千歐及50千歐)構成之一電阻電橋亦連接至升壓轉換器之輸出並與負載11並聯。該電橋之輸出被回饋至升壓轉換器之FB埠。此外,升壓轉換器之輸入VIN亦連接至電容器1及電容器2(例如,其值分別係為100微法及10微法),並連接至一由電阻器3及電阻器4(例如,其值分別係為270千歐及50千歐)構成之電阻電橋。該電阻電橋之輸出被輸入至升壓轉換器之UVLO埠。最後,升壓轉換器之VAUX埠連接至一電容器5。 As an exemplary embodiment of the present invention, FIG. 1 illustrates an energy converter using a commercially available boost converter 7. A photovoltaic cell 12 is coupled to the input V IN of the boost converter via a switch 13 . Output L is also coupled to the input V IN of the boost converter via an inductor 6 (eg, having a value of 2.2 microhenries). A load 11 is connected to the output of the boost converter, V OUT . A capacitor 10 (for example, a value of 20 microfarads) and a resistor bridge 8 and a resistor 9 (for example, having values of 390 kohms and 50 kohms, respectively) are also connected to the riser. The output of the voltage converter is connected in parallel with the load 11. The output of the bridge is fed back to the FB of the boost converter. In addition, the input V IN of the boost converter is also connected to the capacitor 1 and the capacitor 2 (for example, the values are 100 microfarads and 10 microfarads, respectively), and is connected to a resistor 3 and a resistor 4 (for example, The values are 270 kohms and 50 kohms respectively. The output of the resistor bridge is input to the UVLO of the boost converter. Finally, the VAUX of the boost converter is connected to a capacitor 5.

作為可在此種配置下使用之一實例性升壓轉換器7,可考慮來自美國德州儀器公司(Taxes Instrument)的TPS61200。此種升壓轉換器之優點在於,其可在低至0.5伏之輸入電壓下工作。 As an example boost converter 7 that can be used in this configuration, a TPS61200 from Texas Instruments can be considered. An advantage of such a boost converter is that it can operate at input voltages as low as 0.5 volts.

然而,此種架構並不適用於自一小光伏電池穫取電力。 However, this architecture is not suitable for obtaining electricity from a small photovoltaic cell.

更具體而言,構想出該架構之目的係為了藉由使用一約為1安之恆定電流來使輸出電壓增大至4.4伏(此值取決於所實作之具體回饋電路)。然而,一小的光伏電池無法提供如此高的電流。相反,此種小光電壓產生器係在幾毫安之範圍內運作。因此,需要一例 如為100微法之電容器,在升壓轉換器接通之前由光電壓產生器將該電容器預充電至約3伏。此使得該電容器能夠提供升壓轉換器所需之高電流。一旦升壓轉換器之輸出電壓穩定化,若負載不再耗用任何電流,則升壓轉換器會變至一節電模式。參照圖2A及圖2B可更佳地理解此種特性。 More specifically, the purpose of the architecture is to increase the output voltage to 4.4 volts by using a constant current of about 1 amp (this value depends on the particular feedback circuit being implemented). However, a small photovoltaic cell cannot provide such a high current. In contrast, such small photovoltage generators operate in the range of a few milliamps. Therefore, an example is needed For a 100 microfarad capacitor, the capacitor is precharged to about 3 volts by a photovoltage generator before the boost converter is turned "on". This allows the capacitor to provide the high current required by the boost converter. Once the output voltage of the boost converter is stabilized, the boost converter will change to the power-down mode if the load no longer consumes any current. This characteristic can be better understood with reference to FIGS. 2A and 2B.

圖2A例示在升壓轉換器之一加電(power-up)操作期間當負載不耗用任何電流時之波形。更具體而言,如圖2A所示,例示出2A1及2A3二部分。2A3部分所示訊號係指由區域2A2所表示的2A1部分之一較小部分之放大視圖。如2A3部分所示,加電操作使輸入電壓VIN 2A6產生一約700毫伏之壓降。在加電操作之後,如2A1部分所示,升壓轉換器進入一頻率約為200赫茲之節電模式,乃因負載不消耗電流,而僅升壓轉換器及電阻電橋消耗電流。 2A illustrates a waveform when the load does not consume any current during one of the boost-up operation of the boost converter. More specifically, as shown in FIG. 2A, two parts 2A1 and 2A3 are illustrated. The signal shown in part 2A3 refers to an enlarged view of a smaller portion of the 2A1 portion represented by the area 2A2. As shown in Section 2A3, the power up operation causes the input voltage V IN 2A6 to produce a voltage drop of approximately 700 millivolts. After the power-on operation, as shown in Section 2A1, the boost converter enters a power-saving mode with a frequency of approximately 200 Hz because the load does not consume current, and only the boost converter and the resistor bridge consume current.

另一方面,圖2B係關於其中負載汲取例如一1.35毫安之電流之情形。如圖所示,輸出電壓VOUT 2B7始於所需值。然而,由於小的光伏電池無法為升壓轉換器提供足夠之電流,因此輸入電壓VIN 2B9將緩慢地下降至一能夠使升壓轉換器自動斷開之值,如VOUT 2B7之壓降所示。 On the other hand, Fig. 2B relates to the case where the load draws, for example, a current of 1.35 mA. As shown, the output voltage V OUT 2B7 begins at the desired value. However, since a small photovoltaic cell cannot provide enough current for the boost converter, the input voltage V IN 2B9 will slowly drop down to a value that will cause the boost converter to automatically turn off, such as the voltage drop of V OUT 2B7. Show.

因此,當負載汲取一過高之電流時,此種架構並非最佳的。即使將電路修改成以一脈動方式工作,轉換效率亦非最佳,乃因電容2連接至光電壓產生器並迫使光電壓產生器在一長時間段內以一短路方式運作。此種短路運作並非理想之運作,乃因當以短路模式運作時,光電壓產生器之輸出功率不會最大化。 Therefore, this architecture is not optimal when the load draws an excessive current. Even if the circuit is modified to operate in a pulsating manner, the conversion efficiency is not optimal because the capacitor 2 is connected to the photovoltage generator and forces the photovoltage generator to operate in a short circuit for a long period of time. This short circuit operation is not an ideal operation because the output power of the photovoltage generator is not maximized when operating in a short circuit mode.

為改良此解決方案,可達成圖3所示之一能量轉換器。 To improve this solution, one of the energy converters shown in Figure 3 can be achieved.

如圖所示,能量轉換器300可連接至二發電機301及302(例如,二光電壓產生器)。該能量轉換器包含一參考電壓單元303、二比較器304及305、一優先順序單元306及一轉換器單元307。 As shown, energy converter 300 can be coupled to two generators 301 and 302 (eg, a two photovoltage generator). The energy converter includes a reference voltage unit 303, two comparators 304 and 305, a priority order unit 306 and a converter unit 307.

參考電壓單元303之目的在於輸出一參考電壓VINTarg,以用作接收自第一發電機30之輸入電壓VINPV之一目標電壓。目標電壓係指為提高第一發電機301之效率而期望使輸入電壓VINPV所維持之值。參考電壓單元303可藉由感測第二發電機302之一輸出電壓(例如,開路電壓值)而產生參考電壓VINTarg。假設第一發電機與第二發電機具有一類似之開路電壓,則測定出第二發電機之開路電壓便能夠輕易地估測出第一發電機之開路電壓。 The purpose of the reference voltage unit 303 is to output a reference voltage V INTarg for use as a target voltage of the input voltage V INPV received from the first generator 30. The target voltage is a value that is desired to maintain the input voltage V INPV in order to increase the efficiency of the first generator 301. The reference voltage unit 303 can generate the reference voltage V INTarg by sensing an output voltage (eg, an open circuit voltage value) of one of the second generators 302. Assuming that the first generator and the second generator have a similar open circuit voltage, the open circuit voltage of the second generator can be determined to easily estimate the open circuit voltage of the first generator.

作為另一選擇,或除此之外,第二發電機之開路電壓可不同於第一發電機之開路電壓,但可得知該二開路電壓值間之關係,並可在根據所量測之第二發電機之開路電壓以估測第一發電機之開路電壓時,將該關係考慮在內。 Alternatively, or in addition, the open circuit voltage of the second generator may be different from the open circuit voltage of the first generator, but the relationship between the two open circuit voltage values may be known and may be measured according to This relationship is taken into account when estimating the open circuit voltage of the second generator to estimate the open circuit voltage of the first generator.

更一般而言,可使用為估測第一發電機301之一開路電壓值而可使用之第二發電機302之任何特性(例如,流經一預定電阻之一輸出電流)。 More generally, any characteristic of the second generator 302 that can be used to estimate an open circuit voltage value of the first generator 301 (e.g., an output current through one of a predetermined resistance) can be used.

該二比較器計算能量轉換器300之輸入電壓VINPV之誤差及輸出電壓VOUT之誤差。根據此資訊,優先順序單元306將控制一轉換器單元307,以藉由優先考慮輸入電壓VINPV之穩定性或輸出電壓VOUT之穩定性而將輸入電壓VINPV轉換成輸出電壓VOUTThe two comparators calculate an error of the input voltage V INPV of the energy converter 300 and an error of the output voltage V OUT . Based on this information, the priority unit 306 controls a converter unit 307, by priority to the stability of the input voltage V INPV the stability of the output voltage V OUT or the input voltage V INPV converted into an output voltage V OUT.

藉由此種方法,可藉由將輸入電壓VINPV之值維持於一使第一發 電機301效率高之範圍內而達成對一所需輸出電壓VOUT之調節。 By this method, the adjustment of a desired output voltage V OUT can be achieved by maintaining the value of the input voltage V INPV within a range in which the efficiency of the first generator 301 is high.

第一實施例 First embodiment

圖4例示根據本發明一第一實施例之一能量轉換器1000。如圖4所示,能量轉換器1000連接至一第一光電壓產生器1101及一第二光電壓產生器1102。該二光電壓產生器1101及1102可係為實體上不同之二光伏電池,抑或光電壓產生器1102可係為一包含光電壓產生器1101之光伏電池之一小部分。在該二情形中,能量轉換器1000所轉換之能量皆係由光電壓產生器1101所產生者。 Figure 4 illustrates an energy converter 1000 in accordance with a first embodiment of the present invention. As shown in FIG. 4, the energy converter 1000 is coupled to a first photovoltage generator 1101 and a second photovoltage generator 1102. The two photovoltage generators 1101 and 1102 can be physically different photovoltaic cells, or the photovoltage generator 1102 can be a small portion of a photovoltaic cell including the photovoltage generator 1101. In both cases, the energy converted by the energy converter 1000 is generated by the photovoltage generator 1101.

光電壓產生器1102之用途在於為能量轉換器1000提供由第二光電壓產生器1102所產生之開路電壓值,以作為假設無負載連接至第一光電壓產生器1101之輸出時第一光電壓產生器1101會產生之開路電壓之估測值。 The purpose of the photovoltage generator 1102 is to provide the energy converter 1000 with an open circuit voltage value generated by the second photovoltage generator 1102 as a first photovoltage when assuming no load is connected to the output of the first photovoltage generator 1101. The generator 1101 will generate an estimate of the open circuit voltage.

第一光電壓產生器1101連接至能量轉換器1000之輸入埠VINPV,而第二光電壓產生器1102則連接至能量轉換器1000之輸入埠VPVSSThe first photovoltage generator 1101 is coupled to the input V INPV of the energy converter 1000 and the second photovoltage generator 1102 is coupled to the input V PVSS of the energy converter 1000.

為確保由該二光電壓產生器所產生之開路電壓相似,光電壓產生器1101與1102之位置及電性特性相似。作為另一選擇,或除此之外,若光電壓產生器1101與1102之位置及/或電性特性不同,則光電壓產生器1101之開路電壓與光電壓產生器1102之開路電壓間之關係可預先確定,或可在根據光電壓產生器1102之所量測開路電壓測定光電壓產生器1101之開路電壓時量測得出並使用該關係。 To ensure that the open circuit voltages produced by the two photovoltage generators are similar, the position and electrical characteristics of the photovoltage generators 1101 and 1102 are similar. Alternatively, or in addition, if the position and/or electrical characteristics of the photovoltage generators 1101 and 1102 are different, the relationship between the open circuit voltage of the photovoltage generator 1101 and the open circuit voltage of the photovoltage generator 1102 The relationship may be determined and used when the open circuit voltage of the photovoltage generator 1101 is measured based on the measured open circuit voltage of the photovoltage generator 1102.

能量轉換器1000能夠藉由電感1010、二極體1007、電晶體1603及升壓控制器1602所構成之升壓器來升高由光電壓產生器1101所產生電壓VINPV之值。此外,升壓控制器1602在升高輸入電壓VINPV以獲得輸出電壓VOUT時所依據之訊號係自一優先順位仲裁器1601輸出。 The energy converter 1000 can boost the value of the voltage V INPV generated by the photovoltage generator 1101 by a booster composed of the inductor 1010, the diode 1007, the transistor 1603, and the boost controller 1602. In addition, the signal that the boost controller 1602 is based on raising the input voltage V INPV to obtain the output voltage V OUT is output from a priority order arbiter 1601.

該優先順位仲裁器接收表示輸出電壓VOUT之誤差及輸入電壓VINPV之誤差之二輸入訊號。輸入電壓VINPV之誤差係由比較器1303產生。比較器1303之目的在於確保接收自光電壓產生器1101之輸入電壓VINPV保持接近與最佳VIN估測器1302之輸出相對於之理想值VINTarg,以達成高功率傳遞。輸出電壓之誤差係由一比較器1502產生。若經由埠FB所接收之回饋電壓VOUT不同於參考電壓VREF,則比較器1502會產生一電壓誤差訊號。因此,藉由正確地選擇參考電壓VREF,可獲得任何所需之輸出電壓VOUTThe prioritized arbitrator receives two input signals indicative of an error in the output voltage V OUT and an error in the input voltage V INPV . The error of the input voltage V INPV is generated by the comparator 1303. The purpose of comparator 1303 is to ensure that the input voltage V INPV received from photovoltage generator 1101 remains close to the ideal value V INTarg of the output of optimum V IN estimator 1302 to achieve high power transfer. The error in the output voltage is produced by a comparator 1502. If the feedback voltage V OUT received via the 埠FB is different from the reference voltage V REF , the comparator 1502 generates a voltage error signal. Therefore, any desired output voltage V OUT can be obtained by correctly selecting the reference voltage V REF .

最佳VIN估測器1302具有二輸入,該二輸入分別連接至一溫度感測器1301、以及連接至埠VPVSS後進而連接至第二光電壓產生器1102。最佳VIN估測器1302感測由第二光電壓產生器1102所產生之開路電壓值,進而用作一感測單元。此外,最佳VIN估測器1302計算一最佳化電壓值VINTarg,該最佳化電壓值VINTarg對應於一值,該值處在小於第二光電壓產生器1102所產生之開路電壓值5%至35%之範圍內;較佳地,該值處在小於第二光電壓產生器1102所產生之開路電壓值15%至20%之範圍內。此外,在計算最佳化電壓VINTarg時,亦可將溫度感測器1301所量測之溫度考慮在內。 The preferred V IN estimator 1302 has two inputs that are coupled to a temperature sensor 1301 and to 埠V PVSS and then to the second photovoltage generator 1102. The optimum V IN estimator 1302 senses the open circuit voltage value generated by the second photovoltage generator 1102 and functions as a sensing unit. Further, the optimum V IN estimator 1302 calculates an optimal voltage value V INTarg, the optimal voltage value V INTarg corresponds to a value in the open-circuit voltage is less than the second light generated by the voltage generator 1102 The value is in the range of 5% to 35%; preferably, the value is in the range of 15% to 20% less than the open circuit voltage value generated by the second photovoltage generator 1102. In addition, the temperature measured by the temperature sensor 1301 can also be taken into account when calculating the optimization voltage V INTarg .

更具體而言,一光電壓產生器之效率及因此其輸出功率在15至 25攝氏度以下係為恆定的。超過此溫度值時,光電壓產生器之效率及輸出功率隨著溫度之升高而降低,且每升高1攝氏度降低約0.4%。 More specifically, the efficiency of a photovoltage generator and hence its output power is 15 Below 25 degrees Celsius is constant. Above this temperature value, the efficiency and output power of the photovoltage generator decrease with increasing temperature and decrease by about 0.4% for every 1 degree Celsius increase.

更具體而言,例如,由最佳VIN估測器1302計算VINTarg之一可能實施方案可如下所述。在溫度感測器1301所量測之溫度低於一介於0℃至30℃之間的預定臨限溫度TTH之前(該預定臨限溫度TTH較佳地介於15℃至25℃間),對開路電壓VPVSS施加一校正因數α,該校正因數α介於5%至35%之間;並且該校正因數α較佳地介於15%至20%之間,俾使VINTarg=VPVSS*(1-α) More specifically, for example, one of the possible implementations of calculating V INTarg by the optimal V IN estimator 1302 can be as follows. Before the temperature measured by the temperature sensor 1301 is lower than a predetermined threshold temperature T TH between 0 ° C and 30 ° C (the predetermined threshold temperature T TH is preferably between 15 ° C and 25 ° C) Applying a correction factor α to the open circuit voltage V PVSS , the correction factor α is between 5% and 35%; and the correction factor α is preferably between 15% and 20%, such that V INTarg =V PVSS *(1-α)

當溫度感測器1301所量測之溫度高於預定臨限溫度TTH時,亦施加一介於0.1%至1%之間、較佳地係為0.4%之校正因數β,俾使VINTarg=VPVSS*(1-α-β*(溫度-TTH)) When the temperature measured by the temperature sensor 1301 is higher than the predetermined threshold temperature T TH , a correction factor β of between 0.1% and 1%, preferably 0.4%, is also applied, so that V INTarg = V PVSS *(1-α-β*(temperature-T TH ))

應注意,溫度感測器1301係可選的,並可完全根據接收自第二光電壓產生器1102之開路電壓來計算VINTarg,換言之,可認為校正係數β等於0。作為另一選擇,或除此之外,可藉由一外部溫度感測器來達成溫度量測。 It should be noted that the temperature sensor 1301 is optional and can calculate V INTarg based entirely on the open circuit voltage received from the second photovoltage generator 1102, in other words, the correction coefficient β can be considered to be equal to zero. Alternatively, or in addition, temperature measurements can be achieved by an external temperature sensor.

作為再一選擇,該二發電機1101及1102可相對於溫度具有一預先確定之不同特性,並可藉由量測該二發電機之某些輸出特性來測定溫度。舉例而言,可量測出該二發電機之開路電壓,並可根據該二量測值來導出溫度。 As a further alternative, the two generators 1101 and 1102 can have a predetermined different characteristic with respect to temperature, and the temperature can be measured by measuring certain output characteristics of the two generators. For example, the open circuit voltage of the two generators can be measured, and the temperature can be derived according to the two measured values.

優先順位仲裁器1601用以確保輸出電壓VOUT對應於所期望之 參考電壓VREF,並確保輸入電壓VINPV保持於使光電壓產生器進行最佳發電之範圍內。當光電壓產生器1101產生足夠之功率時,將優先考慮輸出電壓VOUT之調節。相反,每當可用功率小於負載所需功率時,將優先考慮輸入電壓VINPV之調節。根據輸入電壓VINPV之誤差訊號是否可被維持低於某一臨限值來判斷光電壓產生器是否產生足夠之功率。若不能產生足夠之功率,則輸入電壓VINPV之誤差將不可避免地趨於增大,進而表示無足夠功率可用於使輸出電壓VOUT維持至所期望之位準VREFThe priority order arbiter 1601 is used to ensure that the output voltage V OUT corresponds to the desired reference voltage V REF and that the input voltage V INPV is maintained within a range that allows the photo voltage generator to optimally generate power. When the photovoltage generator 1101 generates sufficient power, the adjustment of the output voltage V OUT will be prioritized. Conversely, whenever the available power is less than the power required by the load, the adjustment of the input voltage V INPV will be prioritized. Whether the photovoltage generator generates sufficient power is determined according to whether the error signal of the input voltage V INPV can be maintained below a certain threshold. If sufficient power is not available, the error in the input voltage V INPV will inevitably tend to increase, indicating that there is not enough power available to maintain the output voltage V OUT to the desired level V REF .

能量轉換器1000更經由一埠VBAT1而連接至一電池1201,以達成根據本發明之一能量轉換及儲存系統。在此種情形中,能量轉換及儲存系統係以一單一電池進行運作。然而,本發明並非僅限於此,而是亦可以不止一個電池及/或以下文將闡述之超電容來達成能量轉換及儲存系統。 The energy converter 1000 is further coupled to a battery 1201 via a V BAT1 to achieve an energy conversion and storage system in accordance with the present invention. In this case, the energy conversion and storage system operates as a single battery. However, the invention is not limited thereto, but rather an energy conversion and storage system can be achieved with more than one battery and/or ultracapacitors as will be described below.

此外,能量轉換器1000設置有一連接至一低壓降穩壓器(Low dropout regulator;LDO)1701之輸出之一輸出埠VLDO。一潛在負載可連接至該埠VLDO。因此,此潛在負載可由第一光電壓產生器1101所產生並經升壓轉換器轉換之電力驅動,及/或由自電池1201所擷取之電力驅動。在其中第一光電壓產生器1101所產生之電力不足之情形中,可藉由使電池1201放電而獲得額外之電力。相反,若第一光電壓產生器1101所產生之電力高於負載所需電力,則可轉移未使用之電力來對電池再充電。因此,在其中無負載連接至能量轉換器之情形中,可使用由第一光電壓產生器1101所產生之全部電力來對電池1201再充電。同時,若第一光電壓產生器1101 未產生電力,仍可藉由使電池1201放電來驅動一潛在負載。因此,此種配置為本發明之能量轉換器1000提供一廣闊範圍之運作模式,並確保使連接至埠VLDO之負載在需要時總能夠運作。 In addition, the energy converter 1000 is provided with an output 埠V LDO connected to an output of a low dropout regulator (LDO) 1701. A potential load can be connected to the 埠V LDO . Thus, this potential load can be driven by the first photovoltage generator 1101 and powered by the boost converter, and/or by the power drawn from the battery 1201. In the case where the power generated by the first photovoltage generator 1101 is insufficient, additional power can be obtained by discharging the battery 1201. Conversely, if the power generated by the first photovoltage generator 1101 is higher than the power required by the load, the unused power can be diverted to recharge the battery. Therefore, in the case where no load is connected to the energy converter, the entire power generated by the first photovoltage generator 1101 can be used to recharge the battery 1201. Meanwhile, if the first photovoltage generator 1101 does not generate power, a potential load can be driven by discharging the battery 1201. Thus, this configuration provides a wide range of modes of operation for the energy converter 1000 of the present invention and ensures that the load connected to the 埠V LDO is always operational when needed.

除上述各組件之外,本發明之能量轉換器1000亦包含一欠電壓閉鎖(under voltage lock out;UVLO)1403,欠電壓閉鎖(UVLO)1403經由埠VUVLO連接至第一光電壓產生器1101之輸出。欠電壓閉鎖(UVLO)1403之用途在於,一旦電壓VUVLO達到一預定參考值即產生一用於啟動能量轉換器1000之訊號。隨後,能量轉換器將保持現用,直至電壓VUVLO變至低於該預定參考電壓為止。欠電壓閉鎖組件1403具有某一程度之滯後性。此使得即使例如由於升壓轉換器之加電操作而使VUVLO電壓中出現震盪,能量轉換器1000亦能夠以一可靠方式運作。 In addition to the above components, the energy converter 1000 of the present invention also includes an under voltage lockout (UVLO) 1403, and the undervoltage lockout (UVLO) 1403 is connected to the first photovoltage generator 1101 via 埠V UVLO . The output. The purpose of undervoltage lockout (UVLO) 1403 is to generate a signal for activating energy converter 1000 once voltage V UVLO reaches a predetermined reference value. The energy converter will then remain active until the voltage V UVLO becomes below the predetermined reference voltage. The undervoltage lockout component 1403 has a certain degree of hysteresis. This allows the energy converter 1000 to operate in a reliable manner even if oscillations occur in the V UVLO voltage, for example due to the power up operation of the boost converter.

此外,能量轉換器1000包含由方框1501表示之一VREF發電機連同其他類比電路。方框1501之輸出VREF被輸入至比較器1502。方框1501之輸出VREFLDO被輸入至低壓降穩壓器(LDO)1701。電壓VREFLDO之用途在於驅動低壓降穩壓器1701之輸出電壓VLDO值。 In addition, energy converter 1000 includes one of the VREF generators represented by block 1501 along with other analog circuits. The output V REF of block 1501 is input to comparator 1502. The output V REFLDO of block 1501 is input to a low dropout regulator (LDO) 1701. The purpose of the voltage V REFLDO is to drive the output voltage V LDO of the low dropout regulator 1701.

此外,方框1501產生被輸入至SWAP比較器1801之輸出VRefMAX及VRefMIN。SWAP比較器1801更接收電壓VBATSENSE作為一輸入。根據該三個輸入,SWAP比較器1801能夠管理該等電池之充電/放電循環。使用至少二比較器。第一個比較器在充電階段管理電池並在每當電池1201的端子處之電壓VBATSENSE達到一表示電池已被充電之高電壓VRefMAX時進行切換。第二SWAP比較器在電池 放電時管理電池,以驅動負載並在每當電池1201的端子處之電壓VBATSENSE達到一表示電池已被放電之低電壓值VRefMIN時進行切換。該等SWAP比較器之輸出被輸入至充電排序器(charge sequencer)1802。 Additionally, block 1501 produces outputs V RefMAX and V RefMIN that are input to SWAP comparator 1801. The SWAP comparator 1801 further receives the voltage V BATSENSE as an input. Based on the three inputs, the SWAP comparator 1801 is capable of managing the charge/discharge cycles of the batteries. Use at least two comparators. The first comparator manages the battery during the charging phase and switches whenever the voltage V BATSENSE at the terminal of the battery 1201 reaches a high voltage V RefMAX indicating that the battery has been charged. The second SWAP comparator manages the battery when the battery is discharged to drive the load and switch whenever the voltage V BATSENSE at the terminal of the battery 1201 reaches a low voltage value V RefMIN indicating that the battery has been discharged. The outputs of the SWAP comparators are input to a charge sequencer 1802.

充電排序器1802用於記憶電池1201之充電狀態,並用以管理由第一光電壓產生器1101所產生並經升壓轉換器所轉換之電力、儲存於電池1201中之電力及連接至節點VLDO之負載所需電力間之功率流。因此,充電排序器1802連接至開關1804,以使得低壓降穩壓器(LDO)1701、電池1201、及第一光電壓產生器1101能夠以能量轉換器1000之一運作狀態所需之方式所連接。 The charge sequencer 1802 is used to store the state of charge of the battery 1201, and is used to manage the power generated by the first photovoltage generator 1101 and converted by the boost converter, the power stored in the battery 1201, and connected to the node V LDO. The power flow between the required power loads. Accordingly, the charge sequencer 1802 is coupled to the switch 1804 to enable the low dropout regulator (LDO) 1701, the battery 1201, and the first photovoltage generator 1101 to be connected in a manner required for one of the energy converters 1000 to operate. .

更具體而言,可以不同技術來達成電池1201。每一技術均要求遵守某一充電/放電臨限值,以延長電池之使用壽命。 More specifically, battery 1201 can be implemented in different technologies. Each technology is required to comply with a certain charge/discharge threshold to extend battery life.

舉例而言,薄膜電池可具有一30%之最大放電臨限值VRefMIN,此意味著其不可被消耗其標稱容量之30%以上。類似地,鹼性電池可具有一50%之最大放電臨限值。其他電池可具有不同之最大放電臨限值。 For example, a thin film battery can have a maximum discharge threshold V RefMIN of 30%, which means that it cannot be consumed more than 30% of its nominal capacity. Similarly, an alkaline battery can have a maximum discharge threshold of 50%. Other batteries may have different maximum discharge thresholds.

對稱地,薄膜電池可具有一90%(較佳地係為100%)之最小充電臨限值VRefMAX,此意味著在被放電之前其應被再充電至其標稱容量之至少90%、或甚至其全標稱容量。對於鹼性電池可使用一類似值。其他電池可具有不同之最小充電臨限值。 Symmetrically, the thin film battery can have a minimum charge threshold V RefMAX of 90% (preferably 100%), which means that it should be recharged to at least 90% of its nominal capacity before being discharged, Or even its full nominal capacity. A similar value can be used for alkaline batteries. Other batteries may have different minimum charging thresholds.

可將電池1201之最大放電臨限值及最小充電臨限值保存於充電排序器1802中。根據該等值,可獲得一改良之電池循環。 The maximum discharge threshold and the minimum charge threshold of the battery 1201 can be stored in the charge sequencer 1802. Based on this value, an improved battery cycle is obtained.

因此,充電排序器1802控制各開關1804,以連接低壓降穩壓器1701、電池1201及第一光電壓產生器1101,進而延長電池之使用壽命、同時保證負載之運作。以下將詳細闡述如何達成此效果。 Therefore, the charge sequencer 1802 controls the switches 1804 to connect the low dropout voltage regulator 1701, the battery 1201, and the first photovoltage generator 1101, thereby extending the life of the battery while ensuring the operation of the load. How to achieve this effect will be explained in detail below.

能量轉換器1000更包含充電控制器1803。充電控制器1803之用途在於用作一線性充電器或用作一旁路充電器(bypass charger)。當以一具有一恆定值之電流對電池1201充電時,每當第一光電壓產生器1101所產生之輸入電力不足以為電池1201提供電池1201可吸收之全部電流時,則採用線性充電器模式。相反,當有足夠之電力使電池吸收其可吸收之全部電流時,則採用旁路模式。每當充電排序器1802判定需要或不需要對電池1201充電時,充電排序器1802皆會接通及斷開充電控制器1803。此外,充電控制器1803係由優先順位仲裁器1601之一輸出(圖中未示出)控制,該輸出用於決定充電控制器1803應以一線性模式運作還是以一旁路模式運作。 The energy converter 1000 further includes a charge controller 1803. The purpose of the charge controller 1803 is to act as a linear charger or as a bypass charger. When the battery 1201 is charged with a current having a constant value, the linear charger mode is employed whenever the input power generated by the first photovoltage generator 1101 is insufficient to provide the battery 1201 with all of the current that the battery 1201 can absorb. Conversely, bypass mode is used when there is enough power to allow the battery to absorb all of the current it can absorb. The charge sequencer 1802 turns the charge controller 1803 on and off whenever the charge sequencer 1802 determines that battery 1201 is needed or not needed. In addition, the charge controller 1803 is controlled by an output (not shown) of one of the priority order arbiters 1601 for determining whether the charge controller 1803 should operate in a linear mode or in a bypass mode.

因此,充電控制器1803可進行操作以使所有電流流經電晶體1805(旁路模式)或藉由對電晶體1805之閘極施加一恰當之控制電壓來控制流至電池1201之電流量(線性模式)。充電控制器1803接收一藉由電流偵測器1806所產生的回饋電壓,該回饋電壓表示流經電晶體1805之電流。 Thus, the charge controller 1803 can operate to cause all current to flow through the transistor 1805 (bypass mode) or by applying an appropriate control voltage to the gate of the transistor 1805 to control the amount of current flowing to the battery 1201 (linear mode). The charge controller 1803 receives a feedback voltage generated by the current detector 1806, which represents the current flowing through the transistor 1805.

此外,能量轉換器1000包含一節點VBATOUT,該節點VBATOUT可用於直接獲取電池1201之電壓。此外,一電阻1807可連接於節點VOUT與電晶體1805之間。此外,如圖4所示,介於1微法至10微法範圍內之電容器1006及1008可視需要而連接至輸入節 點Vimpv及輸出節點VOUT。電容器1006可視需要用於提供能量轉換器之啟動所需之高電流,且介於50奈法(nF)至150奈法之範圍內、且較佳地係為100奈法之電容器1008可視需要用於平滑升壓轉換器之輸出。 Furthermore, the energy converter 1000 includes a V BATOUT node, the node V BATOUT voltage battery can be used for direct access 1201. In addition, a resistor 1807 can be connected between the node V OUT and the transistor 1805. Furthermore, as shown in FIG. 4, capacitors 1006 and 1008 ranging from 1 microfarad to 10 microfarads can be connected to input node Vimpv and output node VOUT as needed . Capacitor 1006 can be used to provide the high current required for the activation of the energy converter, and capacitor 1008, which is in the range of 50 nanofarads (nF) to 150 nanofarads, and preferably 100 nanofarads, can be used as needed. For smoothing the output of the boost converter.

第一實施例之第一替代方案 First alternative to the first embodiment

圖6表示圖4所示第一實施例之一替代實施方案。 Figure 6 shows an alternative embodiment of the first embodiment shown in Figure 4.

如圖6所示,能量轉換器2000不同於能量轉換器1000之處在於,能量轉換器2000中存在受控於一升壓控制器2602之電晶體2604及2605。該二電晶體之用途在於用作同步輸出開關,以減少二極體1007之串聯損耗。 As shown in FIG. 6, energy converter 2000 differs from energy converter 1000 in that there are transistors 2604 and 2605 controlled by a boost controller 2602 in energy converter 2000. The purpose of the diode is to act as a synchronous output switch to reduce the series losses of the diode 1007.

第一實施例之第二替代方案 Second alternative to the first embodiment

圖7例示圖4所示第一實施例之一第二替代方案。 Figure 7 illustrates a second alternative to the first embodiment of Figure 4.

如圖7所示,能量轉換器3000不同於能量轉換器1000之處在於,能量轉換器3000中存在一可選之開關SW電容調節器(switch SW cap regulator)3401、一類比電源AVDD選擇區塊3402、以及電容器3003及3004。 As shown in FIG. 7, the energy converter 3000 is different from the energy converter 1000 in that there is an optional switch SW cap regulator 3401 in the energy converter 3000, and an analog power supply AVDD selection block. 3402, and capacitors 3003 and 3004.

能量轉換器3000之AVDD選擇區塊3402之用途在於即時地選擇用於為能量轉換器3000之類比功能供電之電壓源。更具體而言,可於VOUT與VIN之間選擇該電壓源。 The purpose of the AVDD selection block 3402 of the energy converter 3000 is to instantly select a voltage source for powering the analog function of the energy converter 3000. More specifically, the voltage source can be selected between V OUT and V IN .

如圖所示,AVDD選擇區塊3402之輸出連接至一埠AVDD,該埠AVDD又連接至電容器3004。電容器3004之用途在於確保與AVDD訊號相對應之類比組件之電源保持穩定。 As shown in FIG, AVDD selects the output of block 3402 is connected to a port A VDD, which in turn is connected to the port A VDD capacitor 3004. The purpose of capacitor 3004 is to ensure that the power supply of the analog component corresponding to the A VDD signal remains stable.

可選之SW電容調節器3401之用途在於自低電壓VIN產生一高電壓。更具體而言,調節器3401藉由連接至電容器3003而能夠使電壓VIN翻倍並對該電壓進行調節,以產生一例如為3.3伏之高電壓值或一所需高電壓值,以維持能量轉換器3000之類比功能之運作。 The purpose of the optional SW capacitor regulator 3401 is to generate a high voltage from the low voltage V IN . More specifically, the regulator 3401 can double the voltage V IN and adjust the voltage by connecting to the capacitor 3003 to generate a high voltage value of, for example, 3.3 volts or a desired high voltage value to maintain The operation of the analog function of the energy converter 3000.

第一實施例之第三替代方案Third alternative of the first embodiment

圖8例示圖4所示第一實施例之一第三替代方案。 Figure 8 illustrates a third alternative to the first embodiment of Figure 4.

如圖8所示,能量轉換器4000不同於能量轉換器1000之處在於,能量轉換器4000中存在多個電池4202及4203。雖然能量轉換器4000中存在二附加電池,但可使用任何數目(自一個至例如5個、10個、20個或甚至更多個)之附加電池。多個電池之存在將具有以下優點:可儲存更多能量,可視需要提供更高之能量叢發,以及提供一冗餘設計,該冗餘設計即使在一或多個電池發生故障之情形中仍能確保運作。 As shown in FIG. 8, the energy converter 4000 differs from the energy converter 1000 in that a plurality of batteries 4202 and 4203 are present in the energy converter 4000. Although there are two additional batteries in the energy converter 4000, any number (from one to, for example, five, ten, twenty or even more) of additional batteries can be used. The presence of multiple batteries will have the advantage of storing more energy, providing higher energy bursts as needed, and providing a redundant design that even in the event of a failure of one or more batteries Can ensure operation.

此外,多個電池之存在使得能夠更有效地管理各該電池之充電/放電循環,進而延長使用壽命,如下文所將闡釋。 In addition, the presence of a plurality of batteries enables more efficient management of the charge/discharge cycles of each of the batteries, thereby extending the useful life, as will be explained below.

由於存在複數個電池1201、4202及4203,因而需要將能量轉換器1000之開關1804替換為能量轉換器4000之開關4804。各開關4804可以一並聯方式運作,以按同一方式連接所有電池。換言之,開關4804可將電池1201、4202及4203連接至同一訊號,該訊號係為VBATOUT、及/或VBATSENSE、及/或VOUT。另一方面,各開關4804可被操作成以一不同方式分別連接各該單一電池。舉例而 言,可將電池4203連接至訊號VBATOUT,以經由低壓降穩壓器1701對負載供電。同時,可將電池4202連接至訊號VBATSENSE及VOUT,以藉由第一光電壓產生器1101所產生之電力來對其充電。同時,電池1201亦可以被充電之一方式連接,或者可自能量轉換器4000斷開,或者可連接至訊號VOUT以幫助對電池4202充電,抑或可連接至訊號VBATOUT以幫助電池4203經由低壓降穩壓器1701來驅動負載。更一般而言,各開關4804可組態以根據由充電排序器1802所控制的之邏輯關係而以一彼此獨立之方式控制該等電池1201、4202及4203之每一連接。 Since there are a plurality of batteries 1201, 4202, and 4203, it is necessary to replace the switch 1804 of the energy converter 1000 with the switch 4804 of the energy converter 4000. Each switch 4804 can operate in a parallel manner to connect all of the batteries in the same manner. In other words, the switch 4804 can connect the batteries 1201, 4202, and 4203 to the same signal, which is V BATOUT , and / or V BATSENSE , and / or V OUT . Alternatively, each switch 4804 can be operated to connect each of the individual cells in a different manner. For example, battery 4203 can be connected to signal V BATOUT to power the load via low dropout regulator 1701. At the same time, the battery 4202 can be connected to the signals V BATSENSE and V OUT to be charged by the power generated by the first photo voltage generator 1101. At the same time, the battery 1201 can also be connected by one of the charging methods, or can be disconnected from the energy converter 4000, or can be connected to the signal V OUT to help charge the battery 4202, or can be connected to the signal V BATOUT to help the battery 4203 via the low voltage The voltage regulator 1701 is lowered to drive the load. More generally, each switch 4804 can be configured to control each of the batteries 1201, 4202, and 4203 in a manner independent of each other based on the logic controlled by the charge sequencer 1802.

第一實施例之第四替代方案 Fourth alternative to the first embodiment

圖10例示圖4所示第一實施例之一第四替代方案。 Figure 10 illustrates a fourth alternative to the first embodiment of Figure 4.

如圖所示,第四替代方案之能量轉換器5000不同於第一實施例之能量轉換器1000之處在於,能量轉換器5000中存在用於在訊號VOUT與節點FB之間達成一電阻電橋之電阻器5001及5002,且存在用於在訊號VINPV與節點VUVLO之間達成一電阻電橋之電阻器5005及5009。 As shown, the fourth alternative energy converter 5000 is different from the energy converter 1000 of the first embodiment in that an energy converter 5000 is present for achieving a resistance between the signal V OUT and the node FB. Bridge resistors 5001 and 5002, and resistors 5005 and 5009 for achieving a resistive bridge between signal V INPV and node V UVLO .

能量轉換器5000之設計者可確定此等電阻電橋之大小,以為輸入至比較器1502之回饋訊號FB及用於驅動UVLO 1403之訊號提供恰當比率。 The designer of the energy converter 5000 can determine the size of the resistor bridges to provide an appropriate ratio for the feedback signal FB input to the comparator 1502 and the signal used to drive the UVLO 1403.

最後,圖11例示一能量轉換器6000之一實施例,其包含第一實施例、以及第一實施例之第一、第二、第三及第四變型之所有特徵。應理解,第一實施例之第一、第二、第三及第四變型可以 任何組合形式應用於第一實施例。舉例而言,一設計者可決定僅將第一變型應用於第一實施例。作為另一選擇,一設計者可決定將第一變型及第四變型同時應用於第一實施例。作為再一選擇,可在無任何變型之情況下採用第一實施例。更一般而言,可實作能量轉換器1000、2000、3000、4000、及5000之任意組合。 Finally, Figure 11 illustrates an embodiment of an energy converter 6000 that includes all of the features of the first embodiment, and the first, second, third, and fourth variations of the first embodiment. It should be understood that the first, second, third and fourth variants of the first embodiment may Any combination form is applied to the first embodiment. For example, a designer may decide to apply only the first variant to the first embodiment. Alternatively, a designer may decide to apply both the first variation and the fourth variant to the first embodiment. As a further alternative, the first embodiment can be employed without any modification. More generally, any combination of energy converters 1000, 2000, 3000, 4000, and 5000 can be implemented.

第一實施例之運作 Operation of the first embodiment

圖5表示圖4所示第一實施例之一示意性運作。 Figure 5 shows a schematic operation of one of the first embodiments shown in Figure 4.

加電 Power up

如圖5所示,在步驟S10中啟動能量轉換器1000。啟動程序可主要係為切換一接通/斷開(ON/OFF)按鈕。作為另一選擇,或除此之外,可由欠電壓閉鎖(UVLO)1403達到一預定參考值而自動地控制該啟動過程。 As shown in FIG. 5, the energy converter 1000 is activated in step S10. The startup program can be mainly to switch an ON/OFF button. Alternatively, or in addition, the startup process can be automatically controlled by undervoltage lockout (UVLO) 1403 to a predetermined reference value.

更具體而言,當被光照射時,第一光電壓產生器1101會對電容1006充電。此時,電容1006在光伏電池1101看來為一短路。因此,光伏電池1101將以電容1006之短路電流來對電容1006充電,該短路電流值取決於入射光功率。一旦節點VUVLO上的電壓達到觸發欠電壓閉鎖1403所需之值,欠電壓閉鎖1403之輸出便進行切換以接通能量轉換器。舉例而言,對於能量轉換器5000及6000,由於其中存在由電阻5005及5009所達成之電阻電橋,故欠電壓閉鎖1403達到觸發值VUVLO所需之時間將由以下方程式(Eq1)表示(Eq1)TUVLO_OK=CIN(VUVLO×(R2+R1)/R1)/IINPV More specifically, the first photovoltage generator 1101 charges the capacitor 1006 when illuminated by light. At this time, the capacitor 1006 appears to be a short circuit in the photovoltaic cell 1101. Thus, photovoltaic cell 1101 will charge capacitor 1006 with a short circuit current of capacitor 1006, which is dependent on the incident light power. Once the voltage on node V UVLO reaches the value required to trigger undervoltage lockout 1403, the output of undervoltage lockout 1403 switches to turn the energy converter on. For example, for the energy converters 5000 and 6000, since there is a resistance bridge realized by the resistors 5005 and 5009, the time required for the undervoltage lockout 1403 to reach the trigger value V UVLO will be expressed by the following equation (Eq1) (Eq1) )T UVLO_OK =C IN (V UVLO ×(R 2 +R 1 )/R 1 )/I INPV

其中R1表示電阻5009,R2表示電阻5005,VUVLO表示欠電壓閉鎖1403之觸發電壓,CIN表示輸入電容1006,IINPV表示由第一光伏電池1101所提供之短路電流,且TUVLO_OK表示欠電壓閉鎖進行切換所需之時間。 Wherein R 1 represents a resistor 5009, R 2 represents a resistor 5005, V UVLO represents a trigger voltage of the undervoltage lockout 1403, C IN represents an input capacitor 1006, I INPV represents a short circuit current provided by the first photovoltaic cell 1101, and T UVLO_OK represents The time required for the undervoltage lockout to switch.

在步驟S11中,使類比電路通電,以為能量轉換器1000中之各元件提供所需之類比訊號。 In step S11, the analog circuit is energized to provide the desired analog signal for each component in the energy converter 1000.

一旦欠電壓閉鎖1403進行切換,其便會接通類比功能1501以使能量轉換器運作。類比功能被設計成使該等功能所消耗之電流不超過一例如為10微安至20微安之預定水準,以確保由該等類比功能所代表之負載不會降低輸入電壓IINPV而再次觸發UVLO並斷開能量轉換器。 Once the undervoltage lockout 1403 is switched, it turns on the analog function 1501 to operate the energy converter. The analog function is designed such that the current consumed by the functions does not exceed a predetermined level of, for example, 10 microamps to 20 microamps to ensure that the load represented by the analog functions does not degrade the input voltage I INPV and triggers the UVLO again. And disconnect the energy converter.

一旦類比功能係為現用的並變得穩定,便使用自一RC計時器(圖中未示出)發出之一邏輯訊號或一表示類比功能現用且穩定之訊號(圖中未示出)來啟動升壓轉換器,以升高輸入電壓VINPV而獲得輸出電壓VOUTOnce the analog function is active and stable, a logic signal or a signal indicating that the analog function is active and stable (not shown) is used to initiate from an RC timer (not shown). The boost converter obtains the output voltage V OUT by raising the input voltage V INPV .

使輸出電壓VOUT向上斜升,以限制自電容1006汲取之平均電流。執行此步驟係為了避免自電容1006獲取之電流大於由光電壓產生器1101及/或電容1006所提供之電流。隨後,升壓轉換器將以一脈衝方式運作,同時監測輸入電壓VINPV並確保輸入電壓VINPV保持接近由最佳VIN估測器1302所產生之最佳電壓值VINTarg。此使得能夠以一受限電流對輸出電容1008充電,同時確保電壓VINPV保持於一能夠自第一光伏電池1101提供最可能佳之功率傳輸之值。 The output voltage V OUT is ramped up to limit the average current drawn from the capacitor 1006. This step is performed to avoid that the current drawn by the self-capacitance 1006 is greater than the current supplied by the photovoltage generator 1101 and/or the capacitor 1006. The boost converter will then operate in a pulse while monitoring the input voltage V INPV and ensuring that the input voltage V INPV remains close to the optimum voltage value V INTarg generated by the optimum V IN estimator 1302. This enables the output capacitor 1008 to be charged with a limited current while ensuring that the voltage V INPV is maintained at a value that is capable of providing the best possible power transfer from the first photovoltaic cell 1101.

類比電源AVDD之管理 Analog power supply A VDD management

可以一能夠提供一大約2伏之標稱電壓之光電壓產生器1101來實作第一實施例之能量轉換器。在此種情形中,可產生一用於為能量轉換器之類比功能供電之電壓AVDD,該電壓值高於由光電壓產生器1101所產生之2伏電壓。一高於2伏之電壓值可達成類比功能之一更佳線性度、一更佳之電源抑制比(Power Supply Rejection Ratio;PSRR)及更佳之頻率效能。此外,此種較高電壓可自能量轉換器中之不同來源(例如,輸出電壓VOUT或儲存於電池1201中之電壓)獲得。 The energy converter of the first embodiment can be implemented as a photovoltage generator 1101 capable of providing a nominal voltage of about 2 volts. In this case, a voltage A VDD for powering the analog function of the energy converter can be generated which is higher than the 2 volt generated by the photovoltage generator 1101. A voltage value higher than 2 volts can achieve one of the analog functions, better linearity, a better Power Supply Rejection Ratio (PSRR), and better frequency performance. Moreover, such higher voltages can be derived from different sources in the energy converter (eg, output voltage VOUT or voltage stored in battery 1201).

同時,在能量轉換器(例如,能量轉換器3000)中可包含一能夠使輸入電壓VINPV翻倍並將其調節至一例如3.3伏之值之小型調節器3401。 At the same time, a small regulator 3401 capable of doubling the input voltage V INPV and adjusting it to a value of, for example, 3.3 volts can be included in the energy converter (eg, energy converter 3000).

開路調節 Open circuit adjustment

在步驟S12中,優先順位仲裁器1601開始運作,以將接收自第一光電壓產生器1101之功率轉換成輸出節點VOUTIn step S12, the priority order arbiter 1601 starts operating to convert the power received from the first photovoltage generator 1101 into an output node V OUT .

輸出電壓VOUT達到一作為電壓VREF之一函數之穩定值。舉例而言,在圖11所示能量轉換器6000之情形中,輸出電壓VOUT係由如下方程式(Eq 2)表示(Eq2)VOUT=VFB×((R3+R4)/R3) The output voltage V OUT reaches a stable value as a function of voltage V REF . For example, in the case of the energy converter 6000 shown in Fig. 11, the output voltage V OUT is expressed by the following equation (Eq 2) (Eq2) V OUT = V FB × ((R 3 + R 4 ) / R 3 )

其中VFB表示節點FB處之電壓,R3表示電阻5002,且R4表示電阻5001。舉例而言,若電池1201具有一4.1伏之最大工作電壓,則將電壓VREF選擇成確保電壓VOUT不會超過4.1伏之最大額定電 壓。 Where V FB represents the voltage at node FB, R 3 represents resistance 5002, and R 4 represents resistance 5001. For example, if battery 1201 has a maximum operating voltage of 4.1 volts, voltage V REF is selected to ensure that voltage V OUT does not exceed a maximum rated voltage of 4.1 volts.

因此,升壓轉換器例如可以一脈衝頻率調變(Pulse Frequency Modulation;PFM)模式來驅動電流脈衝,並使電壓VINPV偏離而變成等於開路電壓。 Therefore, the boost converter can, for example, drive a current pulse in a Pulse Frequency Modulation (PFM) mode and cause the voltage V INPV to deviate to become equal to the open circuit voltage.

在步驟S13中,優先順位仲裁器評估所轉換之功率是否足以為連接至節點VLDO之負載供電。該評估可藉由比較器1502及1303所提供之輸入來執行。 In step S13, the priority order arbiter evaluates whether the converted power is sufficient to power the load connected to the node VLDO . This evaluation can be performed by the inputs provided by comparators 1502 and 1303.

若步驟S13中之判斷結果係為所轉換之功率不大於連接至節點VLDO之負載所需之功率,則在步驟S16中,優先順位仲裁器評估所轉換之功率是否恰好足以為連接至節點VLDO之負載供電。該評估可藉由比較器1502及1303所提供之輸入來執行。 If the result of the determination in step S13 is that the converted power is not greater than the power required to connect to the load of the node VLDO , then in step S16, the priority arbitrator evaluates whether the converted power is just enough to connect to the node V. The load of the LDO is powered. This evaluation can be performed by the inputs provided by comparators 1502 and 1303.

若步驟S16中之判斷結果係為所轉換之功率恰好足以為連接至至節點VLDO之負載供電,則在步驟S17中驅動該負載。 If the result of the determination in step S16 is that the converted power is just enough to supply power to the load connected to the node VLDO, the load is driven in step S17.

電池充電 Charging batteries

若步驟S13中之判斷結果係為所轉換之功率大於連接至節點VLDO之負載所需之功率,則在步驟S15中驅動該負載。同時,在步驟S140中對電池1201再充電。 If the result of the determination in step S13 is that the converted power is greater than the power required to connect the load to the node VLDO, the load is driven in step S15. At the same time, the battery 1201 is recharged in step S140.

步驟S15及S140係藉由根據充電排序器1802而正確地連接各開關1804來執行。更具體而言,為驅動負載並對電池再充電,使節點VOUT連接至節點VBATOUT及節點VBAT1Steps S15 and S140 are performed by properly connecting the switches 1804 according to the charge sequencer 1802. More specifically, to drive the load and recharge the battery, node V OUT is connected to node V BATOUT and node V BAT1 .

執行步驟S15及S140,直至藉由比較器1502及1303以及優先順位仲裁器1601而偵測到所轉換之功率大小已改變為止,及/或直 至偵測到負載所使用之功率大小已改變為止。 Steps S15 and S140 are performed until it is detected by the comparators 1502 and 1303 and the priority order arbitrator 1601 that the converted power has changed, and/or Until the power used to detect the load has changed.

電池再充電步驟S140係由步驟S141、S142及S143構成。步驟S141係藉由將至少VOUT連接至VBAT1來對電池再充電。在步驟S142中,藉由SWAP比較器1801來判斷電池是否已被充電至一與保存於充電排序器1802中之電池1201之最小充電臨限值相對應之值。若在步驟S142中判定該電池被充電至至少該最小充電臨限值,則使VBATOUT自VOUT斷開,並使優先順位仲裁器1601運作以轉換功率來驅動負載。此將有效地捨棄原本可被轉換而負載並不需要之電量。 The battery recharging step S140 is composed of steps S141, S142, and S143. Step S141 recharges the battery by connecting at least V OUT to V BAT1 . In step S142, it is determined by the SWAP comparator 1801 whether the battery has been charged to a value corresponding to the minimum charge threshold of the battery 1201 stored in the charge sequencer 1802. If it is determined in step S142 that the battery is charged to at least the minimum charge threshold, then V BATOUT is disconnected from V OUT and the priority order arbiter 1601 is operated to convert power to drive the load. This will effectively discard the amount of power that would otherwise be converted and not needed by the load.

更具體而言,一旦輸出電壓VOUT穩定化,則在對該等電池充電之前,可判定該等電池之充電狀態。在具有多個電池1201、4202及4203之情形中,可判定各該電池之充電狀態。此不僅能夠得知該等電池之充電狀態,且亦能夠偵測到該等電池之潛在問題(例如,可偵測到一短路或一開路)。 More specifically, once the output voltage V OUT is stabilized, the state of charge of the batteries can be determined prior to charging the batteries. In the case of having a plurality of batteries 1201, 4202, and 4203, the state of charge of each of the batteries can be determined. This not only informs the state of charge of the batteries, but also detects potential problems with the batteries (eg, a short circuit or an open circuit can be detected).

充電排序器1802組態以儲存與該等電池之品質相關之資訊(充電水準及/或缺陷)並藉以在能量轉換器運作期間根據所述所儲存之資訊而以一適當之方式管理該等電池之充電及放電。舉例而言,若一電池在一先前檢查期間已被辨別出具有缺陷,則充電排序器可決定不再檢查該電池。此外,充電排序器可決定不對該電池充電及/或放電。 The charge sequencer 1802 is configured to store information related to the quality of the batteries (charging level and/or defect) and to manage the batteries in an appropriate manner based on the stored information during operation of the energy converter Charging and discharging. For example, if a battery has been identified as having a defect during a previous inspection, the charge sequencer may decide not to check the battery. Additionally, the charge sequencer may decide not to charge and/or discharge the battery.

當使用可在市場上購得之薄膜電池時,建議使用一恆壓充電方法。然而,在於30℃下對一1毫安(mAH)電池充電之情形中,施加一例如為4.1伏之恆壓能夠將一10毫安至30毫安之電流注入 該電池中。同時,此種電流可能無法自光電壓產生器1101之輸出得到。在此種情形中,可以一恆定功率替代一恆壓來對電池充電。因此,優先順位仲裁器1601組態以偵測輸出電壓VOUT之發散並啟動一功能模式;於該功能模式中充電控制器1803操作於線性模式。優先順位仲裁器1601更組態以使升壓轉換器運作於如下方式:藉由將來自電容1006之電流脈衝轉移至電容1008而調節輸入電壓VINPVWhen using a commercially available thin film battery, it is recommended to use a constant voltage charging method. However, in the case of charging a 1 mA (mAH) battery at 30 ° C, a constant voltage of, for example, 4.1 volts can be applied to inject a current of 10 mA to 30 mA into the battery. At the same time, such current may not be obtained from the output of the photovoltage generator 1101. In this case, a constant voltage can be used instead of a constant voltage to charge the battery. Therefore, the priority order arbiter 1601 is configured to detect the divergence of the output voltage V OUT and initiate a functional mode in which the charge controller 1803 operates in a linear mode. The priority order arbiter 1601 is further configured to operate the boost converter in a manner that regulates the input voltage V INPV by transferring a current pulse from the capacitor 1006 to the capacitor 1008.

存在用於產生電流脈衝之不同選項。舉例而言,可將該等脈衝動態地間隔開,以調節輸入電壓。 There are different options for generating current pulses. For example, the pulses can be dynamically spaced to adjust the input voltage.

第一實施例之第三替代方案之電池充電 Battery charging of the third alternative of the first embodiment

圖9例示對第一實施例之第三替代方案(包括複數個電池1201、4202及4203)之充電操作。 Figure 9 illustrates a charging operation for a third alternative (including a plurality of batteries 1201, 4202, and 4203) of the first embodiment.

圖9所示操作不同於圖5所示操作之處在於,圖9所示操作中存在不止一個電池。更具體而言,圖5之步驟S140及S190分別被圖9之步驟S240及S290取代。 The operation shown in Fig. 9 differs from the operation shown in Fig. 5 in that there is more than one battery in the operation shown in Fig. 9. More specifically, steps S140 and S190 of FIG. 5 are replaced by steps S240 and S290 of FIG. 9, respectively.

放電步驟S240包括步驟S244、步驟S141、步驟S142、步驟S245及步驟S143。步驟S141、步驟S142及步驟S143分別對應於圖5之相應步驟。 The discharging step S240 includes step S244, step S141, step S142, step S245, and step S143. Step S141, step S142, and step S143 correspond to the corresponding steps of FIG. 5, respectively.

在步驟S244中,由充電排序器1802判斷哪個電池需要充電。更具體而言,欲被充電之電池係為具有最低充電值者。 In step S244, the charge sequencer 1802 determines which battery needs to be charged. More specifically, the battery to be charged is the one having the lowest charging value.

一旦該電池被充電,則在步驟S141及S142期間,由充電排序器1802判斷另一電池是否需要充電。若「是」,則如上所述在步 驟S244中選擇下一個欲被充電之電池。若「否」,則如圖5所述在步驟S143中捨棄多餘之功率。 Once the battery is charged, during the steps S141 and S142, the charge sequencer 1802 determines whether another battery needs to be charged. If "yes", then as mentioned above The next battery to be charged is selected in step S244. If "No", the excess power is discarded in step S143 as described in FIG.

藉由此種方式,將確保優先對具有一較低充電值之電池再充電。此有利之處在於,藉由對充電值更接近與最大放電臨限值相對應之值之電池再充電、而非對一具有一較高充電值之電池再充電,能夠使充電/放電循環減少,並因此會延長電池之使用壽命。 In this way, it will be ensured that the battery having a lower charging value is preferentially recharged. This is advantageous in that the charge/discharge cycle can be reduced by recharging the battery whose charge value is closer to the value corresponding to the maximum discharge threshold, instead of recharging a battery having a higher charge value. And therefore will extend the life of the battery.

電池放電 Battery discharge

若步驟S16中的判斷結果係為所轉換之功率不足以為連接至節點VLDO之負載供電,則在步驟S18中驅動負載、同時在步驟S190中對電池放電。 If the result of the determination in step S16 is that the converted power is insufficient to supply power to the load connected to the node VLDO, the load is driven in step S18 while discharging the battery in step S190.

步驟S18及S190係藉由根據充電排序器1802而正確地連接各開關1804來執行。更具體而言,為驅動負載並對電池放電,使節點VOUT連接至節點VBATOUT及節點VBAT1Steps S18 and S190 are performed by properly connecting the switches 1804 according to the charge sequencer 1802. More specifically, to drive the load and discharge the battery, node V OUT is connected to node V BATOUT and node V BAT1 .

執行步驟S18及S190,直至藉由比較器1502及1303以及優先順位仲裁器1601而偵測到所轉換之功率大小已改變為止,及/或直至偵測到負載所使用之功率大小已改變為止,及/或直至藉由SWAP比較器1801而偵測到電池1201放電至一與儲存於充電排序器1802中之最大放電臨限值相對應之值為止。 Steps S18 and S190 are performed until it is detected by the comparators 1502 and 1303 and the priority order arbiter 1601 that the converted power has changed, and/or until the power used to detect the load has changed. And/or until the battery 1201 is detected to be discharged by the SWAP comparator 1801 to a value corresponding to the maximum discharge threshold stored in the charge sequencer 1802.

電池放電步驟S190係由步驟S191及S192構成。步驟S191係藉由將至少VBAT1連接至VBATOUT而對電池放電。在步驟S192中,由SWAP比較器1801判斷電池是否已被放電至與保存於充電排序器1802中之電池1201之最大放電臨限值相對應之值。若判定電 池已放電至至少一與電池1201之最大放電臨限值相對應之值,則中斷步驟S18及S190。 The battery discharging step S190 is composed of steps S191 and S192. Step S191 discharges the battery by connecting at least V BAT1 to V BATOUT . In step S192, it is judged by the SWAP comparator 1801 whether or not the battery has been discharged to a value corresponding to the maximum discharge threshold value of the battery 1201 stored in the charge sequencer 1802. If it is determined that the battery has been discharged to at least one value corresponding to the maximum discharge threshold of the battery 1201, steps S18 and S190 are interrupted.

第一實施例之第三替代方案之電池放電 Battery discharge of the third alternative of the first embodiment

圖9例示第一實施例之第三替代方案(包括複數個電池1201、4202及4203)之放電操作。 Figure 9 illustrates a discharge operation of a third alternative (including a plurality of batteries 1201, 4202, and 4203) of the first embodiment.

圖9所示操作不同於圖5所示操作之處在於,圖9所示操作中存在不止一個電池。更具體而言,圖5之步驟S140及S190被圖9之步驟S240及S290取代。 The operation shown in Fig. 9 differs from the operation shown in Fig. 5 in that there is more than one battery in the operation shown in Fig. 9. More specifically, steps S140 and S190 of FIG. 5 are replaced by steps S240 and S290 of FIG.

放電步驟S290包括步驟S292、步驟S191、步驟S192、及步驟S294。步驟S191及步驟S192分別對應於圖5之相應步驟。 The discharging step S290 includes step S292, step S191, step S192, and step S294. Step S191 and step S192 correspond to the corresponding steps of FIG. 5, respectively.

在步驟S294中,由充電排序器1802判斷可對哪個電池放電。更具體而言,欲被放電之電池係為具有最高充電值者。 In step S294, the charge sequencer 1802 determines which battery can be discharged. More specifically, the battery to be discharged is the one having the highest charging value.

在步驟S191及S192中,一旦電池被放電至一與最大放電臨限值相對應之水準,便由充電排序器1802判斷是否可對另一電池放電以保持負載該驅動。若為「是」,則如上所述在步驟S294中選擇下一個欲被放電之電池。若為「否」,則中斷對負載之驅動。 In steps S191 and S192, once the battery is discharged to a level corresponding to the maximum discharge threshold, the charge sequencer 1802 determines whether another battery can be discharged to keep the drive under load. If YES, the next battery to be discharged is selected in step S294 as described above. If "No", the drive to the load is interrupted.

藉由此種方式,確保優先地對具有一較高充電值之電池放電。此有利之處在於,藉由使一充電值更接近一與最小充電臨限值相對應之值之電池放電、而非使具有一較低充電值之電池放電,能減少充電/放電循環之數目,並因此延長電池之使用壽命。 In this way, it is ensured that the battery having a higher charging value is preferentially discharged. This is advantageous in that the number of charge/discharge cycles can be reduced by discharging a battery having a charge value closer to a value corresponding to the minimum charge threshold instead of discharging a battery having a lower charge value. And thus extend the life of the battery.

因此,在具有多個電池時所執行之充電/放電操作係為有利的,乃因其會提供更大的靈活性,因而會延長使用壽命。在僅有一個 電池之情形中,當可充電或需要放電時,該系統可僅對單一電池充電/放電,而與該電池之充電水準無關。當具有複數個電池時,該系統可判斷對哪個(哪些)電池充電/放電,以嘗試對各該電池進行完全充電/放電。藉由此種方式,可獨立地操作各該電池,進而達成更大之靈活性。 Therefore, the charging/discharging operation performed when having a plurality of batteries is advantageous because it provides greater flexibility and thus prolongs the service life. In only one In the case of a battery, the system can only charge/discharge a single battery when it is rechargeable or needs to be discharged, regardless of the level of charging of the battery. When there are multiple batteries, the system can determine which battery(s) are being charged/discharged in an attempt to fully charge/discharge each of the batteries. In this way, each of the batteries can be operated independently, thereby achieving greater flexibility.

舉例而言,若僅有一個具有某一容量之電池可用,且該容量之40%用於驅動負載,則當轉換出某些額外功率而使得不再需要使電池放電來驅動負載時,可對該電池再充電。然而,此意味著電池將進行一100%至60%至100%之充電循環,而此可能是不理想的。 For example, if only one battery with a certain capacity is available and 40% of the capacity is used to drive the load, then when some extra power is converted so that it is no longer necessary to discharge the battery to drive the load, The battery is recharged. However, this means that the battery will undergo a 100% to 60% to 100% charge cycle, which may be undesirable.

在同一情形中,若使用二個具有單個電池容量之一半之電池,則可使用第一電池來驅動負載,進而達成與該容量之30%相對應之最終充電水準。當再次具有額外功率時,可使電池完全充滿電,進而達成一100%至30%至100%之充電循環,而第二電池在整個循環期間保持100%。此有利之處在於,其將提高該二電池之使用壽命。 In the same situation, if two batteries having one-half of a single battery capacity are used, the first battery can be used to drive the load, thereby achieving a final charge level corresponding to 30% of the capacity. When there is additional power again, the battery can be fully charged, thereby achieving a 100% to 30% to 100% charge cycle, while the second battery remains 100% throughout the cycle. This is advantageous in that it will increase the service life of the two batteries.

睡眠模式 Sleep mode

在其中由第一光電壓產生器1101所產生之可用功率及/或儲存於電池中之能量不足以滿足能量轉換器之功率需求之情形中,可使能量轉換器進入一睡眠模式。在此種可選之睡眠模式中,僅欠電壓閉鎖1403以及比較器1303及1502以及參與產生被輸入至該二比較器之參考訊號之電路可保持接通。此使得能量轉換器能夠在消耗盡可能最小量功率之同時保持遵循電壓之演變。 In situations where the available power generated by the first photovoltage generator 1101 and/or the energy stored in the battery is insufficient to meet the power requirements of the energy converter, the energy converter can be placed into a sleep mode. In this alternative sleep mode, only undervoltage lockout 1403 and comparators 1303 and 1502 and circuitry participating in generating a reference signal input to the two comparators may remain on. This allows the energy converter to maintain the evolution of the voltage while consuming the least amount of power possible.

第二實施例 Second embodiment

圖12例示根據本發明第二實施例之一能量轉換器7000之一實施方式。能量轉換器7000不同於本發明第一實施例之能量轉換器1000之處在於,能量並非儲存於電池1201中,而是儲存於一超電容7201中。 Figure 12 illustrates an embodiment of an energy converter 7000 in accordance with a second embodiment of the present invention. The energy converter 7000 is different from the energy converter 1000 of the first embodiment of the present invention in that energy is not stored in the battery 1201 but in an ultracapacitor 7201.

在利用一超電容7201取代電池1201時,主要需修改能量轉換器之輸出級,以利用超電容能夠提供功率之方式。更具體而言,能量轉換器7000之SWAP比較器7801具有一用以啟動一大功率模式之額外輸入TX,該大功率模式容許經由LDO 1701自超電容7201將高電流之叢發遞送至負載。此在週期性地需要高功率之RF應用中尤其有利。除由超電容所提供之高功率叢發之外,能量轉換器7000亦能夠提供由光伏電池1101穫取之能量。 When replacing the battery 1201 with an ultracapacitor 7201, it is mainly necessary to modify the output stage of the energy converter to utilize the way in which the supercapacitor can provide power. More specifically, the SWAP comparator 7801 of the energy converter 7000 has an additional input TX to initiate a high power mode that allows high current bursts to be delivered from the ultracapacitor 7201 to the load via the LDO 1701. This is especially advantageous in RF applications that require high power periodically. In addition to the high power bursts provided by the ultracapacitors, the energy converter 7000 is also capable of providing the energy harvested by the photovoltaic cells 1101.

能量轉換器7000可更包含一PowerOk輸出,用於以訊號告知外部環境該超電容已充電。 The energy converter 7000 can further include a PowerOk output for signaling the external environment that the ultracapacitor has been charged.

此外,能量轉換器7000無需第一實施例中之用於對電池再充電之組件(例如,充電排序器1802、充電控制器1803、電阻1807及偵測器1806)。 In addition, the energy converter 7000 does not require components for recharging the battery in the first embodiment (eg, the charge sequencer 1802, the charge controller 1803, the resistor 1807, and the detector 1806).

應理解,可將第一實施例與第二實施例相組合。此具有若干優點。可由光電壓產生器1101提供功率。同時,可將可能多餘之功率儲存於電池中或超電容中。若自光伏電池獲得之功率不足,則若需要一穩定大小之電流,則可自電池及/或超電容擷取功率,或若需要一高電流值,則可自超電容擷取功率。藉由此種方式,無 論負載所需之電流消耗類型如何,皆可始終確保負載之運作。此外,例如,若僅需要高電流之叢發,則可自電池將功率轉移至超電容。 It should be understood that the first embodiment can be combined with the second embodiment. This has several advantages. Power can be supplied by the photovoltage generator 1101. At the same time, potentially excess power can be stored in the battery or in the supercapacitor. If the power obtained from the photovoltaic cell is insufficient, if a stable current is required, the power can be drawn from the battery and/or the ultracapacitor, or if a high current value is required, the power can be extracted from the supercapacitor. In this way, no The type of current consumption required by the load can always ensure the operation of the load. In addition, for example, if only a high current burst is required, power can be transferred from the battery to the supercapacitor.

此外,可將第一實施例之各變型應用於第二實施例,進而提供與針對第一實施例所概述之相同有利效果。 Further, various modifications of the first embodiment can be applied to the second embodiment, thereby providing the same advantageous effects as those outlined for the first embodiment.

第二實施例之運作類似於第一實施例之運作,不同之處在於,對超電容而非對電池充電/放電。由於超電容之充電電壓不需要如電池一般固定,因此可始終以旁路模式對超電容充電,而無需使用線性模式。在此種情形中,輸入電壓VINPV之調節優先於輸出電壓VOUT之調節。藉由優先調節輸入電壓,可保證自光電壓產生器中抽取最大之功率量。 The operation of the second embodiment is similar to that of the first embodiment except that the supercapacitance is charged/discharged instead of the battery. Since the charging voltage of the ultracapacitor does not need to be fixed as a battery, the ultracapacitor can always be charged in bypass mode without using a linear mode. In this case, the adjustment of the input voltage V INPV takes precedence over the adjustment of the output voltage V OUT . By preferentially adjusting the input voltage, it is ensured that the maximum amount of power is extracted from the photovoltage generator.

當將第二實施例與第一實施例相組合時,在電池充電期間,可如第一實施例所述來管理輸出電壓調節與輸入電壓調節間之優先順序,而在超電容充電期間,可如第二實施例所述來管理該優先順序。若電池與超電容同時充電,則可對電容器及電池二者使用第一實施例之優先方案。 When the second embodiment is combined with the first embodiment, during the charging of the battery, the priority order between the output voltage adjustment and the input voltage adjustment can be managed as described in the first embodiment, and during the supercapacitor charging, This priority order is managed as described in the second embodiment. If the battery is charged simultaneously with the supercapacitor, the priority of the first embodiment can be used for both the capacitor and the battery.

第三實施例 Third embodiment

圖13表示根據本發明第三實施例之一能量轉換器8000。 Figure 13 shows an energy converter 8000 in accordance with a third embodiment of the present invention.

能量轉換器8000不同於第一實施例之能量轉換器6000之處在於,能量轉換器8000中存在一壓電發電機8103、一熱電發電機8104及該二發電機之運作所需之附加組件。壓電源之特異性在於遞送僅限於幾毫瓦之交流功率並具有一高損耗阻抗。類似之特性 亦適用於熱電源。 The energy converter 8000 is different from the energy converter 6000 of the first embodiment in that a piezoelectric generator 8103, a thermoelectric generator 8104, and additional components required for the operation of the two generators are present in the energy converter 8000. The specificity of the voltage source is that delivery is limited to a few milliwatts of AC power and has a high loss impedance. Similar characteristics Also suitable for hot power.

此外,能量轉換器8000更包含二極體8014及8012、電容器8013、開關8018、電感器8011、由電阻器8016及8017形成之一電阻電橋、一可選之SW電容調節器8401、以及一AVDD選擇區塊8402及一UVLO2 8404。由於壓電發電機可產生高輸出電壓,能量轉換器8000更可包含箝位二極體(clamp diode)8015 In addition, the energy converter 8000 further includes a diode 8014 and 8012, a capacitor 8013, a switch 8018, an inductor 8011, a resistor bridge formed by the resistors 8016 and 8017, an optional SW capacitor adjuster 8401, and a AVDD selects block 8402 and a UVLO2 8404. Since the piezoelectric generator can generate a high output voltage, the energy converter 8000 can further include a clamp diode 8015.

若在能量轉換器8000中僅使用壓電源或僅使用熱電源,則能量轉換器8000之運作不同於第一實施例之運作之處在於,優先調節流經調節器8011之電流。一旦訊號VUVLO2達到UVLO2 8404之高臨限值VUVLO2H,升壓轉換器便將使輸出電壓VOUT向上斜升,且若能量轉換器例如處於電池放電模式,則充電排序器將運作以選擇至少一個欲被充電之電池並藉由限制充電電流來對其充電。在此種情形中,升壓轉換器可以一脈寬調變(Pulse-Width Modulation;PWM)方式運作。 If only a piezoelectric power source or only a thermal power source is used in the energy converter 8000, the operation of the energy converter 8000 differs from that of the first embodiment in that the current flowing through the regulator 8011 is preferentially adjusted. Once the signal reaches UVLO2 8404 V UVLO2 high threshold V UVLO2H, the boost converter output voltage V OUT will then ramped up, for example, and if the energy converter in a battery discharge mode, the charging operation of the sorter to select at least A battery to be charged and charged by limiting the charging current. In this case, the boost converter can operate in a Pulse-Width Modulation (PWM) mode.

此外,當以對電池進行再充電所需之電壓進行充電時,儲存於輸入電容8013中之電荷高於輸出電容1008所需之電荷。更具體而言,選擇電容8013之值,俾使升壓轉換器一旦被充電,UVLO2便不會被驅動至其較低觸發值。換言之,電容8013之值足以保證升壓轉換器之正確啟動及輸出電容1008之充電、同時維持電壓VUVLO2高於UVLO2之較低觸發電壓。藉由此種方式,在僅由壓電源及/或熱電源提供功率時,可避免能量轉換器8000在啟動操作期間的不正常關閉。 In addition, when charging is performed at a voltage required to recharge the battery, the charge stored in the input capacitor 8013 is higher than the charge required to output the capacitor 1008. More specifically, the value of capacitor 8013 is selected such that once the boost converter is charged, UVLO2 will not be driven to its lower trigger value. In other words, the value of capacitor 8013 is sufficient to ensure proper startup of the boost converter and charging of output capacitor 1008 while maintaining voltage V UVLO2 above the lower trigger voltage of UVLO2. In this manner, the abnormal shutdown of the energy converter 8000 during the startup operation can be avoided when power is only supplied from the piezoelectric power source and/or the thermal power source.

如上所述,充電器可限制電池充電電流。作為另一選擇,或除 此之外,若所產生的功率足夠以恆壓對電池充電,則可使充電器進入旁路模式且可使升壓轉換器將儲存於電容8103中之電荷轉移至電池。 As mentioned above, the charger can limit the battery charging current. As an alternative, or In addition, if the generated power is sufficient to charge the battery at a constant voltage, the charger can be put into the bypass mode and the boost converter can transfer the charge stored in the capacitor 8103 to the battery.

若壓電發電機8103及/或熱電發電機8104與光電壓產生器1101結合使用,則由於輸入電容8103之電容值可大於輸入電容1006,故在加電期間使UVLO2 8404之輸出優先於UVLO 1403之輸出。此乃因,若此較大輸入電容8013指示出具有足夠之電荷位準,則升壓轉換器可藉由UVLO2 8404之切換而以一更快方式驅動輸出電壓,而無需等待UVLO 1403切換。更一般而言,該二UVLO其中任一者之切換足以啟動能量轉換器之運作。 If the piezoelectric generator 8103 and/or the thermoelectric generator 8104 are used in combination with the photovoltage generator 1101, since the capacitance of the input capacitor 8103 can be greater than the input capacitance 1006, the output of the UVLO2 8404 is prioritized over the UVLO 1403 during power up. The output. This is because if the larger input capacitor 8013 indicates that there is a sufficient charge level, the boost converter can drive the output voltage in a faster manner by switching the UVLO2 8404 without waiting for the UVLO 1403 to switch. More generally, the switching of either of the two UVLOs is sufficient to initiate operation of the energy converter.

若所有發電機皆工作,則光電壓產生器可較其他發電機提供更多功率。舉例而言,光電壓產生器可較TEG(熱電發電機)及壓電發電機產生多出一數量級之功率。因此,在規定能量轉換器之運作狀態時,認為光電壓產生器具有優先順序。 If all generators are working, the photovoltage generator can provide more power than other generators. For example, a photovoltage generator can generate an order of magnitude more power than a TEG (thermoelectric generator) and a piezoelectric generator. Therefore, when the operational state of the energy converter is specified, the photovoltage generator is considered to have a priority order.

作為另一選擇,或除此之外,若功率不足以確保在驅動負載之同時對電池充電,則可使用壓電發電機或熱電發電機來為電池供電。 Alternatively, or in addition, if the power is insufficient to ensure that the battery is being charged while driving the load, a piezoelectric generator or thermoelectric generator can be used to power the battery.

作為另一選擇,或除此之外,若光電壓產生器不提供能量,則熱電發電機或壓電發電機可經由一電荷幫浦調節器(charge pump regulator)而連接至輸出。 Alternatively, or in addition, if the photovoltage generator does not provide energy, the thermoelectric generator or piezoelectric generator can be coupled to the output via a charge pump regulator.

作為另一選擇,可並非使用單一熱電發電機8012,而是將複數個熱電發電機8012串聯連接。此會提供如下額外優點:該等熱電 發電機8012之輸出電壓可高於單一發電機之輸出電壓。此外,藉由使用此種方法,可使能量轉換器8000之設計簡單,乃因無需對熱電發電機8012之輸出進行升壓。 Alternatively, instead of using a single thermoelectric generator 8012, a plurality of thermoelectric generators 8012 may be connected in series. This will provide the following additional advantages: these thermoelectric The output voltage of the generator 8012 can be higher than the output voltage of a single generator. Moreover, by using such a method, the design of the energy converter 8000 can be made simple because there is no need to boost the output of the thermoelectric generator 8012.

可在不產生對於活有機體及環境而言所不期望的有毒物質(例如,鉛、磷、含有鉍的Bi2Te3、銻)之條件下實作能量轉換器。而是,可以矽或任何環境友好型材料來實作能量轉換器。 The energy converter can be implemented without generating toxic substances (for example, lead, phosphorus, Bi2Te3 containing bismuth, bismuth) which are undesirable for living organisms and the environment. Instead, energy converters can be implemented with or without any environmentally friendly material.

第二實施例及第三實施例之運作類似於第一實施例之運作。換言之,對一個或複數個能量儲存元件之充電/放電循環之管理係類似的,而與所使用之發電機類型無關且與所使用之能量儲存元件類型無關。 The operations of the second embodiment and the third embodiment are similar to those of the first embodiment. In other words, the management of the charge/discharge cycle for one or more energy storage elements is similar regardless of the type of generator used and independent of the type of energy storage element used.

本發明係關於一種能量轉換器,其能夠轉換接收自複數個發電機之能量,該等發電機能夠自環境中穫取電力。此種發電機其中之一可係為例如一光電壓產生器。在此種情形中,本發明之能量轉換器組態以接收第一光電壓產生器之輸出作為第一輸入。此外,該能量轉換器組態以自一第二發電機(例如,一第二光電壓產生器)接收一第二輸入。能量轉換器之第一輸入可用以自第一光電壓產生器接收能量,該能量可被能量轉換器轉換。同時,能量轉換器之第二輸入可用以自第二光電壓產生器接收一開路電壓。如此一來,可感測第二光電壓產生器之一精確開路電壓值,並使用此值作為第一光電壓產生器之開路電壓之一估測值。 The present invention relates to an energy converter capable of converting energy received from a plurality of generators that are capable of extracting power from the environment. One of such generators can be, for example, a photovoltage generator. In this case, the energy converter of the present invention is configured to receive the output of the first photovoltage generator as a first input. Additionally, the energy converter is configured to receive a second input from a second generator (eg, a second photovoltage generator). A first input of the energy converter can be used to receive energy from the first photovoltage generator, which energy can be converted by the energy converter. At the same time, the second input of the energy converter can be used to receive an open circuit voltage from the second photovoltage generator. In this way, an accurate open circuit voltage value of one of the second photovoltage generators can be sensed and used as one of the open circuit voltage estimates of the first photovoltage generator.

藉由使用所感測之開路電壓,可估測為提高功率效率而應使第一光電壓產生器所輸出之電壓保持之值。換言之,藉由參照第二光電壓產生器之所感測開路電壓,能量轉換器可轉換接收自第一 光電壓產生器之能量,俾使由第一光電壓產生器所輸出之電壓保持於一能夠提高第一光電壓產生器所產生之功率大小之位準。 By using the sensed open circuit voltage, it is estimated that the voltage output by the first photovoltage generator should be maintained to increase power efficiency. In other words, by referring to the sensed open circuit voltage of the second photovoltage generator, the energy converter can be converted and received from the first The energy of the photovoltage generator maintains the voltage output by the first photovoltage generator at a level that increases the amount of power generated by the first photovoltage generator.

藉由使用此種方法,本發明之能量轉換器能夠自第一光電壓產生器擷取接近最佳值之功率,而無需一複雜之解決方案(例如,MPPT技術所代表之解決方案)。 By using this method, the energy converter of the present invention is capable of drawing near-optimal power from the first photovoltage generator without the need for a complicated solution (e.g., the solution represented by the MPPT technology).

更一般而言,雖然已參照一光電壓產生器闡釋了本發明之各實施例,但本發明並非僅限於此,而是亦可應用於電壓-電流特性類似於圖14所示者之任何發電機。 More generally, although various embodiments of the present invention have been explained with reference to a photovoltage generator, the present invention is not limited thereto but can be applied to any of the voltage-current characteristics similar to those shown in FIG. Motor.

此外,本發明之能量轉換器可組態以自一附加熱電發電機及/或一附加壓電發電機獲取電力。即使當本發明之能量轉換器被實施成自上述三種發電機獲取電力時,亦可使本發明之能量轉換器之架構保持簡單,進而相較MPPT技術而言其運作所需之電力減少。 Furthermore, the energy converter of the present invention can be configured to draw power from an additional thermoelectric generator and/or an additional piezoelectric generator. Even when the energy converter of the present invention is implemented to obtain power from the above three types of generators, the architecture of the energy converter of the present invention can be kept simple, and the power required for its operation is reduced compared to MPPT technology.

此外,本發明可關於一種能量轉換及儲存系統,其包括能量轉換器及至少一個能量儲存元件。 Furthermore, the invention relates to an energy conversion and storage system comprising an energy converter and at least one energy storage element.

此外,雖然在圖4至圖14中顯示電流偵測器1806位於節點VOUT與電晶體1805之間,但本發明並非僅限於此。作為另一選擇,或除此之外,亦可將電流偵測器1805置於電晶體1805與電池1201之間。作為再一選擇,或除此之外,可將電流偵測器1806置於二極體1007與節點VOUT之間。 Further, although the current detector 1806 is shown between the node V OUT and the transistor 1805 in FIGS. 4 to 14, the present invention is not limited thereto. Alternatively, or in addition, current detector 1805 can be placed between transistor 1805 and battery 1201. As a further alternative, or in addition, current detector 1806 can be placed between diode 1007 and node VOUT .

此外,參照一升壓轉換器闡釋了各實施例。然而,本發明並非僅限於此。可使用一降壓轉換器來取代一升壓轉換器。再一選擇為,可使用一降壓-升壓轉換器。可在估測第一發電機之最佳輸出 電壓之前或之後決定使轉換器以一升壓(升高)還是降壓(下降)方式運作。此決定係藉由將第一發電機輸出電壓(在藉由考慮第二發電機來達成最佳化之前或之後)VINPV與電池電壓VBAT及/或輸出電壓VOUT相比較來執行。 Further, various embodiments are explained with reference to a boost converter. However, the invention is not limited to this. A buck converter can be used instead of a boost converter. Alternatively, a buck-boost converter can be used. It is possible to decide whether to operate the converter in a boost (boost) or a buck (drop) mode before or after estimating the optimum output voltage of the first generator. This decision is performed by comparing the first generator output voltage (either before or after optimization is achieved by considering the second generator) V INPV to the battery voltage V BAT and/or the output voltage V OUT .

舉例而言,在運作時,在某一時間VINPV可等於20伏且VBAT可等於4伏。此時,一降壓-升壓轉換器可以一降壓模式運作(降頻轉換)。而在一不同時間,VINPV可等於3伏且VBAT可等於4伏,此時一降壓-升壓轉換器可以一升壓模式運作(升頻轉換)。此有利之處在於,其根據第一光電壓產生器目前所輸出之電壓而提供靈活性。 For example, in operation, V INPV can be equal to 20 volts and V BAT can be equal to 4 volts at a time. At this point, a buck-boost converter can operate in a buck mode (downconverting). At a different time, V INPV can be equal to 3 volts and V BAT can be equal to 4 volts, at which point a buck-boost converter can operate in a boost mode (up-conversion). This is advantageous in that it provides flexibility in accordance with the voltage currently being output by the first photovoltage generator.

作為另一選擇,或除此之外,若第一光電壓產生器之電壓值被設計成保持於VINPV=20伏且VBAT=4伏,則可實作一降壓轉換器來取代一降壓-升壓轉換器。 Alternatively, or in addition, if the voltage value of the first photovoltage generator is designed to be maintained at V INPV = 20 volts and V BAT = 4 volts, a buck converter can be implemented instead of Buck-boost converter.

作為再一選擇,或除此之外,若第一光電壓產生器之電壓值被設計成保持於VINPV=3伏且VBAT=4伏,則可實作一升壓轉換器來取代一降壓-升壓轉換器。 As a further alternative, or in addition, if the voltage value of the first photovoltage generator is designed to be maintained at V INPV = 3 volts and V BAT = 4 volts, a boost converter can be implemented instead of Buck-boost converter.

作為再一選擇,或除此之外,可使用複數個第一光電壓產生器1101,且該等發電機與能量轉換器間之連接可被電性控制成一並聯連接或一串聯連接。更具體而言,一組中的某些發電機可並聯連接,且該組可與另一發電機或一組發電機串聯連接。更一般而言,可達成任二發電機間之任意連接。藉由此種方式,根據所需之輸出電壓而定,該等發電機間之連接可被控制成能提供一VINPV,該VINPV之值最接近所需輸出電壓。 Alternatively, or in addition, a plurality of first photovoltage generators 1101 can be used, and the connections between the generators and the energy converters can be electrically controlled to be a parallel connection or a series connection. More specifically, some of the generators in a group may be connected in parallel, and the group may be connected in series with another generator or a group of generators. More generally, any connection between any two generators can be achieved. By this way, according to the desired output voltage may be connected between the generator may be controlled such as to provide a V INPV, the value of V INPV closest to the desired output voltage.

舉例而言,若使用5個分別提供4伏之發電機且所需VBAT係為3伏,則該等發電機可並聯連接。另一方面,若各該發電機提供4伏且所需VBAT係為4伏,則其可串聯連接。此外,若各該發電機提供2伏且所需VBAT係為4伏,則該等發電機可被兩兩串聯連接,且各兩兩串聯之群組可相互並聯。 For example, if five generators each providing 4 volts are used and the required V BAT system is 3 volts, the generators can be connected in parallel. On the other hand, if each of the generators provides 4 volts and the required V BAT is 4 volts, they can be connected in series. In addition, if each of the generators provides 2 volts and the required V BAT is 4 volts, the generators can be connected in series, and the groups of two and two series can be connected in parallel with each other.

雖然圖中例示出節點VBATOUT及VLDO係為浮動的,但本發明並非僅限於此。舉例而言,其可分別連接至一解耦電容器,該解耦電容器之另一節點連接至一參考電壓(例如,地電壓)。 Although the embodiment shown in FIG node V BATOUT V LDO and the floating system, but the present invention is not limited thereto. For example, it can be separately connected to a decoupling capacitor, the other node of which is connected to a reference voltage (eg, ground voltage).

1‧‧‧電容器 1‧‧‧ capacitor

2‧‧‧電容器 2‧‧‧ capacitor

3‧‧‧電阻器 3‧‧‧Resistors

4‧‧‧電阻器 4‧‧‧Resistors

5‧‧‧電容器 5‧‧‧ capacitor

6‧‧‧電感 6‧‧‧Inductance

7‧‧‧升壓轉換器 7‧‧‧Boost converter

8‧‧‧電阻器 8‧‧‧Resistors

9‧‧‧電阻器 9‧‧‧Resistors

10‧‧‧電容器 10‧‧‧ capacitor

11‧‧‧負載 11‧‧‧ load

12‧‧‧光伏電池 12‧‧‧Photovoltaic cells

13‧‧‧開關 13‧‧‧ switch

VIN‧‧‧輸入 V IN ‧‧‧ input

UVLO‧‧‧埠 UVLO‧‧‧埠

VAUX‧‧‧埠 VAUX‧‧‧埠

L‧‧‧輸出 L‧‧‧ output

300‧‧‧能量轉換器 300‧‧‧Energy Converter

301‧‧‧第一發電機 301‧‧‧First generator

302‧‧‧第二發電機 302‧‧‧second generator

303‧‧‧參考電壓單元 303‧‧‧reference voltage unit

304‧‧‧比較器 304‧‧‧ Comparator

305‧‧‧比較器 305‧‧‧ Comparator

306‧‧‧優先順序單元 306‧‧‧Priority unit

307‧‧‧轉換器單元 307‧‧‧ converter unit

VINPV‧‧‧輸入電壓 V INPV ‧‧‧ input voltage

VPVSS‧‧‧開路電壓/輸入埠 V PVSS ‧‧‧Open circuit voltage / input埠

FB‧‧‧埠/節點/反饋訊號 FB‧‧‧埠/node/feedback signal

VINTarg‧‧‧參考電壓/最佳化電壓值 V INTarg ‧‧‧reference voltage / optimized voltage value

VREF‧‧‧參考電壓 V REF ‧‧‧reference voltage

VOUT‧‧‧輸出電壓 V OUT ‧‧‧ output voltage

1000‧‧‧能量轉換器 1000‧‧‧Energy Converter

1006‧‧‧電容器 1006‧‧‧ capacitor

1007‧‧‧二極體 1007‧‧‧ diode

1008‧‧‧電容器 1008‧‧‧ capacitor

1010‧‧‧電感 1010‧‧‧Inductance

1101‧‧‧第一光電壓產生器 1101‧‧‧First photovoltage generator

1102‧‧‧第二光電壓產生器 1102‧‧‧Second light voltage generator

1201‧‧‧電池 1201‧‧‧Battery

1301‧‧‧溫度感測器 1301‧‧‧Temperature Sensor

1302‧‧‧最佳VIN估測器 1302‧‧‧Best V IN Estimator

1303‧‧‧比較器 1303‧‧‧ comparator

1403‧‧‧UVLO 1403‧‧‧UVLO

1501‧‧‧VREF發電機連同其他類比電路 1501‧‧‧VREF generators along with other analog circuits

1502‧‧‧比較器 1502‧‧‧ comparator

1601‧‧‧優先順位仲裁器 1601‧‧‧Priority arbitrator

1602‧‧‧升壓控制器 1602‧‧‧Booster controller

1603‧‧‧電晶體 1603‧‧‧Optoelectronics

1701‧‧‧低壓降穩壓器(LDO) 1701‧‧‧Low Dropout Regulator (LDO)

1801‧‧‧SWAP比較器 1801‧‧‧SWAP comparator

1802‧‧‧充電排序器 1802‧‧‧Charging sequencer

1803‧‧‧充電控制器 1803‧‧‧Charging controller

1804‧‧‧控制開關 1804‧‧‧Control switch

1805‧‧‧電晶體 1805‧‧‧Optoelectronics

1806‧‧‧電流偵測器 1806‧‧‧ Current Detector

1807‧‧‧電阻 1807‧‧‧resistance

VBAT1‧‧‧埠 V BAT1 ‧‧‧埠

VLDO‧‧‧輸出埠 V LDO ‧‧‧output埠

VUVLO‧‧‧埠/電壓 V UVLO ‧‧‧埠/voltage

VBATSENSE‧‧‧電壓 V BATSENSE ‧‧‧ voltage

VRefMAX‧‧‧高電壓 V RefMAX ‧‧‧High voltage

VRefMIN‧‧‧低電壓值 V RefMIN ‧‧‧Low voltage value

VBATOUT‧‧‧節點 V BATOUT ‧‧‧ nodes

2000‧‧‧能量轉換器 2000‧‧‧Energy Converter

2602‧‧‧升壓控制器 2602‧‧‧Booster controller

2604‧‧‧電晶體 2604‧‧‧Optoelectronics

2605‧‧‧電晶體 2605‧‧‧Optoelectronics

3000‧‧‧能量轉換器 3000‧‧‧Energy Converter

3003‧‧‧電容器 3003‧‧‧ capacitor

3004‧‧‧電容器 3004‧‧‧ capacitor

3401‧‧‧可選之開關SW電容調節器 3401‧‧‧Optional Switch SW Capacitor Regulator

3402‧‧‧類比電源AVDD選擇區塊 3402‧‧‧ analog power supply AVDD selection block

4000‧‧‧能量轉換器 4000‧‧‧Energy Converter

4202‧‧‧電池 4202‧‧‧Battery

4203‧‧‧電池 4203‧‧‧Battery

4804‧‧‧開關 4804‧‧‧Switch

5000‧‧‧能量轉換器 5000‧‧‧Energy Converter

5001‧‧‧電阻器 5001‧‧‧Resistors

5002‧‧‧電阻器 5002‧‧‧Resistors

5005‧‧‧電阻器 5005‧‧‧Resistors

5009‧‧‧電阻器 5009‧‧‧Resistors

6000‧‧‧能量轉換器 6000‧‧‧Energy Converter

7000‧‧‧能量轉換器 7000‧‧‧Energy Converter

7201‧‧‧超電容 7201‧‧‧Supercapacitor

7801‧‧‧SWAP比較器 7801‧‧‧SWAP comparator

8000‧‧‧能量轉換器 8000‧‧‧Energy Converter

8011‧‧‧電感器 8011‧‧‧Inductors

8012‧‧‧二極體 8012‧‧‧ diode

8013‧‧‧電容器 8013‧‧‧ capacitor

8014‧‧‧二極體 8014‧‧‧ diode

8015‧‧‧箝位二極體 8015‧‧‧Clamping diode

8016‧‧‧電阻器 8016‧‧‧Resistors

8017‧‧‧電阻器 8017‧‧‧Resistors

8018‧‧‧開關 8018‧‧‧ switch

8103‧‧‧壓電發電機 8103‧‧‧ Piezoelectric generator

8104‧‧‧熱電發電機 8104‧‧‧Thermal generator

8401‧‧‧可選之SW電容調節器 8401‧‧‧Optional SW Capacitor

8402‧‧‧AVDD選擇區塊 8402‧‧‧AVDD selection block

8404‧‧‧UVLO2 8404‧‧‧UVLO2

VUVLO2‧‧‧訊號 V UVLO2 ‧‧‧ signal

附圖包含於本說明書中並形成本說明書之一部分,以例示本發明之若干實施例。該等附圖與本說明一起用於闡釋本發明之特徵、優點及原理。該等附圖僅用於例示用以說明如何製作及使用本發明之較佳實例及替代實例,而不應被視為將本發明限制於僅所示及所述之實施例。根據以下對該等附圖所示本發明各種實施例之更具體說明,其他特徵及優點將變得顯而易見,在該等附圖中,相同之參考編號指示相同之元件,其中:圖1例示根據本發明一實例性實施例之一能量轉換器之一示意性實例;圖2A及圖2B例示圖1所示能量轉換器之示意性波形;圖3例示根據本發明一實施例之一能量轉換器及一能量轉換及儲存系統之一示意性實例; 圖4例示根據本發明一第一實施例之一能量轉換器及一能量轉換及儲存系統之一示意性實例;圖5例示圖4所示第一實施例之一示意性運作;圖6例示根據本發明第一實施例之一第一變型之一能量轉換器及一能量轉換及儲存系統之一示意性實例;圖7例示根據本發明第一實施例之一第二變型之一能量轉換器及一能量轉換及儲存系統之一示意性實例;圖8例示根據本發明第一實施例之一第三變型之一能量轉換器及一能量轉換及儲存系統之一示意性實例;圖9例示圖8所示第一實施例之第三變型之一示意性運作;圖10例示根據本發明第一實施例之一第四變型之一能量轉換器及一能量轉換及儲存系統之一示意性實例;圖11例示包含本發明第一實施例之第一、第二、第三、及第四變型之一能量轉換器及一能量轉換及儲存系統之一示意性實例;圖12例示根據本發明一第二實施例之一能量轉換器及一能量轉換及儲存系統之一示意性實例;圖13例示根據本發明一第三實施例之一能量轉換器及一能量轉換及儲存系統之一示意性實例;以及圖14例示一光電壓產生器之輸出電流及功率隨輸出電壓之變化之之一示意圖。 The drawings are included in the specification and form a part of the specification Together with the description, the drawings serve to illustrate the features, advantages and principles of the invention. The drawings are only for the purpose of illustrating the preferred embodiments and embodiments of the invention, and are not intended to limit the invention. Other features and advantages will be apparent from the following description of the embodiments of the invention. A schematic example of an energy converter of an exemplary embodiment of the present invention; FIGS. 2A and 2B illustrate schematic waveforms of the energy converter of FIG. 1; FIG. 3 illustrates an energy converter according to an embodiment of the present invention. And an illustrative example of an energy conversion and storage system; 4 illustrates a schematic example of an energy converter and an energy conversion and storage system according to a first embodiment of the present invention; FIG. 5 illustrates one exemplary operation of the first embodiment shown in FIG. 4; An illustrative example of an energy converter and an energy conversion and storage system according to a first variant of the first embodiment of the present invention; FIG. 7 illustrates an energy converter according to a second variant of the first embodiment of the present invention and An illustrative example of an energy conversion and storage system; FIG. 8 illustrates a schematic example of an energy converter and an energy conversion and storage system in accordance with a third variation of the first embodiment of the present invention; FIG. 9 illustrates FIG. One of the third variants of the first embodiment shown is schematically operated; FIG. 10 illustrates a schematic example of an energy converter and an energy conversion and storage system according to a fourth variant of the first embodiment of the present invention; 11 exemplifies a schematic example of an energy converter and an energy conversion and storage system including the first, second, third, and fourth modifications of the first embodiment of the present invention; and FIG. 12 illustrates a second embodiment according to the present invention. An illustrative example of an energy converter and an energy conversion and storage system of the embodiment; FIG. 13 illustrates an illustrative example of an energy converter and an energy conversion and storage system in accordance with a third embodiment of the present invention; Fig. 14 is a view showing one of changes in output current and power of a photovoltage generator as a function of output voltage.

300‧‧‧能量轉換器 300‧‧‧Energy Converter

301‧‧‧第一發電機 301‧‧‧First generator

302‧‧‧第二發電機 302‧‧‧second generator

303‧‧‧參考電壓單元 303‧‧‧reference voltage unit

304‧‧‧比較器 304‧‧‧ Comparator

305‧‧‧比較器 305‧‧‧ Comparator

306‧‧‧優先順序單元 306‧‧‧Priority unit

307‧‧‧轉換器單元 307‧‧‧converter unit

VINPV:輸入電壓 V INPV : input voltage

VPVSS‧‧‧開路電壓/輸入埠 V PVSS ‧‧‧Open circuit voltage / input埠

FB‧‧‧埠/節點/反饋訊號 FB‧‧‧埠/node/feedback signal

VINTarg‧‧‧參考電壓 V INTarg ‧‧‧reference voltage

VREF‧‧‧參考電壓 V REF ‧‧‧reference voltage

VOUT‧‧‧輸出電壓 V OUT ‧‧‧ output voltage

Claims (17)

一種能量轉換器,其能夠連接於至少一第一發電機,以用於轉換接收自該至少一第一發電機之能量,其中該能量轉換器能夠連接至一第二發電機;該能量轉換器包含一感測單元,其組態以感測該第二發電機之一輸出值,而能夠估測該至少一第一發電機之一開路電壓;以及該能量轉換器組態以根據該感測單元所估測得的該開路電壓以轉換接收自該至少一第一發電機之能量。 An energy converter connectable to at least one first generator for converting energy received from the at least one first generator, wherein the energy converter is connectable to a second generator; the energy converter Included as a sensing unit configured to sense an output value of the second generator, and capable of estimating an open circuit voltage of the at least one first generator; and the energy converter is configured to sense the sensing The open circuit voltage estimated by the unit to convert energy received from the at least one first generator. 如專利範圍第1項之能量轉換器,其中該第二發電機之該感測得的輸出值係為該第二發電機之一開路電壓值。 The energy converter of claim 1, wherein the sensed output value of the second generator is an open circuit voltage value of the second generator. 如專利範圍第2項之能量轉換器,其中該感測單元組態以輸出一最佳化電壓(VINTarg),該最佳化電壓(VINTarg)對應於一值,該值處在小於該感測得的開路電壓5%至35%之範圍內;較佳地,該值處在小於該感測得的開路電壓15%至20%之範圍內,以及該能量轉換器組態以使該至少一第一發電機之一輸出電壓(VINPV)保持在一對應於該最佳化電壓之值。 The energy converter of claim 2, wherein the sensing unit is configured to output an optimized voltage (V INTarg ), the optimized voltage (V INTarg ) corresponding to a value that is less than the value The sensed open circuit voltage is in the range of 5% to 35%; preferably, the value is within a range of less than 15% to 20% of the sensed open circuit voltage, and the energy converter is configured to An output voltage (V INPV ) of at least one of the first generators is maintained at a value corresponding to the optimized voltage. 如專利範圍第1至3項中任一項之能量轉換器,其更包含一轉換器,該轉換器係為一升壓轉換器、一降壓轉換器、及一降壓-升壓轉換器其中之任一者,該轉換器受控於一控制器,並且該轉換器組態以將該至少一第一發電機之該輸出電壓轉換成該能量轉換器之一輸出電壓(VOUT),該輸出電壓(VOUT)對應於一預定參考電壓(VREF)。 The energy converter of any one of clauses 1 to 3, further comprising a converter, wherein the converter is a boost converter, a buck converter, and a buck-boost converter In either case, the converter is controlled by a controller, and the converter is configured to convert the output voltage of the at least one first generator to an output voltage (V OUT ) of the energy converter, The output voltage (V OUT ) corresponds to a predetermined reference voltage (V REF ). 如專利範圍第4項之能量轉換器,其更包含一優先順位仲裁器,該優先順位仲裁器組態以a.接收由一第一比較器所輸出之一第一誤差訊號,該第一誤差訊號指示出該最佳化電壓與該至少一第一發電機之該輸出電壓之一差異值;b.接收由一第二比較器所輸出之一第二誤差訊號,該第二誤差訊號指示出該參考電壓與該能量轉換器之該輸出電壓之一差異值;以及c.輸出一控制訊號至該控制器,藉以驅動該轉換器,以進行以下步驟:i.若該第一誤差訊號處於一預定範圍內,其表示該至少一第一發電機能夠提供該轉換器所需之最大量的電力,則優先順位仲裁器確保使該第二誤差訊號最小化,以及ii.若偵測到該第一誤差訊號處於該預定範圍之外,則優先順位仲裁器確保使該第一誤差訊號最小化。 The energy converter of claim 4, further comprising a priority order arbiter configured to receive a first error signal output by a first comparator, the first error The signal indicates a difference between the optimized voltage and the output voltage of the at least one first generator; b. receiving a second error signal output by a second comparator, the second error signal indicating And comparing a reference voltage to the output voltage of the energy converter; and c. outputting a control signal to the controller to drive the converter to perform the following steps: i. if the first error signal is at Within a predetermined range, indicating that the at least one first generator is capable of providing the maximum amount of power required by the converter, the priority order arbiter ensures that the second error signal is minimized, and ii. if the first When an error signal is outside of the predetermined range, the priority order arbiter ensures that the first error signal is minimized. 如專利範圍第1至5項中任一項之能量轉換器,其更組態以連接至至少一能量儲存元件。 The energy converter of any one of clauses 1 to 5, further configured to be coupled to at least one energy storage element. 如專利範圍第6項之能量轉換器,其中該至少一能量儲存元件包含至少一電池。 The energy converter of claim 6, wherein the at least one energy storage component comprises at least one battery. 如專利範圍第6項之能量轉換器,其中該至少一能量儲存元件包含至少一超電容。 The energy converter of claim 6, wherein the at least one energy storage component comprises at least one supercapacitor. 如專利範圍第1至8項中任一項之能量轉換器,其更包含一穩壓器,該穩壓器組態以藉由自以下所列者汲取能量而提供該 能量轉換器之一穩壓後之輸出電壓:a.該能量轉換器之該輸出電壓(VOUT);及/或b.該至少一能量儲存元件。 The energy converter of any one of clauses 1 to 8, further comprising a voltage regulator configured to provide a stable one of the energy converters by extracting energy from the ones listed below The output voltage after pressing: a. the output voltage (V OUT ) of the energy converter; and/or b. the at least one energy storage element. 如專利範圍第1至9項中任一項之能量轉換器,其中該至少一第一發電機包含一第一光電壓產生器,並且該第二發電機包含一第二光電壓產生器。 The energy converter of any one of clauses 1 to 9, wherein the at least one first generator comprises a first photovoltage generator and the second generator comprises a second photovoltage generator. 如專利範圍第10項之能量轉換器,其中該第一光電壓產生器及該第二光電壓產生器係為一單一光伏電池之部分,其中該光伏電池具有一用於該第一光電壓產生器之第一輸出及一用於該第二光電壓產生器之第二輸出。 The energy converter of claim 10, wherein the first photovoltage generator and the second photovoltage generator are part of a single photovoltaic cell, wherein the photovoltaic cell has a first photovoltage generation a first output of the device and a second output for the second photovoltage generator. 如專利範圍第1至11項中任一項之能量轉換器,其更包含至少一第三發電機,其中該至少一第三發電機包含:a.一壓電發電機;及/或b.一熱電發電機。 The energy converter of any one of clauses 1 to 11, further comprising at least one third generator, wherein the at least one third generator comprises: a. a piezoelectric generator; and/or b. A thermoelectric generator. 一種能量轉換器,其能夠連接於至少一第一發電機,以用於轉換接收自該至少一第一發電機之能量,其中該能量轉換器更能夠連接至複數個能量儲存元件;該能量轉換器包含一充電排序器,該充電排序器組態以管理該等能量儲存元件其中之每一者之充電及放電次序,並藉以執行以下步驟:- 使一第一能量儲存元件放電,該第一能量儲存元件係為該等能量儲存元件中具有一最高充電值者,及/或- 使一第二能量儲存元件充電,該第二能量儲存元件係 為該等能量儲存元件中具有一最低充電值者。 An energy converter connectable to at least one first generator for converting energy received from the at least one first generator, wherein the energy converter is more connectable to a plurality of energy storage elements; the energy conversion The device includes a charge sequencer configured to manage the charging and discharging sequence of each of the energy storage elements, and thereby performing the following steps: - discharging a first energy storage element, the first The energy storage component is one of the energy storage components having a highest charge value, and/or - charging a second energy storage component, the second energy storage component It is one of the lowest energy values in the energy storage elements. 一種能量轉換及儲存系統,其包含:a.如專利範圍第1至13項中任一項之能量轉換器;b.至少一能量儲存元件,其連接至該能量轉換器,其中該至少一能量儲存元件包含:i.至少一電池,及/或ii.至少一超電容。 An energy conversion and storage system comprising: a. an energy converter according to any one of claims 1 to 13; b. at least one energy storage element coupled to the energy converter, wherein the at least one energy The storage element comprises: i. at least one battery, and/or ii. at least one supercapacitor. 如專利範圍第14項之能量轉換及儲存系統,其中該能量轉換器及該至少一能量儲存元件係以生物相容性材料製造而成。 The energy conversion and storage system of claim 14, wherein the energy converter and the at least one energy storage component are fabricated from a biocompatible material. 一種能量轉換方法,用於轉換接收自至少一第一發電機之能量,包含:一感測步驟,用以感測一第二發電機之一輸出值;一估測步驟,用以根據該第二發電機之該感測得的輸出值以估測該至少一第一發電機之一開路電壓;以及一轉換步驟,用以根據該估測得的開路電壓以轉換接收自該至少一第一發電機之能量。 An energy conversion method for converting energy received from at least one first generator, comprising: a sensing step for sensing an output value of a second generator; and an estimating step for The sensed output value of the second generator to estimate an open circuit voltage of the at least one first generator; and a converting step for converting from the estimated open circuit voltage to receive the at least one first The energy of the generator. 一種能量轉換方法,用於轉換接收自至少一第一發電機之能量,包含:一管理步驟,用於管理複數個能量儲存元件其中之每一者之充電及放電次序,該管理步驟包含以下步驟:- 使一第一能量儲存元件放電,該第一能量儲存元件係為該等能量儲存元件中具有一最高充電值者,及/或- 使一第二能量儲存元件充電,該第二能量儲存元件係為該等能量儲存元件中具有一最低充電值者。 An energy conversion method for converting energy received from at least a first generator, comprising: a management step of managing a charge and discharge order of each of the plurality of energy storage elements, the management step comprising the following steps :- discharging a first energy storage element, the first energy storage element having a highest charge value in the energy storage elements, and/or - charging a second energy storage element, the second energy storage The component is one of the energy storage components having a minimum charge value.
TW101126954A 2012-07-26 2012-07-26 Energy converting apparatus and method TWI590025B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101126954A TWI590025B (en) 2012-07-26 2012-07-26 Energy converting apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101126954A TWI590025B (en) 2012-07-26 2012-07-26 Energy converting apparatus and method

Publications (2)

Publication Number Publication Date
TW201405273A true TW201405273A (en) 2014-02-01
TWI590025B TWI590025B (en) 2017-07-01

Family

ID=50550003

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101126954A TWI590025B (en) 2012-07-26 2012-07-26 Energy converting apparatus and method

Country Status (1)

Country Link
TW (1) TWI590025B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI573385B (en) * 2015-12-18 2017-03-01 國立勤益科技大學 Real-time fault detector of photovoltaic module array and method thereof
TWI765480B (en) * 2020-12-17 2022-05-21 國立中山大學 Charging system with mppt

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI573385B (en) * 2015-12-18 2017-03-01 國立勤益科技大學 Real-time fault detector of photovoltaic module array and method thereof
TWI765480B (en) * 2020-12-17 2022-05-21 國立中山大學 Charging system with mppt

Also Published As

Publication number Publication date
TWI590025B (en) 2017-07-01

Similar Documents

Publication Publication Date Title
US20170310141A1 (en) Energy converting apparatus and method
Elhebeary et al. Dual-source self-start high-efficiency microscale smart energy harvesting system for IoT
US10396590B2 (en) Variable power energy harvesting system
US9379543B2 (en) Integrated circuit energy harvester
US8350411B2 (en) Modular system for unattended energy generation and storage
Simjee et al. Efficient charging of supercapacitors for extended lifetime of wireless sensor nodes
KR101979961B1 (en) Power control device, power control method, and feed system
Simjee et al. Everlast: long-life, supercapacitor-operated wireless sensor node
Chen et al. DuraCap: A supercapacitor-based, power-bootstrapping, maximum power point tracking energy-harvesting system
US20120025752A1 (en) Battery charger
US20100244573A1 (en) Hybrid power delivery system and method
US20100060231A1 (en) Method and Apparatus for Energy Harvesting and/or Generation, Storage, and Delivery
Wang et al. A single-inductor dual-path three-switch converter with energy-recycling technique for light energy harvesting
US20130113437A1 (en) Control apparatus, control method and control system
CN111711259A (en) Photovoltaic micro-energy collection system and hybrid energy storage automatic charging and discharging control method thereof
Gleonec et al. Architecture exploration of multi-source energy harvester for IoT nodes
CN111200361A (en) Self-powered double-input double-output energy collecting circuit with maximum power tracking function
US9124191B2 (en) Power supply apparatus, power controlling system and starting method for electric apparatus
US10355192B2 (en) Autonomous thermoelectric energy harvesting platform for biomedical sensors
TWI590025B (en) Energy converting apparatus and method
US9257861B2 (en) Control apparatus and control method
Bourgoine Harvest energy from a single photovoltaic cell
US10948932B2 (en) Power management integrated circuit for energy harvesting with multi power mode selection
CN112421946A (en) Hysteretic control of boost converter
JP2019193524A (en) Solar battery charge device and solar battery charging method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees