TW201342141A - Manufacturing method for polymer substrate having transparent conductive oxide layer - Google Patents

Manufacturing method for polymer substrate having transparent conductive oxide layer Download PDF

Info

Publication number
TW201342141A
TW201342141A TW101112680A TW101112680A TW201342141A TW 201342141 A TW201342141 A TW 201342141A TW 101112680 A TW101112680 A TW 101112680A TW 101112680 A TW101112680 A TW 101112680A TW 201342141 A TW201342141 A TW 201342141A
Authority
TW
Taiwan
Prior art keywords
polymer substrate
transparent conductive
conductive oxide
oxide layer
layer
Prior art date
Application number
TW101112680A
Other languages
Chinese (zh)
Inventor
Chi-Jen Wang
Hsin-Han Lin
Wei-Hsiang Yang
Chau-Nan Hon
Original Assignee
Univ Nat Cheng Kung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Cheng Kung filed Critical Univ Nat Cheng Kung
Priority to TW101112680A priority Critical patent/TW201342141A/en
Publication of TW201342141A publication Critical patent/TW201342141A/en

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

A manufacturing method for a polymer substrate having a transparent conductive oxide (TCO) layer is provided and includes steps of: providing a polymer substrate having a primer layer, a silicon dioxide film and a TCO layer in turn; and placing the polymer substrate into an oxygen-free environment followed by heating the polymer substrate under 120-180 DEG C about 60-90 minutes, in order to reduce the amount and the particle diameter of white microparticles in the primer layer generated due to heating. Thus, the entire light transmittance can be enhanced, and the impedance of the TCO layer can be efficiently lowered, so as to relatively enhance the film quality and the manufacture yield of the polymer substrate.

Description

具透明導電氧化物層之高分子基板的製造方法Method for producing polymer substrate with transparent conductive oxide layer

本發明係關於一種具透明導電氧化物層之高分子基板的製造方法,特別是關於一種可減少基底層因加熱產生白色微粒之具透明導電氧化物層之高分子基板的製造方法。The present invention relates to a method for producing a polymer substrate having a transparent conductive oxide layer, and more particularly to a method for producing a polymer substrate having a transparent conductive oxide layer capable of reducing white particles generated by heating of a base layer.

近年來,愈來愈多的消費性電子產品(例如手機或平板電腦等)使用透明觸控面板(touch panel)來提供觸控操作功能,其中透明觸控面板通常配置在顯示幕上使用,以便使用者可直接以手指觸控進行互動式輸入操作,並提升輸入操作效率。一般來說,透明觸控面板的機構主要包含感應器(sensor)與控制器(controller)晶片,其中感應器依其運作原理與結構不同大致可區分為電阻式、電容式、紅外線式及超音波式等,而目前主流的消費性電子產品大多逐漸改採具有多點訊號感應效能的電容式感應器,以提升觸控操作功能,並避免以往單點式感應器易受刮損及破裂而不堪使用的缺失。In recent years, more and more consumer electronic products (such as mobile phones or tablets) use a transparent touch panel to provide touch operation functions. The transparent touch panel is usually configured on the display screen so that The user can directly perform interactive input operation with finger touch and improve input operation efficiency. Generally, the mechanism of the transparent touch panel mainly includes a sensor and a controller chip, wherein the sensor can be roughly classified into a resistive type, a capacitive type, an infrared type, and an ultrasonic type according to the operation principle and the structure. Most of the current mainstream consumer electronics products are gradually adopting capacitive sensors with multi-signal sensing performance to enhance the touch operation function and avoid the previous single-point sensor being vulnerable to scratching and cracking. Missing use.

在一般電容式感應器的結構中,通常分別設置有二層透明導電薄膜,例如是氧化銦錫(ITO)材料,並在各層導電薄膜上設置所需的電極圖形,例如是複數的X軸感應線路(X-Trace)與Y軸感應線路(Y-Trace),並使各個感應線路之間彼此保持適當寬度的間隙,以達絕緣設置之目的。再者,感應器之透明導電薄膜可以形成在玻璃基板或透明高分子基板上,而為了減少產品厚度及降低製造成本,因此觸控面板之製造有一趨勢是逐漸以透明高分子基板來取代玻璃基板。In the structure of a general capacitive inductor, two transparent conductive films, such as indium tin oxide (ITO) materials, are usually provided, and a desired electrode pattern is provided on each layer of the conductive film, for example, a plurality of X-axis sensing. The line (X-Trace) and the Y-axis sensing line (Y-Trace), and each of the sensing lines maintain a gap of appropriate width between each other for the purpose of insulation setting. Furthermore, the transparent conductive film of the inductor can be formed on the glass substrate or the transparent polymer substrate, and in order to reduce the thickness of the product and reduce the manufacturing cost, the manufacturing of the touch panel has a tendency to gradually replace the glass substrate with a transparent polymer substrate. .

舉例來說,請參照第1圖所示,其揭示一種現有觸控感應器之觸控基板之剖視圖,其中一觸控基板10由下而上依序包含:一高分子基板11、一基底層(primer)12、一層二氧化矽(SiO2)薄膜13以及一透明導電氧化物(transparent conductive oxide,TCO)層14。該高分子基板11通常取材自聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)基板,該高分子基板11在商業上購得時其表面即塗佈有該基底層12,以增加其表面的附著性。該基底層12上進一步利用化學氣相沉積法(chemical vapor deposition,CVD)或物理氣相沉積法(physical vapor deposition,PVD)鍍上該二氧化矽薄膜13,該二氧化矽薄膜13用以防止水氣由該高分子基板1側入侵到該透明導電氧化物層14,進而確保該透明導電氧化物層14之電性穩定度。For example, referring to FIG. 1 , a cross-sectional view of a touch substrate of a conventional touch sensor is disclosed. A touch substrate 10 includes a polymer substrate 11 and a substrate layer from bottom to top. (primer) 12, a layer of cerium oxide (SiO 2 ) film 13 and a transparent conductive oxide (TCO) layer 14. The polymer substrate 11 is generally obtained from a polyethylene terephthalate (PET) substrate. When the polymer substrate 11 is commercially available, the surface thereof is coated with the base layer 12 to increase the surface thereof. Adhesion. The ruthenium dioxide film 13 is further plated on the base layer 12 by chemical vapor deposition (CVD) or physical vapor deposition (PVD). The ruthenium dioxide film 13 is used to prevent Water vapor intrudes into the transparent conductive oxide layer 14 from the side of the polymer substrate 1, thereby ensuring electrical stability of the transparent conductive oxide layer 14.

再者,該二氧化矽薄膜13上再利用物理氣相沉積法鍍上該透明導電氧化物層14,該透明導電氧化物層14通常選用氧化銦錫(indium tin oxide,ITO)。為了提升氧化銦錫的導電性,通常會在120~180℃環境下進行烘烤加熱約60~90分鐘,以使氧化銦錫薄膜再結晶。如此,可以降低阻抗並改善疊層之間的附著性。然而,在高溫烘烤期間,該高分子基板11與基底層12卻也容易與氧氣反應而產生許多白色微粒121,該白色微粒121大致上屬於該高分子基板11與基底層12之材料本身的微小氧化物顆粒,其會阻擋行經之光線,並因此大幅降低整體透光率。Further, the transparent conductive oxide layer 14 is further plated on the ceria film 13 by physical vapor deposition. The transparent conductive oxide layer 14 is usually selected from indium tin oxide (ITO). In order to improve the conductivity of indium tin oxide, it is usually baked at 120 to 180 ° C for about 60 to 90 minutes to recrystallize the indium tin oxide film. In this way, the impedance can be lowered and the adhesion between the laminates can be improved. However, during the high-temperature baking, the polymer substrate 11 and the base layer 12 are also easily reacted with oxygen to generate a plurality of white particles 121 which substantially belong to the material of the polymer substrate 11 and the base layer 12 itself. Tinted oxide particles that block the passing light and thus greatly reduce the overall light transmittance.

為了解決此問題,請參照第2圖所示,其揭示另一種現有觸控感應器之觸控基板之剖視圖,其中一觸控基板20由下而上依序包含:一高分子基板21、一基底層22、一硬質塗層(hardcoat)23、一層二氧化矽薄膜24以及一透明導電氧化物層25。該硬質塗層23係塗佈在該基底層22上,該硬質塗層23用以在高溫烘烤期間阻止該高分子基板21與基底層22與氧氣反應,以減少其產生之白色微粒221的數量,藉此確保白色微粒221的數量在一預定值以下,以避免過度影響整體透光率。然而,增設該硬質塗層23之問題在於:該硬質塗層23不但會增加整體厚度,而且其材料與該二氧化矽薄膜24之間具有密著性不佳的問題,因此容易產生明顯之剝落(peel off)缺陷,並會嚴重影響該觸控基板20之結構可靠度、製造良率與使用壽命,故加設該硬質塗層23之產品不易實際應用於觸控感應器之市場中。In order to solve the problem, please refer to FIG. 2 , which illustrates a cross-sectional view of another touch sensor of the prior art. The touch substrate 20 includes a polymer substrate 21 and a bottom layer. The base layer 22, a hard coat 23, a thin film of ruthenium dioxide 24, and a transparent conductive oxide layer 25. The hard coat layer 23 is coated on the base layer 22 for preventing the polymer substrate 21 and the base layer 22 from reacting with oxygen during high temperature baking to reduce the white particles 221 produced thereby. The amount, thereby ensuring that the number of white particles 221 is below a predetermined value, to avoid excessively affecting the overall light transmittance. However, the problem of adding the hard coat layer 23 is that the hard coat layer 23 not only increases the overall thickness, but also has a problem of poor adhesion between the material and the ceria film 24, so that it is easy to cause obvious peeling. (peel off) defects, and will seriously affect the structural reliability, manufacturing yield and service life of the touch substrate 20, so the product of the hard coating 23 is not easily applied to the market of touch sensors.

故,有必要提供一種具透明導電氧化物層之高分子基板的製造方法,以解決習用技術所存在的問題。Therefore, it is necessary to provide a method for producing a polymer substrate having a transparent conductive oxide layer to solve the problems of the conventional technology.

本發明之主要目的在於提供一種具透明導電氧化物層之高分子基板的製造方法,其係將高分子基板置於一無氧環境中進行高溫加熱烘烤,以避免基底層(及高分子基板)在加熱期間受氧氣影響而產生白色微粒,進而明顯減少白色微粒的數量,並有利於控制白色微粒之粒徑尺寸至奈米等級,故可確保整體透光率並有效降低透明導電氧化物層之阻抗,因此能相對提升薄膜品質及製造良率。The main object of the present invention is to provide a method for manufacturing a polymer substrate having a transparent conductive oxide layer by placing the polymer substrate in an oxygen-free environment for high-temperature heating baking to avoid the base layer (and the polymer substrate). The white particles are generated by the influence of oxygen during heating, thereby significantly reducing the amount of white particles, and controlling the particle size of the white particles to the nanometer level, thereby ensuring the overall light transmittance and effectively reducing the transparent conductive oxide layer. The impedance, therefore, can improve film quality and manufacturing yield.

本發明之次要目的在於提供一種具透明導電氧化物層之高分子基板的製造方法,其係直接在製程上藉由無氧環境高溫加熱烘烤處理,以減少基底層產生白色微粒的數量及粒徑,因而不需塗佈任何硬質塗層,故不會因為設置硬質塗層而影響薄膜與基板之間的附著性,因此能確保結構可靠度、製造良率與使用壽命。A secondary object of the present invention is to provide a method for manufacturing a polymer substrate having a transparent conductive oxide layer, which is directly subjected to a high-temperature heat baking treatment in an oxygen-free environment to reduce the amount of white particles generated in the substrate layer. The particle size, therefore, does not need to be coated with any hard coating, so the adhesion between the film and the substrate is not affected by the provision of the hard coating, so that structural reliability, manufacturing yield and service life can be ensured.

為達上述之目的,本發明提供一種具透明導電氧化物層之高分子基板的製造方法,其包含步驟:提供一高分子基板,該高分子基板上預先塗佈有一基底層;在該基底層上形成一層二氧化矽薄膜;在該二氧化矽薄膜上形成一透明導電氧化物層;以及將該高分子基板置於一無氧環境中加熱至120至180℃並持續60至90分鐘,以減少該基底層中因加熱而產生之白色微粒的數量及粒徑。In order to achieve the above object, the present invention provides a method for manufacturing a polymer substrate having a transparent conductive oxide layer, comprising the steps of: providing a polymer substrate on which a base layer is previously coated; and the base layer Forming a thin film of ruthenium dioxide; forming a transparent conductive oxide layer on the ruthenium dioxide film; and heating the polymer substrate to 120 to 180 ° C in an anaerobic environment for 60 to 90 minutes, The number and particle diameter of white particles generated by heating in the underlayer are reduced.

在本發明之一實施例中,該白色微粒佔該基底層之總表面積的比例係控制在介於1.0%至0.0001%之間,以及該白色微粒之粒徑係控制在介於1000至1奈米(nm)之間。In an embodiment of the invention, the ratio of the white particles to the total surface area of the substrate layer is controlled to be between 1.0% and 0.0001%, and the particle size of the white particles is controlled between 1000 and 1 nanometer. Between meters (nm).

在本發明之一實施例中,該無氧環境係一真空腔室。In one embodiment of the invention, the anaerobic environment is a vacuum chamber.

在本發明之一實施例中,該無氧環境係一填有惰性氣體之腔室;該惰性氣體選自氮氣(N2)或氬氣(Ar)。In one embodiment of the invention, the oxygen-free environment is a chamber filled with an inert gas; the inert gas is selected from the group consisting of nitrogen (N 2 ) or argon (Ar).

在本發明之一實施例中,該高分子基板之材料選自聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)。In an embodiment of the invention, the material of the polymer substrate is selected from the group consisting of polyethylene terephthalate (PET).

在本發明之一實施例中,該透明導電氧化物層之材料選自氧化銦錫(indium tin oxide,ITO)、氧化鋅(ZnO)或摻鋁氧化鋅(aluminum doped zinc oxide,AZO)。In one embodiment of the invention, the material of the transparent conductive oxide layer is selected from the group consisting of indium tin oxide (ITO), zinc oxide (ZnO), or aluminum doped zinc oxide (AZO).

在本發明之一實施例中,該基底層之材料選自丙烯酸樹脂(acrylic resin)、聚酯樹脂(polyester)、矽氧烷丙烯酸樹脂(silicone acrylic resin)、甲基丙烯酸樹脂(methacrylic resin)或聚矽氧烷樹脂(polysiloxane resin)。In an embodiment of the invention, the material of the base layer is selected from the group consisting of an acrylic resin, a polyester, a silicone acrylic resin, a methacrylic resin or Polysiloxane resin.

在本發明之一實施例中,在加熱該高分子基板之步驟前,另包含:在該高分子基板之一下表面塗佈形成一保護層。In an embodiment of the present invention, before the step of heating the polymer substrate, the method further comprises: forming a protective layer on a lower surface of the polymer substrate.

在本發明之一實施例中,該保護層之材料選自丙烯酸樹脂、聚酯樹脂、矽氧烷丙烯酸樹脂、甲基丙烯酸樹脂或聚矽氧烷樹脂。In an embodiment of the invention, the material of the protective layer is selected from the group consisting of an acrylic resin, a polyester resin, a decyl acrylate resin, a methacrylic resin or a polyoxyalkylene resin.

在本發明之一實施例中,在加熱該高分子基板之步驟後,另包含:以該高分子基板製作一觸控感應器之一觸控基板。In an embodiment of the present invention, after the step of heating the polymer substrate, the method further comprises: forming a touch substrate of a touch sensor by using the polymer substrate.

再者,本發明提供另一種具透明導電氧化物層之高分子基板的製造方法,其包含步驟:提供一高分子基板,該高分子基板上預先塗佈有一基底層,及該基底層上至少具有一透明導電氧化物層;以及將該高分子基板置於一無氧環境中加熱至120至180℃並持續60至90分鐘,以減少該基底層中因加熱而產生之白色微粒的數量及粒徑。Furthermore, the present invention provides a method for fabricating a polymer substrate having a transparent conductive oxide layer, comprising the steps of: providing a polymer substrate having a substrate layer pre-coated thereon, and at least the substrate layer Having a transparent conductive oxide layer; and heating the polymer substrate to 120 to 180 ° C in an oxygen-free environment for 60 to 90 minutes to reduce the amount of white particles generated by heating in the substrate layer and Particle size.

為了讓本發明之上述及其他目的、特徵、優點能更明顯易懂,下文將特舉本發明較佳實施例,並配合所附圖式,作詳細說明如下。再者,本發明所提到的方向用語,例如「上」、「下」、「前」、「後」、「左」、「右」、「內」、「外」或「側面」等,僅是參考附加圖式的方向。因此,使用的方向用語是用以說明及理解本發明,而非用以限制本發明。The above and other objects, features and advantages of the present invention will become more <RTIgt; Furthermore, the directional terms mentioned in the present invention, such as "upper", "lower", "before", "after", "left", "right", "inside", "outside" or "side", etc. Just refer to the direction of the additional schema. Therefore, the directional terminology used is for the purpose of illustration and understanding of the invention.

請參照第3及4圖所示,本發明較佳實施例之具透明導電氧化物層之高分子基板的製造方法主要應用在製作觸控面板之觸控感應器的觸控基板,該製造方法大致包含下列步驟:提供一高分子基板31,該高分子基板31上預先塗佈有一基底層(primer)32;在該基底層32上形成一層二氧化矽(SiO2)薄膜33;在該二氧化矽薄膜33上形成一透明導電氧化物(TCO)層34;以及將該高分子基板31置於一無氧環境中加熱至120至180℃並持續60至90分鐘,以減少該基底層32中因加熱而產生之白色微粒321的數量及粒徑。本發明將於下文利用第3及4圖逐一詳細說明較佳實施例之上述各步驟的實施細節及其原理。The method for manufacturing a polymer substrate with a transparent conductive oxide layer according to a preferred embodiment of the present invention is mainly applied to a touch substrate for manufacturing a touch sensor of a touch panel, and the manufacturing method thereof The method includes the following steps: providing a polymer substrate 31 having a primer layer 32 pre-coated thereon; forming a thin film of cerium oxide (SiO 2 ) 33 on the substrate layer 32; Forming a transparent conductive oxide (TCO) layer 34 on the yttria film 33; and heating the polymer substrate 31 to 120 to 180 ° C in an oxygen-free environment for 60 to 90 minutes to reduce the substrate layer 32 The number and particle diameter of the white particles 321 which are generated by heating. The invention will be described in detail below with reference to Figures 3 and 4 in detail detailing the implementation of the above-described steps of the preferred embodiment and its principles.

請參照第3圖所示,本發明較佳實施例之具透明導電氧化物層之高分子基板的製造方法首先係:提供一高分子基板31。在本步驟中,該高分子基板之材料係可選自聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)、三醋酸纖維素(triacetylcellulose,TAC)或聚碳酸酯(polycarbonate,PC)等透明高分子材料製成之板材,但並不限於此。在本實施例中,該高分子基板31例如係選用PET基板。該高分子基板31之厚度約介於80至250微米(μm)之間,例如為125、150或180 μm等,但並不限於此。再者,該高分子基板31在商業上購得時其一上表面即預先以旋塗等方式塗佈有該基底層32,以增加其表面的附著性。該基底層32之材料係可選自丙烯酸樹脂(acrylic resin)、聚酯樹脂(polyester)、矽氧烷丙烯酸樹脂(silicone acrylic resin)、甲基丙烯酸樹脂(methacrylic resin)或聚矽氧烷樹脂(polysiloxane resin)等,但並不限於此。在本實施例中,該基底層32例如為聚甲基丙烯酸甲酯(poly(methyl methacrylate),PMMA)之塗層。該基底層32之厚度約介於5奈米(nm)至10微米(μm)之間,例如為50 nm、250 nm、500 nm、1 μm、5 μm或10 μm等,但並不限於此。Referring to FIG. 3, a method for manufacturing a polymer substrate having a transparent conductive oxide layer according to a preferred embodiment of the present invention first provides a polymer substrate 31. In this step, the material of the polymer substrate may be selected from polyethylene terephthalate (PET), triacetyl cellulose (TAC) or polycarbonate (PC). A sheet made of a polymer material, but is not limited thereto. In the present embodiment, the polymer substrate 31 is, for example, a PET substrate. The thickness of the polymer substrate 31 is between about 80 and 250 micrometers (μm), for example, 125, 150 or 180 μm, etc., but is not limited thereto. Further, when the polymer substrate 31 is commercially available, the upper surface thereof is previously coated with the base layer 32 by spin coating or the like to increase the adhesion of the surface. The material of the base layer 32 may be selected from the group consisting of an acrylic resin, a polyester, a silicone acrylic resin, a methacrylic resin or a polydecane resin. Polysiloxane resin), etc., but is not limited thereto. In the present embodiment, the base layer 32 is, for example, a coating of poly(methyl methacrylate) (PMMA). The thickness of the base layer 32 is between about 5 nanometers (nm) and 10 micrometers (μm), for example, 50 nm, 250 nm, 500 nm, 1 μm, 5 μm or 10 μm, etc., but is not limited thereto. .

請參照第3圖所示,本發明較佳實施例之具透明導電氧化物層之高分子基板的製造方法接著係:在該基底層32上形成一層二氧化矽薄膜33。在本步驟中,本發明係可利用化學氣相沉積法(chemical vapor deposition,CVD)、物理氣相沉積法(physical vapor deposition,PVD)或其他既有沉積方式在該基底層32上沉積形成該二氧化矽層33,該二氧化矽薄膜33用以防止水氣由該高分子基板31側入侵到該透明導電氧化物層34,進而確保該透明導電氧化物層34之電性穩定度及使用壽命。該二氧化矽薄膜33之厚度約介於10至100奈米(nm)之間,例如為10、15、50、85或100 nm等,但並不限於此。Referring to FIG. 3, a method for manufacturing a polymer substrate having a transparent conductive oxide layer according to a preferred embodiment of the present invention is followed by forming a thin film of germanium oxide 33 on the base layer 32. In this step, the present invention can be deposited on the substrate layer 32 by chemical vapor deposition (CVD), physical vapor deposition (PVD) or other existing deposition methods. The ruthenium dioxide layer 33 is for preventing moisture from intruding into the transparent conductive oxide layer 34 from the side of the polymer substrate 31, thereby ensuring electrical stability and use of the transparent conductive oxide layer 34. life. The thickness of the ruthenium dioxide film 33 is between about 10 and 100 nanometers (nm), for example, 10, 15, 50, 85 or 100 nm, etc., but is not limited thereto.

請參照第3圖所示,本發明較佳實施例之具透明導電氧化物層之高分子基板的製造方法接著係:在該二氧化矽薄膜33上形成一透明導電氧化物層34。在本步驟中,該透明導電氧化物層34之材料係可選自氧化銦錫(indium tin oxide,ITO)、氧化鋅(ZnO)或摻鋁氧化鋅(aluminum doped zinc oxide,AZO),但並不限於此。在本實施例中,該透明導電氧化物層34之材料例如係為氧化銦錫。本發明可利用物理氣相沉積法或其他既有沉積方式在該二氧化矽薄膜33上沉積形成該透明導電氧化物層34。該透明導電氧化物層34之厚度約介於15至150奈米(nm)之間,例如為15、50、75、100、125或150 nm等,但並不限於此。再者,該透明導電氧化物層34上可以再利用物理氣相沉積法或其他既有沉積方式沉積形成一層銅薄膜或其他金屬薄膜(未繪示),並利用微影製程再加工製作成電極線路,藉此即可初步製作成一觸控感應器的一觸控基板30。Referring to FIG. 3, a method for manufacturing a polymer substrate having a transparent conductive oxide layer according to a preferred embodiment of the present invention is followed by forming a transparent conductive oxide layer 34 on the ceria film 33. In this step, the material of the transparent conductive oxide layer 34 may be selected from indium tin oxide (ITO), zinc oxide (ZnO) or aluminum doped zinc oxide (AZO), but Not limited to this. In this embodiment, the material of the transparent conductive oxide layer 34 is, for example, indium tin oxide. The present invention can deposit the transparent conductive oxide layer 34 on the ceria film 33 by physical vapor deposition or other conventional deposition methods. The thickness of the transparent conductive oxide layer 34 is between about 15 and 150 nanometers (nm), such as 15, 50, 75, 100, 125 or 150 nm, etc., but is not limited thereto. Furthermore, the transparent conductive oxide layer 34 can be deposited by physical vapor deposition or other existing deposition methods to form a copper film or other metal film (not shown), and fabricated into an electrode by a lithography process. The circuit can be used to initially form a touch substrate 30 of a touch sensor.

此外,在進行下述加熱該高分子基板31之步驟前,必要時,本發明另可選擇性包含:在該高分子基板31之一下表面塗佈形成一保護層35,以保護該高分子基板31之下表面不被磨損。塗佈該保護層35之時機可以在第一步驟之前或任一步驟之後。該保護層35之材料係可選自丙烯酸樹脂、聚酯樹脂、矽氧烷丙烯酸樹脂、甲基丙烯酸樹脂或聚矽氧烷樹脂,但並不限於此。在本實施例中,該保護層35例如為聚甲基丙烯酸甲酯之塗層。該基底層32之厚度約介於5奈米(nm)至10微米(μm)之間,例如為50 nm、250 nm、500 nm、1 μm、5 μm或10 μm等。In addition, before the step of heating the polymer substrate 31, the present invention may optionally include: forming a protective layer 35 on the lower surface of the polymer substrate 31 to protect the polymer substrate. The surface below 31 is not worn. The timing of coating the protective layer 35 may be before the first step or after any step. The material of the protective layer 35 may be selected from the group consisting of acrylic resin, polyester resin, decyl acrylate resin, methacryl resin or polyoxyalkylene resin, but is not limited thereto. In the present embodiment, the protective layer 35 is, for example, a coating of polymethyl methacrylate. The thickness of the base layer 32 is between about 5 nanometers (nm) and 10 micrometers (μm), such as 50 nm, 250 nm, 500 nm, 1 μm, 5 μm, or 10 μm.

在本發明另一實施例中,上述三個步驟亦可整合為同一步驟,即:提供一高分子基板31,該高分子基板31上預先塗佈有一基底層32,及該基底層32上至少具有一透明導電氧化物層34。此步驟是指在提供該高分子基板31時,該高分子基板31已預先形成了該基底層32及透明導電氧化物層34,其中該基底層32與透明導電氧化物層34之間更可選擇具有該二氧化矽薄膜33;以及在該高分子基板31之下表面亦可選擇塗佈形成該保護層35。In another embodiment of the present invention, the above three steps may be integrated into the same step, that is, a polymer substrate 31 is provided, and the base substrate 32 is pre-coated on the polymer substrate 31, and at least the base layer 32 is coated thereon. There is a transparent conductive oxide layer 34. This step means that the base layer 32 and the transparent conductive oxide layer 34 are formed in advance on the polymer substrate 31 when the polymer substrate 31 is provided, wherein the base layer 32 and the transparent conductive oxide layer 34 are further The ruthenium dioxide film 33 is selected; and the protective layer 35 is selectively formed on the lower surface of the polymer substrate 31.

請參照第3圖所示,本發明較佳實施例之具透明導電氧化物層之高分子基板的製造方法接著係:將該高分子基板31置於一無氧環境中加熱至120至180℃並持續60至90分鐘,以減少該基底層32中因加熱而產生之白色微粒321的數量及粒徑。在本步驟中,該高分子基板31例如先放置在一承載座41上,或以數個夾持件(未繪示)夾持形成懸掛狀態。接著,再利用一腔室42蓋在該承載座41及高分子基板31上,以便與外界大氣相隔絕。接著,再對該腔室42抽真空至3×10-4托爾(torr)或以下,以形成一密閉之真空腔室做為該無氧環境40。或者,必要時,亦可在抽真空後再進一步注入惰性氣體,進而形成一填有惰性氣體之腔室做為該無氧環境40。上述惰性氣體例如係可選自氮氣(N2)或氬氣(Ar)。在本實施例中,該惰性氣體係選用氬氣。Referring to FIG. 3, a method for manufacturing a polymer substrate having a transparent conductive oxide layer according to a preferred embodiment of the present invention is followed by heating the polymer substrate 31 to 120 to 180 ° C in an oxygen-free environment. And continuing for 60 to 90 minutes to reduce the number and particle diameter of the white particles 321 generated by the heating in the base layer 32. In this step, the polymer substrate 31 is first placed on a carrier 41, or is clamped to form a suspended state by a plurality of clamping members (not shown). Then, a chamber 42 is used to cover the carrier 41 and the polymer substrate 31 to be insulated from the outside atmosphere. Next, the chamber 42 is evacuated to 3 x 10 -4 torr or below to form a closed vacuum chamber as the oxygen-free environment 40. Alternatively, if necessary, an inert gas may be further injected after evacuation to form a chamber filled with an inert gas as the oxygen-free environment 40. The above inert gas may be selected, for example, from nitrogen (N 2 ) or argon (Ar). In this embodiment, the inert gas system is selected from argon.

再者,該腔室42內設有至少一加熱器43,例如為數根加熱燈管,但並不限於此。該加熱器43用以提高該無氧環境40內之空間溫度至120至180℃並持續60至90分鐘,例如加熱至120、140、150、160或180℃,並持續60、65、70、75、80、85或90分鐘。上述將該高分子基板31置於該無氧環境40中加熱之目的在於減少該基底層32中因加熱而產生之白色微粒321的數量及粒徑,確保該白色微粒321的數量及粒徑在一預定值以下,以避免過度影響整體透光率。例如,本發明係控制使該白色微粒321佔該基底層32之總表面積的比例在介於1.0%至0.0001%之間,例如為1.0%、0.5%、0.1%、0.05%、0.01%、0.005%、0.001%、0.0005%或0.0001%等,但並不限於此。以及,本發明係控制使該白色微粒321之粒徑在介於1000至1奈米(nm)之間,例如為1000、800、750、500、250、150、100、75、50、25或1 nm等,但並不限於此。Furthermore, at least one heater 43 is provided in the chamber 42, for example, a plurality of heating lamps, but is not limited thereto. The heater 43 is configured to increase the space temperature in the oxygen-free environment 40 to 120 to 180 ° C for 60 to 90 minutes, for example, to 120, 140, 150, 160 or 180 ° C, and continue for 60, 65, 70, 75, 80, 85 or 90 minutes. The purpose of heating the polymer substrate 31 in the oxygen-free environment 40 is to reduce the number and particle diameter of the white particles 321 generated by heating in the base layer 32, and to ensure that the number and particle diameter of the white particles 321 are Below a predetermined value to avoid excessively affecting the overall light transmittance. For example, the present invention controls the ratio of the white particles 321 to the total surface area of the base layer 32 between 1.0% and 0.0001%, for example, 1.0%, 0.5%, 0.1%, 0.05%, 0.01%, 0.005. %, 0.001%, 0.0005% or 0.0001%, etc., but is not limited thereto. And, the present invention controls the particle size of the white particles 321 to be between 1000 and 1 nanometer (nm), for example, 1000, 800, 750, 500, 250, 150, 100, 75, 50, 25 or 1 nm, etc., but is not limited to this.

請參照第5A及5B圖所示,其分別揭示具基底層之現有高分子基板分別在一般大氣環境下及在全氧(O2)環境下加熱至150℃烘烤30分鐘後之電子掃描顯微照相圖(倍率1000x)。由第5A及5B圖可知,在加熱如第1圖所示之現有高分子基板11後,該基底層12(及高分子基板11)因加熱而產生之白色微粒121佔該基底層12之總表面積的比例明顯大於1.0%;以及大多數白色微粒121之粒徑明顯大於1微米(μm)。因此,大量之白色微粒121將嚴重阻擋行經之光線,並因此大幅降低整體透光率。特別是,當加熱環境中之氧氣含量愈高,因加熱而產生之白色微粒121所佔總表面積的比例明顯愈大;以及白色微粒121之粒徑也明顯增大。Please refer to the figures 5A and 5B, which respectively disclose the electronic scanning of the existing polymer substrate with the basal layer after heating in the general atmosphere and in the whole oxygen (O 2 ) environment to 150 ° C for 30 minutes. Microphotograph (magnification 1000x). As can be seen from FIGS. 5A and 5B, after heating the conventional polymer substrate 11 as shown in FIG. 1, the white particles 121 generated by the base layer 12 (and the polymer substrate 11) due to heating account for the total of the base layer 12. The ratio of surface area is significantly greater than 1.0%; and the particle size of most white particles 121 is significantly greater than 1 micrometer (μm). Therefore, a large amount of white particles 121 will severely block the light passing through, and thus greatly reduce the overall light transmittance. In particular, the higher the oxygen content in the heating environment, the greater the proportion of the total surface area of the white particles 121 due to heating, and the larger the particle size of the white particles 121.

相較之下,請參照第6A及6B圖所示,其分別揭示具基底層之本發明高分子基板在填有氬氣(Ar)之無氧環境下加熱至150℃烘烤30分鐘後之電子掃描顯微照相圖(倍率分別為1000x、5000x)。由第6A及6B圖可知,在加熱如第3圖所示之本發明高分子基板31後,該基底層32(及高分子基板31)因加熱而產生之白色微粒321佔該基底層32之總表面積的比例明顯小於1.0%;以及大多數白色微粒321之粒徑明顯小於1微米(即1000奈米)。因此,在該白色微粒321之數量減少及粒徑變小下,將可明顯減少該白色微粒321阻擋行經光線之機率,並因此大幅改善與提升整體透光率。In contrast, please refer to FIGS. 6A and 6B, which respectively disclose that the polymer substrate of the present invention having a base layer is heated to 150 ° C for 30 minutes in an oxygen-free environment filled with argon (Ar). Electron scanning photomicrographs (magnifications 1000x, 5000x, respectively). 6A and 6B, after heating the polymer substrate 31 of the present invention as shown in FIG. 3, the white particles 321 which are generated by the heating of the base layer 32 (and the polymer substrate 31) occupy the base layer 32. The ratio of total surface area is significantly less than 1.0%; and the particle size of most white particles 321 is significantly less than 1 micron (i.e., 1000 nm). Therefore, when the number of the white particles 321 is reduced and the particle diameter is reduced, the probability that the white particles 321 block the passing light can be significantly reduced, and thus the overall light transmittance is greatly improved and improved.

如上所述,相較於習用高分子基板11、21無法同時減少白色微粒並兼顧薄膜間附著性之缺點,第3及4圖之本發明係將該高分子基板31置於一無氧環境40中進行高溫加熱烘烤,以避免該基底層32(及高分子基板31)在加熱期間受氧氣影響而產生白色微粒321,進而明顯減少該白色微粒321的數量,並有利於控制該白色微粒321之粒徑尺寸至奈米等級,故可確保整體透光率並有效降低該透明導電氧化物層34之阻抗,因此能相對提升薄膜品質及製造良率。再者,本發明係直接在製程上藉由該無氧環境40高溫加熱烘烤處理,以減少該基底層32產生該白色微粒321的數量及粒徑,因而不需塗佈任何硬質塗層,故不會因為設置硬質塗層而影響薄膜與基板之間的附著性,因此亦能確保結構可靠度、製造良率與使用壽命。As described above, the present invention in the third and fourth embodiments places the polymer substrate 31 in an anaerobic environment 40 as compared with the conventional polymer substrates 11 and 21 which cannot simultaneously reduce white particles and take into account the adhesion between the films. The high-temperature heating baking is performed to prevent the base layer 32 (and the polymer substrate 31) from being affected by oxygen during heating to generate white particles 321 , thereby significantly reducing the number of the white particles 321 and facilitating control of the white particles 321 Since the particle size is up to the nanometer level, the overall light transmittance can be ensured and the impedance of the transparent conductive oxide layer 34 can be effectively reduced, so that the film quality and the manufacturing yield can be relatively improved. Furthermore, the present invention directly heats and bakes the process in the oxygen-free environment 40 to reduce the amount and particle size of the white particles 321 produced by the base layer 32, thereby eliminating the need to apply any hard coating. Therefore, the adhesion between the film and the substrate is not affected by the provision of the hard coating, so that structural reliability, manufacturing yield and service life can be ensured.

雖然本發明已以較佳實施例揭露,然其並非用以限制本發明,任何熟習此項技藝之人士,在不脫離本發明之精神和範圍內,當可作各種更動與修飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。The present invention has been disclosed in its preferred embodiments, and is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

10...觸控基板10. . . Touch substrate

11...高分子基板11. . . Polymer substrate

12...基底層12. . . Base layer

121...白色微粒121. . . White particles

13...二氧化矽薄膜13. . . Cerium oxide film

14...透明導電氧化物層14. . . Transparent conductive oxide layer

20...觸控基板20. . . Touch substrate

21...高分子基板twenty one. . . Polymer substrate

22...基底層twenty two. . . Base layer

221...白色微粒221. . . White particles

23...硬質塗層twenty three. . . Hard coating

24...二氧化矽薄膜twenty four. . . Cerium oxide film

25...透明導電氧化物層25. . . Transparent conductive oxide layer

30...觸控基板30. . . Touch substrate

31...高分子基板31. . . Polymer substrate

32...基底層32. . . Base layer

321...白色微粒321. . . White particles

33...二氧化矽薄膜33. . . Cerium oxide film

34...透明導電氧化物層34. . . Transparent conductive oxide layer

35...保護層35. . . The protective layer

40...無氧環境40. . . Anaerobic environment

41...承載座41. . . Carrier

42...腔室42. . . Chamber

43...加熱器43. . . Heater

第1圖:一種現有觸控感應器之觸控基板之剖視圖。FIG. 1 is a cross-sectional view of a touch substrate of a conventional touch sensor.

第2圖:另一種現有觸控感應器之觸控基板之剖視圖。Figure 2: A cross-sectional view of another touch substrate of a conventional touch sensor.

第3圖:本發明較佳實施例之具透明導電氧化物層之高分子基板之剖視圖。Figure 3 is a cross-sectional view showing a polymer substrate having a transparent conductive oxide layer in accordance with a preferred embodiment of the present invention.

第4圖:本發明較佳實施例之具透明導電氧化物層之高分子基板在無氧環境下進行加熱之示意圖。Fig. 4 is a view showing the heating of a polymer substrate having a transparent conductive oxide layer in an oxygen-free environment according to a preferred embodiment of the present invention.

第5A及5B圖:具基底層之現有高分子基板分別在大氣環境下及在全氧(O2)環境下加熱至150℃烘烤30分鐘後之電子掃描顯微照相圖(倍率1000x)。5A and 5B: Electron scanning photomicrographs (magnification: 1000x) of a conventional polymer substrate having a basal layer after being baked in an atmospheric environment and under an oxygen (O 2 ) atmosphere for 30 minutes at 150 ° C.

第6A及6B圖:具基底層之本發明高分子基板在填有氬氣(Ar)之無氧環境下加熱至150℃烘烤30分鐘後之電子掃描顯微照相圖(倍率分別為1000x、5000x)。6A and 6B: Electron scanning photomicrographs of the polymer substrate of the present invention having a basal layer heated to 150 ° C for 30 minutes in an oxygen-free environment filled with argon (Ar) (magnification of 1000x, respectively) 5000x).

Claims (10)

一種具透明導電氧化物層之高分子基板的製造方法,其包含步驟:提供一高分子基板,該高分子基板上預先塗佈有一基底層;在該基底層上形成一層二氧化矽薄膜;在該二氧化矽薄膜上形成一透明導電氧化物層;以及將該高分子基板置於一無氧環境中加熱至120至180℃並持續60至90分鐘,以減少該基底層中因加熱而產生之白色微粒的數量及粒徑。A method for manufacturing a polymer substrate having a transparent conductive oxide layer, comprising the steps of: providing a polymer substrate on which a base layer is preliminarily coated; and forming a thin film of ruthenium dioxide on the base layer; Forming a transparent conductive oxide layer on the ceria film; and heating the polymer substrate to 120 to 180 ° C in an oxygen-free environment for 60 to 90 minutes to reduce heat generation in the substrate layer The number and particle size of the white particles. 如申請專利範圍第1項所述之具透明導電氧化物層之高分子基板的製造方法,其中該白色微粒佔該基底層之總表面積的比例係控制在介於1.0%至0.0001%之間,以及該白色微粒之粒徑係控制在介於1000至1奈米之間。The method for producing a polymer substrate having a transparent conductive oxide layer according to claim 1, wherein the ratio of the white particles to the total surface area of the base layer is controlled to be between 1.0% and 0.0001%. And the particle size of the white particles is controlled between 1000 and 1 nm. 如申請專利範圍第1項所述之具透明導電氧化物層之高分子基板的製造方法,其中該無氧環境係一真空腔室。The method for producing a polymer substrate having a transparent conductive oxide layer according to claim 1, wherein the oxygen-free environment is a vacuum chamber. 如申請專利範圍第1項所述之具透明導電氧化物層之高分子基板的製造方法,其中該無氧環境係一填有惰性氣體之腔室;且該惰性氣體選自氮氣或氬氣。The method for producing a polymer substrate having a transparent conductive oxide layer according to claim 1, wherein the oxygen-free environment is a chamber filled with an inert gas; and the inert gas is selected from nitrogen or argon. 如申請專利範圍第1項所述之具透明導電氧化物層之高分子基板的製造方法,其中該高分子基板之材料選自聚對苯二甲酸乙二酯;該透明導電氧化物層之材料選自氧化銦錫、氧化鋅或摻鋁氧化鋅;及該基底層之材料選自丙烯酸樹脂、聚酯樹脂、矽氧烷丙烯酸樹脂、甲基丙烯酸樹脂或聚矽氧烷樹脂。The method for producing a polymer substrate having a transparent conductive oxide layer according to claim 1, wherein the material of the polymer substrate is selected from the group consisting of polyethylene terephthalate; and the material of the transparent conductive oxide layer It is selected from the group consisting of indium tin oxide, zinc oxide or aluminum-doped zinc oxide; and the material of the base layer is selected from the group consisting of an acrylic resin, a polyester resin, a decyl acrylate resin, a methacrylic resin or a polyoxyalkylene resin. 如申請專利範圍第1項所述之具透明導電氧化物層之高分子基板的製造方法,其中在加熱該高分子基板之步驟前,另包含:在該高分子基板之一下表面塗佈形成一保護層。The method for producing a polymer substrate having a transparent conductive oxide layer according to claim 1, wherein before the step of heating the polymer substrate, the method further comprises: coating a lower surface of the polymer substrate to form a polymer substrate The protective layer. 如申請專利範圍第1項所述之具透明導電氧化物層之高分子基板的製造方法,其中該保護層之材料選自丙烯酸樹脂、聚酯樹脂、矽氧烷丙烯酸樹脂、甲基丙烯酸樹脂或聚矽氧烷樹脂。The method for producing a polymer substrate having a transparent conductive oxide layer according to claim 1, wherein the material of the protective layer is selected from the group consisting of an acrylic resin, a polyester resin, a decyl acrylate resin, a methacryl resin or Polyoxyalkylene resin. 如申請專利範圍第1項所述之具透明導電氧化物層之高分子基板的製造方法,其中在加熱該高分子基板之步驟後,另包含:以該高分子基板製作一觸控感應器之一觸控基板。The method for manufacturing a polymer substrate having a transparent conductive oxide layer according to the first aspect of the invention, wherein after the step of heating the polymer substrate, the method further comprises: fabricating a touch sensor with the polymer substrate A touch substrate. 一種具透明導電氧化物層之高分子基板的製造方法,其包含步驟:提供一高分子基板,該高分子基板上預先塗佈有一基底層,及該基底層上至少具有一透明導電氧化物層;以及將該高分子基板置於一無氧環境中加熱至120至180℃並持續60至90分鐘,以減少該基底層中因加熱而產生之白色微粒的數量及粒徑。A method for manufacturing a polymer substrate having a transparent conductive oxide layer, comprising the steps of: providing a polymer substrate having a base layer pre-coated thereon, and having at least one transparent conductive oxide layer on the base layer And heating the polymer substrate to an oxygen-free environment to 120 to 180 ° C for 60 to 90 minutes to reduce the amount and particle size of the white particles generated by heating in the substrate layer. 如申請專利範圍第9項所述之具透明導電氧化物層之高分子基板的製造方法,其中該白色微粒佔該基底層之總表面積的比例係控制在介於1.0%至0.0001%之間,以及該白色微粒之粒徑係控制在介於1微米至1奈米之間。The method for producing a polymer substrate having a transparent conductive oxide layer according to claim 9, wherein the ratio of the white particles to the total surface area of the base layer is controlled to be between 1.0% and 0.0001%. And the particle size of the white particles is controlled between 1 micrometer and 1 nanometer.
TW101112680A 2012-04-10 2012-04-10 Manufacturing method for polymer substrate having transparent conductive oxide layer TW201342141A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101112680A TW201342141A (en) 2012-04-10 2012-04-10 Manufacturing method for polymer substrate having transparent conductive oxide layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101112680A TW201342141A (en) 2012-04-10 2012-04-10 Manufacturing method for polymer substrate having transparent conductive oxide layer

Publications (1)

Publication Number Publication Date
TW201342141A true TW201342141A (en) 2013-10-16

Family

ID=49771458

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101112680A TW201342141A (en) 2012-04-10 2012-04-10 Manufacturing method for polymer substrate having transparent conductive oxide layer

Country Status (1)

Country Link
TW (1) TW201342141A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3294548B1 (en) * 2015-05-15 2022-05-25 Saint-Gobain Glass France Pane with thermal radiation reflecting coating, opaque masking print applied directly to the thermal radiation reflecting coating and fastening or sealing element applied on the opaque masking print

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3294548B1 (en) * 2015-05-15 2022-05-25 Saint-Gobain Glass France Pane with thermal radiation reflecting coating, opaque masking print applied directly to the thermal radiation reflecting coating and fastening or sealing element applied on the opaque masking print

Similar Documents

Publication Publication Date Title
JP5122670B2 (en) Method for producing transparent conductive film
JP5101719B2 (en) Transparent conductive film, method for producing the same, and touch panel provided with the same
TWI486973B (en) Transparent conductive multilayered film, producing method of the same, and touch panel containing the same
TWI653670B (en) Transparent body with single substrate and anti-refelection and/or anti-fingerprint coating and method of manufacturing thereof
JP2003151358A (en) Transparent conductive film and touch panel
JP6267641B2 (en) Manufacturing method of substrate with transparent electrode, and substrate with transparent electrode
CN108367556A (en) Metal layer is laminated transparent conducting film and uses its touch sensor
JP7308960B2 (en) Transparent conductive film and method for producing transparent conductive film
KR20120028506A (en) Method for manufacturing flexible multilayer transparent eletrode
JP4068993B2 (en) Transparent conductive laminated film
KR101165770B1 (en) Method for manufacturing ito thin film with high-transmittance and low-resistance
TW201342141A (en) Manufacturing method for polymer substrate having transparent conductive oxide layer
TW201445404A (en) Transparent conductive film structure and touch panel thereof
WO2014157312A1 (en) Transparent conductive multilayer film and method for producing same
JP2005071901A (en) Transparent conductive laminated film
KR102174902B1 (en) Transparent electrode, manufacturing method of the same and use of the same
JP2004502030A (en) Method for producing multifunctional multilayer film on transparent plastic substrate and multifunctional multilayer film produced according to this method
KR101383488B1 (en) High Quality Flexible Transparent Electrodes and Fabricating Method Thereof
CN108292541B (en) Conductive transparent film
CN110442268A (en) Flexible touch screen and its manufacturing method, display device
KR20130015667A (en) Transparent conductive film and method for fabricating the same
TWI661933B (en) Layer system for use in a touch screen panel, method for manufacturing a layer system for use in a touch screen panel, and touch screen panel
KR101205005B1 (en) Transparent and conductive substrate and manufacturing method thereof
KR20110083334A (en) Flexible ito film for touch screen panel including buffer layer and manufacturing method of the same
JP2009199813A (en) Transparent electrode manufacturing method, transparent electrode manufacturing apparatus, and the transparent electrode