TW201342169A - Capacitive touch panel and method of manufacturing the same - Google Patents

Capacitive touch panel and method of manufacturing the same Download PDF

Info

Publication number
TW201342169A
TW201342169A TW101112395A TW101112395A TW201342169A TW 201342169 A TW201342169 A TW 201342169A TW 101112395 A TW101112395 A TW 101112395A TW 101112395 A TW101112395 A TW 101112395A TW 201342169 A TW201342169 A TW 201342169A
Authority
TW
Taiwan
Prior art keywords
conductive
capacitive touch
sensing
touch device
conductive polymer
Prior art date
Application number
TW101112395A
Other languages
Chinese (zh)
Inventor
Yang-Lin Chen
Te-Hui Shen
Original Assignee
Delta Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Electronics Inc filed Critical Delta Electronics Inc
Priority to TW101112395A priority Critical patent/TW201342169A/en
Publication of TW201342169A publication Critical patent/TW201342169A/en

Links

Landscapes

  • Position Input By Displaying (AREA)

Abstract

The present disclosure provides a capacitive touch panel and a method of manufacturing the same. In an embodiment, a capacitive touch panel includes a substrate, a plurality of conductive bridges, a conductive layer, and a plurality of insulators. The conductive bridges are disposed over the substrate and spaced apart along a first direction. The conductive layer includes a first sensing array and a second sensing array, wherein the first sensing array and the second sensing array collectively forms an interleaving pattern and are isolated from each other. The first sensing array includes a plurality of first sensing pads disposed over the substrate and spaced apart along the first direction. The second sensing array includes a plurality of second sensing pads and a plurality of connecting portions continuously disposed over the substrate along a second direction. The insulators are disposed between the conductive bridges and the connecting portions for electrical isolation. The first sensing pads at least cover a portion of the top surface of the conductive bridges and are electrically connected to each other by the conductive bridges.

Description

電容式觸控裝置及製作方法Capacitive touch device and manufacturing method

本發明係有關於觸控裝置及其製作方法,且特別是有關於一種電容式觸控裝置及其製作方法。
The present invention relates to a touch device and a method of fabricating the same, and more particularly to a capacitive touch device and a method of fabricating the same.

觸控裝置依感應原理可分為電阻式、電容式、超音波式及光學(紅外線)式、電磁式等。電容式觸控裝置是藉由透明電極與人體或導電物體間接觸產生的電容變化得到觸控位置的座標,將電容式觸控技術與面板技術結合,即可製作出電容式觸控面板。利用在感測區的四周施加電壓形成均勻電場,當人體或導電物體與電容式觸控裝置(電容式觸控面板)接觸時會形成耦合電容,吸走觸控位置下方的電流而造成電場改變,經過IC運算及系統判讀後即可得到座標位置。
電容式觸控裝置因輕觸即可反應、防刮、透光率較電阻式觸控裝置高而適用於消費性電子產品。習知電容式觸控裝置包括一基板、複數導電層及一絕緣層,複數導電層為沿一第一方向及一第二方向縱橫交叉的兩組感測陣列,並在兩組感測陣列之間夾設有一絕緣層,形成一架橋結構。但在習知電容式觸控裝置中兩組感測陣列為分別形成,即在形成底層感測陣列後需先形成絕緣層,再形成上層感測陣列,製程繁瑣而使生產成本上升。且導電層通常使用電阻較高的透明導電材料,例如ITO(Indium Tin Oxide,銦錫氧化物),降低了電容式觸控裝置的感應靈敏度,使產品效能下降。另一種習知的電容式觸控裝置為先形成沿第一方向或第二方向其中至少一方向的感測墊後,再使用金屬導電橋跨越絕緣層連接相鄰的感測墊。但金屬導電橋位於結構頂部會有容易氧化的問題,使產品信賴度下降。因此,雖然已有普遍適用的電容式觸控裝置及製作方法,尋求一簡易有效的生產製程仍為此技術領域人員努力的目標。
有鑑於上述問題,本發明提供一種電容式觸控裝置及製作方法,以克服習知電容式觸控裝置製程繁瑣、導電層電阻高、結構頂部之金屬導電橋氧化等問題。

The touch device can be classified into a resistive type, a capacitive type, an ultrasonic type, an optical (infrared) type, an electromagnetic type, and the like according to the sensing principle. The capacitive touch device obtains the coordinate of the touch position by the change of the capacitance generated by the contact between the transparent electrode and the human body or the conductive object, and the capacitive touch technology can be combined with the panel technology to manufacture the capacitive touch panel. By applying a voltage around the sensing region to form a uniform electric field, when the human body or the conductive object contacts the capacitive touch device (capacitive touch panel), a coupling capacitor is formed, and the current under the touch position is sucked to cause an electric field change. After the IC calculation and system interpretation, the coordinate position can be obtained.
Capacitive touch devices are suitable for consumer electronics because they can be reacted, scratched, and light transmissive compared to resistive touch devices. A conventional capacitive touch device includes a substrate, a plurality of conductive layers, and an insulating layer. The plurality of conductive layers are two sets of sensing arrays that intersect vertically and horizontally along a first direction and a second direction, and are in two sets of sensing arrays. An insulating layer is interposed to form a bridge structure. However, in the conventional capacitive touch device, two sets of sensing arrays are separately formed, that is, after forming the underlying sensing array, an insulating layer is formed first, and then an upper sensing array is formed, which is cumbersome and increases the production cost. Moreover, the conductive layer generally uses a transparent conductive material with a relatively high resistance, such as ITO (Indium Tin Oxide), which reduces the sensitivity of the capacitive touch device and reduces the performance of the product. Another conventional capacitive touch device is to form a sensing pad in at least one of the first direction or the second direction, and then connect the adjacent sensing pads across the insulating layer using a metal conductive bridge. However, the metal conductive bridge is located at the top of the structure and is susceptible to oxidation, which reduces product reliability. Therefore, although there is a generally applicable capacitive touch device and a manufacturing method, it is still an objective of the technical personnel to seek a simple and effective production process.
In view of the above problems, the present invention provides a capacitive touch device and a manufacturing method thereof, which overcome the problems of the complicated process of the conventional capacitive touch device, the high resistance of the conductive layer, and the oxidation of the metal conductive bridge at the top of the structure.

本發明一實施例提供一種電容式觸控裝置,包括:一基板;複數導電橋,沿一第一方向間隔設置於該基板上;一導電層,設置於該基板上,該導電層包括一第一感測區陣列及一第二感測區陣列交錯設置且彼此隔離,其中該第一感測區陣列包括沿該第一方向間隔設置之複數第一感測墊,該第二感測區陣列包括沿一第二方向連續設置之複數第二感測墊及複數連接部,該第一方向不同於該第二方向;以及複數絕緣體,夾設於該些導電橋與該些連接部之間,以電性絕緣該些導電橋與該些連接部,其中該些第一感測墊藉由該些導電橋電性連接,且該些第一感測墊至少延伸覆蓋至該些導電橋的部份上表面。
本發明另一實施例提供一種電容式觸控裝置的製作方法,包括:提供一基板;形成沿一第一方向之複數導電橋於該基板上;形成複數絕緣體覆蓋於該些導電橋上;以及形成一導電層於該基板上,該導電層包括交錯設置且彼此隔離之一第一感測區陣列及一第二感測區陣列,其中該第一感測區陣列包括沿該第一方向間隔設置之複數第一感測墊,該第二感測區包括沿一第二方向連續設置之複數第二感測墊及複數連接部,該第一方向不同於該第二方向,其中該些導電橋係形成於該導電層之前,用以電性連接該些第一感測墊。
為讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下:

An embodiment of the present invention provides a capacitive touch device including: a substrate; a plurality of conductive bridges disposed on the substrate in a first direction; a conductive layer disposed on the substrate, the conductive layer including a first An array of sensing regions and a second array of sensing regions are staggered and isolated from each other, wherein the first sensing region array includes a plurality of first sensing pads spaced along the first direction, the second sensing region array The plurality of second sensing pads and the plurality of connecting portions are continuously disposed along a second direction, wherein the first direction is different from the second direction; and the plurality of insulators are sandwiched between the conductive bridges and the connecting portions, Electrically insulating the conductive bridges and the connecting portions, wherein the first sensing pads are electrically connected by the conductive bridges, and the first sensing pads extend at least to cover the conductive bridges The upper surface.
Another embodiment of the present invention provides a method of fabricating a capacitive touch device, including: providing a substrate; forming a plurality of conductive bridges along a first direction on the substrate; forming a plurality of insulators over the conductive bridges; and forming a conductive layer on the substrate, the conductive layer comprising a first sensing region array and a second sensing region array staggered and isolated from each other, wherein the first sensing region array comprises an interval along the first direction a plurality of first sensing pads, the second sensing region comprising a plurality of second sensing pads and a plurality of connecting portions continuously disposed along a second direction, the first direction being different from the second direction, wherein the conductive bridges Before the conductive layer is formed, the first sensing pads are electrically connected.
The above and other objects, features and advantages of the present invention will become more <RTIgt;

本發明提供數個實施例用以說明本發明之技術特徵,實施例之內容及繪製之圖式僅作為例示說明之用,並非用以限縮本發明保護範圍。圖式中可能省略非必要元件,不同特徵可能並未按照比例繪製,僅用於說明之用。本發明所揭示內容可能在不同實施例中使用重複的元件符號,並不代表不同實施例或圖式間具有關聯。此外,一元件形成於另一元件「上方」、「之上」、「下方」或「之下」可包含兩元件直接接觸的實施例,或也可包含兩元件之間夾設有其它額外元件的實施例。各種元件可能以任意不同比例顯示以使圖示清晰簡潔。
同時參照第1圖與第2A~2B圖,第1圖為本發明一實施例之俯視圖,第2A圖為沿第1圖中A-A’線段所作之剖面圖,第2B圖為一立體圖,用以說明本發明一實施例之電容式觸控裝置的架橋結構。電容式觸控裝置100包括基板110、導電橋120、絕緣體130及導電層140,其中導電層140包括交錯設置且彼此隔離之第一感測區陣列142及第二感測區陣列144。
複數導電橋120沿一第一方向X間隔設置於上述基板110上,在一實施例中,此複數導電橋120可以特定間距有序排列於基板110以形成二維陣列。此特定間距可為一相同或相近距離,但不限於此。在一實施例中,導電橋120可包括低電阻的金屬,例如鉬(Mo)、鋁(Al)、鈮(Nb)、銣(Nd)、銀(Ag)、銅(Cu)、鎳(Ni)、金(Au)、鐵(Fe)、錫(Sn)、或前述金屬之合金。在另一實施例中,導電橋120可包括電阻相對較高的透明金屬氧化物,例如氧化銦錫(Indium Tin Oxide,ITO)、氧化鋁鋅(Aluminum doped Zinc Oxide,AZO)、氧化鋅(ZnO)、氧化錫銻(Antimony Tin Oxide,ATO)、二氧化錫(SnO2)、氧化銦(In2O3)、或前述之組合。在又一實施例中,導電橋120包括有機導電材料,例如導電高分子複合材料、有機導電聚合物、或前述之組合。上述導電高分子複合材料包括以奈米導電碳管、碳纖維、活性碳、或金屬為導電添加劑之聚乙烯(PE)、聚丙烯(PP)、聚對苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、ABS樹脂、聚醯胺(polyamide)、液晶聚合物(LCP)、聚醚醚酮(PEEK)、或前述之組合。上述有機導電聚合物包括聚噻吩(polythiophene)系導電聚合物(例如PEDOT)、聚乙炔(PA)系導電聚合物、聚苯胺(PAN)系導電聚合物、或聚吡咯(PPY)系導電聚合物、聚芳香烴乙烯(PArV)系導電聚合物、或前述之組合。導電橋120可由單層或多層堆疊而成。在一實施例中,導電橋120為長條形。導電橋120可作為電性連接之用,將上述第一感測區陣列142之第一感測墊142a沿第一方向X電性連接。
導電層140包括一第一感測區陣列142及一第二感測區陣列144。第一感測區陣列142包括沿上述第一方向X設置之複數第一感測墊142a,此複數第一感測墊142a以上述導電橋120為間隔設置於基板110上,且各個第一感測墊142a延伸覆蓋各個導電橋120之部份上表面。此第一感測墊142a可為任意適當形狀。在一實施例中,此第一感測墊142a為菱形。在其它實施例中,此第一感測墊142a可為多邊形或橢圓形等形狀。第二感測區包括沿一第二方向Y設置之複數第二感測墊144a及複數連接部144b,此第二方向Y不同於上述第一方向X。各個第二感測墊144a彼此以特定間距設置於基板110上,並藉由上述連接部144b在上述第二方向Y物理及電性連接相鄰第二感測墊144a。此特定間距可為一相同或相近距離,但不限於此。第二感測墊144a可為任意適當形狀。在一實施例中,此第二感測墊144a為菱形。在其它實施例中,此第二感測墊144a可為多邊形或橢圓形等形狀。第二感測墊144a與第一感測墊142a的尺寸可相同或相近。第一感測區陣列142與第二感測區陣列144交錯設置並具有一交錯角度,此交錯角度為第一方向X與第二方向Y之夾角。此交錯角度可為90度但不限於此,在一實施例中,此交錯角度為90度。
導電層140可包括透明或不透明導電材料。在一實施例中,導電層140包括氧化銦錫(ITO)、氧化鋁鋅(AZO)、氧化鋅(ZnO)、氧化錫銻(ATO)、二氧化錫(SnO2)、氧化銦(In2O3)、或前述之組合。在另一實施例中,導電層140包括有機導電材料,例如導電高分子複合材料、有機導電聚合物、或前述之組合。上述導電高分子複合材料包括以奈米導電碳管、碳纖維、活性碳、或金屬為導電添加劑之聚乙烯(PE)、聚丙烯(PP)、聚對苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、ABS樹脂、聚醯胺(polyamide)、液晶聚合物(LCP)、聚醚醚酮(PEEK)、或前述之組合。上述有機導電聚合物包括聚噻吩(polythiophene)系導電聚合物(例如PEDOT)、聚乙炔(PA)系導電聚合物、聚苯胺(PAN)系導電聚合物、或聚吡咯(PPY)系導電聚合物、聚芳香烴乙烯(PArV)系導電聚合物、或前述之組合。在又一實施例中,導電層140包括銅、鋁、銀、金、或前述之組合。
絕緣體130夾設於沿上述第一方向X設置之各個導電橋120及第二感測區陣列144之各個連接部144b之間,覆蓋導電橋120及其鄰近基板110的部份上表面,在物理上及電性上隔離上述導電橋120及連接部144b,以避免第一感測區陣列142與第二感測區陣列144短路。第二感測區陣列144之連接部144b橫跨於絕緣體130上方以連接相鄰之第二感測墊144a。在一實施例中,絕緣體130個別分離且尺寸可相同或相近。絕緣體130可為任意適當形狀,在一實施例中,絕緣體130為長方形。在其它實施例中,絕緣體130可為其它形狀,例如橢圓形。絕緣體130可包括透明或不透明絕緣材料,在一實施例中,絕緣體130可為氧化矽或其它適合之絕緣材料,例如氮化矽、氮氧化矽、或前述之組合。在另一實施例中,絕緣體可包括有機絕緣材料,例如丙烯酸樹脂(acrylic acid resin)、聚亞醯胺(PI)、聚甲基丙烯酸甲酯(PMMA)、聚乙烯四氫咯酮(PVP)、聚苯乙烯(PS)、聚偏二氟乙烯(PVDF)、或前述之組合。
基板110可提供電容式觸控裝置機械性支持。基板110可包括任意材質的絕緣板材,例如玻璃、塑膠、陶瓷、橡膠、或前述之組合。
如上所述,上述導電橋120、絕緣體130、連接部144b共同構成一基板110上之架橋結構150,而導電橋120位於架橋結構150最底層。此架橋結構150可形成一電容,在沒有導電物體與電容式觸控裝置接觸時,第一感測區陣列142及第二感測區陣列144中每一條的總電容值為定值。當人體或導電物體與電容式觸控裝置接觸時會形成耦合電容,吸走觸控位置下方的電流而造成電場改變。經過IC運算及系統判讀,即可得到接觸點之座標位置。
相較於習知電容式觸控裝置將導電橋外露於架橋結構頂部(例如公開號TW M364912),本發明所提供之電容式觸控裝置藉由將導電橋120設置於架橋結構150最底層提供導電橋120保護,避免後續製程(例如蝕刻製程)對導電橋120造成損傷而使元件電性劣化。在一實施例中,當導電橋120材料為金屬時(例如鉬、鋁、鈮、銣、銀、銅、鎳、金、鐵、錫、或前述金屬之合金),導電橋120上方結構除保護作用外,亦可防止金屬氧化,提高產品信賴性。相較之下,在習知技術如公開號TW M364912中將金屬導電橋設置於架橋結構頂部的方式,可能會使導電橋有氧化或損傷的問題。
在本發明之另一實施例中,上述第一感測墊142a可更延伸覆蓋至絕緣體130之上表面,如第3A~3B圖所示。第3A圖為一俯視圖,用以說明根據本發明另一實施例之電容式觸控裝置200。第3B圖為沿第3A圖中B-B’線段所作一剖面圖,用以說明此電容式觸控裝置200的架橋結構250。在此實施例中,為避免在圖案化感測陣列時第一感測墊242a因過度蝕刻而無法連接至導電橋120造成斷路,故將第一感測墊242a更延伸覆蓋至絕緣體130之部份上表面,以確保第一感測墊242a與導電橋120間的電性連接。
參照第4A~4D圖,以下說明本發明實施例製作電容式
觸控裝置的方法。首先參照第4A圖,提供一基板110,基板110可提供電容式觸控裝置機械性支持。基板110可包括任意材質的絕緣板材,例如玻璃、塑膠、陶瓷、橡膠、或前述之組合。
參照第4B圖及第1圖,接著形成沿一第一方向X之複數導電橋120於上述基板110上。導電橋120可使用物理或化學沈積、印刷、濺鍍、噴塗或其它適當方法形成,在一實施例中,導電橋120可使用濺鍍法(sputtering)配合微影及蝕刻製程形成,其相關製程為本領域技術人士所熟知,在此不予贅述。導電橋120可由單層或多層堆疊而成。在一實施例中,導電橋120為長條形。在習知製程中,導電橋通常在導電層及絕緣層之後形成,使習知電容式觸控裝置的導電橋外露於架橋結構頂端。本發明藉由先形成導電橋再形成架橋結構中其它膜層的方式,使導電橋位於架橋結構最底部而提供較佳之保護效果,當導電橋120使用金屬時,形成導電橋120的步驟與拉線步驟可在同一道製程完成,由於外側電路與導電橋可使用相同材料,故可將導電層所需圖案加入光罩設計並在同一步驟完成,可簡化製程並降低生產成本。
參照第4C圖及第1圖,形成複數絕緣體130覆蓋於各個導電橋120上。絕緣體130可為任意適當形狀,在一實施例中,絕緣體130為長方形。在其它實施例中,絕緣體130可為其它形狀,例如橢圓形。絕緣體130可使用物理或化學沈積、印刷、濺鍍、噴塗或其它適當方法形成。絕緣體130覆蓋導電橋120及其鄰近基板110的部份上表面,提供導電橋120在物理上及電性上的隔離。
參照第4D圖及第1圖,形成一導電層140於上述基板110上。導電層140可使用物理或化學沈積、印刷、濺鍍、噴塗或其它適當方法形成。在一實施例中,導電層140使用濺鍍法形成,並以微影及蝕刻製程形成第一感測區陣列142及第二感測區陣列144,此第一感測區陣列142及第二感測區陣列144在同一道製程步驟形成。第一感測區陣列142與第二感測區陣列144為交錯設置並相互隔離,且第一感測區陣列142與第二感測區陣列144之間具有一交錯角度,此交錯角度為第一方向X與第二方向Y之夾角。此交錯角度可為90度但不限於此,在一實施例中,此交錯角度為90度。在本發明中,因為先形成導電橋120再形成第一感測墊142a,所以導電橋120的部份上表面會受第一感測墊142a覆蓋。在習知製程中因為導電層形成於導電橋之前,所以導電層不會覆蓋到導電橋。此外,因本發明之導電橋與導電層為分別形成,導電橋與導電層可使用不同材質,例如可在導電層使用透明導電材料的條件下以金屬材料製作導電橋,使電容式觸控裝置在可透光的狀況下同時提昇裝置靈敏度。又,由於第一感測區陣列142與第二感測區陣列144在同一製程步驟形成,故可節省光罩數目,減少製程所需之曝光、顯影、蝕刻等步驟及成本。
在本發明另一實施例中,如第3A~3B圖所示,可將上述第一感測墊142a更延伸覆蓋至絕緣體130之上表面,以避免第一感測陣列242之第一感測墊242a在圖案化感測陣列時有過度蝕刻的情況而無法連接至導電橋120的斷路問題,確保第一感測墊242與導電橋120間的電性連接。
雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。

The present invention is provided to illustrate the technical features of the present invention. The contents of the embodiments and the drawings are for illustrative purposes only and are not intended to limit the scope of the present invention. Non-essential elements may be omitted from the drawings, and different features may not be drawn to scale and are for illustrative purposes only. The present disclosure may have overlapping element symbols in different embodiments and does not represent an association between different embodiments or drawings. In addition, an element formed "above", "above", "below" or "below" another element may include an embodiment in which two elements are in direct contact, or may include other additional elements interposed between the two elements. An embodiment. The various components may be displayed at any different scale to make the illustration clear and concise.
Referring to FIG. 1 and FIG. 2A-2B, FIG. 1 is a plan view of an embodiment of the present invention, FIG. 2A is a cross-sectional view taken along line A-A' in FIG. 1, and FIG. 2B is a perspective view. A bridging structure for explaining a capacitive touch device according to an embodiment of the present invention. The capacitive touch device 100 includes a substrate 110, a conductive bridge 120, an insulator 130, and a conductive layer 140. The conductive layer 140 includes a first sensing region array 142 and a second sensing region array 144 that are staggered and isolated from each other.
The plurality of conductive bridges 120 are disposed on the substrate 110 at a predetermined interval X. In an embodiment, the plurality of conductive bridges 120 may be sequentially arranged at a specific pitch on the substrate 110 to form a two-dimensional array. This particular spacing may be an identical or close distance, but is not limited thereto. In an embodiment, the conductive bridge 120 may comprise a low resistance metal such as molybdenum (Mo), aluminum (Al), niobium (Nb), niobium (Nd), silver (Ag), copper (Cu), nickel (Ni). ), gold (Au), iron (Fe), tin (Sn), or an alloy of the foregoing metals. In another embodiment, the conductive bridge 120 may include a transparent metal oxide having a relatively high resistance, such as Indium Tin Oxide (ITO), Aluminium Oxide (AZO), and Zinc Oxide (ZnO). ), Antimony Tin Oxide (ATO), tin dioxide (SnO 2 ), indium oxide (In 2 O 3 ), or a combination thereof. In yet another embodiment, the conductive bridge 120 comprises an organic conductive material, such as a conductive polymer composite, an organic conductive polymer, or a combination of the foregoing. The above conductive polymer composite material comprises polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), poly on a conductive carbon tube, carbon fiber, activated carbon, or metal as a conductive additive. Carbonate (PC), ABS resin, polyamide, liquid crystal polymer (LCP), polyetheretherketone (PEEK), or a combination of the foregoing. The above organic conductive polymer includes a polythiophene-based conductive polymer (for example, PEDOT), a polyacetylene (PA)-based conductive polymer, a polyaniline (PAN)-based conductive polymer, or a polypyrrole (PPY)-based conductive polymer. A polyaromatic hydrocarbon (PArV)-based conductive polymer, or a combination thereof. The conductive bridge 120 may be stacked in a single layer or a plurality of layers. In an embodiment, the conductive bridge 120 is elongated. The conductive bridge 120 can be electrically connected to electrically connect the first sensing pads 142a of the first sensing region array 142 in the first direction X.
The conductive layer 140 includes a first sensing region array 142 and a second sensing region array 144. The first sensing area array 142 includes a plurality of first sensing pads 142a disposed along the first direction X. The plurality of first sensing pads 142a are disposed on the substrate 110 at intervals of the conductive bridge 120, and each first sense The pad 142a extends over a portion of the upper surface of each of the conductive bridges 120. This first sensing pad 142a can be any suitable shape. In an embodiment, the first sensing pad 142a is diamond shaped. In other embodiments, the first sensing pad 142a may have a polygonal or elliptical shape. The second sensing region includes a plurality of second sensing pads 144a and a plurality of connecting portions 144b disposed along a second direction Y, the second direction Y being different from the first direction X. Each of the second sensing pads 144a is disposed on the substrate 110 at a specific pitch, and the adjacent second sensing pads 144a are physically and electrically connected in the second direction Y by the connecting portion 144b. This particular spacing may be an identical or close distance, but is not limited thereto. The second sensing pad 144a can be any suitable shape. In an embodiment, the second sensing pad 144a is diamond shaped. In other embodiments, the second sensing pad 144a may have a polygonal or elliptical shape. The size of the second sensing pad 144a and the first sensing pad 142a may be the same or similar. The first sensing region array 142 and the second sensing region array 144 are staggered and have an interlaced angle, which is an angle between the first direction X and the second direction Y. The stagger angle can be 90 degrees but is not limited thereto, and in one embodiment, the stagger angle is 90 degrees.
Conductive layer 140 can include a transparent or opaque conductive material. In one embodiment, the conductive layer 140 includes indium tin oxide (ITO), aluminum zinc oxide (AZO), zinc oxide (ZnO), antimony tin oxide (ATO), tin dioxide (SnO 2 ), indium oxide (In 2 O 3 ), or a combination of the foregoing. In another embodiment, conductive layer 140 comprises an organic conductive material, such as a conductive polymer composite, an organic conductive polymer, or a combination of the foregoing. The above conductive polymer composite material comprises polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), poly on a conductive carbon tube, carbon fiber, activated carbon, or metal as a conductive additive. Carbonate (PC), ABS resin, polyamide, liquid crystal polymer (LCP), polyetheretherketone (PEEK), or a combination of the foregoing. The above organic conductive polymer includes a polythiophene-based conductive polymer (for example, PEDOT), a polyacetylene (PA)-based conductive polymer, a polyaniline (PAN)-based conductive polymer, or a polypyrrole (PPY)-based conductive polymer. A polyaromatic hydrocarbon (PArV)-based conductive polymer, or a combination thereof. In yet another embodiment, the conductive layer 140 comprises copper, aluminum, silver, gold, or a combination of the foregoing.
The insulator 130 is interposed between each of the conductive bridges 120 and the second sensing region arrays 144 disposed along the first direction X, covering the upper surface of the conductive bridge 120 and its adjacent substrate 110, in physical The conductive bridge 120 and the connecting portion 144b are electrically and electrically isolated to prevent the first sensing region array 142 from being short-circuited with the second sensing region array 144. The connecting portion 144b of the second sensing region array 144 spans over the insulator 130 to connect the adjacent second sensing pads 144a. In an embodiment, the insulators 130 are individually separated and may be the same or similar in size. The insulator 130 can be any suitable shape. In one embodiment, the insulator 130 is rectangular. In other embodiments, the insulator 130 can have other shapes, such as an elliptical shape. Insulator 130 may comprise a transparent or opaque insulating material. In one embodiment, insulator 130 may be yttria or other suitable insulating material such as tantalum nitride, niobium oxynitride, or combinations of the foregoing. In another embodiment, the insulator may comprise an organic insulating material such as acrylic acid resin, polyamidamine (PI), polymethyl methacrylate (PMMA), polyethylene tetrahydro ketone (PVP). Polystyrene (PS), polyvinylidene fluoride (PVDF), or a combination of the foregoing.
The substrate 110 can provide mechanical support for the capacitive touch device. The substrate 110 may comprise an insulating sheet of any material, such as glass, plastic, ceramic, rubber, or a combination of the foregoing.
As described above, the conductive bridge 120, the insulator 130, and the connecting portion 144b together constitute a bridging structure 150 on the substrate 110, and the conductive bridge 120 is located at the bottom of the bridging structure 150. The bridge structure 150 can form a capacitor. When no conductive object is in contact with the capacitive touch device, the total capacitance of each of the first sensing region array 142 and the second sensing region array 144 is a fixed value. When the human body or the conductive object is in contact with the capacitive touch device, a coupling capacitor is formed, and the current under the touch position is sucked to cause an electric field change. After IC calculation and system interpretation, the coordinate position of the contact point can be obtained.
Compared with the conventional capacitive touch device, the conductive bridge is exposed on the top of the bridge structure (for example, the publication number TW M364912), and the capacitive touch device provided by the present invention provides the conductive bridge 120 at the bottom of the bridge structure 150. The conductive bridge 120 protects the conductive bridge 120 from subsequent processes (such as an etching process) and deteriorates the electrical properties of the device. In an embodiment, when the material of the conductive bridge 120 is metal (for example, molybdenum, aluminum, tantalum, niobium, silver, copper, nickel, gold, iron, tin, or an alloy of the foregoing metals), the structure above the conductive bridge 120 is protected. In addition to function, it can also prevent metal oxidation and improve product reliability. In contrast, the manner in which the metal conductive bridge is placed on top of the bridge structure in the prior art, such as the publication number TW M364912, may cause oxidation or damage to the conductive bridge.
In another embodiment of the present invention, the first sensing pad 142a may extend over the upper surface of the insulator 130 as shown in FIGS. 3A-3B. FIG. 3A is a top view for explaining a capacitive touch device 200 according to another embodiment of the present invention. FIG. 3B is a cross-sectional view taken along line BB' of FIG. 3A for illustrating the bridging structure 250 of the capacitive touch device 200. In this embodiment, in order to avoid the disconnection of the first sensing pad 242a due to over-etching to the conductive bridge 120 when the sensing array is patterned, the first sensing pad 242a is further extended to cover the portion of the insulator 130. The upper surface is divided to ensure an electrical connection between the first sensing pad 242a and the conductive bridge 120.
Referring to FIGS. 4A-4D, a method of fabricating a capacitive touch device according to an embodiment of the present invention will be described below. Referring first to FIG. 4A, a substrate 110 is provided. The substrate 110 can provide mechanical support for a capacitive touch device. The substrate 110 may comprise an insulating sheet of any material, such as glass, plastic, ceramic, rubber, or a combination of the foregoing.
Referring to FIG. 4B and FIG. 1, a plurality of conductive bridges 120 along a first direction X are formed on the substrate 110. The conductive bridge 120 can be formed using physical or chemical deposition, printing, sputtering, spraying, or other suitable methods. In one embodiment, the conductive bridge 120 can be formed using sputtering and lithography and etching processes, and related processes. It is well known to those skilled in the art and will not be described here. The conductive bridge 120 may be stacked in a single layer or a plurality of layers. In an embodiment, the conductive bridge 120 is elongated. In the conventional process, the conductive bridge is usually formed after the conductive layer and the insulating layer, so that the conductive bridge of the conventional capacitive touch device is exposed at the top of the bridge structure. The invention provides a better protection effect by forming a conductive bridge and then forming other film layers in the bridge structure, so that the conductive bridge is located at the bottom of the bridge structure to provide a better protection effect. When the conductive bridge 120 uses metal, the steps and steps of forming the conductive bridge 120 are performed. The wire step can be completed in the same process. Since the outer circuit and the conductive bridge can use the same material, the desired pattern of the conductive layer can be added to the mask design and completed in the same step, which simplifies the process and reduces the production cost.
Referring to FIG. 4C and FIG. 1, a plurality of insulators 130 are formed to cover the respective conductive bridges 120. The insulator 130 can be any suitable shape. In one embodiment, the insulator 130 is rectangular. In other embodiments, the insulator 130 can have other shapes, such as an elliptical shape. Insulator 130 can be formed using physical or chemical deposition, printing, sputtering, spraying, or other suitable method. The insulator 130 covers the upper surface of the conductive bridge 120 and its adjacent substrate 110 to provide physical and electrical isolation of the conductive bridge 120.
Referring to FIG. 4D and FIG. 1, a conductive layer 140 is formed on the substrate 110. Conductive layer 140 can be formed using physical or chemical deposition, printing, sputtering, spraying, or other suitable method. In one embodiment, the conductive layer 140 is formed by sputtering, and the first sensing region array 142 and the second sensing region array 144 are formed by a lithography and etching process. The first sensing region array 142 and the second The sense region array 144 is formed in the same process step. The first sensing region array 142 and the second sensing region array 144 are staggered and isolated from each other, and the first sensing region array 142 and the second sensing region array 144 have an interlaced angle. The angle between a direction X and a second direction Y. The stagger angle can be 90 degrees but is not limited thereto, and in one embodiment, the stagger angle is 90 degrees. In the present invention, since the first bridge 142a is formed by forming the conductive bridge 120 first, a part of the upper surface of the conductive bridge 120 is covered by the first sensing pad 142a. In the conventional process, since the conductive layer is formed before the conductive bridge, the conductive layer does not cover the conductive bridge. In addition, since the conductive bridge and the conductive layer of the present invention are separately formed, the conductive bridge and the conductive layer can be made of different materials. For example, the conductive bridge can be made of a metal material under the condition that the conductive layer uses a transparent conductive material, so that the capacitive touch device is used. Improve device sensitivity while permeable. Moreover, since the first sensing area array 142 and the second sensing area array 144 are formed in the same process step, the number of masks can be saved, and steps, such as exposure, development, etching, and the like required for the process are reduced.
In another embodiment of the present invention, as shown in FIGS. 3A-3B, the first sensing pad 142a may be further extended to cover the upper surface of the insulator 130 to avoid the first sensing of the first sensing array 242. The pad 242a has an over-etching condition when patterning the sensing array and cannot be connected to the open-circuit problem of the conductive bridge 120, ensuring an electrical connection between the first sensing pad 242 and the conductive bridge 120.
While the invention has been described above in terms of several preferred embodiments, it is not intended to limit the scope of the present invention, and any one of ordinary skill in the art can make any changes without departing from the spirit and scope of the invention. And the scope of the present invention is defined by the scope of the appended claims.

100、200...電容式觸控裝置100, 200. . . Capacitive touch device

110...基板110. . . Substrate

120...導電橋120. . . Conductive bridge

130...絕緣體130. . . Insulator

140...導電層140. . . Conductive layer

142、242...第一感測區陣列142, 242. . . First sensing area array

142a、242a...第一感測墊142a, 242a. . . First sensing pad

144...第二感測區陣列144. . . Second sensing area array

144a...第二感測墊144a. . . Second sensing pad

144b...連接部144b. . . Connection

150、250...架橋結構150, 250. . . Bridging structure

X...第一方向X. . . First direction

Y...第二方向Y. . . Second direction

第1圖為一俯視圖,用以說明根據本發明一實施例之電容式觸控裝置。
第2A圖為沿第1圖中A-A’所作一剖面圖,用以說明根據本發明一實施例之電容式觸控裝置之架橋結構。
第2B圖為沿第1圖中A-A’所作一立體圖,用以說明根據本發明一實施例之電容式觸控裝置之架橋結構。
第3A圖為一俯視圖,用以說明根據本發明另一實施例之電容式觸控裝置。
第3B圖為沿第3A圖中B-B’所作一剖面圖,用以說明根據本發明另一實施例之電容式觸控裝置。
第4A~4D圖為一系列剖面圖,用以說明根據本發明實施例之電容式觸控裝置的數個製作步驟。

1 is a top plan view illustrating a capacitive touch device according to an embodiment of the invention.
2A is a cross-sectional view taken along line A-A' of FIG. 1 for explaining the bridging structure of the capacitive touch device according to an embodiment of the present invention.
FIG. 2B is a perspective view of the capacitive touch device according to an embodiment of the invention, illustrating a perspective view taken along line A-A' of FIG. 1.
FIG. 3A is a top view for explaining a capacitive touch device according to another embodiment of the present invention.
FIG. 3B is a cross-sectional view taken along line BB' of FIG. 3A for explaining a capacitive touch device according to another embodiment of the present invention.
4A-4D are a series of cross-sectional views illustrating several fabrication steps of a capacitive touch device in accordance with an embodiment of the present invention.

110...基板110. . . Substrate

120...導電橋120. . . Conductive bridge

130...絕緣體130. . . Insulator

142a...第一感測墊142a. . . First sensing pad

144b...連接部144b. . . Connection

150...架橋結構150. . . Bridging structure

Claims (13)

一種電容式觸控裝置,包括:
一基板;
複數導電橋,沿一第一方向間隔設置於該基板上;
一導電層,設置於該基板上,該導電層包括一第一感測區陣列及一第二感測區陣列交錯設置且彼此隔離,其中該第一感測區陣列包括沿該第一方向間隔設置之複數第一感測墊,該第二感測區陣列包括沿一第二方向連續設置之複數第二感測墊及複數連接部,該第一方向不同於該第二方向;以及
複數絕緣體,夾設於該些導電橋與該些連接部之間,以電性絕緣該些導電橋與該些連接部,
其中該些第一感測墊藉由該些導電橋電性連接,且該些第一感測墊至少延伸覆蓋至該些導電橋的部份上表面。
A capacitive touch device includes:
a substrate;
a plurality of conductive bridges disposed on the substrate at a distance along a first direction;
a conductive layer disposed on the substrate, the conductive layer including a first sensing region array and a second sensing region array staggered and isolated from each other, wherein the first sensing region array includes spacing along the first direction a plurality of first sensing pads, the second sensing region array includes a plurality of second sensing pads and a plurality of connecting portions continuously disposed along a second direction, the first direction being different from the second direction; and the plurality of insulators Between the conductive bridges and the connecting portions, electrically insulating the conductive bridges and the connecting portions,
The first sensing pads are electrically connected by the conductive bridges, and the first sensing pads extend at least to cover a portion of the upper surfaces of the conductive bridges.
如申請專利範圍第1項所述之電容式觸控裝置,其中該導電橋包括鉬、鋁、鈮、銣、銀、銅、鎳、金、鐵、錫、或前述金屬之合金。The capacitive touch device of claim 1, wherein the conductive bridge comprises molybdenum, aluminum, tantalum, niobium, silver, copper, nickel, gold, iron, tin, or an alloy of the foregoing metals. 如申請專利範圍第1項所述之電容式觸控裝置,其中該導電橋包括氧化銦錫、氧化鋁鋅、氧化鋅、氧化錫銻、二氧化錫、氧化銦、或前述之組合。The capacitive touch device of claim 1, wherein the conductive bridge comprises indium tin oxide, aluminum zinc oxide, zinc oxide, antimony tin oxide, tin dioxide, indium oxide, or a combination thereof. 如申請專利範圍第1項所述之電容式觸控裝置,其中該導電橋包括導電高分子複合材料、有機導電聚合物、或前述之組合,其中該導電高分子複合材料包括以奈米導電碳管、碳纖維、活性碳、或金屬為導電添加劑之聚乙烯(PE)、聚丙烯(PP)、聚對苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、ABS樹脂、聚醯胺(polyamide)、液晶聚合物(LCP)、聚醚醚酮(PEEK)、或前述之組合,其中該有機導電聚合物包括聚噻吩(polythiophene)系導電聚合物(例如PEDOT)、聚乙炔(PA)系導電聚合物、聚苯胺(PAN)系導電聚合物、或聚吡咯(PPY)系導電聚合物、聚芳香烴乙烯(PArV)系導電聚合物、或前述之組合。The capacitive touch device of claim 1, wherein the conductive bridge comprises a conductive polymer composite material, an organic conductive polymer, or a combination thereof, wherein the conductive polymer composite material comprises a nanometer conductive carbon. Tube, carbon fiber, activated carbon, or metal as conductive additive for polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polycarbonate (PC), ABS resin, polyamine Polyamide, liquid crystal polymer (LCP), polyetheretherketone (PEEK), or a combination of the foregoing, wherein the organic conductive polymer comprises a polythiophene-based conductive polymer (eg, PEDOT), polyacetylene (PA) A conductive polymer, a polyaniline (PAN)-based conductive polymer, or a polypyrrole (PPY)-based conductive polymer, a polyaromatic hydrocarbon (PArV)-based conductive polymer, or a combination thereof. 如申請專利範圍第1項所述之電容式觸控裝置,其中該導電層包括氧化銦錫、氧化鋁鋅、氧化鋅、氧化錫銻、二氧化錫、氧化銦、或前述之組合。The capacitive touch device of claim 1, wherein the conductive layer comprises indium tin oxide, aluminum zinc oxide, zinc oxide, antimony tin oxide, tin dioxide, indium oxide, or a combination thereof. 如申請專利範圍第1項所述之電容式觸控裝置,其中該導電層包括導電高分子複合材料、有機導電聚合物、或前述之組合,其中該導電高分子複合材料包括以奈米導電碳管、碳纖維、活性碳、或金屬為導電添加劑之聚乙烯(PE)、聚丙烯(PP)、聚對苯二甲酸乙二酯(PET)、聚碳酸酯(PC)、ABS樹脂、聚醯胺(polyamide)、液晶聚合物(LCP)、聚醚醚酮(PEEK)、或前述之組合,其中該有機導電聚合物包括聚噻吩(polythiophene)系導電聚合物(例如PEDOT)、聚乙炔(PA)系導電聚合物、聚苯胺(PAN)系導電聚合物、或聚吡咯(PPY)系導電聚合物、聚芳香烴乙烯(PArV)系導電聚合物、或前述之組合。The capacitive touch device of claim 1, wherein the conductive layer comprises a conductive polymer composite material, an organic conductive polymer, or a combination thereof, wherein the conductive polymer composite material comprises nano conductive carbon. Tube, carbon fiber, activated carbon, or metal as conductive additive for polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polycarbonate (PC), ABS resin, polyamine Polyamide, liquid crystal polymer (LCP), polyetheretherketone (PEEK), or a combination of the foregoing, wherein the organic conductive polymer comprises a polythiophene-based conductive polymer (eg, PEDOT), polyacetylene (PA) A conductive polymer, a polyaniline (PAN)-based conductive polymer, or a polypyrrole (PPY)-based conductive polymer, a polyaromatic hydrocarbon (PArV)-based conductive polymer, or a combination thereof. 如申請專利範圍第1項所述之電容式觸控裝置,其中該導電層包括銅、鋁、銀、金、或前述之組合。The capacitive touch device of claim 1, wherein the conductive layer comprises copper, aluminum, silver, gold, or a combination thereof. 如申請專利範圍第1項所述之電容式觸控裝置,其中該些絕緣體包括氧化矽、氮化矽、氮氧化矽、或前述之組合。The capacitive touch device of claim 1, wherein the insulators comprise ruthenium oxide, tantalum nitride, ruthenium oxynitride, or a combination thereof. 如申請專利範圍第1項所述之電容式觸控裝置,其中該些絕緣體包括丙烯酸樹脂(acrylic acid resin)、聚亞醯胺(PI)、聚甲基丙烯酸甲酯(PMMA)、聚乙烯四氫咯酮(PVP)、聚苯乙烯(PS)、聚偏二氟乙烯(PVDF)、或前述之組合。The capacitive touch device of claim 1, wherein the insulator comprises an acrylic acid resin, a polyacrylamide (PI), a polymethyl methacrylate (PMMA), a polyethylene Hydrolactone (PVP), polystyrene (PS), polyvinylidene fluoride (PVDF), or a combination of the foregoing. 如申請專利範圍第1項所述之電容式觸控裝置,其中該基板包括玻璃、塑膠、陶瓷、橡膠、或前述之組合。The capacitive touch device of claim 1, wherein the substrate comprises glass, plastic, ceramic, rubber, or a combination thereof. 如申請專利範圍第1項所述之電容式觸控裝置,其中該些第一感測墊更延伸覆蓋至該些絕緣體之上表面。The capacitive touch device of claim 1, wherein the first sensing pads extend over the upper surface of the insulators. 一種如申請專利範圍第1至第11項中任一項電容式觸控裝置的製作方法,包括:
提供一基板;
形成沿一第一方向之複數導電橋於該基板上;
形成複數絕緣體覆蓋於該些導電橋上;以及
形成一導電層於該基板上,該導電層包括交錯設置且彼此隔離之一第一感測區陣列及一第二感測區陣列,其中該第一感測區陣列包括沿該第一方向間隔設置之複數第一感測墊,該第二感測區包括沿一第二方向連續設置之複數第二感測墊及複數連接部,該第一方向不同於該第二方向,
其中該些導電橋係形成於該導電層之前,用以電性連接該些第一感測墊。
A method of fabricating a capacitive touch device according to any one of claims 1 to 11, comprising:
Providing a substrate;
Forming a plurality of conductive bridges along a first direction on the substrate;
Forming a plurality of insulators over the conductive bridges; and forming a conductive layer on the substrate, the conductive layers comprising a first sensing region array and a second sensing region array staggered and isolated from each other, wherein the first The sensing area array includes a plurality of first sensing pads spaced along the first direction, the second sensing area includes a plurality of second sensing pads and a plurality of connecting portions continuously disposed along a second direction, the first direction Different from the second direction,
The conductive bridges are formed before the conductive layer to electrically connect the first sensing pads.
如申請專利範圍第12項所述之電容式觸控裝置的製作方法,其中該第一感測區陣列及該第二感測區陣列係於同一製程步驟形成。

The method for fabricating a capacitive touch device according to claim 12, wherein the first sensing region array and the second sensing region array are formed in the same process step.

TW101112395A 2012-04-09 2012-04-09 Capacitive touch panel and method of manufacturing the same TW201342169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101112395A TW201342169A (en) 2012-04-09 2012-04-09 Capacitive touch panel and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101112395A TW201342169A (en) 2012-04-09 2012-04-09 Capacitive touch panel and method of manufacturing the same

Publications (1)

Publication Number Publication Date
TW201342169A true TW201342169A (en) 2013-10-16

Family

ID=49771464

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101112395A TW201342169A (en) 2012-04-09 2012-04-09 Capacitive touch panel and method of manufacturing the same

Country Status (1)

Country Link
TW (1) TW201342169A (en)

Similar Documents

Publication Publication Date Title
US10915205B2 (en) Touch panels and methods of manufacturing touch panels
US9830033B2 (en) Touch sensor and method of manufacturing the same
US9519392B2 (en) Touch screen panel fabrication method and touch screen panel
KR102312314B1 (en) Touch sensor device and manufacturing method
KR102188985B1 (en) Touch panels and method of manufacturing a touch panel
US20150062465A1 (en) Touch window and touch device including the same
WO2016029558A1 (en) Touch substrate and manufacturing method therefor, and touch display apparatus
US9477358B2 (en) Touch screen panel and method of manufacturing the same
TW201340181A (en) Touch panel and method for manufacturing a touch sensor of the touch panel
CN102819367B (en) Manufacturing method of touch panel
US9921697B2 (en) Touch sensor device and manufacturing method thereof
US10025435B2 (en) Touch panel
EP2690534A2 (en) Touch screen panel and fabrication method thereof
US9426895B2 (en) Method of fabricating touch screen panel
CN102446019B (en) Manufacturing method of touch panel
CN102446018B (en) Method for manufacturing touch panel
US20150122624A1 (en) Touch panel and method of manufacturing thereof
US20130093718A1 (en) Pattern of a capacitive touch device and manufacturing method thereof
CN103034355A (en) Touch sensing structure and manufacturing method thereof
WO2016095609A1 (en) Touch panel and manufacturing method therefor, and touch display device
US9323094B2 (en) Touch panel
KR101985437B1 (en) Flexible Touch Screen Panel and Fabricating Method Thereof
CN102915140A (en) Touch sensing structure and manufacturing method thereof
CN103365504A (en) Capacitive touch device and method for manufacturing same
TW201342169A (en) Capacitive touch panel and method of manufacturing the same