TW201351661A - Thin film transistor structure and array substrate using the same - Google Patents

Thin film transistor structure and array substrate using the same Download PDF

Info

Publication number
TW201351661A
TW201351661A TW101139490A TW101139490A TW201351661A TW 201351661 A TW201351661 A TW 201351661A TW 101139490 A TW101139490 A TW 101139490A TW 101139490 A TW101139490 A TW 101139490A TW 201351661 A TW201351661 A TW 201351661A
Authority
TW
Taiwan
Prior art keywords
active layer
gate
layer
protective layer
thin film
Prior art date
Application number
TW101139490A
Other languages
Chinese (zh)
Other versions
TWI493726B (en
Inventor
Chia-Chun Yeh
Xue-Hung Tsai
Cheng-Hang Hsu
Wei-Tsung Chen
Ted-Hong Shinn
Original Assignee
E Ink Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Ink Holdings Inc filed Critical E Ink Holdings Inc
Priority to CN201310032319.8A priority Critical patent/CN103474467B/en
Priority to US13/781,780 priority patent/US8872173B2/en
Publication of TW201351661A publication Critical patent/TW201351661A/en
Application granted granted Critical
Publication of TWI493726B publication Critical patent/TWI493726B/en

Links

Abstract

A thin film transistor structure is provided. The thin film transistor structure includes a first transistor having a first active layer, a second transistor having a second active layer, a first protect layer contacting the first active layer, and a second protect layer contacting the second active layer. The oxygen contents of the first and the second protect layers are controlled to affect the oxygen vacancy number of the first and the second active layers to satisfy the various electronic requirements of the first and the second transistors.

Description

薄膜電晶體結構及其陣列基板 Thin film transistor structure and array substrate thereof

本發明是有關於一種半導體元件的結構,且特別是有關於一種薄膜電晶體的結構。 The present invention relates to the structure of a semiconductor device, and more particularly to the structure of a thin film transistor.

當薄膜電晶體的主動層是由金屬氧化物半導體材料所構成時,主動層之正偏壓應力(positive bias stress;PBS)與負偏壓應力(negative bias stress;NBS)的耐受性與金屬氧化物半導體材料的氧空缺多寡有關。當金屬氧化物半導材料的氧空缺較多時,薄膜電晶體對於PBS的耐受性較佳,但對NBS的耐受性較差。而當金屬氧化物半導體材料的氧空缺較少時,薄膜電晶體對於NBS的耐受性較佳,但對PBS的耐受性較差。 When the active layer of the thin film transistor is composed of a metal oxide semiconductor material, the positive bias stress (PBS) and the negative bias stress (NBS) of the active layer are resistant to metal. Oxygen vacancies in oxide semiconductor materials are related. When the metal oxide semiconductor material has more oxygen vacancies, the thin film transistor is better resistant to PBS, but less resistant to NBS. When the metal oxide semiconductor material has less oxygen vacancies, the thin film transistor is better tolerant to NBS, but less resistant to PBS.

由於顯示器中不同用途之薄膜電晶體的使用狀況不同,因此有的薄膜電晶體需要較佳的PBS耐受性,有的薄膜電晶體需要較佳的NBS耐受性。例如在有機發光二極體顯示器中,每一畫素需要二個薄膜電晶體,一個為開關電晶體,一個為驅動電晶體。開關電晶體的關閉時間較長,因此需要較佳的NBS耐受性。而驅動電晶體打開的時間較長,因此需要較佳的PBS耐受性。因此,要如何同時滿足不同薄膜電晶體的需求,為一待解決的問題。 Some thin film transistors require better PBS tolerance due to the different use of thin film transistors for different purposes in displays, and some thin film transistors require better NBS tolerance. For example, in an organic light emitting diode display, each pixel requires two thin film transistors, one being a switching transistor and one being a driving transistor. The switching transistor has a longer turn-off time and therefore requires better NBS tolerance. While the drive transistor is turned on for a longer period of time, better PBS tolerance is required. Therefore, how to meet the needs of different thin film transistors at the same time is a problem to be solved.

因此,本發明之一態樣是在提供一種薄膜電晶體結 構,可以調整其NBS與PBS的耐受性。 Therefore, one aspect of the present invention is to provide a thin film transistor junction. The structure can adjust the tolerance of its NBS and PBS.

上述之薄膜電晶體結構包含第一電晶體、第二電晶體、第一保護層與第二保護層。其中第一電晶體包含第一閘極、閘介電層、第一主動層、第一源極與第一汲極。上述之第一閘極、閘介電層與第一主動層依序堆疊在基板上。上述之第一源極與第一汲極,分別位於第一閘極之兩側且連接於第一主動層。第二電晶體包含第二閘極、閘介電層、第二主動層、第二源極與第二汲極。上述之第二閘極、閘介電層與第二主動層依序堆疊在基板上。上述之第二源極與第二汲極,分別位於第二閘極之兩側且連接於第二主動層。上述之第一主動層與第二主動層之材料為金屬氧化物半導體。上述之薄膜電晶體結構還包含第一保護層與第二保護層,分別位於第一主動層與第二主動層之上。其中第一保護層與第二保護層的材料分別為氧化矽SiOx與氧化矽SiOy,且x>y。 The thin film transistor structure described above includes a first transistor, a second transistor, a first protective layer and a second protective layer. The first transistor includes a first gate, a gate dielectric layer, a first active layer, a first source, and a first drain. The first gate, the gate dielectric layer and the first active layer are sequentially stacked on the substrate. The first source and the first drain are respectively located at two sides of the first gate and connected to the first active layer. The second transistor includes a second gate, a gate dielectric layer, a second active layer, a second source, and a second drain. The second gate, the gate dielectric layer and the second active layer are sequentially stacked on the substrate. The second source and the second drain are respectively located on two sides of the second gate and connected to the second active layer. The material of the first active layer and the second active layer is a metal oxide semiconductor. The thin film transistor structure further includes a first protective layer and a second protective layer, respectively located on the first active layer and the second active layer. The materials of the first protective layer and the second protective layer are yttrium oxide SiO x and yttrium oxide SiO y , respectively, and x>y.

依據本發明一實施例,上述之第一保護層的折射率為1.40-1.47。 According to an embodiment of the invention, the first protective layer has a refractive index of 1.40 to 1.47.

依據本發明另一實施例,上述之第二保護層的折射率為1.47-1.50。 According to another embodiment of the present invention, the second protective layer has a refractive index of 1.47 - 1.50.

依據本發明又一實施例,上述之第一保護層的形成方法為化學氣相沉積法,其反應氣體一氧化二氮(N2O)與矽甲烷(SiH4)的流量比大於120,且反應室的溫度大於150℃。 According to still another embodiment of the present invention, the first protective layer is formed by a chemical vapor deposition method, and a flow ratio of the reaction gas of nitrous oxide (N 2 O) to germanium methane (SiH 4 ) is greater than 120, and The temperature of the reaction chamber is greater than 150 °C.

依據本發明再一實施例,上述之第二保護層的的形成方法為化學氣相沉積法,其反應氣體一氧化二氮(N2O)與矽甲烷(SiH4)的流量比小於或等於120,且反應室的溫度小於或等於150℃。 According to still another embodiment of the present invention, the second protective layer is formed by a chemical vapor deposition method, and a flow ratio of the reaction gas of nitrous oxide (N 2 O) to methane (SiH 4 ) is less than or equal to 120, and the temperature of the reaction chamber is less than or equal to 150 °C.

依據本發明再一實施例,上述之第一源極與第一汲極位於第一主動層與第一保護層之間。 According to still another embodiment of the present invention, the first source and the first drain are located between the first active layer and the first protective layer.

依據本發明再一實施例,上述之第一源極與第一汲極位於閘介電層與第一主動層之間。 According to still another embodiment of the present invention, the first source and the first drain are located between the gate dielectric layer and the first active layer.

依據本發明再一實施例,上述之第二源極與第二汲極位於閘介電層與第二主動層之間。 According to still another embodiment of the present invention, the second source and the second drain are located between the gate dielectric layer and the second active layer.

依據本發明再一實施例,上述之第一源極與第一汲極位於第一保護層與第二保護層之間,且第一保護層具有第一開口與第二開口以暴露部分第一主動層,使第一源極與第一汲極可分別連接第一主動層。 According to still another embodiment of the present invention, the first source and the first drain are located between the first protective layer and the second protective layer, and the first protective layer has a first opening and a second opening to expose a portion of the first The active layer enables the first source and the first drain to be respectively connected to the first active layer.

本發明之另一態樣是在提供一種陣列基板,其包含一基板以及位於基板上之上述薄膜電晶體結構。 Another aspect of the present invention is to provide an array substrate comprising a substrate and the above-described thin film transistor structure on the substrate.

由上述本發明實施例可知,利用第一保護層與第二保護層中氧化矽的含氧量多寡,來影響其直接接觸之第一主動層或第二主動層之氧空缺的數量,以滿足第一電晶體與第二電晶體的不同電氣特性需求。 According to the embodiment of the present invention, the amount of oxygen vacancies of the first active layer or the second active layer in the first protective layer and the second protective layer is affected to affect the number of oxygen vacancies in the first active layer or the second active layer. Different electrical characteristics requirements of the first transistor and the second transistor.

上述發明內容旨在提供本揭示內容的簡化摘要,以使閱讀者對本揭示內容具備基本的理解。此發明內容並非本揭示內容的完整概述,且其用意並非在指出本發明實施例的重要/關鍵元件或界定本發明的範圍。在參閱下文實施方式後,本發明所屬技術領域中具有通常知識者當可輕易瞭解本發明之基本精神及其他發明目的,以及本發明所採用之技術手段與實施態樣。 The Summary of the Invention is intended to provide a simplified summary of the present disclosure in order to provide a basic understanding of the disclosure. This Summary is not an extensive overview of the disclosure, and is not intended to be an The basic spirit and other objects of the present invention, as well as the technical means and implementations of the present invention, will be readily apparent to those skilled in the art of the invention.

依據上述,提供一種金屬氧化物半導體晶體的結構, 以兼顧不同電晶體之NBS與PBS耐受性的需求。在下面的敘述中,將會介紹上述之金屬氧化物半導體晶體的例示結構與其例示之製造方法。為了容易瞭解所述實施例之故,下面將會提供不少技術細節。當然,並不是所有的實施例皆需要這些技術細節。同時,一些廣為人知之結構或元件,僅會以示意的方式在圖式中繪出,以適當地簡化圖式內容。 According to the above, a structure of a metal oxide semiconductor crystal is provided, To meet the needs of NBS and PBS tolerance of different transistors. In the following description, an exemplary structure of the above metal oxide semiconductor crystal and an exemplary manufacturing method thereof will be described. In order to facilitate an understanding of the described embodiments, a number of technical details are provided below. Of course, not all embodiments require these technical details. At the same time, some well-known structures or elements are only shown in the drawings in a schematic manner to appropriately simplify the contents of the drawings.

一般來說,當金屬氧化物半導體材料的氧空缺增加時,可以增加金屬氧化物半導體的自由載子濃度,因此可讓金屬氧化物半導體的電阻下降,導電率提升。而且,金屬氧化物半導體的含氧量十分容易受到後續製程條件的影響,因此可以藉由控制後續薄膜材料的製程條件來改變已成膜之金屬氧化物半導體層的含氧量。下面將揭露一些實施例來例示說明如何藉由控制後續的製程條件來改變已成膜之金屬氧化物半導體層的含氧量,而藉以改變其PBS與NBS的耐受性。 In general, when the oxygen vacancy of the metal oxide semiconductor material is increased, the free carrier concentration of the metal oxide semiconductor can be increased, so that the resistance of the metal oxide semiconductor can be lowered and the conductivity can be improved. Moreover, the oxygen content of the metal oxide semiconductor is very susceptible to subsequent processing conditions, so that the oxygen content of the film-formed metal oxide semiconductor layer can be changed by controlling the process conditions of the subsequent thin film material. Some embodiments will be disclosed below to illustrate how to change the oxygen content of a film-formed metal oxide semiconductor layer by controlling subsequent process conditions, thereby changing the tolerance of its PBS and NBS.

實施例一Embodiment 1

請參照第1圖,其係繪示依照本發明一實施方式的一種薄膜電晶體結構的剖面結構示意圖。在第1圖中,第一電晶體100a與第二電晶體100b可設置於基板110上以形成一薄膜電晶體陣列基板。其中,第一電晶體100a屬於底閘極類型的薄膜電晶體,其包含第一閘極120a、閘介電層130、第一主動層140a、第一源極152與第一汲極154。其中,第一閘極120a位在基板110上,閘介電層130與第一主動層140a相繼堆疊在第一閘極120a上。然後,在第一 主動層140a的兩側形成第一源極152與第一汲極154,即第一源極152與第一汲極154位於第一主動層140a與第一保護160層之間,再依序形成第一保護層160與第二保護層170於第一電晶體100a之上。 Please refer to FIG. 1 , which is a cross-sectional structural diagram of a thin film transistor structure according to an embodiment of the invention. In FIG. 1, the first transistor 100a and the second transistor 100b may be disposed on the substrate 110 to form a thin film transistor array substrate. The first transistor 100a belongs to the bottom gate type thin film transistor, and includes a first gate 120a, a gate dielectric layer 130, a first active layer 140a, a first source 152 and a first drain 154. The first gate 120a is located on the substrate 110, and the gate dielectric layer 130 and the first active layer 140a are successively stacked on the first gate 120a. Then, at first The first source 152 and the first drain 154 are formed on both sides of the active layer 140a, that is, the first source 152 and the first drain 154 are located between the first active layer 140a and the first protective layer 160, and then sequentially formed. The first protective layer 160 and the second protective layer 170 are over the first transistor 100a.

上述之第一主動層140a由金屬氧化物半導體材料所組成,例如可為氧化銦鎵鋅(IGZO)、氧化銦鎵(IGO)或氧化銦鋅(IZO)、氧化鋅銦錫(ZITO)。當第一電晶體100a為開關電晶體時,由於第一電晶體100a需要較佳的NBS耐受性,所以第一主動層140a的氧空缺需要較少,也就是含氧量要較多。因此,在此實施例中,直接覆蓋在第一主動層140a上之第一保護層160為含氧量較多之氧化矽(SiOx),其化學式中之x值的範圍為1.8-2.0,所測得之折射率的範圍為1.40-1.47。 The first active layer 140a is composed of a metal oxide semiconductor material, and may be, for example, indium gallium zinc oxide (IGZO), indium gallium oxide (IGO) or indium zinc oxide (IZO), or zinc indium tin oxide (ZITO). When the first transistor 100a is a switching transistor, since the first transistor 100a requires better NBS tolerance, the first active layer 140a requires less oxygen vacancies, that is, more oxygen. Therefore, in this embodiment, the first protective layer 160 directly covering the first active layer 140a is cerium oxide (SiO x ) having a relatively high oxygen content, and the value of x in the chemical formula ranges from 1.8 to 2.0. The measured refractive index ranges from 1.40 to 1.47.

上述第一保護層160的形成方法例如可為化學氣相沉積法,其反應氣體一氧化二氮(N2O)與矽甲烷(SiH4)的流量比需大於120,且反應室的溫度需大於150℃。由於在沉積第一保護層160的過程中,含氧氣體一氧化二氮(N2O)的流量較大,因此可以讓第一保護層160之金屬氧化物半導體材料的氧空缺處補上氧原子,而減少其氧空缺數量,使第一電晶體100a的NBS耐受性較佳。 The method for forming the first protective layer 160 may be, for example, a chemical vapor deposition method, and the flow ratio of the reaction gas nitrous oxide (N 2 O) to the methane (SiH 4 ) needs to be greater than 120, and the temperature of the reaction chamber is required. More than 150 ° C. Since the flow rate of the oxygen-containing gas nitrous oxide (N 2 O) is large during the deposition of the first protective layer 160, the oxygen vacancy of the metal oxide semiconductor material of the first protective layer 160 can be supplemented with oxygen. The atom, while reducing its oxygen vacancy, makes the NBS resistance of the first transistor 100a better.

第1圖中之第二電晶體100b亦屬於底閘極類型的薄膜電晶體,其包含第二閘極120b、閘介電層130、第二主動層140b、第二源極156與汲極158。其中,第二閘極120b位在基板110上,閘介電層130與第二主動層140b相繼堆疊在第二閘極120b上。然後,在第二主動層140b的兩側形成第二源極156與汲極158,再形成第二保護層170於 第二電晶體100b之上。 The second transistor 100b in FIG. 1 also belongs to the bottom gate type thin film transistor, and includes a second gate 120b, a gate dielectric layer 130, a second active layer 140b, a second source 156 and a drain 158. . The second gate 120b is located on the substrate 110, and the gate dielectric layer 130 and the second active layer 140b are successively stacked on the second gate 120b. Then, a second source 156 and a drain 158 are formed on both sides of the second active layer 140b, and then the second protective layer 170 is formed. Above the second transistor 100b.

上述之第二主動層140b亦由金屬氧化物半導體材料所組成,可與第一主動層140a同時形成。因此,第二主動層140b的材料例如可為氧化銦鎵鋅(IGZO)、氧化銦鎵(IGO)或氧化銦鋅(IZO)、氧化鋅銦錫(ZITO)。當第二電晶體100b為驅動電晶體時,由於第二電晶體100b需要較佳的PBS耐受性,所以第二主動層140b的氧空缺需要較多,也就是含氧量要較少。因此,在此實施例中,直接覆蓋在第二主動層140b上之第二保護層170為含氧量較少而含氫量較多之氧化矽(SiOy),其化學式中之y值的範圍為1.4-1.8,所測得之折射率的範圍為1.47-1.50。在第二保護層170中,氫多以Si-H或Si-OH的形式存在。 The second active layer 140b is also composed of a metal oxide semiconductor material and can be formed simultaneously with the first active layer 140a. Therefore, the material of the second active layer 140b may be, for example, indium gallium zinc oxide (IGZO), indium gallium oxide (IGO) or indium zinc oxide (IZO), or zinc indium tin oxide (ZITO). When the second transistor 100b is a driving transistor, since the second transistor 100b requires better PBS tolerance, the second active layer 140b requires more oxygen vacancies, that is, less oxygen. Therefore, in this embodiment, the second protective layer 170 directly covering the second active layer 140b is cerium oxide (SiO y ) having a small amount of oxygen and a large amount of hydrogen, and the y value of the chemical formula is The range is from 1.4 to 1.8 and the measured refractive index ranges from 1.47 to 1.50. In the second protective layer 170, hydrogen is mostly present in the form of Si-H or Si-OH.

第二保護層170的形成方法例如可為化學氣相沉積法,其反應氣體一氧化二氮(N2O)與矽甲烷(SiH4)的流量比小於或等於120,且反應室的溫度小於或等於150℃。由於在沉積第二保護層170的過程中,含氫氣體矽甲烷(SiH4)的流量較多,因此可以部份還原第二主動層140b的金屬氧化物半導體材料,而增加其氧空缺的數量,使第二電晶體100b的PBS耐受性較佳。 The forming method of the second protective layer 170 may be, for example, a chemical vapor deposition method, wherein a flow rate ratio of the reaction gas nitrous oxide (N 2 O) to hydrazine methane (SiH 4 ) is less than or equal to 120, and the temperature of the reaction chamber is less than Or equal to 150 ° C. Since the flow rate of the hydrogen-containing gas germanium methane (SiH 4 ) is large during the deposition of the second protective layer 170, the metal oxide semiconductor material of the second active layer 140b can be partially reduced, and the number of oxygen vacancies is increased. The PBS of the second transistor 100b is better tolerated.

在上述實施例中,第一保護層160相較第二保護層170為含氧量較多的氧化矽,其可直接接觸第一電晶體100a的第一主動層140a,以減少第一主動層140a的氧空缺。第二保護層170相較第一保護層160為含氧量較少且含氫量較多的氧化矽,其可直接接觸第二電晶體100b的第二主動層140b,以增加第二主動層140b的氧空缺。依據另一實施例,也可讓第一電晶體100a與第二電晶體100b互換,也 就是第一電晶體100a為驅動電晶體,第二電晶體100b為開關電晶體,則第一保護層160與第二保護層170的材料也需要互換,以滿足第一電晶體100a與第二電晶體100b各自在電氣特性上的需求。 In the above embodiment, the first protective layer 160 is more oxidized cerium oxide than the second protective layer 170, and may directly contact the first active layer 140a of the first transistor 100a to reduce the first active layer. 140a oxygen vacancies. The second protective layer 170 is a cerium oxide having less oxygen content and more hydrogen content than the first protective layer 160, and can directly contact the second active layer 140b of the second transistor 100b to increase the second active layer. 140b oxygen vacancies. According to another embodiment, the first transistor 100a and the second transistor 100b can also be interchanged, That is, the first transistor 100a is a driving transistor, and the second transistor 100b is a switching transistor, the materials of the first protective layer 160 and the second protective layer 170 also need to be interchanged to satisfy the first transistor 100a and the second transistor. The crystal 100b is each in need of electrical characteristics.

實施例二Embodiment 2

請參照第2圖,其係繪示依照本發明另一實施方式的一種薄膜電晶體結構的剖面結構示意圖。實施例一係先形成主動層,再形成源極與汲極。實施例二與實施例一的不同處為先形成源極與汲極,再形成主動層。實施例二的其他部分則與實施例一十分類似,簡述如下。 Please refer to FIG. 2 , which is a cross-sectional structural diagram of a thin film transistor structure according to another embodiment of the present invention. In the first embodiment, the active layer is formed first, and the source and the drain are formed. The difference between the second embodiment and the first embodiment is that the source and the drain are formed first, and then the active layer is formed. The other parts of the second embodiment are very similar to the first embodiment, and are briefly described as follows.

在第2圖中,第一電晶體200a包含第一閘極220a、閘介電層230、第一源極252、第一汲極254與第一主動層240a。其中,第一閘極220a位在基板210上,閘介電層230覆蓋在第一閘極220a上。然後,在第一閘極220a的兩側形成第一源極252與第一汲極254,再依序形成第一主動層240a、第一保護層260與第二保護層270。具體而言,第一源極252與第一汲極254位於閘介電層230與第一主動層240a之間。 In FIG. 2, the first transistor 200a includes a first gate 220a, a gate dielectric layer 230, a first source 252, a first drain 254, and a first active layer 240a. The first gate 220a is located on the substrate 210, and the gate dielectric layer 230 is covered on the first gate 220a. Then, a first source 252 and a first drain 254 are formed on both sides of the first gate 220a, and the first active layer 240a, the first protective layer 260 and the second protective layer 270 are sequentially formed. Specifically, the first source 252 and the first drain 254 are located between the gate dielectric layer 230 and the first active layer 240a.

此實施例中,第一保護層260仍然可直接接觸第一主動層240a,且在第一主動層240a之後形成。因此,第一保護層260為含氧量多之氧化矽層或含氫量多之氧化矽層,皆會影響到第一主動層240a中金屬氧化物半導體材料的氧空缺多寡,而影響第一電晶體200a的電氣特性。由於在實施例一中已經詳細敘述第一保護層160之氧化矽的含氧量或含氫量多寡對第一主動層140a的影響,所以在此不再 贅述之。 In this embodiment, the first protective layer 260 can still directly contact the first active layer 240a and be formed after the first active layer 240a. Therefore, the first protective layer 260 is a cerium oxide layer containing a large amount of oxygen or a cerium oxide layer containing a large amount of hydrogen, which affects the oxygen vacancy of the metal oxide semiconductor material in the first active layer 240a, and affects the first Electrical characteristics of the transistor 200a. Since the influence of the oxygen content or the hydrogen content of the ruthenium oxide of the first protective layer 160 on the first active layer 140a has been described in detail in the first embodiment, it is no longer here. Describe it.

第2圖之第二電晶體200b包含第二閘極220b、閘介電層230、第二源極256、第二汲極258與第二主動層240b。其中,第二閘極220b位在基板210上,閘介電層230覆蓋在第二閘極220b上。然後,在第二閘極220b的兩側形成第二源極256與第二汲極258,再依序形成第二主動層240b與第二保護層270。具體而言,第二源極256與第二汲極258位於閘介電層230與第二主動層240b之間。 The second transistor 200b of FIG. 2 includes a second gate 220b, a gate dielectric layer 230, a second source 256, a second drain 258, and a second active layer 240b. The second gate 220b is located on the substrate 210, and the gate dielectric layer 230 is covered on the second gate 220b. Then, a second source 256 and a second drain 258 are formed on both sides of the second gate 220b, and the second active layer 240b and the second protective layer 270 are sequentially formed. Specifically, the second source 256 and the second drain 258 are located between the gate dielectric layer 230 and the second active layer 240b.

在此實施例中,由於第二保護層270可直接接觸第二主動層240b,所以第二保護層270為含氧量多之氧化矽層或含氫量多之氧化矽層,皆會影響到第二主動層240b中金屬氧化物半導體的氧空缺多寡,而影響第二電晶體200b的電氣特性。由於在實施例一中已經詳細敘述第二保護層170之氧化矽的含氧量或含氫量多寡對第二主動層140b的影響,所以在此不再贅述之。 In this embodiment, since the second protective layer 270 can directly contact the second active layer 240b, the second protective layer 270 is a cerium oxide layer containing a large amount of oxygen or a cerium oxide layer containing a large amount of hydrogen, which may affect The oxygen vacancies of the metal oxide semiconductor in the second active layer 240b affect the electrical characteristics of the second transistor 200b. Since the influence of the oxygen content or the hydrogen content of the ruthenium oxide of the second protective layer 170 on the second active layer 140b has been described in detail in the first embodiment, it will not be described herein.

實施例三Embodiment 3

請參照第3圖,其係繪示依照本發明又一實施方式的一種薄膜電晶體結構的剖面結構示意圖。在實施例一中,係先形成源極與汲極,再形成第一保護層。在實施例三中,則為先形成第一保護層,再形成源極與汲極。實施例三的其他部分則與實施例一十分類似,簡述如下。 Please refer to FIG. 3 , which is a cross-sectional structural diagram of a thin film transistor structure according to still another embodiment of the present invention. In the first embodiment, the source and the drain are formed first, and then the first protective layer is formed. In the third embodiment, the first protective layer is formed first, and the source and the drain are formed again. The other parts of the third embodiment are very similar to the first embodiment, and are briefly described as follows.

在第3圖中,第一電晶體300a包含第一閘極320a、閘介電層330、第一主動層340a、第一源極352與第一汲極354。其中,第一閘極320a位在基板310上,閘介電層330、第一主動層340a與第一保護層360依序堆疊在第一閘極 320a上。然後,在第一保護層360中形成第一開口362與第二開口364以暴露部分第一主動層340a,使後續在第一保護層360上形成之第一源極352與第一汲極354可分別藉由第一開口362與第二開口364與第一主動層340a接觸。 In FIG. 3, the first transistor 300a includes a first gate 320a, a gate dielectric layer 330, a first active layer 340a, a first source 352, and a first drain 354. The first gate 320a is located on the substrate 310, and the gate dielectric layer 330, the first active layer 340a and the first protective layer 360 are sequentially stacked on the first gate. On 320a. Then, a first opening 362 and a second opening 364 are formed in the first protective layer 360 to expose a portion of the first active layer 340a, so that the first source 352 and the first drain 354 formed on the first protective layer 360 are subsequently formed. The first active layer 340a can be contacted by the first opening 362 and the second opening 364, respectively.

在此實施例中,由於第一保護層360還是可直接接觸第一主動層340a,且在第一主動層340a之後形成。因此,第一保護層360為含氧量多之氧化矽層或含氫量多之氧化矽層,皆會影響到第一主動層340a中金屬氧化物半導體材料的氧空缺多寡,而影響第一電晶體300a的電氣特性。由於在實施例一中已經詳細敘述第一保護層160之氧化矽的含氧量或含氫量多寡對第一主動層140a的影響,所以在此不再贅述之。 In this embodiment, since the first protective layer 360 is still directly in contact with the first active layer 340a and formed after the first active layer 340a. Therefore, the first protective layer 360 is a cerium oxide layer containing a large amount of oxygen or a cerium oxide layer containing a large amount of hydrogen, which affects the oxygen vacancy of the metal oxide semiconductor material in the first active layer 340a, and affects the first Electrical characteristics of the transistor 300a. Since the influence of the oxygen content or the hydrogen content of the ruthenium oxide of the first protective layer 160 on the first active layer 140a has been described in detail in the first embodiment, it will not be described herein.

第3圖中之第二電晶體300b包含第二閘極320b、閘介電層330、第二主動層340b、第二源極356與第二汲極358。其中,第二閘極320b位在基板310上,閘介電層330與第二主動層340b相繼堆疊在第二閘極320b上。然後,在第二主動層340b的兩側形成第二源極356與第二汲極358,再形成第二保護層370於第二電晶體300b之上。具體而言,第一源極352與第一汲極354位於第一保護層360與第二保護層370之間,而第二源極356與第二汲極358位於第二主動層340b與第二保護層370之間。 The second transistor 300b in FIG. 3 includes a second gate 320b, a gate dielectric layer 330, a second active layer 340b, a second source 356, and a second drain 358. The second gate 320b is located on the substrate 310, and the gate dielectric layer 330 and the second active layer 340b are successively stacked on the second gate 320b. Then, a second source 356 and a second drain 358 are formed on both sides of the second active layer 340b, and a second protective layer 370 is formed on the second transistor 300b. Specifically, the first source 352 and the first drain 354 are located between the first protective layer 360 and the second protective layer 370, and the second source 356 and the second drain 358 are located at the second active layer 340b and Between the two protective layers 370.

在此實施例中,由於第二保護層370可直接接觸第二主動層340b,所以第二保護層370為含氧量多之氧化矽層或含氫量多之氧化矽層,皆會影響到第二主動層340b中金屬氧化物半導體材料的氧空缺多寡,而影響第二電晶體 300b的電氣特性。由於在實施例一中已經詳細敘述第二保護層170之氧化矽的含氧量或含氫量多寡對第二主動層140b的影響,所以在此不再贅述之。 In this embodiment, since the second protective layer 370 can directly contact the second active layer 340b, the second protective layer 370 is a cerium oxide layer containing a large amount of oxygen or a cerium oxide layer containing a large amount of hydrogen, which may affect The oxygen deficiency of the metal oxide semiconductor material in the second active layer 340b affects the second transistor Electrical characteristics of the 300b. Since the influence of the oxygen content or the hydrogen content of the ruthenium oxide of the second protective layer 170 on the second active layer 140b has been described in detail in the first embodiment, it will not be described herein.

由上述本發明實施例可知,利用第一保護層與第二保護層中氧化矽的含氧量多寡,來影響其接觸之第一主動層或第二主動層之氧空缺的數量,以滿足第一電晶體與第二電晶體的不同電氣特性需求。 According to the embodiment of the present invention, the amount of oxygen vacancies of the first active layer or the second active layer in contact with the first protective layer and the second protective layer is affected to meet the number of oxygen vacancies in contact with the first active layer or the second active layer. The different electrical characteristics of a transistor and a second transistor.

雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.

100a、200a、300a‧‧‧第一電晶體 100a, 200a, 300a‧‧‧ first transistor

100b、200b、300b‧‧‧第二電晶體 100b, 200b, 300b‧‧‧second transistor

110、210、310‧‧‧基板 110, 210, 310‧‧‧ substrates

120a、220a、320a‧‧‧第一閘極 120a, 220a, 320a‧‧‧ first gate

120b、220b、320b‧‧‧第二閘極 120b, 220b, 320b‧‧‧ second gate

130、230、330‧‧‧閘介電層 130, 230, 330‧‧‧ gate dielectric layer

140a、240a、340a‧‧‧第一主動層 140a, 240a, 340a‧‧‧ first active layer

140b、240b、340b‧‧‧第二主動層 140b, 240b, 340b‧‧‧ second active layer

152、252、352‧‧‧第一源極 152, 252, 352‧‧‧ first source

154、254、354‧‧‧第一汲極 154, 254, 354‧‧‧ first bungee

156、256、356‧‧‧第二源極 156, 256, 356‧‧‧ second source

158、258、358‧‧‧第二汲極 158, 258, 358‧‧‧ second bungee

160、260、360‧‧‧第一保護層 160, 260, 360‧‧‧ first protective layer

170、270、370‧‧‧第二保護層 170, 270, 370‧‧‧ second protective layer

362‧‧‧第一開口 362‧‧‧ first opening

364‧‧‧第二開口 364‧‧‧second opening

為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1圖係繪示依照本發明一實施方式的一種薄膜電晶體結構的剖面結構示意圖。 The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Schematic.

第2圖係繪示依照本發明另一實施方式的一種薄膜電晶體結構的剖面結構示意圖。 2 is a schematic cross-sectional view showing a structure of a thin film transistor according to another embodiment of the present invention.

第3圖係繪示依照本發明又一實施方式的一種薄膜電晶體結構的剖面結構示意圖。 3 is a cross-sectional structural view showing a thin film transistor structure according to still another embodiment of the present invention.

100a‧‧‧第一電晶體 100a‧‧‧First transistor

100b‧‧‧第二電晶體 100b‧‧‧second transistor

110‧‧‧基板 110‧‧‧Substrate

120a‧‧‧第一閘極 120a‧‧‧first gate

120b‧‧‧第二閘極 120b‧‧‧second gate

130‧‧‧閘介電層 130‧‧‧gate dielectric layer

140a‧‧‧第一主動層 140a‧‧‧First active layer

140b‧‧‧第二主動層 140b‧‧‧Second active layer

152‧‧‧第一源極 152‧‧‧first source

154‧‧‧第一汲極 154‧‧‧First bungee

156‧‧‧第二源極 156‧‧‧second source

158‧‧‧第二汲極 158‧‧‧second bungee

160‧‧‧第一保護層 160‧‧‧First protective layer

170‧‧‧第二保護層 170‧‧‧Second protective layer

Claims (12)

一種薄膜電晶體結構,包含:一第一閘極與一第二閘極,位於一基板上;一閘介電層,覆蓋於該第一閘極與該第二閘極上;一第一主動層與一第二主動層,分別位於該第一閘極與該第二閘極上之該閘介電層上,該第一主動層與該第二主動層之材料為金屬氧化物半導體;一第一源極與一第一汲極,分別位於該第一閘極之兩側且連接於該第一主動層;一第二源極與一第二汲極,分別位於該第二閘極之兩側且連接於該第二主動層,其中該第一閘極、該閘介電層、該第一主動層、該第一源極以及該第一汲極構成一第一電晶體,而該第二閘極、該閘介電層、該第二主動層、該第二源極以及該第二汲極構成一第二電晶體;以及一第一保護層與一第二保護層,分別位於該第一主動層與該第二主動層之上,其中該第一保護層與該第二保護層的材料分別為氧化矽SiOx與氧化矽SiOy,且x>y。 A thin film transistor structure comprising: a first gate and a second gate on a substrate; a gate dielectric layer covering the first gate and the second gate; a first active layer And a second active layer, respectively located on the gate dielectric layer on the first gate and the second gate, the material of the first active layer and the second active layer is a metal oxide semiconductor; a source and a first drain are respectively located on opposite sides of the first gate and connected to the first active layer; a second source and a second drain are respectively located on opposite sides of the second gate And connected to the second active layer, wherein the first gate, the gate dielectric layer, the first active layer, the first source, and the first drain form a first transistor, and the second The gate, the gate dielectric layer, the second active layer, the second source and the second drain form a second transistor; and a first protective layer and a second protective layer are respectively located at the first an active layer on the second active layer, wherein the first protective layer and the second protective layer material are silicon oxide SiO x Silicon oxide SiO y, and x> y. 如請求項1所述之薄膜電晶體結構,其中該第一保護層之折射率約為1.40-1.47。 The thin film transistor structure of claim 1, wherein the first protective layer has a refractive index of about 1.40 to 1.47. 如請求項1所述之薄膜電晶體結構,其中該第二保護層之折射率約為1.47-1.50。 The thin film transistor structure of claim 1, wherein the second protective layer has a refractive index of about 1.47 - 1.50. 如請求項1所述之薄膜電晶體結構,其中該第一 保護層的形成方法為化學氣相沉積法,其反應氣體一氧化二氮(N2O)與矽甲烷(SiH4)的流量比大於120,且反應室的溫度大於150℃。 The thin film transistor structure according to claim 1, wherein the first protective layer is formed by a chemical vapor deposition method, and a flow ratio of a reaction gas of nitrous oxide (N 2 O) to methane (SiH 4 ) is obtained. Greater than 120, and the temperature of the reaction chamber is greater than 150 °C. 如請求項1所述之薄膜電晶體結構,其中該第二保護層的形成方法為化學氣相沉積法,其反應氣體一氧化二氮(N2O)與矽甲烷(SiH4)的流量比小於或等於120,且反應室的溫度小於或等於150℃。 The thin film transistor structure according to claim 1, wherein the second protective layer is formed by a chemical vapor deposition method, and a flow ratio of a reaction gas of nitrous oxide (N 2 O) to methane (SiH 4 ) is obtained. Less than or equal to 120, and the temperature of the reaction chamber is less than or equal to 150 °C. 如請求項1所述之薄膜電晶體結構,其中該第一源極與該第一汲極位於該第一主動層與該第一保護層之間。 The thin film transistor structure of claim 1, wherein the first source and the first drain are located between the first active layer and the first protective layer. 如請求項1所述之薄膜電晶體結構,其中該第一源極與該第一汲極位於該閘介電層與該第一主動層之間。 The thin film transistor structure of claim 1, wherein the first source and the first drain are located between the gate dielectric layer and the first active layer. 如請求項7所述之薄膜電晶體結構,其中該第二源極與該第二汲極位於該閘介電層與該第二主動層之間。 The thin film transistor structure of claim 7, wherein the second source and the second drain are located between the gate dielectric layer and the second active layer. 如請求項1所述之薄膜電晶體結構,其中該第一源極與該第一汲極位於該第一保護層與該第二保護層之間,且該第一保護層具有一第一開口與一第二開口以暴露部分該第一主動層,使該第一源極與該第一汲極可分別連接該第一主動層。 The thin film transistor structure of claim 1, wherein the first source and the first drain are located between the first protective layer and the second protective layer, and the first protective layer has a first opening And a second opening to expose a portion of the first active layer, such that the first source and the first drain are respectively connectable to the first active layer. 如請求項1所述之薄膜電晶體結構,其中x值的 範圍約為1.8-2.0及y值的範圍約為1.4-1.8。 The thin film transistor structure of claim 1, wherein the value of x The range is approximately 1.8-2.0 and the y value ranges from approximately 1.4-1.8. 一種陣列基板,包含:一基板;以及一薄膜電晶體結構,包含:一第一閘極與一第二閘極,位於該基板上;一閘介電層,覆蓋於該第一閘極與該第二閘極上;一第一主動層與一第二主動層,分別位於該第一閘極與該第二閘極上之該閘介電層上,該第一主動層與該第二主動層之材料為金屬氧化物半導體;一第一源極與一第一汲極,分別位於該第一閘極之兩側且連接於該第一主動層;一第二源極與一第二汲極,分別位於該第二閘極之兩側且連接於該第二主動層,其中該第一閘極、該閘介電層、該第一主動層、該第一源極以及該第一汲極構成一第一電晶體,而該第二閘極、該閘介電層、該第二主動層、該第二源極以及該第二汲極構成一第二電晶體;以及一第一保護層與一第二保護層,分別位於該第一主動層與該第二主動層之上,其中該第一保護層與該第二保護層的材料分別為氧化矽SiOx與氧化矽SiOy,且x>y。 An array substrate comprising: a substrate; and a thin film transistor structure comprising: a first gate and a second gate on the substrate; a gate dielectric layer covering the first gate and the a first active layer and a second active layer respectively on the gate dielectric layer on the first gate and the second gate, the first active layer and the second active layer The material is a metal oxide semiconductor; a first source and a first drain are respectively located on opposite sides of the first gate and connected to the first active layer; a second source and a second drain, Separatingly located on the two sides of the second gate and connected to the second active layer, wherein the first gate, the gate dielectric layer, the first active layer, the first source, and the first drain a first transistor, the second gate, the gate dielectric layer, the second active layer, the second source and the second drain form a second transistor; and a first protective layer and a second protective layer is respectively disposed on the first active layer and the second active layer, wherein the first protective layer and the first Material of the protective layer are silicon oxide and silicon oxide SiO x SiO y, and x> y. 如請求項11所述之薄膜電晶體,其中x值的範圍約為1.8-2.0及y值的範圍約為1.4-1.8。 The thin film transistor of claim 11, wherein the value of x ranges from about 1.8 to 2.0 and the value of y ranges from about 1.4 to about 1.8.
TW101139490A 2012-06-05 2012-10-25 Thin film transistor structure and array substrate using the same TWI493726B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201310032319.8A CN103474467B (en) 2012-06-05 2013-01-28 Thin film transistor structure and array substrate thereof
US13/781,780 US8872173B2 (en) 2012-06-05 2013-03-01 Thin film transistor structure and array substrate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201261655953P 2012-06-05 2012-06-05

Publications (2)

Publication Number Publication Date
TW201351661A true TW201351661A (en) 2013-12-16
TWI493726B TWI493726B (en) 2015-07-21

Family

ID=50158143

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101139490A TWI493726B (en) 2012-06-05 2012-10-25 Thin film transistor structure and array substrate using the same

Country Status (1)

Country Link
TW (1) TWI493726B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9379245B2 (en) 2014-08-04 2016-06-28 Innolux Corporation Thin film transistor substrate and display panel using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5292066B2 (en) * 2007-12-05 2013-09-18 株式会社半導体エネルギー研究所 Display device
US8258511B2 (en) * 2008-07-02 2012-09-04 Applied Materials, Inc. Thin film transistors using multiple active channel layers
TWI577027B (en) * 2008-07-31 2017-04-01 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
KR101310473B1 (en) * 2008-10-24 2013-09-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9379245B2 (en) 2014-08-04 2016-06-28 Innolux Corporation Thin film transistor substrate and display panel using the same
TWI563669B (en) * 2014-08-04 2016-12-21 Innolux Corp Thin film transistor and display panel using the same

Also Published As

Publication number Publication date
TWI493726B (en) 2015-07-21

Similar Documents

Publication Publication Date Title
JP6585757B2 (en) Method for manufacturing semiconductor device
KR102599420B1 (en) Semiconductor device and electronic device
JP2024054233A (en) Semiconductor Device
US9954113B2 (en) Transistor including oxide semiconductor, semiconductor device including the transistor, and electronic device including the transistor
TWI637525B (en) Display device
KR102242288B1 (en) Method for manufacturing semiconductor device
US9318507B2 (en) Thin film transistor and display device
JP5766467B2 (en) THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND DISPLAY DEVICE
US10050152B2 (en) Transistor, semiconductor device, and electronic device
US10566457B2 (en) Thin film transistor and display device
US9281350B2 (en) Thin film transistor substrate and display
JP2024012439A (en) Semiconductor device
WO2015043220A1 (en) Thin film transistor, preparation method therefor, array substrate, and display apparatus
US8872173B2 (en) Thin film transistor structure and array substrate using the same
KR20150110340A (en) Semiconductor device, display device including semiconductor device, display module including display device, and electronic device including semiconductor device, display device, and display module
US20150311345A1 (en) Thin film transistor and method of fabricating the same, display substrate and display device
JP2014187359A (en) Semiconductor device
WO2013179837A1 (en) Semiconductor device and method for manufacturing same
TWI527230B (en) Thin film transistor structure and method for manufacturing the same
US20180068855A1 (en) Method of Manufacturing Thin Film Transistor
TWI493726B (en) Thin film transistor structure and array substrate using the same
JP2016167590A (en) Transistor, manufacturing method for transistor, semiconductor device, and electronic apparatus
CN103904126A (en) Thin-film transistor
KR20210129114A (en) semiconductor device
KR20160021943A (en) Oxide thin film transistor and method thereof