TW201349518A - Thin-film solar cell and manufacturing method thereof - Google Patents
Thin-film solar cell and manufacturing method thereof Download PDFInfo
- Publication number
- TW201349518A TW201349518A TW101117657A TW101117657A TW201349518A TW 201349518 A TW201349518 A TW 201349518A TW 101117657 A TW101117657 A TW 101117657A TW 101117657 A TW101117657 A TW 101117657A TW 201349518 A TW201349518 A TW 201349518A
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- solar cell
- film solar
- type layer
- thin film
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Photovoltaic Devices (AREA)
Abstract
Description
本發明是有關於一種薄膜太陽電池,特別是有關於一種藉由增設一層以硒化物構成之光吸收層,以改善薄膜太陽能電池之光吸收度,並使用物理性沉積技術製程減少酸鹼溶液污染並簡化製造流程之薄膜太陽能電池及其製造方法。
The invention relates to a thin film solar cell, in particular to a light absorbing layer composed of selenide to improve the light absorption of the thin film solar cell, and to reduce the acid-base solution pollution by using a physical deposition technology process. And a thin film solar cell and a manufacturing method thereof that simplify the manufacturing process.
目前,大部分的發電系統所使用之燃料大多為石化燃料,其發電的過程中,會排出大量的二氧化碳及對環境有害之氣體,這些有害氣體導致臭氧層破裂、全球暖化及酸雨等自然災害。而用以發電之石化燃料之蘊藏量,經國際能源署之統計結果不超過百年,在環保議題與資源耗竭的推動下,加強發展再生能源與綠色科技已成為各國共同追求的趨勢。At present, most of the fuels used in power generation systems are fossil fuels. During the power generation process, a large amount of carbon dioxide and environmentally harmful gases are emitted. These harmful gases cause natural disasters such as ozone layer rupture, global warming and acid rain. The accumulation of fossil fuels used for power generation has not exceeded 100 years by the International Energy Agency. Under the promotion of environmental issues and resource depletion, strengthening the development of renewable energy and green technology has become a common trend pursued by all countries.
太陽能為一種潔淨可再生之能源,其同時具有可模組化、資源分布平均、無燃料運輸成本等多種優勢,因此成為前景最被看好的能源。其中,又以具有寬廣的光譜吸收範圍、材料穩定性及可撓性等特性的薄膜太陽能電池最受到矚目。Solar energy is a clean and renewable energy source. It has many advantages such as modularization, average resource distribution, and fuel-free transportation cost. Therefore, it is the most promising energy source in the future. Among them, thin film solar cells having a wide spectral absorption range, material stability, and flexibility are most attracting attention.
習知之薄膜太陽能電池,如第1圖所示,主要係由基板11與P-I-N半導體層12所構成。半導體層12由P型層121、I型層122以及N型層123所構成,並且依P型層121、I型層122及N型層123之順序,以濺鍍或化學沉積的方式在基板11上形成。然而,此種薄膜太陽能電池1之光電轉換效率較差,因此常利用堆疊多層P-I-N半導體層12,藉由改善光電特性來提升光電轉換效率。另一方面,習知之薄膜太陽能電池製程,通常係使用高密度電漿強化型化學氣相沉積法來沉積半導體層,但此種製程技術使用酸鹼性溶液,具有污染之爭議性問題。而上述之堆疊型薄膜太陽能電池雖可提升太陽能電池之光電轉化效率,但在多道酸洗、沉積、蝕刻之製程中,將增加酸鹼性有害溶液之使用量,對環境之傷害也是一道必須克服的難題。As shown in Fig. 1, the conventional thin film solar cell is mainly composed of a substrate 11 and a P-I-N semiconductor layer 12. The semiconductor layer 12 is composed of a P-type layer 121, an I-type layer 122, and an N-type layer 123, and is in a sputtering or chemical deposition manner on the substrate in the order of the P-type layer 121, the I-type layer 122, and the N-type layer 123. Formed on 11. However, such a thin film solar cell 1 has poor photoelectric conversion efficiency, and therefore, it is common to use a stacked multi-layer P-I-N semiconductor layer 12 to improve photoelectric conversion efficiency by improving photoelectric characteristics. On the other hand, the conventional thin film solar cell process usually uses a high-density plasma-enhanced chemical vapor deposition method to deposit a semiconductor layer, but this process technology uses an acid-alkaline solution, which has controversial problems of pollution. Although the above-mentioned stacked thin film solar cell can improve the photoelectric conversion efficiency of the solar cell, in the process of multi-pass pickling, deposition and etching, the use amount of the acid-alkaline harmful solution will be increased, and the damage to the environment is also a must. Overcome the puzzle.
為改善上述之問題,有必要提出一種薄膜太陽能電池及其製造方法,並進一步對薄膜太陽能電池之結構及製程進行改良,以提升薄膜太陽能電池之結構,並簡化其製造流程,減少對環境的汙染。
In order to improve the above problems, it is necessary to propose a thin film solar cell and a manufacturing method thereof, and further improve the structure and process of the thin film solar cell to improve the structure of the thin film solar cell, simplify the manufacturing process thereof, and reduce environmental pollution. .
有鑑於上述習知技術之問題,本發明之目的就是在提供一種薄膜太陽能電池及其製造方法,以解決習知技術之光電轉換效率較差,並改善製程中使用酸鹼性溶液對環境造成污染之問題。In view of the above problems in the prior art, the object of the present invention is to provide a thin film solar cell and a method for fabricating the same, which solves the problem of poor photoelectric conversion efficiency of the prior art and improves environmental pollution caused by using an acid alkaline solution in the process. problem.
根據本發明之目的,就是在提供一種薄膜太陽能電池之製造方法,其步驟包含清洗一基板;設置一P型層於基板之上方;藉由物理沉積技術設置一光吸收層於P型層之上方;藉由氫/氮電漿熱處理光吸收層;沉積一緩衝層於光吸收層之上方,以增加光吸收層晶體結構之相配性,且緩衝層之材質係為矽;設置一I型層於光吸收層之上方;以及設置一N型層於I型層之上方。According to an object of the present invention, a method for fabricating a thin film solar cell is provided, the method comprising: cleaning a substrate; providing a P-type layer over the substrate; and providing a light absorbing layer above the P-type layer by physical deposition technique Heat-treating the light-absorbing layer by hydrogen/nitrogen plasma; depositing a buffer layer over the light-absorbing layer to increase the compatibility of the crystal structure of the light-absorbing layer, and the material of the buffer layer is 矽; setting an I-type layer to Above the light absorbing layer; and an N-type layer is disposed above the I-type layer.
其中,本方法更包含設置一第一透明導電層於基板與P型層之間;設置一第二透明導電層於N型層之上方;設置一抗反射層於第二透明導電層之上方;以及設置一電極層於抗反射層之上方。The method further includes: providing a first transparent conductive layer between the substrate and the P-type layer; disposing a second transparent conductive layer above the N-type layer; and providing an anti-reflective layer above the second transparent conductive layer; And an electrode layer is disposed above the anti-reflection layer.
其中,光吸收層之厚度可小於50奈米。Wherein, the thickness of the light absorbing layer can be less than 50 nm.
其中,光吸收層之材質可包含銅銦硒系(CISe-based)或銅銦鎵硒系(CIGSe-based)。The material of the light absorbing layer may include copper indium selenide (CISe-based) or copper indium gallium selenide (CIGSe-based).
其中,光吸收層熱處理之溫度可介於550~700℃之間,且熱處理之時間可介於40~70秒之間。The heat treatment layer of the light absorbing layer may have a temperature between 550 and 700 ° C, and the heat treatment time may be between 40 and 70 seconds.
根據本發明之目的,另提出一種薄膜太陽能電池之製造方法,其步驟包含清洗一基板;設置一P型層於基板之上方;設置一I型層於P型層之上方;藉由物理沉積技術設置一光吸收層於I型層之上方;藉由氫/氮電漿熱處理光吸收層;沉積一緩衝層於光吸收層之上方,以增加光吸收層晶體結構之相配性,且緩衝層之材質可為矽;以及設置一N型層於緩衝層之上方。According to another aspect of the present invention, a method for fabricating a thin film solar cell includes the steps of: cleaning a substrate; providing a P-type layer over the substrate; and disposing an I-type layer over the P-type layer; Providing a light absorbing layer above the I type layer; heat treating the light absorbing layer by hydrogen/nitrogen plasma; depositing a buffer layer over the light absorbing layer to increase the compatibility of the crystal structure of the light absorbing layer, and the buffer layer The material can be 矽; and an N-type layer is placed over the buffer layer.
其中,本方法更包含設置一第一透明導電層於基板與P型層之間,設置一第二透明導電層於N型層之上方;設置一抗反射層於第二透明導電層之上方;以及設置一電極層於抗反射層之上方。The method further includes: providing a first transparent conductive layer between the substrate and the P-type layer, and disposing a second transparent conductive layer above the N-type layer; and providing an anti-reflective layer above the second transparent conductive layer; And an electrode layer is disposed above the anti-reflection layer.
其中,光吸收層之厚度可小於50奈米。Wherein, the thickness of the light absorbing layer can be less than 50 nm.
其中,光吸收層之材質可包含銅銦硒系(CISe-based)或銅銦鎵硒系(CIGSe-based)。The material of the light absorbing layer may include copper indium selenide (CISe-based) or copper indium gallium selenide (CIGSe-based).
其中,光吸收層熱處理之溫度可介於550~700℃之間,且熱處理之時間可介於40~70秒之間。The heat treatment layer of the light absorbing layer may have a temperature between 550 and 700 ° C, and the heat treatment time may be between 40 and 70 seconds.
根據本發明之目的,又提出一種薄膜太陽能電池,其包含基板、P型層、I型層、光吸收層、緩衝層以及N型層。P型層設置於基板之上方;I型層設置於P型層之上方;光吸收層藉由物理沉積技術設置於P型層之上方;緩衝層設置於光吸收層之上方;以及N型層設置於I型層之上方。In accordance with the purpose of the present invention, a thin film solar cell comprising a substrate, a p-type layer, an I-type layer, a light absorbing layer, a buffer layer, and an N-type layer is further proposed. The P-type layer is disposed above the substrate; the I-type layer is disposed above the P-type layer; the light-absorbing layer is disposed above the P-type layer by a physical deposition technique; the buffer layer is disposed above the light absorbing layer; and the N-type layer Set above the I-type layer.
其中,更包含一第一透明導電層,設置於基板與P型層之間;一第二透明導電層,設置於N型層之上方;一抗反射層,設置於第二透明導電層;以及一電極層,設置於抗反射層之上方。The first transparent conductive layer is disposed between the substrate and the P-type layer; a second transparent conductive layer is disposed above the N-type layer; and an anti-reflective layer is disposed on the second transparent conductive layer; An electrode layer is disposed above the anti-reflection layer.
其中,光吸收層之厚度可小於50奈米。Wherein, the thickness of the light absorbing layer can be less than 50 nm.
其中,光吸收層之材質可包含銅銦硒系(CISe-based)或銅銦鎵硒系(CIGSe-based)。The material of the light absorbing layer may include copper indium selenide (CISe-based) or copper indium gallium selenide (CIGSe-based).
其中,光吸收層藉由氫/氮電漿熱處理,其熱處理之溫度可介於550~700℃之間,且熱處理之時間可介於40~70秒之間。Wherein, the light absorbing layer is heat treated by hydrogen/nitrogen plasma, and the heat treatment temperature may be between 550 and 700 ° C, and the heat treatment time may be between 40 and 70 seconds.
承上所述,本發明之薄膜太陽能電池及其製造方法,主要係改變薄膜太陽能電池之結構及製程。於薄膜太陽能電池中增設一層銅銦硒系(CISe-based)或銅銦鎵硒系(CIGSe-based)材料構成之光吸收層,由於硒化物材料具有高光學傳輸性及高電子移動率等物理性質,其可增加薄膜太陽能電池之光譜吸收範圍及導電性,換句話說,增設光吸收層可提高薄膜太陽能電池之光穿透性及導電性,以改善元件的電流密度及增加光電轉換效率。另外,藉由物理式沉積製程取代傳統之多步驟硒化熱處理,可減少酸鹼溶液之消耗量,以及其所造成之環保污染問題。As described above, the thin film solar cell of the present invention and the method of manufacturing the same mainly change the structure and process of the thin film solar cell. A thin-film solar cell is additionally provided with a light-absorbing layer composed of a CISe-based or CIGSe-based material, and the selenide material has high optical transportability and high electron mobility. The property can increase the spectral absorption range and conductivity of the thin film solar cell. In other words, the addition of the light absorbing layer can improve the light transmittance and conductivity of the thin film solar cell to improve the current density of the device and increase the photoelectric conversion efficiency. In addition, by replacing the traditional multi-step selenization heat treatment with a physical deposition process, the consumption of the acid-base solution and the environmental pollution caused by it can be reduced.
茲為使貴審查委員對本發明之技術特徵及所達到之功效有更進一步之瞭解與認識,謹佐以較佳之實施例及配合詳細之說明如後。
For a better understanding and understanding of the technical features and the efficacies of the present invention, the preferred embodiments and the detailed description are as follows.
為利貴審查員瞭解本發明之技術特徵、內容與優點及其所能達成之功效,茲將本發明配合附圖,並以實施例之表達形式詳細說明如下,而其中所使用之圖式,其主旨僅為示意及輔助說明書之用,未必為本發明實施後之真實比例與精準配置,故不應就所附之圖式的比例與配置關係解讀、侷限本發明於實際實施上的權利範圍,合先敘明。The technical features, contents, and advantages of the present invention, as well as the advantages thereof, can be understood by the present inventors, and the present invention will be described in detail with reference to the accompanying drawings. The subject matter is only for the purpose of illustration and description. It is not intended to be a true proportion and precise configuration after the implementation of the present invention. Therefore, the scope and configuration relationship of the attached drawings should not be interpreted or limited. First described.
以下將參照相關圖式,說明依本發明之薄膜太陽能電池及其製造方法之實施例,為使便於理解,下述實施例中之相同元件係以相同之符號標示來說明。Embodiments of the thin film solar cell and the method of manufacturing the same according to the present invention will be described below with reference to the accompanying drawings. For the sake of understanding, the same elements in the following embodiments are denoted by the same reference numerals.
請參閱第2圖,其係為本發明之薄膜太陽能電池之第一實施例之示意圖。圖中,薄膜太陽能電池2可包含基板200、第一透明導電層210、P型層220、光吸收層230、緩衝層240、I型層250、N型層260、第二透明導電層270、抗反射層280及電極層290。第一透明導電層210設置於基板200之上方。P型層220設置於第一透明導電層210之上方。光吸收層230設置於P型層220之上方。緩衝層240設置於光吸收層230之上方。I型層250設置於緩衝層240之上方。N型層260設置於I型層250之上方。第二透明導電層270設置於N型層260之上方。抗反射層280設置於第二透明導電層270之上方。電極層290設置於抗反射層280之上方。其中,基板200之材質可為玻璃、矽晶圓片、軟質金屬箔片或塑膠軟片等,但其材質不以此為限。其中,基板200的厚度較佳可小於1.1釐米。P型層220、I型層250及N型層260之材質可為本質性矽晶,如非晶矽、微晶矽或奈米晶矽,且可以脈衝雷射沉積法、化學氣相沉積法或高密度電漿強化型化學氣相沉積法設置於薄膜太陽能電池2中。光吸收層230可利用脈衝式雷射或直流/射頻法濺鍍銅銦硒系(CISe-based)或銅銦鎵硒系(CIGSe-based)等硒化物而成,其厚度較佳可小於50奈米,並經由氫/氮電漿於550~700℃中熱處理40~70秒,以改善光吸收層230之表面特性。緩衝層240可以以物理性沉積法沉積矽薄膜層於光吸收層230之上,以增加晶體結構間之相配性。第一透明導電層210及第二透明導電層270之材質可為氧化銦錫、氧化鋅或氧化錫等,但不以此為限。抗反射層280可藉由直流/射頻沉積法設置氟化鎂於第二透明導電層270之上,但其材質不以此為限。電極層290可藉由直流/射頻濺鍍法或印刷法濺鍍鎳/鋁金屬作為一電極層290,且其厚度較佳可小於0.05微米。Please refer to FIG. 2, which is a schematic view of a first embodiment of a thin film solar cell of the present invention. In the figure, the thin film solar cell 2 may include a substrate 200, a first transparent conductive layer 210, a P-type layer 220, a light absorbing layer 230, a buffer layer 240, an I-type layer 250, an N-type layer 260, and a second transparent conductive layer 270. Antireflection layer 280 and electrode layer 290. The first transparent conductive layer 210 is disposed above the substrate 200. The P-type layer 220 is disposed above the first transparent conductive layer 210. The light absorbing layer 230 is disposed above the P-type layer 220. The buffer layer 240 is disposed above the light absorbing layer 230. The I-type layer 250 is disposed above the buffer layer 240. The N-type layer 260 is disposed above the I-type layer 250. The second transparent conductive layer 270 is disposed above the N-type layer 260. The anti-reflective layer 280 is disposed above the second transparent conductive layer 270. The electrode layer 290 is disposed above the anti-reflection layer 280. The material of the substrate 200 may be glass, germanium wafer, soft metal foil or plastic film, but the material is not limited thereto. The thickness of the substrate 200 is preferably less than 1.1 cm. The material of the P-type layer 220, the I-type layer 250 and the N-type layer 260 may be an essential twin crystal, such as an amorphous germanium, a microcrystalline germanium or a nanocrystalline germanium, and may be pulsed laser deposition or chemical vapor deposition. Or a high-density plasma-enhanced chemical vapor deposition method is disposed in the thin film solar cell 2. The light absorbing layer 230 can be sputtered by a pulsed laser or a direct current/radio frequency method to deposit a selenium compound such as a copper indium selenide (CISe-based) or a copper indium gallium selenide (CIGSe-based), and the thickness thereof is preferably less than 50. The nanoparticle is heat-treated at 550 to 700 ° C for 40 to 70 seconds via a hydrogen/nitrogen plasma to improve the surface characteristics of the light absorbing layer 230. The buffer layer 240 may deposit a thin film layer on the light absorbing layer 230 by physical deposition to increase the compatibility between the crystal structures. The material of the first transparent conductive layer 210 and the second transparent conductive layer 270 may be indium tin oxide, zinc oxide or tin oxide, but is not limited thereto. The anti-reflective layer 280 can be provided with magnesium fluoride on the second transparent conductive layer 270 by DC/RF deposition, but the material is not limited thereto. The electrode layer 290 can be sputtered with nickel/aluminum metal as an electrode layer 290 by DC/RF sputtering or printing, and preferably has a thickness of less than 0.05 μm.
請參閱第3圖,其係為本發明之薄膜太陽能電池之第二實施例之示意圖。圖中,薄膜太陽能電池3可包含基板300、第一透明導電層310、P型層320、I型層330、光吸收層340、緩衝層350、N型層360、第二透明導電層370、抗反射層380及電極層390。第一透明導電層310設置於基板300之上方。P型層320設置於第一透明導電層310之上方。I型層330設置於P型層320之上方。光吸收層340設置於I型層330之上方。緩衝層350設置於光吸收層340之上方。N型層360設置於緩衝層350之上方。第二透明導電層370設置於N型層360之上方。抗反射層380設置於第二透明導電層370之上方。電極層390設置於抗反射層380之上方。其中,基板300之材質可為玻璃、矽晶圓片、軟質金屬箔片或塑膠軟片等,但其材質不以此為限。其中,基板300的厚度較佳可小於1.1釐米。P型層320、I型層330及N型層360之材質可為本質性矽晶,如非晶矽、微晶矽或奈米晶矽,且可以脈衝雷射沉積法、化學氣相沉積法或高密度電漿強化型化學氣相沉積法設置於薄膜太陽能電池3中。光吸收層340可利用脈衝式雷射或直流/射頻法濺鍍銅銦硒系(CISe-based)或銅銦鎵硒系(CIGSe-based)等硒化物而成,其厚度較佳可小於50奈米,並經由氫/氮電漿於550~700℃中熱處理40~70秒,以改善光吸收層340之表面特性。緩衝層350可以以物理性沉積法沉積矽薄膜層於光吸收層340之上,以增加晶體結構間之相配性。第一透明導電層310及第二透明導電層370之材質可為氧化銦錫、氧化鋅或氧化錫等,但不以此為限。抗反射層380可藉由直流/射頻沉積法設置氟化鎂於第二透明導電層370之上,但其材質不以此為限。電極層390可藉由直流/射頻濺鍍法或印刷法濺鍍鎳/鋁金屬作為一電極層390,且其厚度較佳地可小於0.05微米。Please refer to FIG. 3, which is a schematic view of a second embodiment of the thin film solar cell of the present invention. In the figure, the thin film solar cell 3 may include a substrate 300, a first transparent conductive layer 310, a P-type layer 320, an I-type layer 330, a light absorbing layer 340, a buffer layer 350, an N-type layer 360, and a second transparent conductive layer 370. Antireflection layer 380 and electrode layer 390. The first transparent conductive layer 310 is disposed above the substrate 300. The P-type layer 320 is disposed above the first transparent conductive layer 310. The I-type layer 330 is disposed above the P-type layer 320. The light absorbing layer 340 is disposed above the I-type layer 330. The buffer layer 350 is disposed above the light absorbing layer 340. The N-type layer 360 is disposed above the buffer layer 350. The second transparent conductive layer 370 is disposed above the N-type layer 360. The anti-reflective layer 380 is disposed above the second transparent conductive layer 370. The electrode layer 390 is disposed above the anti-reflection layer 380. The material of the substrate 300 may be glass, germanium wafer, soft metal foil or plastic film, but the material is not limited thereto. The thickness of the substrate 300 is preferably less than 1.1 cm. The material of the P-type layer 320, the I-type layer 330 and the N-type layer 360 may be an essential twin crystal, such as an amorphous germanium, a microcrystalline germanium or a nanocrystalline germanium, and may be pulsed laser deposition or chemical vapor deposition. Or a high-density plasma-enhanced chemical vapor deposition method is disposed in the thin film solar cell 3. The light absorbing layer 340 can be sputtered by a pulsed laser or a direct current/radio frequency method to deposit a selenium compound such as a copper indium selenide (CISe-based) or a copper indium gallium selenide (CIGSe-based), and the thickness thereof is preferably less than 50. The nanoparticle is heat-treated at 550 to 700 ° C for 40 to 70 seconds via a hydrogen/nitrogen plasma to improve the surface characteristics of the light absorbing layer 340. The buffer layer 350 may deposit a thin film layer on the light absorbing layer 340 by physical deposition to increase the compatibility between the crystal structures. The material of the first transparent conductive layer 310 and the second transparent conductive layer 370 may be indium tin oxide, zinc oxide or tin oxide, but is not limited thereto. The anti-reflective layer 380 can be provided with magnesium fluoride on the second transparent conductive layer 370 by DC/RF deposition, but the material is not limited thereto. The electrode layer 390 can be sputtered with nickel/aluminum metal as an electrode layer 390 by DC/RF sputtering or printing, and preferably has a thickness of less than 0.05 μm.
續言之,一般在量測光電轉換效率η(Eff)時,會參考三個數值,分別為:填充因子(FF)、開路電壓(Voc)、短路電流密度(Jsc),此三項數值與光電轉換效率有正相關。而光電轉換效率η的值為太陽能電池最大輸出功率及其輸入功率之比值,更進一步的說,光電轉換效率η可為填充因子(FF)、開路電壓(Voc)、短路電流密度(Jsc)之乘積與入射光功率(PL)之比值。In other words, when measuring the photoelectric conversion efficiency η (Eff), three values are referred to: fill factor (FF), open circuit voltage (Voc), short circuit current density (Jsc), and the three values are There is a positive correlation between photoelectric conversion efficiency. The photoelectric conversion efficiency η is a ratio of the maximum output power of the solar cell and its input power. Further, the photoelectric conversion efficiency η can be a fill factor (FF), an open circuit voltage (Voc), and a short circuit current density (Jsc). The ratio of the product to the incident light power (P L ).
請參閱第4圖,其係為本發明之薄膜太陽能電池與習知技術之電流密度-電壓變化比較之數據圖。圖中分別測得習知技術之薄膜太陽能電池與本發明之薄膜太陽能電池之電流密度及電壓。電流密度及電壓之數值經由公式轉換,即可獲得光電轉換效率之比值。習知之薄膜太陽能電池之光電轉換效率η為7.324%,而本發明之薄膜太陽能電池之光電轉換效率η為10~12%,証實增設一層光吸收層於薄膜太陽能電池中,確實可提升薄膜太陽能電池之光電轉換效率。Please refer to FIG. 4, which is a data diagram comparing the current density-voltage variation of the thin film solar cell of the present invention with the prior art. The current density and voltage of a conventional thin film solar cell and a thin film solar cell of the present invention are measured in the figure. The values of the current density and the voltage are converted by a formula to obtain a ratio of photoelectric conversion efficiency. The photoelectric conversion efficiency η of the conventional thin film solar cell is 7.324%, and the photoelectric conversion efficiency η of the thin film solar cell of the present invention is 10 to 12%, and it is confirmed that a light absorbing layer is added to the thin film solar cell, and the thin film solar cell can be improved. Photoelectric conversion efficiency.
請參閱第5圖,其係為本發明之薄膜太陽能電池之第一實施例之製造方法之流程圖。圖中,本發明之薄膜太陽能電池製造方法之步驟S500為清洗一基板,其材質可為玻璃、矽晶圓片、軟質金屬箔片或塑膠軟片等,但其材質不以此為限。其中,基板的厚度較佳地可小於1.1釐米。接著,步驟S510為設置第一透明導電層於基板之上方。接著,步驟S520為設置P型層於第一透明導電層之上方。步驟S530為藉由物理沉積技術設置光吸收層於P型層之上方,其物理性沉積技術可為脈衝式雷射法或直流/射頻法濺鍍銅銦硒系(CISe-based)或銅銦鎵硒系(CIGSe-based)等硒化物於P型層之上,且其厚度較佳可小於50奈米。接著,步驟S540為藉由氫/氮電漿熱處理光吸收層,於550~700℃中熱處理40~70秒,以改善光吸收層之表面特性。步驟S550為沉積緩衝層於光吸收層之上方,以增加晶體結構間之相配性。在這之後,步驟S560為設置I型層於緩衝層之上方。而步驟S570為設置N型層於I型層之上方;其中,P型層、I型層及N型層之材質可為本質性矽晶,如非晶矽、微晶矽或奈米晶矽,且以脈衝雷射沉積法、化學氣相沉積法或高密度電漿強化型化學氣相沉積法設置於薄膜太陽能電池中。最後,步驟S580為依序設置第二透明緩衝層、抗反射層及電極層於N型層之上方;其中,第一透明導電層及第二透明導電層之材質可為氧化銦錫、氧化鋅或氧化錫等,但不以此為限;抗反射層可藉由直流/射頻沉積法設置氟化鎂於第二透明導電層之上,但其材質不以此為限;電極層可藉由直流/射頻濺鍍法或印刷法濺鍍鎳/鋁金屬於抗反射層之上,且其厚度較佳地可小於0.05微米。Please refer to FIG. 5, which is a flow chart of a manufacturing method of a first embodiment of the thin film solar cell of the present invention. In the figure, the step S500 of the method for manufacturing a thin film solar cell of the present invention is to clean a substrate, and the material thereof may be glass, germanium wafer, soft metal foil or plastic film, but the material is not limited thereto. Wherein, the thickness of the substrate is preferably less than 1.1 cm. Next, step S510 is to set the first transparent conductive layer above the substrate. Next, step S520 is to set the P-type layer above the first transparent conductive layer. Step S530 is to set the light absorbing layer above the P-type layer by physical deposition technology, and the physical deposition technique may be pulsed laser or DC/RF sputtering of CISe-based or copper indium. Selenium compounds such as gallium selenide (CIGSe-based) are above the P-type layer, and the thickness thereof is preferably less than 50 nm. Next, in step S540, the light absorbing layer is heat-treated by hydrogen/nitrogen plasma, and heat-treated at 550 to 700 ° C for 40 to 70 seconds to improve the surface characteristics of the light absorbing layer. Step S550 is to deposit a buffer layer above the light absorbing layer to increase the compatibility between the crystal structures. After that, step S560 is to set the I-type layer above the buffer layer. Step S570 is to set the N-type layer above the I-type layer; wherein, the material of the P-type layer, the I-type layer and the N-type layer may be an essential twin, such as an amorphous germanium, a microcrystalline germanium or a nanocrystalline germanium. And is disposed in a thin film solar cell by pulsed laser deposition, chemical vapor deposition or high density plasma enhanced chemical vapor deposition. Finally, in step S580, the second transparent buffer layer, the anti-reflection layer and the electrode layer are disposed above the N-type layer; wherein the first transparent conductive layer and the second transparent conductive layer are made of indium tin oxide and zinc oxide. Or tin oxide, etc., but not limited thereto; the anti-reflective layer may be provided with magnesium fluoride on the second transparent conductive layer by DC/RF deposition, but the material is not limited thereto; the electrode layer may be The DC/RF sputtering or printing method sputters the nickel/aluminum metal over the antireflective layer and preferably has a thickness of less than 0.05 microns.
請參閱第6圖,其係為本發明之薄膜太陽能電池之第二實施例之製造方法之流程圖。圖中,本發明之薄膜太陽能電池製造方法之步驟S600為清洗一基板,其材質可為玻璃、矽晶圓片、軟質金屬箔片或塑膠軟片等,但其材質不以此為限,且其厚度較佳地可小於1.1釐米。接著,步驟S610為設置第一透明導電層於基板之上方。接著,步驟S620為設置P型層於第一透明導電層之上方。步驟S630為設置I型層於P型層之上方。步驟S640為藉由物理沉積技術設置光吸收層於I型層之上方,其物理性沉積技術可為脈衝式雷射法或直流/射頻法濺鍍銅銦硒系(CISe-based)或銅銦鎵硒系(CIGSe-based)等硒化物於I型層之上,且其厚度較佳地可小於50奈米。而步驟S650為藉由氫/氮電漿熱處理光吸收層,於550~700℃中熱處理40~70秒,以改善光吸收層之表面特性。而步驟S660為沉積緩衝層於光吸收層之上方,以增加晶體結構間之相配性。在這之後,步驟S670為設置N型層於緩衝層之上方;其中,P型層、I型層及N型層之材質可為本質性矽晶,如非晶矽、微晶矽或奈米晶矽,且以脈衝雷射沉積法、化學氣相沉積法或高密度電漿強化型化學氣相沉積法設置於薄膜太陽能電池中。最後,步驟S680為依序設置第二透明緩衝層、抗反射層及電極層於N型層之上方。其中,第一透明導電層及第二透明導電層之材質可為氧化銦錫、氧化鋅或氧化錫等,但不以此為限。抗反射層可藉由直流/射頻沉積法設置氟化鎂於第二透明導電層之上,但其材質不以此為限。電極層可藉由直流/射頻濺鍍法或印刷法濺鍍鎳/鋁金屬於抗反射層之上,且其厚度較佳地可小於0.05微米。Please refer to FIG. 6, which is a flow chart of a manufacturing method of a second embodiment of the thin film solar cell of the present invention. In the figure, the step S600 of the method for manufacturing a thin film solar cell of the present invention is to clean a substrate, and the material thereof may be glass, germanium wafer, soft metal foil or plastic film, but the material is not limited thereto, and The thickness is preferably less than 1.1 cm. Next, step S610 is to set the first transparent conductive layer above the substrate. Next, step S620 is to set the P-type layer above the first transparent conductive layer. Step S630 is to set the I-type layer above the P-type layer. Step S640 is to set the light absorbing layer above the I-type layer by physical deposition technology, and the physical deposition technique may be pulsed laser or DC/RF sputtering of CISe-based or copper indium. Selenium compounds such as CIGSe-based are above the I-type layer, and the thickness thereof is preferably less than 50 nm. In step S650, the light absorbing layer is heat-treated by hydrogen/nitrogen plasma, and heat-treated at 550 to 700 ° C for 40 to 70 seconds to improve the surface characteristics of the light absorbing layer. Step S660 is to deposit a buffer layer above the light absorbing layer to increase the compatibility between the crystal structures. After that, step S670 is to set the N-type layer above the buffer layer; wherein the material of the P-type layer, the I-type layer and the N-type layer may be an essential twin, such as an amorphous germanium, a microcrystalline germanium or a nanometer. The wafer is placed in a thin film solar cell by pulsed laser deposition, chemical vapor deposition or high density plasma enhanced chemical vapor deposition. Finally, in step S680, the second transparent buffer layer, the anti-reflection layer and the electrode layer are sequentially disposed above the N-type layer. The material of the first transparent conductive layer and the second transparent conductive layer may be indium tin oxide, zinc oxide or tin oxide, but is not limited thereto. The anti-reflection layer may be provided with magnesium fluoride on the second transparent conductive layer by DC/RF deposition, but the material is not limited thereto. The electrode layer may be sputtered with nickel/aluminum metal over the antireflective layer by direct current/radio frequency sputtering or printing, and preferably has a thickness of less than 0.05 microns.
綜合上述,本發明之薄膜太陽能電池是藉由物理性沉積技術設置一層強光吸收層於太陽能電池中。光吸收層之位置可位於P-I-N半導體中之P型層與I型層之間或I型層與N型層之間。由於光吸收層之材質為銅銦硒系(CISe-based)或銅銦鎵硒系(CIGSe-based)等硒化物,其具有寬廣光譜吸收範圍、良好的材料穩定度等特性,可改變習知之薄膜太陽能電池之光電特性,並提升光電轉換效率。附帶一提的是,藉由物理性沉積技術搭配電漿熱處理來設置光吸收層,可減少製作步驟及酸鹼性溶液的消耗,進而減少環境之污染問題。In summary, the thin film solar cell of the present invention is provided with a strong light absorbing layer in a solar cell by a physical deposition technique. The position of the light absorbing layer may be between the P-type layer and the I-type layer or between the I-type layer and the N-type layer in the P-I-N semiconductor. Since the material of the light absorbing layer is a selenium compound such as copper indium selenide (CISe-based) or copper indium gallium selenide (CIGSe-based), it has a wide spectral absorption range, good material stability, and the like, and can be changed. The photoelectric characteristics of thin film solar cells and improve photoelectric conversion efficiency. Incidentally, the physical deposition technique combined with the plasma heat treatment to set the light absorbing layer can reduce the production steps and the consumption of the acid-alkaline solution, thereby reducing the environmental pollution problem.
以上所述僅為舉例性,而非為限制性者。任何未脫離本發明之精神與範疇,而對其進行之等效修改或變更,均應包含於後附之申請專利範圍中。
The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the invention are intended to be included in the scope of the appended claims.
1、2、3...薄膜太陽能電池1, 2, 3. . . Thin film solar cell
11、200、300...基板11,200,300. . . Substrate
12...半導體層12. . . Semiconductor layer
121、220、320...P型層121, 220, 320. . . P-type layer
122、250、330...I型層122, 250, 330. . . Type I layer
123、260、360...N型層123, 260, 360. . . N-type layer
210、310...第一透明導電層210, 310. . . First transparent conductive layer
230、340...光吸收層230, 340. . . Light absorbing layer
240、350...緩衝層240, 350. . . The buffer layer
270、370...第二透明導電層270, 370. . . Second transparent conductive layer
280、380...抗反射層280, 380. . . Antireflection layer
290、390...電極層290, 390. . . Electrode layer
S500~S580、S600~S680...步驟S500~S580, S600~S680. . . step
第1圖係為習知技術之薄膜太陽能電池之示意圖。
第2圖係為本發明薄膜太陽能電池之第一實施例之示意圖。
第3圖係為本發明之薄膜太陽能電池之第二實施例之示意圖。
第4圖係為本發明之薄膜太陽能電池與習知技術之電流密度-電壓變化比較之數據圖。
第5圖係為本發明之薄膜太陽能電池之第一實施例之製造方法之流程圖。
第6圖係為本發明之薄膜太陽能電池之第二實施例之製造方法之流程圖。
Figure 1 is a schematic diagram of a thin film solar cell of the prior art.
Figure 2 is a schematic view showing a first embodiment of the thin film solar cell of the present invention.
Figure 3 is a schematic view showing a second embodiment of the thin film solar cell of the present invention.
Figure 4 is a graph showing the comparison of the current density-voltage variation of the thin film solar cell of the present invention with the prior art.
Fig. 5 is a flow chart showing the manufacturing method of the first embodiment of the thin film solar cell of the present invention.
Fig. 6 is a flow chart showing the manufacturing method of the second embodiment of the thin film solar cell of the present invention.
2...薄膜太陽能電池2. . . Thin film solar cell
200...基板200. . . Substrate
210...第一透明導電層210. . . First transparent conductive layer
220...P型層220. . . P-type layer
230...光吸收層230. . . Light absorbing layer
240...緩衝層240. . . The buffer layer
250...I型層250. . . Type I layer
260...N型層260. . . N-type layer
270...第二透明導電層270. . . Second transparent conductive layer
280...抗反射層280. . . Antireflection layer
290...電極層290. . . Electrode layer
Claims (15)
清洗一基板;
設置一P型層於該基板之上方;
藉由一物理沉積技術設置一光吸收層於該P型層之上方;
藉由氫/氮電漿熱處理該光吸收層;
沉積一緩衝層於該光吸收層之上方,以增加該光吸收層晶體結構之相配性,且該緩衝層之材質係為矽;
設置一I型層於該緩衝層之上方;以及
設置一N型層於該I型層之上方。A method of manufacturing a thin film solar cell, comprising the steps of:
Cleaning a substrate;
Providing a P-type layer above the substrate;
Providing a light absorbing layer above the P-type layer by a physical deposition technique;
Heat treating the light absorbing layer by hydrogen/nitrogen plasma;
Depositing a buffer layer over the light absorbing layer to increase the compatibility of the crystal structure of the light absorbing layer, and the material of the buffer layer is 矽;
An I-type layer is disposed over the buffer layer; and an N-type layer is disposed over the I-type layer.
設置一第一透明導電層於該基板與該P型層之間;
設置一第二透明導電層於該N型層之上方;
設置一抗反射層於該第二透明導電層之上方;以及
設置一電極層於該抗反射層之上方。The method for manufacturing a thin film solar cell according to claim 1, further comprising the following steps:
Providing a first transparent conductive layer between the substrate and the P-type layer;
Providing a second transparent conductive layer above the N-type layer;
An anti-reflection layer is disposed above the second transparent conductive layer; and an electrode layer is disposed above the anti-reflection layer.
清洗一基板;
設置一P型層於該基板之上方;
設置一I型層於該P型層之上方;
藉由一物理沉積技術設置一光吸收層於該I型層之上方;
藉由氫/氮電漿熱處理該光吸收層;
沉積一緩衝層於該光吸收層之上方,以增加該光吸收層晶體結構之相配性,且該緩衝層之材質係為矽;以及
設置一N型層於該緩衝層之上方。A method of manufacturing a thin film solar cell, comprising the steps of:
Cleaning a substrate;
Providing a P-type layer above the substrate;
Forming an I-type layer above the P-type layer;
Providing a light absorbing layer above the I-type layer by a physical deposition technique;
Heat treating the light absorbing layer by hydrogen/nitrogen plasma;
Depositing a buffer layer over the light absorbing layer to increase the compatibility of the crystal structure of the light absorbing layer, and the material of the buffer layer is 矽; and an N-type layer is disposed above the buffer layer.
設置一第一透明導電層於該基板與該P型層之間;
設置一第二透明導電層於該N型層之上方;
設置一抗反射層於該第二透明導電層之上方;以及
設置一電極層於該抗反射層之上方。The method for manufacturing a thin film solar cell according to claim 6, further comprising the following steps:
Providing a first transparent conductive layer between the substrate and the P-type layer;
Providing a second transparent conductive layer above the N-type layer;
An anti-reflection layer is disposed above the second transparent conductive layer; and an electrode layer is disposed above the anti-reflection layer.
一基板;
一P型層,係設置於該基板之上方;
一I型層,係設置於該P型層之上方;
一光吸收層,係藉由一物理沉積技術設置於該P型層之上方;
一緩衝層,係設置於該光吸收層之上方,且該緩衝層之材質係為矽;以及
一N型層,係設置於該I型層之上方。A thin film solar cell comprising:
a substrate;
a P-type layer disposed above the substrate;
An I-type layer is disposed above the P-type layer;
a light absorbing layer disposed above the P-type layer by a physical deposition technique;
A buffer layer is disposed above the light absorbing layer, and the buffer layer is made of bismuth; and an N-type layer is disposed above the I-type layer.
一第一透明導電層,係設置於該基板與該P型層之間;
一第二透明導電層,係設置於該N型層之上方;
一抗反射層,係設置於該第二透明導電層之上方;以及
一電極層,係設置於該抗反射層之上方。The thin film solar cell of claim 11, wherein the method further comprises:
a first transparent conductive layer is disposed between the substrate and the P-type layer;
a second transparent conductive layer is disposed above the N-type layer;
An anti-reflective layer is disposed above the second transparent conductive layer; and an electrode layer is disposed above the anti-reflective layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101117657A TWI462314B (en) | 2012-05-17 | 2012-05-17 | Thin-film solar cell and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW101117657A TWI462314B (en) | 2012-05-17 | 2012-05-17 | Thin-film solar cell and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201349518A true TW201349518A (en) | 2013-12-01 |
TWI462314B TWI462314B (en) | 2014-11-21 |
Family
ID=50157549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101117657A TWI462314B (en) | 2012-05-17 | 2012-05-17 | Thin-film solar cell and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI462314B (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100895977B1 (en) * | 2008-04-10 | 2009-05-07 | 키스코홀딩스주식회사 | Amorphous silicon thin-film soar cells and fabrication method for thereof |
CN101556977B (en) * | 2008-04-11 | 2012-04-18 | 福建钧石能源有限公司 | Film silicon photovoltaic device and manufacturing method, back electrode and photovoltaic component thereof |
KR100876613B1 (en) * | 2008-05-27 | 2008-12-31 | 한국철강 주식회사 | Tandem thin-film silicon solar cell and method for fabricating thereof |
WO2010113708A1 (en) * | 2009-03-30 | 2010-10-07 | 三菱マテリアル株式会社 | Method of producing solar cell module |
-
2012
- 2012-05-17 TW TW101117657A patent/TWI462314B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TWI462314B (en) | 2014-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Başol et al. | Brief review of cadmium telluride-based photovoltaic technologies | |
US9583655B2 (en) | Method of making photovoltaic device having high quantum efficiency | |
TWI463682B (en) | Heterojunction solar cell having intrinsic amorphous silicon film | |
Ren et al. | Strategies for high performance perovskite/crystalline silicon four-terminal tandem solar cells | |
Yin et al. | Rear point contact structures for performance enhancement of semi-transparent ultrathin Cu (In, Ga) Se2 solar cells | |
JP2024524608A (en) | Heterojunction battery and method of manufacturing same | |
US20130074921A1 (en) | Low-Resistance Back Contact For Photovoltaic Cells | |
Richter et al. | Light management in planar silicon heterojunction solar cells via nanocrystalline silicon oxide films and nano‐imprint textures | |
TW201327862A (en) | Conductive substrate and fabricating method thereof, and solar cell | |
TWI485868B (en) | Thin film solar cell and manufacturing method for the same | |
TWI462314B (en) | Thin-film solar cell and manufacturing method thereof | |
Ghaleb et al. | I-MASnBr/CZTGS Heterojunction Solar Cell Layer Optimization Investigated Using Scaps-1D Software Exhibited Excellent Performance at 50% | |
US9952360B2 (en) | Method for producing a textured reflector for a thin-film photovoltaic cell, and resulting textured reflector | |
TW201822371A (en) | Solar cell with heterojunction and method for manufacturing the same | |
TWI501407B (en) | Enhanced light absorption thin film used in solar cell, solar cell structure and its manufacturing method | |
TWI513022B (en) | Thin-film solar cell and manufacturing method thereof | |
CN112786713B (en) | High-efficiency ultrathin copper indium gallium selenium thin-film solar cell and preparation method thereof | |
CN108198871A (en) | Heterojunction solar cell and its manufacturing method | |
KR101120009B1 (en) | Solar cell having nano scale pillar, and fabricating method thereof | |
US20160163887A1 (en) | Silicon substrate for solar cell and manufacturing method therefor | |
Depauw et al. | Integrating surface nanotextures into thin crystalline-Si solar cells: The case of a 1-μm-thin nanoimprinted heterojunction cell | |
JP4352111B2 (en) | Photoelectric conversion device and manufacturing method thereof | |
Li | Silicon Heterojunction Solar Cells with Transition Metal Oxide as the Hole Transport Layers | |
Oswal et al. | Study of Performance Analysis of Modern Materials for Transparent Thin Film Solar Cells | |
TWI555222B (en) | Method for manufacturing photovoltaic cell with super - shallow surfacing layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |