TW201336573A - A gas processing unit comprising a device for removing nitrogen oxides - Google Patents

A gas processing unit comprising a device for removing nitrogen oxides Download PDF

Info

Publication number
TW201336573A
TW201336573A TW102104055A TW102104055A TW201336573A TW 201336573 A TW201336573 A TW 201336573A TW 102104055 A TW102104055 A TW 102104055A TW 102104055 A TW102104055 A TW 102104055A TW 201336573 A TW201336573 A TW 201336573A
Authority
TW
Taiwan
Prior art keywords
gas
regeneration
flue gas
dryer
wet scrubber
Prior art date
Application number
TW102104055A
Other languages
Chinese (zh)
Inventor
Lars Nilsson
Original Assignee
Alstom Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology Ltd filed Critical Alstom Technology Ltd
Publication of TW201336573A publication Critical patent/TW201336573A/en

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

A gas purification system for cleaning a carbon dioxide rich flue gas stream comprises: a flue gas condenser (36) operative for removing at least a portion of a water content of the flue gas; a gas drier (70) arranged downstream of the flue gas condenser (36) for removing at least a portion of a remaining water content of the flue gas; a gas drier regeneration system (84) arranged for generating a regeneration gas for desorbing water and nitrogen oxides from the gas drier (70); and a wet scrubber (114) for a spent regeneration gas from the gas drier (70) to contact an absorption liquid for removing at least a portion of nitrogen oxides from the spent regeneration gas to form a cleaned regeneration gas.

Description

包含移除氮氧化物之裝置的氣體處理單元 Gas processing unit containing a device for removing nitrogen oxides

本發明係關於一種淨化富含二氧化碳之煙道氣的方法,該煙道氣係在鍋爐中在含氧氣氣體存在下燃燒燃料所產生。 The present invention relates to a method of purifying a carbon dioxide-rich flue gas produced by burning a fuel in a boiler in the presence of an oxygen-containing gas.

本發明進一步關於一種淨化富含二氧化碳之煙道氣流的氣體純化系統,該煙道氣係在鍋爐中在含氧氣氣體存在下燃燒燃料所產生。 The invention further relates to a gas purification system for purifying a carbon dioxide-rich flue gas stream produced by burning a fuel in a boiler in the presence of an oxygen-containing gas.

在燃燒廠(諸如發電廠)中,燃料(諸如煤、油、泥煤、垃圾等)燃燒時產生熱處理氣體,該處理氣體除含其他組分之外亦含二氧化碳CO2。隨著環境需求增強,已開發出自處理氣體移除二氧化碳之多種方法。一種該方法稱為氧氣燃料方法(oxy-fuel process)。在氧氣燃料方法中,燃料(諸如上述燃料之一)在鍋爐中在氮氣貧乏的氣體存在下燃燒。將由氧源提供之氧氣供應至鍋爐用於燃料之氧氣氧化。在氧氣燃料燃燒方法中,產生富含二氧化碳之煙道氣。可捕集且處置富含二氧化碳之煙道氣中的CO2以便減少二氧化碳排放至大氣中。 Heat generating combustion gases in a combustion plant (such as power plants), the fuel (such as coal, oil, peat, waste, etc.), the process gas other than also contain other components comprising carbon dioxide CO 2. As environmental demands have increased, various methods of removing carbon dioxide from process gases have been developed. One such method is known as the oxy-fuel process. In the oxy-fuel process, a fuel, such as one of the above-described fuels, is combusted in a boiler in the presence of a nitrogen-poor gas. The oxygen supplied by the oxygen source is supplied to the boiler for oxygen oxidation of the fuel. In an oxyfuel combustion process, a carbon dioxide-rich flue gas is produced. The CO 2 in the carbon dioxide-rich flue gas can be captured and disposed of in order to reduce carbon dioxide emissions to the atmosphere.

CO2捕集常常包含壓縮且冷卻煙道氣以使液體或固體形式之CO2與不冷凝煙道氣組分(諸如N2及O2)分離。在CO2捕集之前,一般需要淨化富含二氧化碳之煙道氣。 CO 2 capture often involves compressing and cooling the flue gas to separate CO 2 in liquid or solid form from non-condensing flue gas components such as N 2 and O 2 . Prior to CO 2 capture, it is generally desirable to purify the flue gas rich in carbon dioxide.

US 2010/0206165揭示一種方法,其中在淨化含有二氧化碳之氣流與回收經純化之富含CO2之氣流之間進行純化步驟。純化步驟包含 使用吸附劑自氣流移除水。 US 2010/0206165 discloses a method, wherein the gas stream between the purification step and the purification of carbon dioxide recovered in the CO-rich stream 2 containing purge. The purification step involves the use of an adsorbent to remove water from the gas stream.

本發明之目標為提供一種以比先前技術之方法更有效的方式自氣流移除水的方法。 It is an object of the present invention to provide a method of removing water from a gas stream in a more efficient manner than prior art methods.

此目標係藉由淨化在鍋爐中在含氧氣氣體存在下燃燒燃料所產生之富含二氧化碳之煙道氣的方法來達成,該方法包含:在煙道氣冷凝器中移除煙道氣中之至少一部分水分;使用配置在該煙道氣冷凝器下游之氣體乾燥器移除煙道氣中之至少一部分剩餘水分及煙道氣中之至少一部分氮氧化物;藉由加熱再生氣體流至適於該氣體乾燥器再生之溫度,且使經加熱之再生氣體通過該氣體乾燥器以便使來自該氣體乾燥器之水及氮氧化物解吸附,產生廢再生氣體來再生該氣體乾燥器;及將來自該氣體乾燥器之廢再生氣體輸送至濕式洗滌器,且使該廢再生氣體接觸吸收液,以便移除該廢再生氣體中之至少一部分氮氧化物,形成經淨化之再生氣體。 This object is achieved by a method of purifying carbon dioxide-rich flue gas produced by burning fuel in the presence of an oxygen-containing gas in a boiler, the method comprising: removing flue gas from a flue gas condenser At least a portion of the moisture; removing at least a portion of the residual moisture in the flue gas and at least a portion of the nitrogen oxides in the flue gas using a gas dryer disposed downstream of the flue gas condenser; by heating the regeneration gas stream to a suitable The gas dryer regenerates the temperature, and passes the heated regeneration gas through the gas dryer to desorb water and nitrogen oxides from the gas dryer to produce waste regeneration gas to regenerate the gas dryer; The spent regeneration gas of the gas dryer is delivered to the wet scrubber, and the spent regeneration gas is contacted with the absorption liquid to remove at least a portion of the nitrogen oxides of the spent regeneration gas to form a purified regeneration gas.

此方法之優勢為在低投資及操作成本下,使用非常有效的方法限制氮氧化物釋放至環境。氣體乾燥器之操作條件使得氣體乾燥器可充當氮氧化物收集器,而濕式洗滌器充當淨化裝置,最終自富含二氧化碳之煙道氣移除氮氧化物。 The advantage of this method is the use of very efficient methods to limit the release of nitrogen oxides to the environment at low investment and operating costs. The operating conditions of the gas dryer allow the gas dryer to act as a nitrogen oxide collector, while the wet scrubber acts as a purification device that ultimately removes nitrogen oxides from the carbon dioxide rich flue gas.

根據一個實施例,該方法進一步包含將經淨化之再生氣體流自該濕式洗滌器輸送至該煙道氣冷凝器以便在其中冷卻。此實施例之優勢為限制不希望有的氣體(諸如二氧化碳及氮氧化物)釋放至大氣,避免大規模處理方法,因為廢再生氣體在已於同一方法中用於其他目的之設備(亦即煙道氣冷凝器)中加以處理。 According to an embodiment, the method further comprises delivering a purified regeneration gas stream from the wet scrubber to the flue gas condenser for cooling therein. The advantage of this embodiment is to limit the release of undesired gases, such as carbon dioxide and nitrogen oxides, to the atmosphere, avoiding large-scale processing methods because waste regeneration gases are used in other equipment (ie, smoke) that have been used in the same process. Processed in the gas condenser).

根據一個實施例,該方法進一步包含供應氧化劑至該濕式洗滌器之吸收液。此實施例之優勢為該濕式洗滌器中氮氧化物(詳言之一 氧化氮NO)之捕集進一步增強。 According to one embodiment, the method further comprises supplying an oxidant to the absorption fluid of the wet scrubber. The advantage of this embodiment is the nitrogen oxides in the wet scrubber (one of the details) The capture of nitrogen oxides NO) is further enhanced.

根據一個實施例,該方法進一步包含藉由在該煙道氣冷凝器下游抽出一部分富含二氧化碳之煙道氣來獲得再生氣體流。此實施例之優勢為使用已在該方法內之處理氣體。由此降低操作成本而不增加最終傳送用於隔離之二氧化碳的量。 According to an embodiment, the method further comprises obtaining a regeneration gas stream by withdrawing a portion of the carbon dioxide-rich flue gas downstream of the flue gas condenser. An advantage of this embodiment is the use of process gases already within the process. This reduces operating costs without increasing the amount of carbon dioxide that is ultimately delivered for isolation.

根據一個實施例,該方法進一步包含藉由在該氣體乾燥器上游抽出一部分富含二氧化碳之煙道氣來獲得再生氣體流。此實施例之優勢為使用尚未乾燥之氣體作為再生氣體。由此降低操作成本。 According to an embodiment, the method further comprises obtaining a regeneration gas stream by withdrawing a portion of the carbon dioxide rich flue gas upstream of the gas dryer. An advantage of this embodiment is the use of a gas that has not been dried as a regeneration gas. This reduces operating costs.

根據一個實施例,該方法進一步包含供應pH控制物質至該濕式洗滌器之吸收液。此實施例之優勢為例如可中和藉由濕式洗滌器吸收液捕集氮氧化物所形成之酸性化合物,藉此增加氮氧化物捕集效率。 According to an embodiment, the method further comprises supplying a pH control substance to the absorption liquid of the wet scrubber. An advantage of this embodiment is, for example, that the acidic compound formed by the capture of nitrogen oxides by the wet scrubber absorbing liquid can be neutralized, thereby increasing the nitrogen oxide capture efficiency.

根據一個實施例,該濕式洗滌器與該煙道氣冷凝器隔開。此實施例之優勢為該濕式洗滌器及該煙道氣冷凝器各自可根據其相應任務最佳化。 According to one embodiment, the wet scrubber is spaced from the flue gas condenser. An advantage of this embodiment is that the wet scrubber and the flue gas condenser can each be optimized according to their respective tasks.

根據一個實施例,該方法進一步包含在洗滌期間輸送廢再生氣體自該氣體乾燥器輸送通過該濕式洗滌器,該洗滌期組成該氣體乾燥器再生之再生期的一部分,且基於氮氧化物自該氣體乾燥器之釋放來控制洗滌期之持續時間及時序。此實施例之優勢為可節約消耗品(諸如能量及氧化劑),因為該濕式洗滌器僅在需要時操作。 According to one embodiment, the method further comprises transporting waste regeneration gas from the gas dryer through the wet scrubber during washing, the washing period comprising a portion of the regeneration period of the gas dryer regeneration, and based on nitrogen oxides The release of the gas dryer controls the duration and timing of the wash period. An advantage of this embodiment is that consumables such as energy and oxidant can be saved because the wet scrubber operates only when needed.

本發明之另一目標為提供一種有效淨化富含二氧化碳之煙道氣流的氣體純化系統。 Another object of the present invention is to provide a gas purification system that effectively purifies a carbon dioxide-rich flue gas stream.

此目標係藉由淨化在鍋爐中在含氧氣氣體存在下燃燒燃料所產生之富含二氧化碳之煙道氣流的氣體純化系統來達成,該氣體純化系統包含:煙道氣冷凝器,有效移除煙道氣中之至少一部分水分;氣體乾燥器,基於該富含二氧化碳之煙道氣的流向配置在該煙 道氣冷凝器下游,用於移除該煙道氣中之至少一部分剩餘水分及該煙道氣中之至少一部分氮氧化物;氣體乾燥器再生系統,經配置用於產生再生氣體,使來自該氣體乾燥器之水及氮氧化物解吸附;及濕式洗滌器,用於使來自該氣體乾燥器之廢再生氣體與吸收液接觸,以便移除該廢再生氣體中之至少一部分氮氧化物,形成經淨化之再生氣體。 This objective is achieved by a gas purification system for purifying a carbon dioxide-rich flue gas stream produced by burning a fuel in the presence of an oxygen-containing gas in a boiler, the gas purification system comprising: a flue gas condenser for effectively removing smoke At least a portion of the moisture in the gas; a gas dryer disposed in the flow based on the flow of the carbon dioxide-rich flue gas Downstream of the gas condenser for removing at least a portion of the remaining moisture in the flue gas and at least a portion of the nitrogen oxides in the flue gas; a gas dryer regeneration system configured to generate a regeneration gas from the Desorbing water and nitrogen oxides of the gas dryer; and a wet scrubber for contacting the spent regeneration gas from the gas dryer with the absorption liquid to remove at least a portion of the nitrogen oxides of the spent regeneration gas, A purified regeneration gas is formed.

此系統之優勢為使用非常有效的系統限制氮氧化物釋放至環境中。 The advantage of this system is the use of very efficient systems to limit the release of nitrogen oxides into the environment.

根據一個實施例,該系統進一步包含供經淨化之再生氣體自該濕式洗滌器流動至該煙道氣冷凝器以便在其中冷卻的管道。此實施例之優勢為可使排放至環境中之氮氧化物及二氧化碳極低。 According to an embodiment, the system further comprises a conduit for the purified regeneration gas to flow from the wet scrubber to the flue gas condenser for cooling therein. An advantage of this embodiment is that the nitrogen oxides and carbon dioxide emitted to the environment are extremely low.

根據一個實施例,該系統進一步包含基於該富含二氧化碳之煙道氣的流向配置在該煙道氣冷凝器下游以便再生氣體流入該氣體乾燥器再生系統之供應管道。此實施例之優勢為使用已在該方法內之處理氣體作為再生氣體。由此降低操作成本及需要處理的氣體體積。 According to an embodiment, the system further comprises a supply conduit downstream of the flue gas condenser for flow of regeneration gas into the gas dryer regeneration system based on the flow of the carbon dioxide rich flue gas. An advantage of this embodiment is the use of the process gas already within the process as a regeneration gas. This reduces operating costs and the volume of gas that needs to be processed.

根據一個實施例,該氣體乾燥器含有固體吸附劑。此實施例之優勢為固體吸附劑通常有效移除水蒸氣,使得離開該氣體乾燥器之煙道氣具有低濃度水蒸氣,可適於進一步處置煙道氣。 According to one embodiment, the gas dryer contains a solid adsorbent. An advantage of this embodiment is that the solid adsorbent is generally effective to remove water vapor such that the flue gas exiting the gas dryer has a low concentration of water vapor and is suitable for further disposal of the flue gas.

根據一個實施例,該系統進一步包含經配置用於供應氧化劑至該濕式洗滌器之吸收液的氧化劑供應管。此實施例之優勢為增強該濕式洗滌器移除氮氧化物且詳言之一氧化氮NO之能力。 According to an embodiment, the system further comprises an oxidant supply tube configured to supply oxidant to the wick of the wet scrubber. An advantage of this embodiment is to enhance the ability of the wet scrubber to remove nitrogen oxides and, in particular, one of the nitrogen oxides.

根據一個實施例,基於富含二氧化碳之煙道氣的流向,在該煙道氣冷凝器下游及該氣體乾燥器上游配置至少一個壓縮機用於壓縮富含二氧化碳之煙道氣。基於該富含二氧化碳之煙道氣的流向,在該壓縮機上游配置供應管道以便再生氣體流入該氣體乾燥器再生系統。此 實施例之優勢為可在壓縮前使用所收集之再生氣體實現再生,由此減小操作成本。另一優勢為壓縮富含二氧化碳之煙道氣促進一氧化氮NO氧化形成二氧化氮NO2。因此,該氣體乾燥器中所捕集且在再生後輸送至該濕式洗滌器之較大部分氮氧化物已呈氧化態,減少供應氧化劑至該濕式洗滌器之需要。 According to one embodiment, at least one compressor is disposed downstream of the flue gas condenser and upstream of the gas dryer for compressing the carbon dioxide rich flue gas based on the flow direction of the carbon dioxide rich flue gas. Based on the flow direction of the carbon dioxide-rich flue gas, a supply conduit is disposed upstream of the compressor for regeneration gas to flow into the gas dryer regeneration system. An advantage of this embodiment is that regeneration can be achieved using the collected regeneration gas prior to compression, thereby reducing operating costs. Another advantage is that compressing the carbon dioxide-rich flue gas promotes the oxidation of nitric oxide NO to form nitrogen dioxide NO 2 . Thus, a larger portion of the nitrogen oxides trapped in the gas dryer and delivered to the wet scrubber after regeneration has been in an oxidized state, reducing the need to supply oxidant to the wet scrubber.

根據一個實施例,至少一個pH控制物質供應管經配置用於供應pH控制物質至該濕式洗滌器之吸收液。 According to one embodiment, the at least one pH control substance supply tube is configured to supply a pH control substance to the absorption liquid of the wet scrubber.

上述及其他特徵係由下列圖式及實施方式舉例說明。本發明之其他目標及特徵由實施方式及申請專利範圍將顯而易見。 The above and other features are exemplified by the following figures and embodiments. Other objects and features of the present invention will be apparent from the embodiments and appended claims.

1‧‧‧鍋爐系統 1‧‧‧Boiler system

2‧‧‧鍋爐 2‧‧‧Boiler

2a‧‧‧燃燒區 2a‧‧‧burning area

4‧‧‧汽輪機發電系統 4‧‧‧ Turbine Power Generation System

6‧‧‧氣體淨化系統 6‧‧‧Gas purification system

8‧‧‧微粒移除裝置 8‧‧‧Particle removal device

10‧‧‧二氧化硫移除系統/濕式洗滌器 10‧‧‧Sulphur dioxide removal system/wet scrubber

10a‧‧‧濕式洗滌器內部 10a‧‧‧ Wet scrubber interior

12‧‧‧燃料儲存器 12‧‧‧ fuel storage

14‧‧‧供應管 14‧‧‧Supply tube

16‧‧‧氧氣源 16‧‧‧Oxygen source

18‧‧‧供應管道 18‧‧‧Supply pipeline

20‧‧‧管道 20‧‧‧ Pipes

22‧‧‧蒸汽管 22‧‧‧ steam pipe

24‧‧‧管道 24‧‧‧ Pipes

26‧‧‧管道 26‧‧‧ Pipes

27‧‧‧管道 27‧‧‧ Pipes

28‧‧‧循環泵 28‧‧‧Circulating pump

30‧‧‧漿液循環管 30‧‧‧Slurry circulation tube

32‧‧‧管道 32‧‧‧ Pipes

33‧‧‧氣體分流點 33‧‧‧ gas distribution point

34‧‧‧管道 34‧‧‧ Pipes

36‧‧‧煙道氣冷凝器 36‧‧‧ Flue Gas Condenser

37‧‧‧處置管 37‧‧‧Disposal tube

38‧‧‧管道 38‧‧‧ Pipes

40‧‧‧氣體壓縮及純化單元(GPU) 40‧‧‧Gas Compression and Purification Unit (GPU)

41‧‧‧壓縮機 41‧‧‧Compressor

42‧‧‧第一壓縮階段 42‧‧‧First compression phase

44‧‧‧第二壓縮階段 44‧‧‧Second compression phase

46‧‧‧第三壓縮階段 46‧‧‧ Third compression stage

48‧‧‧低壓壓縮單元 48‧‧‧Low compression unit

50‧‧‧共同驅動軸 50‧‧‧Common drive shaft

52‧‧‧馬達 52‧‧‧Motor

54‧‧‧中間冷卻單元 54‧‧‧Intermediate cooling unit

56‧‧‧氣體冷卻器 56‧‧‧ gas cooler

58‧‧‧氣液分離器 58‧‧‧ gas-liquid separator

60‧‧‧汞吸附器 60‧‧‧ Mercury adsorber

60a‧‧‧填料 60a‧‧‧Filling

62‧‧‧管道 62‧‧‧ Pipes

64‧‧‧管道 64‧‧‧ Pipes

66‧‧‧管道 66‧‧‧ Pipes

68‧‧‧管道 68‧‧‧ Pipes

70‧‧‧氣體乾燥器 70‧‧‧ gas dryer

72‧‧‧填料 72‧‧‧Filling

74‧‧‧管道 74‧‧‧ Pipes

76‧‧‧CO2液化單元 76‧‧‧CO 2 liquefaction unit

78‧‧‧高壓壓縮單元 78‧‧‧High pressure compression unit

80‧‧‧二氧化碳隔離器 80‧‧‧CO2 isolator

82‧‧‧管道 82‧‧‧ Pipes

84‧‧‧氣體乾燥器再生系統 84‧‧‧Gas Dryer Regeneration System

86‧‧‧供應管道 86‧‧‧Supply pipeline

88‧‧‧加熱器 88‧‧‧heater

90‧‧‧加熱電路 90‧‧‧heating circuit

91‧‧‧氣體輸送裝置 91‧‧‧ gas delivery device

92‧‧‧管道 92‧‧‧ Pipes

94‧‧‧溫度感測器 94‧‧‧Temperature Sensor

96‧‧‧閥 96‧‧‧ valve

98‧‧‧再生閥 98‧‧‧Regeneration valve

100‧‧‧再生閥 100‧‧‧Regeneration valve

102‧‧‧管道 102‧‧‧ Pipes

104‧‧‧氣體乾燥器隔離閥 104‧‧‧Gas Dryer Isolation Valve

106‧‧‧氣體乾燥器隔離閥 106‧‧‧Gas Dryer Isolation Valve

108‧‧‧管道 108‧‧‧ Pipes

110‧‧‧氣體乾燥器 110‧‧‧ gas dryer

111‧‧‧可選管道 111‧‧‧Optional pipe

112‧‧‧配置 112‧‧‧Configuration

114‧‧‧濕式洗滌器 114‧‧‧ Wet scrubber

116‧‧‧泵 116‧‧‧ pump

118‧‧‧循環管 118‧‧‧Circulation tube

120‧‧‧濕式洗滌塔下端 120‧‧‧The lower end of the wet scrubber

122‧‧‧濕式洗滌塔 122‧‧‧ Wet scrubber

124‧‧‧濕式洗滌塔上端 124‧‧‧The upper end of the wet scrubber

126‧‧‧濕式洗滌器氣液接觸填充材料 126‧‧‧Wet scrubber gas-liquid contact filling material

128‧‧‧管道 128‧‧‧ Pipes

129‧‧‧可選管道 129‧‧‧Optional pipe

130‧‧‧pH值控制物質供應管 130‧‧‧pH control substance supply tube

131‧‧‧氣體混合裝置 131‧‧‧ gas mixing device

132‧‧‧pH計 132‧‧‧pH meter

133‧‧‧氧化劑供應管 133‧‧‧Oxiant supply tube

134‧‧‧控制閥 134‧‧‧Control valve

135‧‧‧靜態混合板 135‧‧‧Static mixing board

136‧‧‧氧化劑供應管 136‧‧‧Oxidant supply tube

138‧‧‧氧化還原電位計 138‧‧‧ Redox Potentiometer

140‧‧‧控制閥 140‧‧‧Control valve

142‧‧‧泵 142‧‧‧ pump

144‧‧‧循環管 144‧‧‧Circulation tube

146‧‧‧冷凝器外殼下端 146‧‧‧ lower end of the condenser casing

148‧‧‧冷凝器外殼 148‧‧‧Condenser housing

148a‧‧‧冷凝器外殼內部 148a‧‧‧ inside the condenser casing

150‧‧‧冷凝器外殼上端 150‧‧‧Upper end of condenser housing

152‧‧‧冷凝器氣液接觸填充材料 152‧‧‧Condenser gas-liquid contact filling material

154‧‧‧液體冷卻器 154‧‧‧Liquid cooler

156‧‧‧管道 156‧‧‧ Pipes

158‧‧‧處置管 158‧‧‧Disposal tube

160‧‧‧廢水處理廠 160‧‧‧Waste treatment plant

162‧‧‧管 162‧‧‧ tube

164‧‧‧管 164‧‧‧ tube

166‧‧‧廢水處理廠 166‧‧‧Waste treatment plant

168‧‧‧可選旁路管道 168‧‧‧Optional bypass piping

170‧‧‧閥/第一步驟 170‧‧‧ Valve / First Step

171‧‧‧可選閥 171‧‧‧Optional valve

172‧‧‧第二步驟 172‧‧‧ second step

174‧‧‧第三步驟 174‧‧‧ third step

176‧‧‧第四步驟 176‧‧‧ fourth step

178‧‧‧第五步驟 178‧‧‧ fifth step

下文參照附圖更詳細地描述本發明,其中: The invention is described in more detail below with reference to the accompanying drawings in which:

圖1為鍋爐系統之示意性側視圖。 Figure 1 is a schematic side view of a boiler system.

圖2為氣體壓縮及純化單元之示意性側視圖。 Figure 2 is a schematic side view of a gas compression and purification unit.

圖3為用於純化廢再生氣體之系統的示意性側視圖。 Figure 3 is a schematic side view of a system for purifying spent regeneration gas.

圖4為說明廢再生氣體中之氮氧化物濃度在氣體乾燥器再生期間的圖。 Figure 4 is a graph illustrating the concentration of nitrogen oxides in the spent regeneration gas during regeneration of the gas dryer.

圖5為淨化富含二氧化碳之煙道氣之方法的示意圖。 Figure 5 is a schematic illustration of a method of purifying a carbon dioxide rich flue gas.

圖1為鍋爐系統1之示意性側視圖。鍋爐系統1包含鍋爐2(在此實施例中為氧氣燃料鍋爐)、汽輪機發電系統4及氣體淨化系統6作為主要組件。氣體淨化系統6包含微粒移除裝置8,其可為例如織物過濾器(fabric filter)或靜電集塵器(electrostatic precipitator);及二氧化硫移除系統10,其可為濕式洗滌器。 Figure 1 is a schematic side view of a boiler system 1. The boiler system 1 includes a boiler 2 (an oxygen fuel boiler in this embodiment), a steam turbine power generation system 4, and a gas purification system 6 as main components. The gas purification system 6 includes a particulate removal device 8, which may be, for example, a fabric filter or an electrostatic precipitator; and a sulfur dioxide removal system 10, which may be a wet scrubber.

燃料(例如煤、油或泥煤)容納在燃料儲存器12中且可經由流體連通供應管14供應至鍋爐2。氧氣源16以熟習此項技術者已知的方式有效供應氧氣。氧氣源16可為有效分離空氣中之氧氣之空氣分離設備、 氧分離膜、儲槽或向鍋爐系統1提供氧氣之任何其他來源。供應管道18允許所產生之氧氣(包含通常90-99.9體積%之氧氣O2)可流動至流體連通之鍋爐2。管道20允許含有二氧化碳之再循環煙道氣流動至流體連通之鍋爐2。如圖1所示,供應管道18接入鍋爐2上游之管道20,使得氧氣及含有二氧化碳之再循環煙道氣可在鍋爐2上游混合形成氣體混合物,該氣體混合物通常含有約20-50體積%之氧氣,其餘主要為二氧化碳及水蒸氣。由於幾乎無空氣進入鍋爐2,故幾乎無氮氣供應至鍋爐2。在實際操作中,供應至鍋爐2之氣體體積中小於3體積%為空氣,其主要經由例如鍋爐2及氣體淨化系統6以洩漏空氣形式進入鍋爐系統1。 A fuel, such as coal, oil or peat, is housed in the fuel reservoir 12 and may be supplied to the boiler 2 via a fluid communication supply pipe 14. Oxygen source 16 is effective in supplying oxygen in a manner known to those skilled in the art. The oxygen source 16 can be an air separation device that effectively separates oxygen from the air, an oxygen separation membrane, a storage tank, or any other source that provides oxygen to the boiler system 1. Supply conduit 18 allows the generated oxygen gas (typically comprising 90 to 99.9% by volume of oxygen gas O 2) may be in fluid communication with the flow to the boiler 2. The conduit 20 allows the recycled flue gas containing carbon dioxide to flow to the boiler 2 in fluid communication. As shown in Figure 1, the supply conduit 18 is connected to the conduit 20 upstream of the boiler 2 such that oxygen and recycled flue gas containing carbon dioxide can be mixed upstream of the boiler 2 to form a gas mixture which typically contains from about 20% to about 50% by volume. Oxygen, the rest is mainly carbon dioxide and water vapor. Since almost no air enters the boiler 2, almost no nitrogen gas is supplied to the boiler 2. In actual operation, less than 3% by volume of the gas supplied to the boiler 2 is air, which enters the boiler system 1 in the form of leakage air mainly via, for example, the boiler 2 and the gas purification system 6.

鍋爐2有效地使經由供應管14供應之燃料在經由流體連通導管20供應的與含有二氧化碳之再循環煙道氣混合的氧氣存在下燃燒。燃燒係在本文稱為燃燒區2a之鍋爐部分中發生。蒸汽管22允許鍋爐2中由於燃燒產生的蒸汽流入汽輪機發電系統4,其有效產生呈電功率形式之功率。 The boiler 2 effectively combusts the fuel supplied via the supply pipe 14 in the presence of oxygen mixed with the carbon dioxide-containing recycled flue gas supplied via the fluid communication conduit 20. The combustion takes place in a portion of the boiler referred to herein as the combustion zone 2a. The steam pipe 22 allows steam generated in the boiler 2 due to combustion to flow into the steam turbine power generation system 4, which effectively produces power in the form of electric power.

管道24允許鍋爐2中產生的富含二氧化碳之煙道氣流入流體連通之除塵裝置8。如本文中所用之「富含二氧化碳之煙道氣」意指煙道氣含有至少40體積%之二氧化碳CO2。離開鍋爐2之煙道氣中通常超過50體積%將為二氧化碳。通常,離開鍋爐2之煙道氣將含有50-80體積%之二氧化碳。「富含二氧化碳之煙道氣」之其餘部分為約15-40體積%之水蒸氣(H2O)、2-7體積%之氧氣(O2)(因為在鍋爐2中氧氣稍微過量通常為較佳)及共計約0-10體積%之其他氣體(主要包括氮氣(N2)及氬氣(Ar),因為很少可完全避免一些空氣洩漏)。 The conduit 24 allows the carbon dioxide-rich flue gas stream produced in the boiler 2 to be in fluid communication with the dust removal device 8. As used herein, "carbon dioxide-rich flue gas" means that the flue gas contains at least 40% by volume of carbon dioxide, CO 2 . Typically more than 50% by volume of the flue gas leaving the boiler 2 will be carbon dioxide. Typically, the flue gas exiting boiler 2 will contain 50-80% by volume of carbon dioxide. The remainder of the "carbon dioxide-rich flue gas" is about 15-40% by volume of water vapor (H 2 O), 2-7 vol% of oxygen (O 2 ) (since a slight excess of oxygen in boiler 2 is usually Preferably, and a total of about 0-10% by volume of other gases (mainly including nitrogen (N 2 ) and argon (Ar), since some air leakage is rarely avoided altogether).

鍋爐2中產生之富含二氧化碳之煙道氣通常可包含呈例如粉塵粒子形式之污染物氫氯酸HCl、硫氧化物SOX及重金屬(包括汞Hg),該等污染物應在處置二氧化碳之前自富含二氧化碳之煙道氣至少部分移 除。此外,一定量氮氧化物(亦即一氧化氮NO及/或二氧化氮NO2)亦可由於空氣洩漏至鍋爐2中及/或供應至鍋爐2之燃料中所含有的氮物質而於鍋爐2中產生。 The carbon dioxide-rich flue gas produced in the boiler 2 may generally comprise pollutants such as HCl, sulfur oxides SO X and heavy metals (including mercury Hg) in the form of dust particles, which should be disposed of prior to disposal of carbon dioxide. The flue gas rich in carbon dioxide is at least partially removed. In addition, a certain amount of nitrogen oxides (ie, nitric oxide NO and/or nitrogen dioxide NO 2 ) may also be present in the boiler due to leakage of air into the boiler 2 and/or nitrogen contained in the fuel supplied to the boiler 2. Produced in 2.

除塵裝置8自富含二氧化碳之煙道氣移除大部分粉塵粒子。管道26允許富含二氧化碳之煙道氣自除塵裝置8流入氣體淨化系統6之流體連通之濕式洗滌器10。濕式洗滌器10包含有效使吸收液在流體連通之漿液循環管30中循環的循環泵28。吸收液包含例如石灰石。濕式洗滌器10中之漿液循環管30使吸收液與經由流體連通管道26流入濕式洗滌器10且實質上垂直向上流入濕式洗滌器10之內部10a之煙道氣之間達成良好接觸,以實現自富含二氧化碳之煙道氣有效移除二氧化硫SO2及其他酸性氣體。 The dust removal device 8 removes most of the dust particles from the carbon dioxide rich flue gas. The conduit 26 allows the carbon dioxide rich flue gas to flow from the dedusting device 8 into the fluidly connected wet scrubber 10 of the gas purification system 6. The wet scrubber 10 includes a circulation pump 28 that is effective to circulate the absorbing liquid in the fluid communication slurry circulation tube 30. The absorbing liquid contains, for example, limestone. The slurry circulation tube 30 in the wet scrubber 10 provides good contact between the absorbing liquid and the flue gas flowing into the wet scrubber 10 via the fluid communication conduit 26 and flowing substantially vertically upward into the interior 10a of the wet scrubber 10, To effectively remove sulfur dioxide SO 2 and other acid gases from flue gas rich in carbon dioxide.

至少部分淨化的富含二氧化碳之煙道氣經由流體連通管道32離開濕式洗滌器10至流體連通之氣體分流點33,此處至少部分淨化的富含二氧化碳之煙道氣分成兩個流,亦即經由流體連通管道20再循環回至鍋爐2的第一流,及經由流體連通管道34輸送至煙道氣冷凝器36的第二流。經由管道20再循環回至鍋爐2之第一流通常佔離開濕式洗滌器10之部分淨化的富含二氧化碳之煙道氣總流量的50-75體積%。第二流通常佔離開濕式洗滌器10之部分淨化的富含二氧化碳之煙道氣總流量的25-50體積%,因此經由管道34輸送至煙道氣冷凝器36。根據一個替代性實施例,第一流可經由流體連通管道27再循環回至鍋爐2而不通過濕式洗滌器10。 At least a portion of the purified carbon dioxide-rich flue gas exits the wet scrubber 10 via a fluid communication conduit 32 to a fluidly connected gas split point 33 where the at least partially purified carbon dioxide-rich flue gas is split into two streams, That is, the first stream that is recycled back to the boiler 2 via the fluid communication conduit 20 and the second stream that is delivered to the flue gas condenser 36 via the fluid communication conduit 34. The first stream recycled back to the boiler 2 via line 20 typically accounts for 50-75 vol% of the total purified carbon dioxide-rich flue gas exiting the wet scrubber 10. The second stream typically accounts for 25-50% by volume of the total purified carbon dioxide-rich flue gas exiting the wet scrubber 10 and is therefore delivered via line 34 to the flue gas condenser 36. According to an alternative embodiment, the first stream may be recycled back to the boiler 2 via the fluid communication conduit 27 without passing through the wet scrubber 10.

在煙道氣冷凝器36中,將煙道氣冷卻至低於其水露點(water dew point)且所得冷凝釋放之熱量作為低溫熱量回收。煙道氣冷凝器之實例描述於EP 2 335 804 A1中,參照該文獻之圖3及圖4。 In the flue gas condenser 36, the flue gas is cooled to below its water dew point and the heat released by the resulting condensation is recovered as low temperature heat. An example of a flue gas condenser is described in EP 2 335 804 A1, with reference to Figures 3 and 4 of this document.

回到本發明之圖1,煙道氣之水含量可例如自饋入煙道氣冷凝器36時之約20-50體積%減少至離開煙道氣冷凝器36時之約2-7體積%。 視煙道氣冷凝器36中之pH值及溫度而定,煙道氣冷凝亦可引起煙道氣中之硫氧化物SOX減少。煙道氣中之硫氧化物捕集於所形成的冷凝物中且藉此自煙道氣分離。此外,來自前述二氧化硫移除方法(例如來自基於石灰石之濕式洗滌器10)之夾帶於煙道氣中之洗滌液或漿液(例如石灰漿)同樣在冷凝期間移除。因此,減少下游氣體乾燥器及/或氣體加熱器表面之積垢及/或堵塞問題。煙道氣冷凝器36具有有效使冷卻液經由位於煙道氣冷凝器36中之流體連通循環管以下文中更詳細描述之方式循環的循環泵。在煙道氣冷凝器36中循環之冷卻液將部分淨化的富含二氧化碳之煙道氣冷卻至低於其相對於水蒸氣之飽和溫度之溫度。因此,自濕式洗滌器10流出的部分淨化的富含二氧化碳之煙道氣中之至少一部分水蒸氣出現冷凝。冷凝水經由流體連通之處置管37離開煙道氣冷凝器36。經由管37離開煙道氣冷凝器36之一部分冷凝水可流入濕式洗滌器10作為補給水。另一部分冷凝水可流入水處理單元,其中冷凝水經處理隨後再用於該方法(例如作為鍋爐水)或處置掉。經淨化之富含二氧化碳之煙道氣經由流體連通管道38離開煙道氣冷凝器36且流入氣體壓縮及純化單元(GPU)40。 Returning to Figure 1 of the present invention, the water content of the flue gas can be reduced, for example, from about 20-50% by volume when fed to the flue gas condenser 36 to about 2-7% by volume when leaving the flue gas condenser 36. . Depending on pH and the flue gas condenser, the temperature may be 36, the flue gas condensation may also cause the flue gas sulfur oxide SO X reduction. Sulfur oxides in the flue gas are trapped in the condensate formed and thereby separated from the flue gas. In addition, the wash liquor or slurry (eg, lime slurry) entrained in the flue gas from the aforementioned sulfur dioxide removal process (eg, from the limestone-based wet scrubber 10) is also removed during condensation. Therefore, the fouling and/or clogging problems of the downstream gas dryer and/or gas heater surface are reduced. Flue gas condenser 36 has a circulation pump that is effective to circulate coolant through a fluid communication loop located in flue gas condenser 36 in a manner described in more detail below. The coolant circulating in the flue gas condenser 36 cools the partially purified carbon dioxide rich flue gas to a temperature below its saturation temperature relative to the water vapor. Thus, at least a portion of the water vapor from the partially purified carbon dioxide-rich flue gas flowing from the wet scrubber 10 condenses. The condensed water leaves the flue gas condenser 36 via a fluidly connected disposal tube 37. A portion of the condensed water exiting the flue gas condenser 36 via line 37 can flow into the wet scrubber 10 as make-up water. Another portion of the condensed water can flow into the water treatment unit where the condensed water is treated and subsequently reused in the process (eg, as boiler water) or disposed of. The purified carbon dioxide rich flue gas exits the flue gas condenser 36 via a fluid communication conduit 38 and flows into a gas compression and purification unit (GPU) 40.

圖2更詳細地說明GPU 40之實施例。應理解圖2之說明具示意性且GPU可包含其他用於氣體純化之裝置等。 FIG. 2 illustrates an embodiment of GPU 40 in more detail. It should be understood that the description of FIG. 2 is schematic and that the GPU may include other devices for gas purification, and the like.

GPU 40包含至少一個具有至少一個且通常兩個至十個壓縮階段之壓縮機用於壓縮經淨化之富含二氧化碳之煙道氣。各壓縮階段可配置為各別單元。作為替代方案且如圖2中所說明,若干壓縮階段可由共同的驅動器操作。圖2之GPU 40包含具有第一壓縮階段42、第二壓縮階段44及第三壓縮階段46之壓縮機41。第一至第三壓縮階段42、44、46合起來形成GPU 40之低壓壓縮單元48。壓縮階段42、44、46連接至由壓縮機41之馬達52驅動的共同驅動軸50。 GPU 40 includes at least one compressor having at least one and typically two to ten compression stages for compressing the purified carbon dioxide rich flue gas. Each compression stage can be configured as a separate unit. As an alternative and as illustrated in Figure 2, several compression stages can be operated by a common driver. The GPU 40 of FIG. 2 includes a compressor 41 having a first compression stage 42, a second compression stage 44, and a third compression stage 46. The first to third compression stages 42, 44, 46 together form a low pressure compression unit 48 of the GPU 40. The compression stages 42, 44, 46 are coupled to a common drive shaft 50 that is driven by a motor 52 of the compressor 41.

低壓壓縮單元48可在一些或全部壓縮階段42、44、46下游包含 中間冷卻單元54。一個該可選中間冷卻單元54說明於圖2之第一壓縮階段42下游。中間冷卻單元54包含氣體冷卻器56及氣液分離器58。氣體冷卻器56將經壓縮之富含二氧化碳之煙道氣冷卻至低於經壓縮之富含二氧化碳之煙道氣相對於水之露點溫度的溫度,致使煙道氣中之水蒸氣冷凝。氣液分離器58自剩餘煙道氣分離水滴,該等水滴係因氣體冷卻器56冷卻氣體所引起之冷凝作用產生。 The low pressure compression unit 48 can be included downstream of some or all of the compression stages 42, 44, 46 Intermediate cooling unit 54. One such optional intermediate cooling unit 54 is illustrated downstream of the first compression stage 42 of FIG. The intermediate cooling unit 54 includes a gas cooler 56 and a gas-liquid separator 58. The gas cooler 56 cools the compressed carbon dioxide rich flue gas to a temperature below the dew point temperature of the compressed carbon dioxide rich flue gas to the water, causing the water vapor in the flue gas to condense. The gas-liquid separator 58 separates water droplets from the remaining flue gas, which are generated by the condensation caused by the gas cooler 56 cooling the gas.

GPU 40可包含配置在壓縮階段42、44、46之一之下游的汞吸附器60。在圖2之實施例中,汞吸附器60配置在第三壓縮階段46下游,亦即低壓壓縮單元48下游。應理解,汞吸附器60亦可經配置用於處理第一壓縮階段42與第二壓縮階段44之間或第二壓縮階段44與第三壓縮階段46之間的煙道氣。 GPU 40 may include a mercury adsorber 60 disposed downstream of one of compression stages 42, 44, 46. In the embodiment of FIG. 2, the mercury adsorber 60 is disposed downstream of the third compression stage 46, that is, downstream of the low pressure compression unit 48. It should be understood that the mercury adsorber 60 can also be configured to treat flue gas between the first compression stage 42 and the second compression stage 44 or between the second compression stage 44 and the third compression stage 46.

部分淨化的富含二氧化碳之煙道氣自煙道氣冷凝器36經由流體連通管道38進入GPU 40且被引入第一壓縮階段42。管道62允許來自第一壓縮階段42之壓縮氣體視情況經由中間冷卻單元54流入第二壓縮階段44。管道64允許來自第二壓縮階段44之壓縮氣體視情況經由中間冷卻單元(未展示於圖2中)流入第三壓縮階段46。管道66允許來自第三壓縮階段46之壓縮氣體流入汞吸附器60。汞吸附器60裝備有包含對汞具有親和力之汞吸附劑的填料60a。吸附劑可為例如浸漬有硫之活性碳或本身已知對汞具有親和力的其他材料。管道68、108允許具有約25-35巴絕對壓力之壓縮氣體自汞吸附器60流入氣體乾燥器70。 The partially purified carbon dioxide rich flue gas enters GPU 40 from flue gas condenser 36 via fluid communication conduit 38 and is introduced into first compression stage 42. The conduit 62 allows the compressed gas from the first compression stage 42 to flow into the second compression stage 44 via the intermediate cooling unit 54 as appropriate. The conduit 64 allows the compressed gas from the second compression stage 44 to flow into the third compression stage 46 via an intermediate cooling unit (not shown in Figure 2) as appropriate. The conduit 66 allows compressed gas from the third compression stage 46 to flow into the mercury adsorber 60. The mercury adsorber 60 is equipped with a filler 60a containing a mercury adsorbent having an affinity for mercury. The adsorbent can be, for example, activated carbon impregnated with sulfur or other materials known per se to have an affinity for mercury. The conduits 68, 108 allow compressed gas having a pressure of about 25-35 bar absolute to flow from the mercury adsorber 60 into the gas dryer 70.

氣體乾燥器70用以移除壓縮氣體中之至少一部分剩餘水蒸氣。壓縮氣體中之至少一部分氮氧化物NOx亦可吸附於氣體乾燥器70中。氣體乾燥器70裝備有包含用於吸附水蒸氣且視情況吸附其他氣體組分(諸如氮氧化物)之固體吸附劑的填料72。固體吸附劑可例如包含活性碳、矽膠、活性氧化鋁、沸石分子篩(諸如鋁矽酸鈉)及碳分子篩。各種有用固體吸附劑之詳盡描述提供於手冊「Adsorption aus der Gasphase」之第2章,Werner Kast,Wiley-VCH(1988),ISBN-10:3527267190。沸石分子篩為該合適固體吸附劑之一個實例。如上述Werner Kast之參考書中所述,固體吸附劑之內表面積「o」可較佳為至少50 m2/g、且更佳至少250 m2/g。沸石分子篩具有供諸如水蒸氣分子及氮氧化物分子之小分子可在其中擴散並被吸附的開放結構。在一個實施例中,固體吸附劑可為包含例如鋁矽酸鈉的沸石分子篩。沸石分子篩可為例如3A或4A沸石分子篩。因此,隨著經壓縮之富含二氧化碳之煙道氣通過填料72,該氣體中之至少一部分水蒸氣以及一部分氮氧化物吸附於填料72之固體吸附劑上。壓縮氣體中之氮氧化物於氣體乾燥器70中移除之部分視固體吸附劑之類型及量而定。例如,壓縮氣體中之30-99.9%氮氧化物可於氣體乾燥器70中移除。 A gas dryer 70 is used to remove at least a portion of the remaining water vapor from the compressed gas. A portion of the compressed gas is also adsorbed nitrogen oxides NO x in the gas drier 70 at least. The gas dryer 70 is equipped with a packing 72 comprising a solid adsorbent for adsorbing water vapor and optionally adsorbing other gas components such as nitrogen oxides. The solid adsorbent may, for example, comprise activated carbon, silicone, activated alumina, zeolite molecular sieves such as sodium aluminosilicate, and carbon molecular sieves. A detailed description of various useful solid adsorbents is provided in Chapter 2 of the manual "Adsorption aus der Gasphase", Werner Kast, Wiley-VCH (1988), ISBN-10: 3527267190. Zeolite molecular sieves are an example of such suitable solid adsorbents. As described in the above-referenced Werner Kast, the internal surface area " o " of the solid adsorbent may preferably be at least 50 m 2 /g, and more preferably at least 250 m 2 /g. Zeolite molecular sieves have open structures in which small molecules such as water vapor molecules and nitrogen oxide molecules can diffuse and be adsorbed. In one embodiment, the solid adsorbent can be a zeolite molecular sieve comprising, for example, sodium aluminosilicate. The zeolite molecular sieve can be, for example, a 3A or 4A zeolite molecular sieve. Thus, as the compressed carbon dioxide-rich flue gas passes through the packing 72, at least a portion of the water vapor and a portion of the nitrogen oxides in the gas are adsorbed onto the solid adsorbent of the packing 72. The portion of the nitrogen oxides in the compressed gas that is removed in the gas dryer 70 depends on the type and amount of solid adsorbent. For example, 30-99.9% of the nitrogen oxides in the compressed gas can be removed in the gas dryer 70.

在一個實例中,經由流體連通管道74離開氣體乾燥器70之經壓縮之富含二氧化碳之煙道氣具有約25-35巴之絕對壓力。該氣體亦具有含量減少之水蒸氣及NOx。如圖2中所說明,該氣體適於在CO2液化單元76及高壓壓縮單元78中進一步處理,隨後經由流體連通管道82流入二氧化碳隔離器80。 In one example, the compressed carbon dioxide-rich flue gas exiting gas dryer 70 via fluid communication conduit 74 has an absolute pressure of between about 25 and 35 bar. The gas also has a reduced content of water vapor and NO x. As illustrated in Figure 2, the processing unit is further adapted to the gas 78 in a CO 2 liquefaction unit 76 and the high-pressure compressor, in fluid communication via conduit 82 and then flows into the carbon dioxide separator 80.

氣體乾燥器70裝備有氣體乾燥器再生系統84,用於間歇性再生氣體乾燥器70之水蒸氣吸附能力。供應管道86經配置用於向再生系統84供應再生氣體。再生系統84使用一部分富含二氧化碳之煙道氣流作為再生氣體。基於煙道氣之流動方向,較佳在煙道氣冷凝器36下游而不是氣體乾燥器70上游抽出部分富含二氧化碳之煙道氣流用作再生氣體。在圖2之實施例中,隨即在煙道氣冷凝器36下游自流體連通管道38抽出富含二氧化碳之煙道氣流用作再生氣體。作為替代方案,可自另一位置(例如管道62、64及66之任一者)抽出氣流用作再生氣體。 The gas dryer 70 is equipped with a gas dryer regeneration system 84 for the water vapor adsorption capacity of the intermittent regeneration gas dryer 70. Supply conduit 86 is configured to supply regeneration gas to regeneration system 84. The regeneration system 84 uses a portion of the carbon dioxide rich flue gas stream as the regeneration gas. Based on the flow direction of the flue gas, a portion of the carbon dioxide-rich flue gas stream is preferably withdrawn as a regeneration gas downstream of the flue gas condenser 36 rather than upstream of the gas dryer 70. In the embodiment of FIG. 2, a carbon dioxide rich flue gas stream is then withdrawn from the fluid communication conduit 38 downstream of the flue gas condenser 36 for use as a regeneration gas. Alternatively, airflow may be drawn from another location (e.g., any of conduits 62, 64, and 66) for use as a regeneration gas.

再生系統84包含加熱器88用於加熱再生氣體。加熱電路90連接至加熱器88用於使加熱介質(諸如蒸汽)在加熱器88中循環。經加熱之 再生氣體經由流體連通管道92離開加熱器88。氣體輸送裝置(諸如吹風機、壓縮機或風扇)91可配置於管道92中以自管道38抽取再生氣體且進一步通過加熱器88。溫度感測器94配置於管道92中以量測經加熱之再生氣體的溫度。閥96配置於加熱電路90中用於控制加熱介質至加熱器88之流動。溫度感測器94控制閥96以供應適量加熱介質。為使氣體乾燥器70之填料72的材料再生,加熱器88通常可加熱再生氣體至約130℃至315℃之溫度。在3A或4A沸石分子篩用作填料72之乾燥劑材料的一個實施例中,再生溫度可較佳在約200℃至290℃之範圍內。 The regeneration system 84 includes a heater 88 for heating the regeneration gas. Heating circuit 90 is coupled to heater 88 for circulating a heating medium, such as steam, in heater 88. Heated The regeneration gas exits the heater 88 via a fluid communication conduit 92. A gas delivery device (such as a blower, compressor or fan) 91 may be disposed in conduit 92 to draw regeneration gas from conduit 38 and further through heater 88. Temperature sensor 94 is disposed in conduit 92 to measure the temperature of the heated regeneration gas. Valve 96 is disposed in heating circuit 90 for controlling the flow of heating medium to heater 88. Temperature sensor 94 controls valve 96 to supply an appropriate amount of heating medium. To regenerate the material of the packing 72 of the gas dryer 70, the heater 88 typically heats the regeneration gas to a temperature of between about 130 ° C and 315 ° C. In one embodiment of the 3A or 4A zeolite molecular sieve used as the desiccant material for the filler 72, the regeneration temperature may preferably range from about 200 °C to 290 °C.

再生閥98、100分別配置於管道92及管道102上。在再生順序期間,打開閥98、100以允許再生氣體通過氣體乾燥器70。 Regenerative valves 98, 100 are disposed on conduit 92 and conduit 102, respectively. During the regeneration sequence, valves 98, 100 are opened to allow regeneration gas to pass through gas dryer 70.

氣體乾燥器隔離閥104、106分別配置於管道68、74上。在再生順序期間,關閉閥104、106以使氣體乾燥器70與來自低壓壓縮單元48之壓縮氣體流隔離。打開再生閥98、100且使經加熱之再生氣體自再生系統84經由流體連通至管道92之管道108供應至氣體乾燥器70。再生氣體加熱填料72之材料且致使水蒸氣及氮氧化物NOx解吸附。含有經解吸附之水蒸氣及NOx的廢再生氣體經由管道102離開氣體乾燥器70。 Gas dryer isolation valves 104, 106 are disposed on conduits 68, 74, respectively. During the regeneration sequence, valves 104, 106 are closed to isolate gas dryer 70 from the flow of compressed gas from low pressure compression unit 48. The regeneration valves 98, 100 are opened and the heated regeneration gas is supplied from the regeneration system 84 to the gas dryer 70 via a conduit 108 that is in fluid communication to the conduit 92. Heating the regeneration gas and the filler material 72 so that water vapor and nitrogen oxides NO x desorption. Comprising the de-adsorption of NO x and water vapor spent regeneration gas leaving the gas drier 70 via line 102.

應理解,當閥104、106關閉時,富含二氧化碳之氣體不可通過氣體乾燥器70。根據一個實施例,GPU 40可裝備有平行於氣體乾燥器70之另一氣體乾燥器110,以便該另一氣體乾燥器110處於操作中的同時,氣體乾燥器70進行再生。圖2中用虛線說明之可選管道111經提供可供富含二氧化碳之煙道氣在氣體乾燥器70再生期間流經另一可選氣體乾燥器110。為保持清楚說明之故,在氣體乾燥器70之常規操作期間及在另一氣體乾燥器110再生期間使另一氣體乾燥器110與氣體乾燥器70隔離所需之閥並未展示於圖2中。根據另一實施例,富含二氧化碳之煙道氣可在氣體乾燥器70之填料72再生期間繞過乾燥器70釋放 至大氣中。 It should be understood that the carbon dioxide rich gas may not pass through the gas dryer 70 when the valves 104, 106 are closed. According to one embodiment, GPU 40 may be equipped with another gas dryer 110 that is parallel to gas dryer 70 so that gas dryer 70 is being regenerated while the other gas dryer 110 is in operation. Optional conduit 111, illustrated with dashed lines in FIG. 2, is provided through a further optional gas dryer 110 during regeneration of gas dryer 70 by providing a flue gas rich in carbon dioxide. To keep this clear, the valves required to isolate the other gas dryer 110 from the gas dryer 70 during normal operation of the gas dryer 70 and during regeneration of another gas dryer 110 are not shown in FIG. . According to another embodiment, the carbon dioxide rich flue gas can be released around the dryer 70 during regeneration of the packing 72 of the gas dryer 70. To the atmosphere.

圖3說明一種在填料72再生後用於淨化經由流體連通管道102離開氣體乾燥器70之廢再生氣體的配置112。廢再生氣體經由管道102流入流體連通之再生氣體淨化濕式洗滌器114。濕式洗滌器114裝備有泵116,使得吸收液自濕式洗滌塔122下端120經循環管118循環至濕式洗滌塔122上端124。吸收液在上端124處分佈於濕式洗滌塔122之濕式洗滌器氣液接觸填充材料126上。該氣液接觸填充材料126之實例包括可購自Sulzer Chemtech AG,Winterthur,CH之MellapakTM及可購自Raschig GmbH Ludwigshafen,DE之PallTM環。 3 illustrates a configuration 112 for purifying spent regeneration gas exiting gas dryer 70 via fluid communication conduit 102 after regeneration of filler 72. The spent regeneration gas flows into the fluidly connected regeneration gas purification wet scrubber 114 via conduit 102. The wet scrubber 114 is equipped with a pump 116 such that the wick is circulated from the lower end 120 of the wet scrubber 122 via the recycle line 118 to the upper end 124 of the wet scrubber 122. The absorbing liquid is distributed at the upper end 124 to the wet scrubber gas-liquid contacting fill material 126 of the wet scrubber 122. Examples of the gas-liquid contact 126 comprising a filler material available from Sulzer Chemtech AG, Winterthur, CH of Mellapak TM, and commercially available from Raschig GmbH Ludwigshafen, DE Pall TM of the ring.

廢再生氣體經由流體連通管道102在下端120處進入濕式洗滌塔122且以實質上垂直方向向上流經濕式洗滌塔122,且在濕式洗滌器氣液接觸填充材料126中與吸收液接觸。經淨化之再生氣體經由在上端124流體連通至濕式洗滌塔122之管道128離開濕式洗滌塔124。濕式洗滌器114通常係間歇操作,同時實現氣體乾燥器70之再生。 The spent regeneration gas enters the wet scrubber 122 at the lower end 120 via the fluid communication conduit 102 and flows upwardly through the wet scrubber 122 in a substantially vertical direction and is in contact with the absorbing fluid in the wet scrubber gas-liquid contact fill material 126. . The purified regeneration gas exits the wet scrubber 124 via a conduit 128 that is in fluid communication with the upper end 124 to the wet scrubber 122. The wet scrubber 114 is typically operated intermittently while achieving regeneration of the gas dryer 70.

根據一個替代性實施例,廢再生氣體可流入濕式洗滌塔122之上端124且實質上垂直向下通過塔122並在下端120處離開塔122。 According to an alternative embodiment, the spent regeneration gas may flow into the upper end 124 of the wet scrubber 122 and substantially vertically downward through the column 122 and exit the column 122 at the lower end 120.

根據另一替代性實施例,在塔122之上端124處供應之吸收液可由噴嘴霧化,以進一步增強吸收液與廢再生氣體之間的接觸。 According to another alternative embodiment, the absorbing liquid supplied at the upper end 124 of the column 122 can be atomized by the nozzle to further enhance the contact between the absorbing liquid and the spent regeneration gas.

回到圖3,pH值控制物質供應管130流體連通至循環管118,用於向循環吸收液供應pH控制物質。pH計132經配置用於量測在循環管118中循環之吸收液的pH值。pH計132控制閥134,以調控經由供應管130供應之pH控制物質的量。可經由供應管130供應之pH控制物質之實例包括鹼性物質,諸如NaOH、KOH、Na2CO3及NaHCO3;及酸性物質,諸如H2SO4、HCl及HNO3。通常利用鹼性物質來中和藉由捕集氮氧化物所形成之反應產物,如下文中將更詳細地描述,但在一些情況下,富含二氧化碳之煙道氣本身可含有供應酸性物質所需之痕量鹼 性物質,以使在循環管118中循環之吸收液保持所需的pH值。在循環管118中循環之吸收液的pH值通常控制在pH 5-8之pH值範圍內。 Returning to Fig. 3, the pH control substance supply pipe 130 is fluidly connected to the circulation pipe 118 for supplying the pH control substance to the circulating absorption liquid. The pH meter 132 is configured to measure the pH of the sorbent circulating in the circulation tube 118. The pH meter 132 controls the valve 134 to regulate the amount of pH control substance supplied via the supply tube 130. Examples of the pH controlling substance which can be supplied via the supply pipe 130 include basic substances such as NaOH, KOH, Na 2 CO 3 and NaHCO 3 ; and acidic substances such as H 2 SO 4 , HCl and HNO 3 . The alkaline material is typically used to neutralize the reaction product formed by the capture of nitrogen oxides, as will be described in more detail below, but in some cases, the carbon dioxide-rich flue gas itself may contain the supply of acidic material. The trace amount of the alkaline substance is such that the absorption liquid circulating in the circulation pipe 118 maintains the desired pH. The pH of the absorbing liquid circulating in the circulation pipe 118 is usually controlled within the pH range of pH 5-8.

此外,氧化劑供應管136流體連通至循環管118,用於向循環吸收液供應氧化劑。氧化還原電位計138可視情況經配置以用於量測在循環管118中循環之吸收液的氧化還原電位。氧化還原電位計138控制閥140來調控經由氧化劑供應管136供應之氧化劑的量,從而保持吸收液中所需之氧化還原電位。根據一個替代性實施例,氧化劑之供應量為固定的,每小時供應固定體積之氧化劑溶液。根據另一替代性實施例,氧化劑溶液之供應量可係基於通過濕式洗滌器114之廢再生氣體的量。 Additionally, oxidant supply line 136 is in fluid communication with circulation tube 118 for supplying oxidant to the circulating absorbing liquid. The redox potentiometer 138 can optionally be configured to measure the redox potential of the absorbing liquid circulating in the circulation tube 118. The redox potentiometer 138 controls the valve 140 to regulate the amount of oxidant supplied via the oxidant supply tube 136 to maintain the desired redox potential in the absorbing liquid. According to an alternative embodiment, the supply of oxidant is fixed and a fixed volume of oxidant solution is supplied per hour. According to another alternative embodiment, the supply of oxidant solution may be based on the amount of spent regeneration gas passing through the wet scrubber 114.

可經由氧化劑供應管136供應之氧化劑的實例包括高錳酸鉀KMnO4、過氧化氫H2O2及臭氧O3。氧化劑通常將以水溶液或氣體形式供應。在供應氣體形式之氧化劑的情況下,例如當供應臭氧O3形式之氧化劑時,可選氣體混合裝置131可配置於濕式洗滌器114上游之管道102中。氣態氧化劑可經由氧化劑供應管133供應至氣體混合裝置131。氣體混合裝置131可裝備有靜態混合板135,以便在廢再生氣體進入濕式洗滌器114之前使所供應之氣態氧化劑與廢再生氣體混合。因此,經由管133供應之臭氧首先在氣體混合裝置131中與氣體混合,隨後流至濕式洗滌器114之吸收液中。 Examples of the oxidizing agent that can be supplied via the oxidizing agent supply pipe 136 include potassium permanganate KMnO 4 , hydrogen peroxide H 2 O 2 , and ozone O 3 . The oxidant will usually be supplied in the form of an aqueous solution or a gas. In the case where the supply of oxidant gas in the form of, for example, when the supply of the oxidant in the form of ozone O 3, optional gas mixing device 131 may be disposed upstream of the duct 102 114 wet scrubber. The gaseous oxidant may be supplied to the gas mixing device 131 via the oxidant supply pipe 133. The gas mixing device 131 can be equipped with a static mixing plate 135 to mix the supplied gaseous oxidant with the spent regeneration gas before it enters the wet scrubber 114. Therefore, the ozone supplied via the tube 133 is first mixed with the gas in the gas mixing device 131, and then flows into the absorption liquid of the wet scrubber 114.

經由管道128離開濕式洗滌塔122之經淨化之廢再生氣體經由流體連通至管道128之管道34輸送至煙道氣冷凝器36。煙道氣冷凝器36裝備有泵142,以便冷卻液自冷凝器外殼148下端146經循環管144循環至外殼148上端150。冷卻液在上端150處分佈於外殼148內部148a配置之冷凝器氣液接觸填充材料152上。氣液接觸填充材料152可具有與上述填充材料126類似的類型。液體冷卻器154配置於循環管144中,用於使冷卻液冷卻。自鍋爐2經由管道34輸送之部分淨化之富含二氧化 碳之煙道氣及自濕式洗滌器114經由管道128輸送之經淨化之再生氣體合併成共同流,該共同流在下端146經由流體連通管道156進入外殼148且以實質上垂直方向,向上流經由循環管144供應之冷卻液冷卻的外殼148及填充材料152。作為該冷卻之效應,部分淨化之富含二氧化碳之煙道氣及經淨化之再生氣體中之至少一部分水蒸氣冷凝且形成冷凝物。該冷凝物經由處置管37離開煙道氣冷凝器36以便如上文所述進行進一步處理。經由另一處置管158來自濕式洗滌器114之廢液可視情況與處置管37之冷凝物合併且送走以便與之一起進行進一步處理。舉例而言,所合併之液體可輸送至廢水處理廠160。pH控制物質(諸如NaOH)可視情況經由流體連通管162供應至管144之循環冷卻液,以保持循環冷卻液之恆定pH值。 The purified spent regeneration gas exiting the wet scrubber 122 via line 128 is delivered to the flue gas condenser 36 via conduit 34 that is in fluid communication to the conduit 128. The flue gas condenser 36 is equipped with a pump 142 such that the coolant circulates from the lower end 146 of the condenser housing 148 through the circulation tube 144 to the upper end 150 of the outer casing 148. The coolant is distributed at the upper end 150 over the condenser gas-liquid contacting fill material 152 disposed within the interior 148a of the outer casing 148. The gas-liquid contact fill material 152 can have a similar type to the fill material 126 described above. A liquid cooler 154 is disposed in the circulation pipe 144 for cooling the coolant. Partially purified dioxide-rich from boiler 2 via line 34 The carbon flue gas and the purified regeneration gas delivered by the wet scrubber 114 via line 128 are combined into a common stream that enters the outer casing 148 via the fluid communication conduit 156 at the lower end 146 and flows upwardly in a substantially vertical direction. The coolant-cooled outer casing 148 and the filling material 152 supplied through the circulation pipe 144. As a result of this cooling, at least a portion of the partially purified carbon dioxide-rich flue gas and the purified regeneration gas condense and form a condensate. The condensate exits the flue gas condenser 36 via the treatment tube 37 for further processing as described above. The waste from the wet scrubber 114 via another disposal tube 158 can optionally be combined with the condensate of the disposal tube 37 and sent away for further processing therewith. For example, the combined liquid can be delivered to a wastewater treatment plant 160. A pH control material, such as NaOH, may optionally be supplied to the circulating coolant of tube 144 via fluid communication tube 162 to maintain a constant pH of the circulating coolant.

根據一個替代性實施例,經由另一處置管158來自濕式洗滌器114之廢液可經由管164流向各別的廢水處理廠166。因此,來自濕式洗滌器114及煙道氣冷凝器36之廢液可根據其特定組成分別處理。經淨化之富含二氧化碳之煙道氣與經淨化及冷卻之再生氣體一起經由流體連通管道38離開煙道氣冷凝器36且輸送至GPU 40。如上文參照圖2所述,流經管道38之一部分氣體可經由管道86輸送至氣體乾燥器再生系統84之加熱器88進行加熱,且作為再生氣體用於氣體乾燥器70之填充材料72的再生。 According to an alternative embodiment, waste liquid from the wet scrubber 114 via another treatment tube 158 may flow through the tube 164 to a respective wastewater treatment plant 166. Thus, the effluent from wet scrubber 114 and flue gas condenser 36 can be treated separately according to their particular composition. The purified carbon dioxide rich flue gas exits the flue gas condenser 36 via the fluid communication conduit 38 and is delivered to the GPU 40 along with the purified and cooled regeneration gas. As described above with reference to Figure 2, a portion of the gas flowing through conduit 38 can be delivered via line 86 to heater 88 of gas dryer regeneration system 84 for heating and as regeneration gas for regeneration of fill material 72 of gas dryer 70. .

可選旁路管道168可流體連通至管道102及34。當再生氣體中氮氧化物的濃度降至預定值以下時,可不再需要淨化濕式洗滌器114中廢再生氣體。在此情況下,可打開閥170,使至少一部分廢再生氣體自管道102經由流體連通管道168及34直接流至煙道氣冷凝器36,以使得至少一部分廢再生氣體繞過濕式洗滌器114。視情況可關閉配置於管道102中緊靠濕式洗滌器114上游之另一可選閥171,同時打開閥170,以使得大部分(若非所有)氣體在該情況下繞過濕式洗滌器114。 舉例而言,可基於管道102中氮氧化物濃度之實際量測值開始打開閥170,或可在再生順序啟動後固定時間開始打開閥170,如由例如經驗性實驗所發現,已發現固定時間之氮氧化物濃度足夠低。 Optional bypass conduit 168 can be in fluid communication with conduits 102 and 34. When the concentration of nitrogen oxides in the regeneration gas falls below a predetermined value, it is no longer necessary to purify the spent regeneration gas in the wet scrubber 114. In this case, valve 170 can be opened to cause at least a portion of the spent regeneration gas to flow directly from conduit 102 via fluid communication conduits 168 and 34 to flue gas condenser 36 such that at least a portion of the spent regeneration gas bypasses wet scrubber 114. . Optionally, another optional valve 171 disposed in the conduit 102 immediately upstream of the wet scrubber 114 can be closed while the valve 170 is opened such that most, if not all, of the gas bypasses the wet scrubber 114 in this case. . For example, valve 170 can be opened based on actual measurements of nitrogen oxide concentration in conduit 102, or valve 170 can be opened at a fixed time after regeneration sequence is initiated, as found by, for example, empirical experiments, fixed time has been found. The nitrogen oxide concentration is sufficiently low.

圖4為說明廢再生氣體中的氮氧化物濃度與氣體乾燥器70再生開始後所流逝之時間之關係的圖。x軸描繪時間(小時),且y軸描繪隨時間而變的氮氧化物濃度(mg NOx/Nm3廢再生氣體)。如圖4可見,廢再生氣體中的氮氧化物濃度具有相當窄的峰。因此,氣體乾燥器70之填料72的固體吸附劑上所收集之氮氧化物在相當有限的時段內釋放。根據一個實施例,上文參照圖3描述之濕式洗滌器114配合氣體乾燥器70之固體吸附劑釋放氮氧化物來加以操作。根據該實施例,當廢再生氣體中氮氧化物的濃度較高時,廢再生氣體流經濕式洗滌器114,且當廢再生氣體中氮氧化物的濃度較低時,直接輸送廢再生氣體通過冷凝器36。根據一個實例,氣體乾燥器70在圖4中說明之時間T0開始再生。在時間T1,廢再生氣體中的氮氧化物濃度開始激增。因此,在時間T1關閉閥170,意謂廢再生氣體流經濕式洗滌器114,氮氧化物在此移除。在時間T2,氮氧化物濃度再次降低至低濃度。因此,在時間T2打開閥170,使大部分(若非全部)廢再生氣體繞過濕式洗滌器114且直接進入冷凝器36。在時間T3結束氣體乾燥器70之再生。在該實施例中,氣體乾燥器70之再生發生在始於T0且終於T3之再生期。廢再生氣體在始於T1且終於T2並組成再生期之一部分的洗滌期流經濕式洗滌器114。洗滌期(T1至T2)的持續時間通常為完整再生期(T0至T3)持續時間之20-80%。因此,關於該方法,必要時操作濕式洗滌器114以移除氮氧化物,且在其他時間,廢再生氣體至少部分地直接輸送至冷凝器36。該方法減小濕式洗滌器114之功率、氧化劑等之消耗。打開及關閉洗滌器114之時序(亦即時序T1及T2)可例如藉由連續或在結合例如GPU 40啟動進行的特定測試時量測廢再生氣體中氮氧化物的濃 度來確定。自氣體乾燥器70釋放氮氧化物之時序亦可根據科學計算或其他設施之經驗來預測。因此,洗滌期之時序可基於自氣體乾燥器70釋放氮氧化物之量測及/或預測。 Fig. 4 is a graph showing the relationship between the concentration of nitrogen oxides in the spent regeneration gas and the elapsed time after the regeneration of the gas dryer 70 is started. The x-axis depicts time (hours) and the y-axis depicts the concentration of nitrogen oxides (mg NO x /Nm 3 spent regeneration gas) over time. As can be seen in Figure 4, the concentration of nitrogen oxides in the spent regeneration gas has a rather narrow peak. Thus, the nitrogen oxides collected on the solid adsorbent of the packing 72 of the gas dryer 70 are released over a relatively limited period of time. According to one embodiment, the wet scrubber 114 described above with reference to FIG. 3 operates in conjunction with the solid adsorbent of the gas dryer 70 to release nitrogen oxides. According to this embodiment, when the concentration of nitrogen oxides in the spent regeneration gas is high, the waste regeneration gas flows through the wet scrubber 114, and when the concentration of nitrogen oxides in the waste regeneration gas is low, the waste regeneration gas is directly delivered. Pass through condenser 36. According to one example, gas dryer 70 begins regeneration at time T0 illustrated in FIG. At time T1, the concentration of nitrogen oxides in the spent regeneration gas begins to surge. Thus, closing valve 170 at time T1 means that spent regeneration gas flows through wet scrubber 114 where nitrogen oxides are removed. At time T2, the nitrogen oxide concentration is again lowered to a low concentration. Thus, valve 170 is opened at time T2 such that most, if not all, of the spent regeneration gas bypasses wet scrubber 114 and directly enters condenser 36. The regeneration of the gas dryer 70 is ended at time T3. In this embodiment, regeneration of the gas dryer 70 occurs at a regeneration period starting at T0 and finally T3. The spent regeneration gas flows through the wet scrubber 114 during a wash period beginning at T1 and finally T2 and forming part of the regeneration period. The duration of the wash period (T1 to T2) is typically 20-80% of the duration of the complete regeneration period (T0 to T3). Thus, with respect to this method, the wet scrubber 114 is operated to remove nitrogen oxides as necessary, and at other times, the spent regeneration gas is at least partially delivered directly to the condenser 36. This method reduces the consumption of power, oxidant, etc. of the wet scrubber 114. The timing of turning the scrubber 114 on and off (i.e., timings T1 and T2) can be determined, for example, by measuring the concentration of nitrogen oxides in the spent regeneration gas continuously or in conjunction with a particular test, such as GPU 40 startup. The timing of the release of nitrogen oxides from gas dryer 70 can also be predicted based on scientific calculations or experience with other facilities. Thus, the timing of the washout period can be based on the measurement and/or prediction of the release of nitrogen oxides from the gas dryer 70.

圖5說明淨化富含二氧化碳之煙道氣的一個方法實施例。 Figure 5 illustrates an embodiment of a method of purifying a carbon dioxide rich flue gas.

在第一步驟170中,至少部分淨化之富含二氧化碳之煙道氣中的至少一部分水分在煙道氣冷凝器36中冷凝。 In a first step 170, at least a portion of the at least partially purified carbon dioxide-rich flue gas is condensed in the flue gas condenser 36.

在第二步驟172中,藉由使氣體通過氣體乾燥器70而自來自煙道氣冷凝器36之至少部分淨化之富含二氧化碳之煙道氣中移除更多水。除水之外,氣體乾燥器70之填料72亦可自通過其之氣體中移除其他組分(包括氮氧化物)。「氮氧化物」包括一氧化氮NO及二氧化氮NO2In a second step 172, more water is removed from the at least partially purified carbon dioxide-rich flue gas from the flue gas condenser 36 by passing the gas through the gas dryer 70. In addition to water, the packing 72 of the gas dryer 70 can also remove other components (including nitrogen oxides) from the gases passing therethrough. "Nitrogen oxides" include nitric oxide NO and nitrogen dioxide NO 2 .

在第三步驟174中,氣體部分經加熱且作為再生氣體用於再生氣體乾燥器70之填料。如圖2及圖3中所說明,該氣體部分可例如在煙道氣冷凝器36下游收集。氣體乾燥器70之再生使水蒸氣及氮氧化物(NO及NO2)及可能痕量的其他物質釋放至再生氣體中。 In a third step 174, the gas portion is heated and used as a regeneration gas for the filler of the regeneration gas dryer 70. As illustrated in Figures 2 and 3, the gas portion can be collected, for example, downstream of the flue gas condenser 36. The regeneration of the gas dryer 70 releases water vapor and nitrogen oxides (NO and NO 2 ) and possibly traces of other substances into the regeneration gas.

在第四步驟176中,含有水蒸氣及氮氧化物(NO及NO2)之廢再生氣體自氣體乾燥器70流至濕式洗滌器114中進行淨化。在濕式洗滌器114中,至少一部分氮氧化物自廢再生氣體移除。若氧化劑經由管136供應,則該氧化劑可有助於一氧化氮NO氧化成二氧化氮NO2。舉例而言,若向濕式洗滌器114供應氧化劑過氧化氫H2O2,則可發生以下氧化反應:NO+H2O2 → NO2+H2O [方程式1.1] In a fourth step 176, it contains water vapor and nitrogen oxides (NO and NO 2) of the spent regeneration gas from the gas drier 70 flows to the wet scrubber 114. cleaned. In the wet scrubber 114, at least a portion of the nitrogen oxides are removed from the spent regeneration gas. If the oxidizer 136 via the supply pipe, the oxidizing agent can help nitric oxide NO to nitrogen dioxide NO 2. For example, if the oxidant hydrogen peroxide H 2 O 2 is supplied to the wet scrubber 114, the following oxidation reaction may occur: NO + H 2 O 2 → NO 2 + H 2 O [Equation 1.1]

一氧化氮NO氧化形成二氧化氮NO2亦可在少量氧氣存在於富含二氧化碳之煙道氣及再生氣體中的情況下自發發生於氣體乾燥器70之填料72及濕式洗滌器114中。因此,氧化劑可能不為實現一氧化氮氧化所必需。此外,由圖2中所說明之壓縮機41壓縮富含二氧化碳之煙道氣促進一氧化氮NO氧化形成二氧化氮NO2。該促進一氧化氮氧化 之壓力減少氧化劑之消耗量。 Nitric Oxide NO Oxidation to Form Nitrogen Dioxide NO 2 may also spontaneously occur in the packing 72 of the gas dryer 70 and the wet scrubber 114 in the presence of a small amount of oxygen in the carbon dioxide rich flue gas and regeneration gas. Therefore, the oxidant may not be necessary to achieve oxidation of nitric oxide. Further, compressing the carbon dioxide-rich flue gas by the compressor 41 illustrated in FIG. 2 promotes oxidation of nitric oxide NO to form nitrogen dioxide NO 2 . The pressure that promotes oxidation of nitric oxide reduces the consumption of oxidant.

二氧化氮NO2可隨後在濕式洗滌器114中轉化為硝酸HNO3:3 NO2+H2O → NO+2 HNO3 [方程式1.2] Nitrogen dioxide NO 2 can then be converted to nitric acid HNO 3 in the wet scrubber 114 : 3 NO 2 + H 2 O → NO + 2 HNO 3 [Equation 1.2]

最後,所形成之硝酸可由經由pH控制物質供應管130供應之鹼性物質中和。舉例而言,若向濕式洗滌器114供應氫氧化鈉NaOH,則可發生以下中和反應:HNO3+NaOH → NaNO3+H2O [方程式1.3] Finally, the formed nitric acid can be neutralized by the alkaline substance supplied through the pH control substance supply pipe 130. For example, if sodium hydroxide NaOH is supplied to the wet scrubber 114, the following neutralization reaction may occur: HNO 3 + NaOH → NaNO 3 + H 2 O [Equation 1.3]

所形成之硝酸鈉NaNO3溶解於濕式洗滌器114之循環吸收液中,且經由另一處置管158進行處置,例如在水處理廠166中進行進一步處理。根據方程式1.3中和硝酸可減少氮氧化物之平衡蒸汽壓,且推動方程式1.2向右,使得二氧化氮NO2之吸收更有效。進入濕式洗滌器114之二氧化氮NO2總量之通常約60-99.9%以及進入濕式洗滌器114之一氧化氮NO總量之通常20-95%將自廢再生氣體移除。 The formed sodium nitrate NaNO 3 is dissolved in the circulating absorbent of the wet scrubber 114 and disposed of via another disposal tube 158, such as in a water treatment plant 166 for further processing. Neutralizing nitric acid according to Equation 1.3 reduces the equilibrium vapor pressure of nitrogen oxides and pushes Equation 1.2 to the right, making the absorption of nitrogen dioxide NO 2 more efficient. The total amount of NO 2 entering the wet scrubber nitrogen dioxide, typically about 60 to 99.9% of 114 and 114, one enters the wet scrubber is typically 20-95% of the total of the nitrogen monoxide NO will be removed from the spent regeneration gas.

在第五步驟178中,經淨化之再生氣體自濕式洗滌器114流至煙道氣冷凝器36。在煙道氣冷凝器36中,冷凝經淨化之再生氣體中之至少一部分量之水蒸氣。 In a fifth step 178, the purified regeneration gas flows from the wet scrubber 114 to the flue gas condenser 36. In the flue gas condenser 36, at least a portion of the water vapor in the purified regeneration gas is condensed.

因此,使用本發明之方法可使氣體乾燥器70有效再生(就諸如能量及氣體之消耗品而言),避免或至少減少氮氧化物釋放至大氣中,且避免或至少減少氮氧化物在部分淨化之富含二氧化碳之煙道氣中積累。 Thus, the use of the method of the present invention allows for efficient regeneration of the gas dryer 70 (in terms of energy and gas consumables), avoids or at least reduces the release of nitrogen oxides into the atmosphere, and avoids or at least reduces nitrogen oxides in portions. Accumulated in the purified carbon dioxide-rich flue gas.

應理解,上述實施例之眾多變化形式可屬於隨附申請專利範圍之範疇內。 It should be understood that numerous variations of the above-described embodiments are within the scope of the appended claims.

上文已描述,在煙道氣冷凝器36下游而不是氣體乾燥器70上游抽出部分富含二氧化碳之煙道氣流用作再生氣體。應理解,亦可在其他位置獲得再生氣體。根據替代性實施例,可自管道62、64、108及74中之任一者抽出再生氣體。亦可使用另一類型之再生氣體,諸如環 境空氣。自管道38抽出再生氣體之優勢為該再生氣體具有相對較低濃度之水蒸氣且具有低含量氧氣。此外,壓縮功尚未添加至再生氣體。氣體乾燥器70之再生通常在大氣壓下進行,尤其若廢再生氣體將在煙道氣冷凝器36上游返回。因此,再生氣體高於環境之壓力可能不適用。 As described above, a portion of the carbon dioxide-rich flue gas stream is withdrawn downstream of the flue gas condenser 36 rather than upstream of the gas dryer 70 for use as a regeneration gas. It should be understood that the regeneration gas may also be obtained at other locations. According to an alternative embodiment, the regeneration gas may be withdrawn from any of the conduits 62, 64, 108, and 74. Another type of regeneration gas can also be used, such as a ring Air. An advantage of withdrawing regeneration gas from line 38 is that the regeneration gas has a relatively low concentration of water vapor and a low level of oxygen. In addition, the compression work has not been added to the regeneration gas. The regeneration of the gas dryer 70 is typically carried out at atmospheric pressure, especially if the spent regeneration gas will return upstream of the flue gas condenser 36. Therefore, the pressure of the regeneration gas above the environment may not be applicable.

上文中已描述使用固體吸附劑(例如沸石分子篩)作為氣體乾燥器70之填料72。根據一個替代性實施例,使用液體乾燥劑接觸煙道氣且捕集氣體乾燥器70中之水蒸氣。如GPSA Engineering Data Book,2004,第12版,ISBN:B00006KFVO之第20節中所述,可用於該實施例之液體乾燥劑之實例包括二乙二醇、三乙二醇及四乙二醇。 A solid adsorbent (e.g., zeolite molecular sieve) has been described above as the filler 72 of the gas dryer 70. According to an alternative embodiment, the liquid drying agent is used to contact the flue gas and to capture the water vapor in the gas dryer 70. Examples of the liquid desiccant which can be used in this embodiment include diethylene glycol, triethylene glycol and tetraethylene glycol as described in section 20 of GPSA Engineering Data Book, 2004, 12th edition, ISBN: B00006KFVO.

根據一個實施例,氣體冷凝器36可執行以下兩個功能:移除煙道氣中之至少一部分水分及作為濕式洗滌器自廢再生氣體移除至少一部分氮氧化物。在此情況下,廢再生氣體可經由可選管道129直接流至氣體冷凝器36。視情況可向氣體冷凝器36供應氧化劑(諸如高錳酸鉀KMnO4、過氧化氫H2O2及/或臭氧O3)以氧化其中所捕集之氮氧化物。 According to one embodiment, the gas condenser 36 can perform the following two functions: removing at least a portion of the moisture in the flue gas and removing at least a portion of the nitrogen oxides from the spent regeneration gas as a wet scrubber. In this case, the spent regeneration gas may flow directly to the gas condenser 36 via the optional conduit 129. The gas condenser 36 may optionally be supplied with an oxidant such as potassium permanganate KMnO 4 , hydrogen peroxide H 2 O 2 and/or ozone O 3 to oxidize the nitrogen oxides trapped therein.

總之,一種淨化富含二氧化碳之煙道氣流的氣體純化系統包含:煙道氣冷凝器36,有效移除煙道氣中之至少一部分水分;氣體乾燥器70,其係配置在煙道氣冷凝器36下游,用於移除煙道氣中之至少一部分剩餘水分;氣體乾燥器再生系統84,經配置用於產生再生氣體,使來自氣體乾燥器70之水及氮氧化物解吸附;及濕式洗滌器114,用於使來自氣體乾燥器70之廢再生氣體與吸收液接觸,以便移除廢再生氣體中之至少一部分氮氧化物,形成經淨化之再生氣體。 In summary, a gas purification system for purifying a carbon dioxide-rich flue gas stream comprises: a flue gas condenser 36 for effectively removing at least a portion of the moisture in the flue gas; and a gas dryer 70 disposed in the flue gas condenser Downstream 36 for removing at least a portion of residual moisture in the flue gas; gas dryer regeneration system 84 configured to generate regeneration gas to desorb water and nitrogen oxides from gas dryer 70; and wet The scrubber 114 is configured to contact the spent regeneration gas from the gas dryer 70 with the absorption liquid to remove at least a portion of the nitrogen oxides in the spent regeneration gas to form a purified regeneration gas.

雖然已參考大量較佳實施例描述本發明,但熟習此項技術者應瞭解可進行各種變化且可用等效物替代其元件而不背離本發明範疇。另外,可進行多處修改以使特定情況或材料適用於本發明教示而不背離其基本範疇。因此,希望本發明不限於作為實施本發明之最佳方式所揭示的特定實施例,但本發明包括屬於隨附申請專利範圍之範疇內的所有實施例。此外,使用術語第一、第二等不表示任何次序或重要性,而是使用術語第一、第二等來區分一元件與另一元件。 While the invention has been described with respect to the preferred embodiments the embodiments of the invention In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention. Therefore, it is intended that the invention not be limited to the particular embodiments of the inventions Moreover, the use of the terms first, second, etc. does not denote any <RTI ID=0.0> </ RTI> order or importance, but the terms first, second, etc. are used to distinguish one element from another.

34‧‧‧管道 34‧‧‧ Pipes

36‧‧‧煙道氣冷凝器 36‧‧‧ Flue Gas Condenser

37‧‧‧處置管 37‧‧‧Disposal tube

38‧‧‧管道 38‧‧‧ Pipes

40‧‧‧氣體壓縮及純化單元(GPU) 40‧‧‧Gas Compression and Purification Unit (GPU)

70‧‧‧氣體乾燥器 70‧‧‧ gas dryer

72‧‧‧填料 72‧‧‧Filling

86‧‧‧供應管道 86‧‧‧Supply pipeline

88‧‧‧加熱器 88‧‧‧heater

91‧‧‧氣體輸送裝置 91‧‧‧ gas delivery device

92‧‧‧管道 92‧‧‧ Pipes

102‧‧‧管道 102‧‧‧ Pipes

112‧‧‧配置 112‧‧‧Configuration

114‧‧‧濕式洗滌器 114‧‧‧ Wet scrubber

116‧‧‧泵 116‧‧‧ pump

118‧‧‧循環管 118‧‧‧Circulation tube

120‧‧‧濕式洗滌塔下端 120‧‧‧The lower end of the wet scrubber

122‧‧‧濕式洗滌塔 122‧‧‧ Wet scrubber

124‧‧‧濕式洗滌塔上端 124‧‧‧The upper end of the wet scrubber

126‧‧‧濕式洗滌器氣液接觸填充材料 126‧‧‧Wet scrubber gas-liquid contact filling material

128‧‧‧管道 128‧‧‧ Pipes

129‧‧‧可選管道 129‧‧‧Optional pipe

130‧‧‧pH值控制物質供應管 130‧‧‧pH control substance supply tube

131‧‧‧氣體混合裝置 131‧‧‧ gas mixing device

132‧‧‧pH計 132‧‧‧pH meter

133‧‧‧氧化劑供應管 133‧‧‧Oxiant supply tube

134‧‧‧控制閥 134‧‧‧Control valve

135‧‧‧靜態混合板 135‧‧‧Static mixing board

136‧‧‧氧化劑供應管 136‧‧‧Oxidant supply tube

138‧‧‧氧化還原電位計 138‧‧‧ Redox Potentiometer

140‧‧‧控制閥 140‧‧‧Control valve

142‧‧‧泵 142‧‧‧ pump

144‧‧‧循環管 144‧‧‧Circulation tube

146‧‧‧冷凝器外殼下端 146‧‧‧ lower end of the condenser casing

148‧‧‧冷凝器外殼 148‧‧‧Condenser housing

148a‧‧‧冷凝器外殼內部 148a‧‧‧ inside the condenser casing

150‧‧‧冷凝器外殼上端 150‧‧‧Upper end of condenser housing

152‧‧‧冷凝器氣液接觸填充材料 152‧‧‧Condenser gas-liquid contact filling material

154‧‧‧液體冷卻器 154‧‧‧Liquid cooler

156‧‧‧管道 156‧‧‧ Pipes

158‧‧‧處置管 158‧‧‧Disposal tube

160‧‧‧廢水處理廠 160‧‧‧Waste treatment plant

162‧‧‧管 162‧‧‧ tube

164‧‧‧管 164‧‧‧ tube

166‧‧‧廢水處理廠 166‧‧‧Waste treatment plant

168‧‧‧可選旁路管道 168‧‧‧Optional bypass piping

170‧‧‧閥 170‧‧‧ valve

171‧‧‧可選閥 171‧‧‧Optional valve

Claims (16)

一種淨化富含二氧化碳之煙道氣之方法,該煙道氣係在鍋爐(2)中在含氧氣氣體存在下燃燒燃料所產生,該方法包含:在煙道氣冷凝器(36)中移除該煙道氣中之至少一部分水分;使用配置在該煙道氣冷凝器(36)下游之氣體乾燥器(70)移除該煙道氣中之至少一部分剩餘水分及該煙道氣中之至少一部分氮氧化物;再生該氣體乾燥器(70),此係藉由加熱再生氣體流至適於該氣體乾燥器(70)再生之溫度,且使該經加熱之再生氣體通過該氣體乾燥器(70)以便使來自該氣體乾燥器(70)之水及氮氧化物解吸附;及將來自該氣體乾燥器(70)之廢再生氣體輸送至濕式洗滌器(114)用於與吸收液接觸,以便自該廢再生氣體移除至少一部分氮氧化物來形成經淨化之再生氣體。 A method of purifying a carbon dioxide-rich flue gas produced by burning a fuel in a boiler (2) in the presence of an oxygen-containing gas, the method comprising: removing in a flue gas condenser (36) At least a portion of the moisture in the flue gas; removing at least a portion of the residual moisture in the flue gas and at least a portion of the flue gas using a gas dryer (70) disposed downstream of the flue gas condenser (36) a portion of the nitrogen oxide; regenerating the gas dryer (70) by heating the regeneration gas stream to a temperature suitable for regeneration of the gas dryer (70), and passing the heated regeneration gas through the gas dryer ( 70) to desorb water and nitrogen oxides from the gas dryer (70); and to transport waste regeneration gas from the gas dryer (70) to the wet scrubber (114) for contact with the absorption liquid And removing at least a portion of the nitrogen oxides from the spent regeneration gas to form a purified regeneration gas. 如請求項1之方法,其進一步包含藉由在該煙道氣冷凝器(36)下游抽出一部分該富含二氧化碳之煙道氣來獲得該再生氣體流。 The method of claim 1, further comprising obtaining the regeneration gas stream by withdrawing a portion of the carbon dioxide-rich flue gas downstream of the flue gas condenser (36). 如請求項1之方法,其進一步包含藉由在該氣體乾燥器(70)上游抽出一部分該富含二氧化碳之煙道氣來獲得該再生氣體流。 The method of claim 1, further comprising obtaining the regeneration gas stream by withdrawing a portion of the carbon dioxide-rich flue gas upstream of the gas dryer (70). 如請求項1之方法,其進一步包含將來自該濕式洗滌器(114)之經淨化之再生氣體流輸送至該煙道氣冷凝器(36)以便在其中冷卻。 The method of claim 1, further comprising delivering the purified regeneration gas stream from the wet scrubber (114) to the flue gas condenser (36) for cooling therein. 如請求項1之方法,其進一步包含供應氧化劑至該濕式洗滌器(114)之吸收液中。 The method of claim 1, further comprising supplying an oxidant to the absorbing liquid of the wet scrubber (114). 如請求項1之方法,其進一步包含供應pH控制物質至該濕式洗滌器(114)之吸收液中。 The method of claim 1, further comprising supplying a pH control substance to the absorption liquid of the wet scrubber (114). 如請求項1之方法,其中適於該氣體乾燥器再生之溫度係在130℃ 至315℃之範圍內,更佳在200℃至290℃之範圍內。 The method of claim 1, wherein the temperature suitable for regeneration of the gas dryer is 130 ° C It is in the range of 315 ° C, more preferably in the range of 200 ° C to 290 ° C. 如請求項1之方法,其中該濕式洗滌器(114)係與該煙道氣冷凝器(36)隔開。 The method of claim 1, wherein the wet scrubber (114) is spaced from the flue gas condenser (36). 如請求項1之方法,其進一步包含在洗滌期間輸送來自該氣體乾燥器(70)之廢再生氣體通過該濕式洗滌器(114),該洗滌期組成再生該氣體乾燥器(70)之再生期的一部分;及根據氮氧化物自該氣體乾燥器(70)之釋放來控制該洗滌期之持續時間及時序。 The method of claim 1, further comprising passing waste regeneration gas from the gas dryer (70) through the wet scrubber (114) during the washing, the washing period comprising regenerating the regeneration of the gas dryer (70) a portion of the period; and controlling the duration and timing of the wash period based on the release of nitrogen oxides from the gas dryer (70). 一種用於淨化富含二氧化碳之煙道氣流的氣體純化系統,該煙道氣流係在鍋爐(2)中在含氧氣氣體存在下燃燒燃料所產生,該氣體純化系統包含:煙道氣冷凝器(36),其有效移除該煙道氣中之至少一部分水分;氣體乾燥器(70),其配置在該煙道氣冷凝器(36)下游,用於移除該煙道氣中之至少一部分剩餘水分及該煙道氣中之至少一部分氮氧化物;氣體乾燥器再生系統(84),其經配置用於產生再生氣體,使來自該氣體乾燥器(70)之水及氮氧化物解吸附;及濕式洗滌器(114),其用於使來自該氣體乾燥器(70)之廢再生氣體與吸收液接觸,以便自該廢再生氣體移除至少一部分氮氧化物來形成經淨化之再生氣體。 A gas purification system for purifying a carbon dioxide-rich flue gas stream produced by burning a fuel in a boiler (2) in the presence of an oxygen-containing gas, the gas purification system comprising: a flue gas condenser ( 36) which effectively removes at least a portion of the moisture in the flue gas; a gas dryer (70) disposed downstream of the flue gas condenser (36) for removing at least a portion of the flue gas Residual moisture and at least a portion of the nitrogen oxides in the flue gas; a gas dryer regeneration system (84) configured to generate a regeneration gas to desorb water and nitrogen oxides from the gas dryer (70) And a wet scrubber (114) for contacting the spent regeneration gas from the gas dryer (70) with the absorption liquid to remove at least a portion of the nitrogen oxides from the spent regeneration gas to form a purified regeneration gas. 如請求項10之氣體純化系統,其進一步包含配置在該煙道氣冷凝器(36)下游供再生氣體流至該氣體乾燥器再生系統(84)中之供應管道(86)。 The gas purification system of claim 10, further comprising a supply conduit (86) disposed downstream of the flue gas condenser (36) for the regeneration gas to flow into the gas dryer regeneration system (84). 如請求項10之氣體純化系統,其進一步包含配置在該氣體乾燥器(70)上游供再生氣體流至該氣體乾燥器再生系統(84)中之供應管道(86)。 The gas purification system of claim 10, further comprising a supply conduit (86) disposed upstream of the gas dryer (70) for the regeneration gas to flow into the gas dryer regeneration system (84). 如請求項10之氣體純化系統,其中至少一個用於壓縮該富含二氧化碳之煙道氣之壓縮機(41)配置在該煙道氣冷凝器(36)下游及該氣體乾燥器(70)上游,且供應管道(86)配置在該壓縮機(41)上游供再生氣體流至該氣體乾燥器再生系統(84)中。 A gas purification system according to claim 10, wherein at least one compressor (41) for compressing the carbon dioxide-rich flue gas is disposed downstream of the flue gas condenser (36) and upstream of the gas dryer (70) And a supply conduit (86) is disposed upstream of the compressor (41) for the regeneration gas to flow into the gas dryer regeneration system (84). 如請求項10之氣體純化系統,其進一步包含管道(128)供經淨化之再生氣體自該濕式洗滌器(114)流動至該煙道氣冷凝器(36)以便在其中冷卻用。 The gas purification system of claim 10, further comprising a conduit (128) for the purified regeneration gas to flow from the wet scrubber (114) to the flue gas condenser (36) for cooling therein. 如請求項10之氣體純化系統,其進一步包含經配置用於供應氧化劑至該濕式洗滌器(114)之吸收液中的氧化劑供應管(136;133)。 The gas purification system of claim 10, further comprising an oxidant supply tube (136; 133) configured to supply oxidant to the absorbing liquid of the wet scrubber (114). 如請求項10之氣體純化系統,其中該氣體乾燥器(70)含有固體吸附劑。 A gas purification system according to claim 10, wherein the gas dryer (70) contains a solid adsorbent.
TW102104055A 2012-02-03 2013-02-01 A gas processing unit comprising a device for removing nitrogen oxides TW201336573A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12015385 2012-02-03

Publications (1)

Publication Number Publication Date
TW201336573A true TW201336573A (en) 2013-09-16

Family

ID=49627627

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102104055A TW201336573A (en) 2012-02-03 2013-02-01 A gas processing unit comprising a device for removing nitrogen oxides

Country Status (1)

Country Link
TW (1) TW201336573A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109954395A (en) * 2019-02-27 2019-07-02 潘彦儒 A kind of wet type processing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109954395A (en) * 2019-02-27 2019-07-02 潘彦儒 A kind of wet type processing device

Similar Documents

Publication Publication Date Title
JP4920993B2 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
AU2012213152B2 (en) Apparatus and system for NOX reduction in wet flue gas
US8728201B2 (en) Apparatus and method for removing carbon dioxide (CO2) from the flue gas of a furnace after the energy conversion
TWI443290B (en) Method of cleaning a carbon dioxide rich flue gas and a boiler system
WO2011152552A1 (en) Exhaust gas treatment system and method
JP3237795U (en) Integrated desulfurization and denitration system for flue gas based on low temperature adsorption principle
JP2015193005A (en) exhaust gas treatment system and method
WO2011152546A1 (en) Exhaust gas treatment system and method
KR20120116431A (en) Alcohol-based gas stripping process
JP2015529545A (en) Method for controlling acidic compounds produced from oxyfuel combustion processes
US20110139046A1 (en) Emissionless Oxyfuel Combustion Process and a Combustion System Using Such a Process
CN103492048B (en) For the low NO of drier xthe system and method for discharge regeneration
EP2623178A1 (en) A gas processing unit comprising a device for removing nitrogen oxides.
US8951488B2 (en) Method and system for NOx reduction in flue gas
EP2724770A1 (en) Absorption unit for drying flue gas
TW201336573A (en) A gas processing unit comprising a device for removing nitrogen oxides
EP2540377A1 (en) A method of cleaning a carbon dioxide rich flue gas
CA3030049A1 (en) A process for the combined removal of siloxanes and sulfur-containing compounds from biogas streams
Stallmann et al. Apparatus and system for NO x reduction in wet flue gas
TW201304851A (en) A method of cleaning a carbon dioxide rich flue gas
JPH08131777A (en) Exhaust gas treatment method
JP2018515327A (en) Apparatus and method for separating carbon dioxide from a gas stream
Stallmann et al. Method and system for NO x reduction in flue gas
CZ28872U1 (en) Solid sorbent-based engineering system for catching CO2 from combustion products
TW201245639A (en) System and method for low nox emitting regeneration of desiccants