TW201304851A - A method of cleaning a carbon dioxide rich flue gas - Google Patents

A method of cleaning a carbon dioxide rich flue gas Download PDF

Info

Publication number
TW201304851A
TW201304851A TW101123321A TW101123321A TW201304851A TW 201304851 A TW201304851 A TW 201304851A TW 101123321 A TW101123321 A TW 101123321A TW 101123321 A TW101123321 A TW 101123321A TW 201304851 A TW201304851 A TW 201304851A
Authority
TW
Taiwan
Prior art keywords
flue gas
gas
carbon dioxide
condenser
rich
Prior art date
Application number
TW101123321A
Other languages
Chinese (zh)
Inventor
Jorgen Grubbstrom
Original Assignee
Alstom Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology Ltd filed Critical Alstom Technology Ltd
Publication of TW201304851A publication Critical patent/TW201304851A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

A method and a gas purification system for cleaning a carbon dioxide rich flue gas generated in a boiler (2) combusting a fuel in the presence of a gas containing oxygen gas, the method comprising: removing at least a portion of the water content of the flue gas in a flue gas condenser (36); compressing the carbon dioxide rich flue gas in a compressor (41) arranged downstream of the flue gas condenser (36), as seen in the flow direction of the flue gas; removing at least a portion of the remaining water content of the flue gas using molecular sieves in a gas drier (70) arranged downstream of the compressor (41); regenerating the molecular sieves by withdrawing a portion of the carbon dioxide rich flue gas downstream of the flue gas condenser (36), but upstream of the compressor (41), heating the withdrawn flue gas to a temperature suitable for regeneration of the molecular sieves, passing the heated flue gas through the gas drier (70) to desorb water and NOx from the molecular sieves; and returning the carbon dioxide rich flue gas containing the desorbed water and NOx to the boiler (2).

Description

用於淨化富二氧化碳煙氣之方法 Method for purifying carbon dioxide rich flue gas

本發明係關於一種淨化於鍋爐中在含氧氣之氣體存在下燃燒燃料所產生之富二氧化碳氣體之方法。 The present invention relates to a method of purifying a carbon dioxide-rich gas produced by burning a fuel in the presence of an oxygen-containing gas in a boiler.

本發明進一步係關於一種用於淨化鍋爐系統中所產生之富二氧化碳氣體之氣體純化系統,該系統包括在含氧氣之氣體存在下燃燒燃料之鍋爐。 The invention further relates to a gas purification system for purifying a carbon dioxide-rich gas produced in a boiler system, the system comprising a boiler for burning fuel in the presence of an oxygen-containing gas.

燃料(諸如煤炭、油、泥炭、廢物等)在燃燒設備(諸如發電廠)中燃燒時,產生高溫製程氣體,該製程氣體尤其包含二氧化碳CO2組分。隨著環境的日益需求,已開發出各種自製程氣體移除二氧化碳之方法。一種此類方法係所謂氧化燃料方法。在氧化燃料方法中,使燃料(諸如上述燃料中之一種)在貧氮氣體存在下燃燒。將由氧源所提供之氧氣提供至鍋爐,其中氧氣氧化燃料。在氧化燃料燃燒方法中,會產生富二氧化碳煙氣,其可被處理以減少向大氣中排放的二氧化碳。 The fuel (such as coal, oil, peat, waste, etc.) in a combustion device (such as power plants) when the combustion, high temperature process gas, the process gas contains in particular carbon dioxide CO 2 component. With the increasing demand for the environment, various methods of self-contained gas removal of carbon dioxide have been developed. One such method is the so-called oxidizing fuel method. In the oxidizing fuel process, a fuel, such as one of the above fuels, is combusted in the presence of a lean nitrogen gas. Oxygen supplied by an oxygen source is supplied to the boiler, wherein the oxygen oxidizes the fuel. In an oxidative fuel combustion process, carbon dioxide rich flue gas is produced which can be treated to reduce carbon dioxide emissions to the atmosphere.

CO2捕獲通常包括使煙氣壓縮並冷卻以使CO2以液體或固體形式自不可凝結煙氣組分(諸如N2及O2)分離出。 CO 2 capture typically involves compressing and cooling the flue gas to separate the CO 2 from a non-condensable flue gas component, such as N 2 and O 2 , in liquid or solid form.

在CO2捕獲前,通常有必要淨化富二氧化碳煙氣。氣體淨化操作通常可包括移除粉塵、硫化物、金屬、氮氧化物(NOx)等。 It is often necessary to purify the carbon dioxide rich flue gas prior to CO 2 capture. Gas purging operation generally may include removing dust, sulfides, metals, nitrogen oxides (NO x) and the like.

減少NOx排放之現行系統及方法,例如選擇性催化還原(SCR),依賴於使用化學製劑(例如氨)以使NOx還原為N2Current systems and methods to reduce the emissions of NO x, such as selective catalytic reduction (SCR), dependent on the use of chemicals (e.g., ammonia) to the NO x is reduced to N 2.

在氧化燃料燃燒中,使用氧而非空氣。目的係產生富CO2煙氣,其可在運輸及存儲前於氣體處理單元(GPU)中壓縮及純化。提供至燃燒製程之低氮含量氣體將產生具有相對低含量NOx之煙氣。然而,由於NO2形式之NOx可吸附至GPU之分子篩,故在分子篩再生期間,排放氣中可存在高濃度NO2In the combustion of oxidizing fuel, oxygen is used instead of air. Generating object-based CO 2 rich flue gas, the gas processing unit which can be transported and stored before (GPU) in compression and purification. To provide a low nitrogen content of the gas combustion process flue gas produced with a relatively low content of NO x. However, since the two forms of NO NO x to molecular sieves can adsorb a GPU, therefore the molecular sieve during the regeneration, exhaust gas may be present in high concentrations of NO 2.

本發明之一目的係提供一種淨化於鍋爐中在含氧氣之氣體存在下燃燒燃料所產生之富二氧化碳煙氣之方法,相對於先前技術方法而言,該方法導致排放至大氣之NOx有所減少。 One object of the present invention to provide a system in the purification method of flue gas of a boiler combustion of the fuel-rich carbon dioxide produced in the presence of an oxygen-containing gas, relative to prior art methods, this method results in atmospheric discharge of NO x to be cut back.

根據本文所闡明之態樣,提供一種淨化於鍋爐中在含氧氣之氣體存在下燃燒燃料所產生之富二氧化碳煙氣之方法,該方法包括:於煙氣冷凝器中移除煙氣中至少部分水含量;於該煙氣冷凝器下游配置之壓縮器中壓縮富二氧化碳煙氣,如煙氣流動方向所見;使用該壓縮器下游配置之氣體乾燥器中之分子篩移除煙氣中至少部分殘留水含量;藉由提取該煙氣冷凝器下游及該壓縮器上游之部分富二氧化碳煙氣,將所提取煙氣加熱至適於分子篩再生之溫度,使該加熱煙氣通過氣體乾燥器以解吸附分子篩中水及NOx,使該分子篩再生;及使含解吸附水及NOx之富二氧化碳煙氣返回至鍋爐。 According to the aspect set forth herein, a method of purifying a carbon dioxide-rich flue gas produced by burning a fuel in the presence of an oxygen-containing gas in a boiler, the method comprising: removing at least a portion of the flue gas from the flue gas condenser Water content; compressing the carbon dioxide-rich flue gas in a compressor disposed downstream of the flue gas condenser, as seen in the direction of flow of the flue gas; using the molecular sieve in the gas dryer disposed downstream of the compressor to remove at least a portion of the residual water in the flue gas Content: by extracting a portion of the carbon dioxide-rich flue gas downstream of the flue gas condenser and upstream of the compressor, heating the extracted flue gas to a temperature suitable for molecular sieve regeneration, and passing the heated flue gas through a gas dryer to desorb the molecular sieve water and NO x, so that the regenerated molecular sieve; and adsorbed water-containing solutions of NO x and CO rich flue gas is returned to the boiler.

按照本文所述之實施例,使含解吸附水及NOx之富二氧化碳煙氣返回至鍋爐,使NOx在鍋爐之高溫燃燒區分解,而不消耗任何化學試劑,且不產生任何額外廢物流。此舉可有助於消除對附加之NOx移除步驟之需求,諸如選擇性催化還原,由此降低鍋爐系統之總體造價及運營成本。 According to an embodiment of the herein-containing solution of the adsorbed water and carbon dioxide rich flue gas NO x to return to the boiler, the NO x decomposition in the high temperature combustion zone of the boiler, without consuming any chemicals and does not produce any additional waste stream . This will help to eliminate the step of removing the additional requirements of NO x, such as selective catalytic reduction, thereby reducing the overall cost of the boiler system and operating costs.

該方法之一優勢係不需化學反應劑或觸媒,且不形成額外廢物產物。而且,該方法可在僅幾處結構修改下,在現有氣體純化系統中進行以淨化於鍋爐中在含氧氣之氣體存在下燃燒燃料所產生之富二氧化碳煙氣。不需要額外容器或反應器。 One advantage of this method is that no chemical reactants or catalysts are required and no additional waste products are formed. Moreover, the process can be carried out in an existing gas purification system with only a few structural modifications to purify the carbon dioxide-rich flue gas produced by burning the fuel in the presence of an oxygen-containing gas in the boiler. No additional containers or reactors are required.

根據一實施例,將所提取煙氣加熱至介於130℃與315℃之間之溫度。 According to an embodiment, the extracted flue gas is heated to a temperature between 130 ° C and 315 ° C.

根據一實施例,將所提取煙氣加熱至介於200℃與290℃之間之溫度。 According to an embodiment, the extracted flue gas is heated to a temperature between 200 ° C and 290 ° C.

宜使用煙氣冷凝器下游之部份富二氧化碳煙氣以再生氣體乾燥器,因為該煙氣已至少部分淨化。通常於煙氣冷凝器上游之粉塵移除及硫移除步驟明顯減少分子篩之所進入煙塵、飛塵及其他顆粒物質(諸如金屬)之阻塞及污垢問題,因此延長分子篩壽命。除降低煙氣之水含量外,煙氣冷凝器之另一優勢係,自先前二氧化硫移除步驟之煙氣中所夾帶的洗液或漿液(例如石灰漿)在冷凝期間被移除,因此進一步減少氣體乾燥器之污垢及/或阻塞問題。 A portion of the carbon dioxide rich flue gas downstream of the flue gas condenser should be used to regenerate the gas dryer because the flue gas has been at least partially purified. The dust removal and sulfur removal steps, typically upstream of the flue gas condenser, significantly reduce the clogging and fouling problems of soot, fly ash, and other particulate matter (such as metals) entering the molecular sieve, thereby extending the life of the molecular sieve. In addition to reducing the water content of the flue gas, another advantage of the flue gas condenser is that the wash liquor or slurry (eg, lime slurry) entrained in the flue gas from the previous sulfur dioxide removal step is removed during condensation, thus further Reduce fouling and/or clogging problems in gas dryers.

根據一實施例,該方法進一步包括,使煙氣流在煙氣冷凝器上游進行粉塵移除,如煙氣流動方向所見。 According to an embodiment, the method further comprises subjecting the flue gas stream to dust removal upstream of the flue gas condenser, as seen in the direction of flow of the flue gas.

根據一實施例,該方法進一步包括,使煙氣流在煙氣冷凝器上游進行二氧化硫移除,如煙氣流動方向所見。 According to an embodiment, the method further comprises subjecting the flue gas stream to sulfur dioxide removal upstream of the flue gas condenser, as seen in the direction of flow of the flue gas.

根據本文所闡明之其他態樣,提供一種淨化於鍋爐中在含氧氣之氣體存在下燃燒燃料所產生之富二氧化碳煙氣流之氣體純化系統,該氣體純化系統包括:一種用於移除煙氣中至少部分水含量之煙氣冷凝器;一種該煙氣冷凝器下游配置之用於壓縮富二氧化碳煙氣之壓縮器,如富二氧化碳煙氣之流動方向所見;一種該壓縮器下游配置之用於移除煙氣中至少部分殘留水含量之含分子篩之氣體乾燥器,如富二氧化碳煙氣之流動方向所見;及一種用於解吸附分子篩之水及NOx之氣體乾燥器再生系統;該氣體乾燥器再生系統包括:一用於提取煙氣冷凝器下游及壓縮器上游之部分富二氧化碳煙氣流並引導該部分富二氧化碳煙氣流穿過氣體乾燥器並返回至鍋爐之氣體導管,及一用於將所提取之部分富二氧化碳煙氣於其進入氣體乾燥器前加熱至適於分子篩再生之溫度之煙氣加熱器。 According to other aspects set forth herein, a gas purification system for purifying a carbon dioxide-rich flue gas stream produced by burning a fuel in the presence of an oxygen-containing gas in a boiler is provided, the gas purification system comprising: a method for removing flue gas a flue gas condenser having at least a portion of water content; a compressor disposed downstream of the flue gas condenser for compressing the carbon dioxide rich flue gas, as seen in a flow direction of the carbon dioxide rich flue gas; and a downstream configuration of the compressor for shifting in addition to the molecular sieve containing the water content of the flue gas at least part of the residual gas dryer, such as the direction of flow of the carbon dioxide rich flue see; for desorption and regeneration gas dryer system of water and a molecular sieve of NO x; the gas dryer The regeneration system includes: a gas conduit for extracting a portion of the carbon dioxide-rich flue gas stream downstream of the flue gas condenser and upstream of the compressor and guiding the portion of the carbon dioxide-rich flue gas stream through the gas dryer and returning to the boiler, and a The extracted carbon dioxide-rich flue gas is heated to a temperature suitable for molecular sieve regeneration before it enters the gas dryer Flue gas heater.

根據一實施例,將所提取煙氣加熱至介於130℃與315℃之間的溫度。 According to an embodiment, the extracted flue gas is heated to a temperature between 130 ° C and 315 ° C.

根據一實施例,將所提取煙氣加熱至介於200℃與290℃之間的溫度。 According to an embodiment, the extracted flue gas is heated to a temperature between 200 ° C and 290 ° C.

根據一實施例,該系統進一步包括一煙氣冷凝器上游配置之粉塵移除過濾器,如煙氣之流動方向所見。 According to an embodiment, the system further includes a dust removal filter disposed upstream of the flue gas condenser, as seen in the direction of flow of the flue gas.

根據一實施例,該系統進一步包括一煙氣冷凝器上游之用於移除二氧化硫之洗滌器,如煙氣之流動方向所見。 According to an embodiment, the system further includes a scrubber upstream of the flue gas condenser for removing sulfur dioxide, as seen by the direction of flow of the flue gas.

藉由下圖及詳細描述例示上述內容及其他特徵。本發明之其他目的及特徵將自實施方式及申請專利範圍而明瞭。 The above and other features are exemplified by the following figures and detailed description. Other objects and features of the present invention will become apparent from the embodiments and claims.

現參考圖,該等圖為示例性實施例,且其中相同元件編號相同。 Referring now to the drawings, the drawings are exemplary embodiments

圖1為鍋爐系統1之示意圖,如自其側面所見。該鍋爐系統1包括作為主要部件之鍋爐2,在該實施例中為氧化燃料鍋爐,汽輪機發電系統,圖示為4,及氣體淨化系統6。該氣體淨化系統6包括微粒移除裝置,其可為(例如)纖維過濾器或靜電集塵器8,及二氧化硫移除系統,其可為濕式洗滌器10。 Figure 1 is a schematic illustration of a boiler system 1, as seen from its side. The boiler system 1 comprises a boiler 2 as a main component, in this embodiment an oxidizing fuel boiler, a steam turbine power generation system, shown as 4, and a gas purification system 6. The gas purification system 6 includes a particulate removal device, which may be, for example, a fiber filter or electrostatic precipitator 8, and a sulfur dioxide removal system, which may be a wet scrubber 10.

使燃料(例如煤炭、油或泥炭)含於燃料儲存裝置12中,且可經由供給管14提供至鍋爐2。可(例如)藉由來自煙氣冷凝器36之煙氣流之再循環部分將燃料轉移至鍋爐,其將在以下進一步描述。氧氣源16係以已知方式本身操作以提供氧氣。該氧氣源16可為用於自空氣分離出氧氣之空氣分離設備、氧分離膜、儲存槽或將氧氣提供至鍋爐系統1之任何其它源。供給管道18係用於將所產生的氧氣(通常包括90-99.9體積%氧,O2)輸送至鍋爐2。管道20係用於將再循環煙氣(含二氧化碳)輸送至鍋爐2。如圖1中所示,供給管道18連接鍋爐2上游之管道20,以使氧氣與再循環煙氣(含二氧化碳)可相互混合以於鍋爐2上游形成通常含約20-50體 積%氧氣之氣體混合物,其餘主要為二氧化碳及水蒸氣。由於幾乎沒有空氣進入鍋爐2,故幾乎未將氮氣提供至鍋爐2。在實際操作中,提供至鍋爐2之氣體體積之少於3體積%為空氣,其主要因漏氣經由(例如)鍋爐2及氣體淨化系統6進入鍋爐系統1。鍋爐2係用於在氧氣存在下,燃燒與經由管道20供給之再循環煙氣(含二氧化碳)混合之燃料,燃料係經由供給管14提供。燃燒將在文中稱為燃燒區之該鍋爐部份中發生。蒸汽管22係用於將蒸汽(於鍋爐2中因燃燒而產生)輸送至汽輪機發電系統4(用於以電能形式之發電)。 A fuel such as coal, oil or peat is contained in the fuel storage device 12 and can be supplied to the boiler 2 via the supply pipe 14. The fuel can be transferred to the boiler, for example, by a recirculating portion of the flue gas stream from the flue gas condenser 36, which will be further described below. Oxygen source 16 operates in a known manner to provide oxygen. The oxygen source 16 can be an air separation plant for separating oxygen from air, an oxygen separation membrane, a storage tank, or any other source that provides oxygen to the boiler system 1. Duct system 18 for supplying the generated oxygen (typically comprising 90 to 99.9% by volume of oxygen, O 2) 2 fed to the boiler. The conduit 20 is used to deliver recycled flue gas (carbon dioxide) to the boiler 2. As shown in Figure 1, the supply conduit 18 connects the conduit 20 upstream of the boiler 2 such that oxygen and recycled flue gas (carbon dioxide containing) can be mixed with each other to form a gas generally containing about 20-50% by volume of oxygen upstream of the boiler 2. The mixture, the rest is mainly carbon dioxide and water vapor. Since almost no air enters the boiler 2, nitrogen gas is hardly supplied to the boiler 2. In actual operation, less than 3% by volume of the gas volume supplied to the boiler 2 is air, which enters the boiler system 1 mainly via leaks via, for example, the boiler 2 and the gas purification system 6. The boiler 2 is for combusting a fuel mixed with recycled flue gas (carbon dioxide) supplied via a pipe 20 in the presence of oxygen, which is supplied via a supply pipe 14. Combustion will occur in the portion of the boiler referred to herein as the combustion zone. The steam pipe 22 is used to deliver steam (generated in the boiler 2 due to combustion) to the steam turbine power generation system 4 (for power generation in the form of electrical energy).

管道24係用於將鍋爐2中所產生之富二氧化碳煙氣輸送至粉塵移除設備8。「富二氧化碳煙氣」意為經由管道24離開鍋爐2之煙氣將包含至少40體積%二氧化碳,CO2。通常離開鍋爐2之煙氣之50體積%以上將為二氧化碳。通常離開鍋爐2之煙氣將包含50-80體積%二氧化碳。由於鍋爐2中氧通常宜稍過量,故「富二氧化碳煙氣」之餘量將為約15-40體積%水蒸氣(H2O)、2-7體積%氧(O2),及由於漏氣幾乎不可完全避免,總共約0-10體積%之其他氣體(主要包括氮(N2)及氬(Ar))。 The duct 24 is for conveying the carbon dioxide-rich flue gas generated in the boiler 2 to the dust removing device 8. "Carbon dioxide-rich flue gas" means flue gas leaving the boiler 2 via a conduit 24 will contain at least 40% by volume of carbon dioxide, CO 2. More than 50% by volume of the flue gas leaving the boiler 2 will typically be carbon dioxide. The flue gas leaving the boiler 2 will typically contain 50-80% by volume of carbon dioxide. Since the oxygen in the boiler 2 is usually slightly excessive, the balance of "carbon dioxide rich flue gas" will be about 15-40% by volume of water vapor (H 2 O), 2-7 vol% of oxygen (O 2 ), and due to leakage. Gas is almost completely unavoidable, for a total of about 0-10% by volume of other gases (mainly including nitrogen (N 2 ) and argon (Ar)).

鍋爐2中所產生之富二氧化碳煙氣通常可包括以(例如)粉塵微粒、氫氯酸(HCl)、硫化物(SOX)及重金屬(包括汞(Hg))形式之污染物,在處理二氧化碳前,應自富二氧化碳煙氣中至少移除一部分。 The carbon dioxide-rich flue gas produced in the boiler 2 may generally include pollutants in the form of, for example, dust particles, hydrochloric acid (HCl), sulfide (SO X ), and heavy metals (including mercury (Hg)). Before, at least a portion of the carbon dioxide-rich flue gas should be removed.

粉塵移除裝置8自富二氧化碳煙氣移除大部分粉塵微 粒。管道26係用於將富二氧化碳煙氣自纖維過濾器8輸送至氣體淨化系統6之濕式洗滌器10。該濕式洗滌器10包括循環泵28,該循環泵28係用於使吸收液體(包括(例如)石灰石)於漿液循環管30中自濕式洗滌器10底部循環至該濕式洗滌器10上部配置之一組噴嘴。漿液噴嘴係用於將吸收液體細緻分佈於濕式洗滌器10中,以使吸收液體與經由管道26輸向濕式洗滌器10且於濕式洗滌器10中實質上垂直向上流動之煙氣良好接觸,以有效自富二氧化碳煙氣移除二氧化硫(SO2)及其他酸性氣體。 The dust removal device 8 removes most of the dust particles from the carbon dioxide rich flue gas. The conduit 26 is used to deliver carbon dioxide rich flue gas from the fiber filter 8 to the wet scrubber 10 of the gas purification system 6. The wet scrubber 10 includes a circulation pump 28 for circulating an absorbing liquid (including, for example, limestone) in the slurry circulation pipe 30 from the bottom of the wet scrubber 10 to the upper portion of the wet scrubber 10 Configure one of the set of nozzles. The slurry nozzle is used to finely distribute the absorbing liquid in the wet scrubber 10 so that the absorbing liquid and the flue gas flowing through the conduit 26 to the wet scrubber 10 and flowing substantially vertically upward in the wet scrubber 10 are good. Contact to remove sulfur dioxide (SO 2 ) and other acid gases from the effective carbon dioxide-rich flue gas.

至少部分淨化之富二氧化碳煙氣經由管道32離開濕式洗滌器10,使煙氣輸送至氣體分流點33,至少部分淨化之富二氧化碳煙氣被分成兩股流,即第一股流,經由管道20再循環返回至鍋爐2,及第二股流,經由管道34輸送至煙氣冷凝器36。經由管道20再循環返回至鍋爐2之第一股流通常佔離開濕式洗滌器10之部分淨化之富二氧化碳煙氣之總流量之50-75體積%。因此,第二股流經由管道34輸送至煙氣冷凝器36,該第二股流通常佔離開濕式洗滌器10之部分淨化之富二氧化碳煙氣之總流量之25-50體積%。 At least a portion of the purified carbon dioxide-rich flue gas exits the wet scrubber 10 via line 32 to deliver flue gas to the gas split point 33, and at least a portion of the purified carbon dioxide-rich flue gas is split into two streams, a first stream, via a conduit The 20 is recycled back to the boiler 2, and the second stream is sent via line 34 to the flue gas condenser 36. The first stream that is recycled back to the boiler 2 via line 20 typically accounts for 50-75 vol% of the total flow of the partially purified carbon dioxide-rich flue gas exiting the wet scrubber 10. Thus, the second stream is delivered via line 34 to the flue gas condenser 36, which typically accounts for 25-50% by volume of the total flow of the partially purified carbon dioxide rich flue gas exiting the wet scrubber 10.

在煙氣冷凝器36中,將煙氣冷卻低於其水露點,且所得冷凝所釋放之熱量係以低溫熱量回收。例如,可使煙氣之水含量自饋至煙氣冷凝器之煙氣之約40體積%降至離開煙氣冷凝器之煙氣之約5體積%。取決於煙氣冷凝器中pH及溫度,煙氣冷凝亦可導致煙氣中硫化物(SOX)之減少。硫化物被捕獲在所形成冷凝物中並自煙氣中分離。而且,自 先前二氧化硫移除步驟之煙氣中所夾帶之洗液或漿液(例如石灰漿)在冷凝期間被移除,由此減少氣體乾燥器及/或氣體加熱器表面之污垢及/或阻塞問題。煙氣冷凝器36具有循環泵,該循環泵係用於使冷卻液經由循環管於煙氣冷凝器36中以下文詳細闡述的方式循環。於煙氣冷凝器36中所循環之冷卻液使部分淨化之富二氧化碳煙氣冷卻至低於其飽和溫度之溫度,相對於水蒸氣而言,且因此導致自濕式洗滌器10輸送之部分淨化之富二氧化碳煙氣之至少部分水蒸氣含量冷凝。冷凝水經由處理管37離開煙氣冷凝器36。可將經由管37離開煙氣冷凝器36之部分冷凝水以補償水輸送至濕式洗滌器10。可將另一部分冷凝水輸送至水處理單元,其中使冷凝水再用於該製程(例如作為鍋爐用水)或丟棄前加以處理。經淨化之富二氧化碳煙氣經由管道38離開煙氣冷凝器36並輸送至GPU 40。 In the flue gas condenser 36, the flue gas is cooled below its water dew point, and the heat released by the resulting condensation is recovered as low temperature heat. For example, the water content of the flue gas can be reduced from about 40% by volume of the flue gas fed to the flue gas condenser to about 5% by volume of the flue gas exiting the flue gas condenser. Depending on pH and temperature of the flue gas condenser, flue gas condensation may also result in reduced flue gas sulfide (SO X) of. Sulfide is trapped in the formed condensate and separated from the flue gas. Moreover, the wash or slurry (e.g., lime slurry) entrained in the flue gas from the previous sulfur dioxide removal step is removed during condensation, thereby reducing fouling and/or clogging of the gas dryer and/or gas heater surface. problem. The flue gas condenser 36 has a circulation pump for circulating the coolant through a circulation tube in the flue gas condenser 36 in a manner to be described in detail below. The coolant circulated in the flue gas condenser 36 cools the partially purified carbon dioxide-rich flue gas to a temperature below its saturation temperature, relative to the water vapor, and thus to the partial purification of the transport from the wet scrubber 10 At least a portion of the water vapor content of the carbon dioxide rich flue gas condenses. The condensed water leaves the flue gas condenser 36 via the treatment tube 37. Part of the condensed water exiting the flue gas condenser 36 via line 37 can be delivered to the wet scrubber 10 with compensating water. Another portion of the condensed water can be sent to the water treatment unit where the condensed water is reused in the process (e.g., as boiler water) or disposed of prior to disposal. The purified carbon dioxide rich flue gas leaves the flue gas condenser 36 via conduit 38 and is delivered to GPU 40.

在氣體壓縮及純化單元(GPU)40中,來自煙氣冷凝器36之部分淨化之富二氧化碳煙氣經進一步淨化,且壓縮處理。因此,經壓縮之二氧化碳經由管道80離開GPU 40,並輸送出去以加以處理,有時稱其為「CO2封存」。GPU 40特定言之包括至少一用於壓縮來自FGC 36之淨化之富二氧化碳煙氣之壓縮器41及至少一氣體乾燥器70。該氣體乾燥器70用於移除壓縮氣體中至少部分殘留水蒸氣含量。同樣,壓縮氣體中至少部分NOx含量可吸收於氣體乾燥器中。 In a gas compression and purification unit (GPU) 40, a portion of the purified carbon dioxide-rich flue gas from the flue gas condenser 36 is further purified and compressed. Thus, the compressed carbon dioxide exits GPU 40 via conduit 80 and is transported for processing, sometimes referred to as "CO 2 sequestration." GPU 40 specifically includes at least one compressor 41 for compressing carbon dioxide-rich flue gas from FGC 36 and at least one gas dryer 70. The gas dryer 70 is for removing at least a portion of the residual water vapor content of the compressed gas. Similarly, the compressed gas is at least partially absorbed in the NO x content of the gas drier.

圖2闡明氣體乾燥器70之一實施例。該氣體乾燥器70配 置於壓縮器41之下游,如煙氣流動方向所見。將壓縮富二氧化碳煙氣自壓縮器41視情況經由汞吸附器(圖2中未顯示)並經由流體連接管道68輸送至氣體乾燥器70。該氣體乾燥器70具有填料112,該填料包括對水蒸氣具有親和性之分子篩。該分子篩可(例如)包括鋁矽酸鹽礦物質、黏土、多孔玻璃、微孔木炭、沸石、活性碳或具有小分子(諸如水蒸氣)可擴散穿過並吸附之鬆散結構之合成化合物、或其組合。在一實施例中,該分子篩包括水合鋁矽酸鹽。該分子篩可(例如)為3A或4A分子篩。 FIG. 2 illustrates one embodiment of a gas dryer 70. The gas dryer 70 is equipped with Placed downstream of the compressor 41 as seen in the direction of flow of the flue gas. The compressed carbon dioxide rich flue gas is supplied from the compressor 41 via a mercury adsorber (not shown in FIG. 2) and via a fluid connection line 68 to the gas dryer 70 as appropriate. The gas dryer 70 has a packing 112 comprising a molecular sieve having an affinity for water vapor. The molecular sieve may, for example, comprise an aluminosilicate mineral, clay, porous glass, microporous charcoal, zeolite, activated carbon or a synthetic compound having a loose structure through which small molecules (such as water vapor) can diffuse and adsorb, or Its combination. In one embodiment, the molecular sieve comprises hydrated aluminosilicate. The molecular sieve can be, for example, a 3A or 4A molecular sieve.

因此,當壓縮之富二氧化碳煙氣穿過填料112時,氣體中至少部分水蒸氣含量將吸附於填料112之分子篩上。 Thus, as the compressed carbon dioxide rich flue gas passes through the packing 112, at least a portion of the water vapor content of the gas will adsorb to the molecular sieve of the packing 112.

在一實例中,經由管道72離開氣體乾燥器70之壓縮之富二氧化碳煙氣具有30℃之溫度,及恰低於30巴絕對壓力之絕對壓力。氣體之水蒸氣含量亦有所減少。此種氣體適於在CO2液化單元及高壓壓縮單元中進一步處理,且最終送至二氧化碳封存。 In one example, the compressed carbon dioxide rich flue gas exiting gas dryer 70 via line 72 has a temperature of 30 ° C and an absolute pressure just below 30 bar absolute. The water vapor content of the gas is also reduced. This gas is suitable for further processing in the CO 2 liquefaction unit and the high pressure compression unit and is ultimately sent to a carbon dioxide sequestration.

氣體乾燥器70具有再生系統120以間歇再生氣體乾燥器70之水蒸氣吸附能力。配備供給管道122以提供系統120再生氣體。該再生系統使用部分富二氧化碳煙氣流作為再生氣體。用作再生氣體之部分富二氧化碳煙氣流係自煙氣冷凝器36下游及氣體乾燥器70上游提取,如煙氣之流動方向所見。較佳地,用作再生氣體之部分富二氧化碳煙氣流係自煙氣冷凝器36下游及壓縮器41上游提取,如煙氣之流動方向所見。在圖2之實施例中,用作再生氣體之富二氧化 碳煙氣流係直接自煙氣冷凝器下游提取。再生系統120包括一用於加熱再生氣體之加熱器124。加熱迴路126與加熱器124相連,以使加熱介質(諸如蒸汽)於加熱器124中循環。加熱之再生氣體經由流體連通管道128離開加熱器124。將一溫度感應器130配置於管道128中以測量加熱之再生氣體之溫度。將一閥門132配置於加熱迴路126中以控制加熱介質流向加熱器124。溫度感應器130控制閥門132以提供適量加熱介質。為使氣體乾燥器70之填料112物質再生,加熱器124通常可將再生氣體加熱至約130℃至315℃之溫度。在一實施例中,其中,將包括水合鋁矽酸鹽之3A或4A分子篩用作乾燥劑,再生溫度較佳可介於約200℃至290℃之範圍內。分別將再生閥門134、136配置於管道128及148上。在再生序列期間,開啟閥門134、136以使再生氣體穿過氣體乾燥器70。 The gas dryer 70 has a regeneration system 120 to intermittently regenerate the water vapor adsorption capacity of the gas dryer 70. A supply conduit 122 is provided to provide system 120 regeneration gas. The regeneration system uses a portion of the carbon dioxide rich flue gas stream as the regeneration gas. A portion of the carbon dioxide rich flue gas stream used as the regeneration gas is extracted downstream of the flue gas condenser 36 and upstream of the gas dryer 70, as seen in the direction of flow of the flue gas. Preferably, a portion of the carbon dioxide rich flue gas stream used as the regeneration gas is extracted downstream of the flue gas condenser 36 and upstream of the compressor 41, as seen by the direction of flow of the flue gas. In the embodiment of Figure 2, it is used as a rich oxidation of the regeneration gas. The soot flow is extracted directly from the downstream of the flue gas condenser. The regeneration system 120 includes a heater 124 for heating the regeneration gas. Heating circuit 126 is coupled to heater 124 to circulate a heating medium, such as steam, in heater 124. The heated regeneration gas exits the heater 124 via a fluid communication conduit 128. A temperature sensor 130 is disposed in the conduit 128 to measure the temperature of the heated regeneration gas. A valve 132 is disposed in the heating circuit 126 to control the flow of the heating medium to the heater 124. Temperature sensor 130 controls valve 132 to provide an appropriate amount of heating medium. To regenerate the charge 112 material of the gas dryer 70, the heater 124 typically heats the regeneration gas to a temperature of between about 130 ° C and 315 ° C. In one embodiment, wherein the 3A or 4A molecular sieve comprising hydrated aluminosilicate is used as a desiccant, the regeneration temperature is preferably in the range of from about 200 °C to 290 °C. Regenerative valves 134, 136 are disposed on conduits 128 and 148, respectively. During the regeneration sequence, valves 134, 136 are opened to pass the regeneration gas through gas dryer 70.

將氣體乾燥器隔離閥142、144分別配置於管道68、72上。在再生序列期間,關閉閥門142、144以隔離氣體乾燥器70,並將加熱之再生氣體自再生及加熱系統120經由與管道128流體連通之管道146提供至氣體乾燥器70。再生氣體加熱填料112之物質,並導致水蒸氣及NOx之解吸附。含解吸附之水蒸氣及NOx之廢再生氣體經由管道148離開氣體乾燥器70。管道148將廢再生氣體輸送至鍋爐之燃燒區,使其與經由供給管14提供之燃料及經由管道20提供之混合再循環煙氣之氧氣一起燃燒。 Gas dryer isolation valves 142, 144 are disposed on conduits 68, 72, respectively. During the regeneration sequence, valves 142, 144 are closed to isolate gas dryer 70, and heated regeneration gas is supplied from regeneration and heating system 120 to gas dryer 70 via conduit 146 in fluid communication with conduit 128. Heating the regeneration gas 112 of the packing material, resulting in solutions and steam and NO x adsorbed. Containing water vapor and desorption of the NO x regeneration waste gas leaving the gas drier 70 via line 148. The conduit 148 delivers the spent regeneration gas to the combustion zone of the boiler for combustion with the fuel provided via the supply conduit 14 and the oxygen of the mixed recycle flue gas provided via conduit 20.

應瞭解,當閥門142、144關閉時,富二氧化碳氣體不可 經由管道68穿過氣體乾燥器70。根據一實施例,GPU 40可具有兩個並聯氣體乾燥器70,彼等並聯氣體乾燥器70中之一者運作時,使另一並聯氣體乾燥器70進行再生。根據另一實施例,於氣體乾燥器70之填料112再生期間,可將富二氧化碳煙氣排放至大氣。 It should be understood that when the valves 142, 144 are closed, the carbon dioxide rich gas is not available. The gas dryer 70 is passed through a conduit 68. According to an embodiment, GPU 40 may have two parallel gas dryers 70 that, when operating in one of the parallel gas dryers 70, regenerate another parallel gas dryer 70. According to another embodiment, the carbon dioxide rich flue gas may be vented to the atmosphere during regeneration of the packing 112 of the gas dryer 70.

圖3更詳細闡明GPU 40之一實施例。應瞭解,圖3之圖解係示意圖,且GPU可進一步包括氣體純化設備等。 Figure 3 illustrates one embodiment of GPU 40 in more detail. It should be understood that the diagram of FIG. 3 is a schematic diagram, and the GPU may further include a gas purification device or the like.

GPU 40包括至少一壓縮器,其具有至少一及通常二至十個壓縮級以壓縮淨化之富二氧化碳煙氣。各壓縮級可以獨立單元配置。另,如圖3中所示,若干壓縮級可藉由共用驅動裝置操作。圖3之GPU 40包括一壓縮器41,其具有一第一壓縮級42、一第二壓縮級44及一第三壓縮級46。第一至第三壓縮級42、44、46一起形成GPU 40的低壓壓縮單元48。將壓縮級42、44、46連接至一由壓縮器41之馬達52驅動之共同驅動軸50。 GPU 40 includes at least one compressor having at least one and typically two to ten compression stages to compress and purify the carbon dioxide rich flue gas. Each compression stage can be configured in a separate unit. Alternatively, as shown in Figure 3, several compression stages can be operated by a common drive. The GPU 40 of FIG. 3 includes a compressor 41 having a first compression stage 42, a second compression stage 44, and a third compression stage 46. The first through third compression stages 42, 44, 46 together form a low pressure compression unit 48 of the GPU 40. The compression stages 42, 44, 46 are coupled to a common drive shaft 50 that is driven by a motor 52 of the compressor 41.

低壓壓縮單元48可包括一位於若干或所有壓縮級42、44、46下游之中間冷卻單元56。在圖3的GPU 40中,一該可選中間冷卻單元56位於第一壓縮級42下游。中間冷卻單元56包括一氣體冷卻器55及一氣液分離器57。氣體冷卻器55將壓縮之富二氧化碳煙氣冷卻至低於相對於水而言之壓縮之富二氧化碳煙氣之露點溫度之溫度,導致煙氣中水蒸氣冷凝。氣液分離器57自殘留氣體分離出由於氣體於氣體冷卻器55中冷卻所導致之冷凝作用所產生之水滴。 The low pressure compression unit 48 can include an intermediate cooling unit 56 located downstream of some or all of the compression stages 42, 44, 46. In the GPU 40 of FIG. 3, an optional intermediate cooling unit 56 is located downstream of the first compression stage 42. The intermediate cooling unit 56 includes a gas cooler 55 and a gas-liquid separator 57. The gas cooler 55 cools the compressed carbon dioxide rich flue gas to a temperature below the dew point temperature of the compressed carbon dioxide rich flue gas relative to water, resulting in condensation of water vapor in the flue gas. The gas-liquid separator 57 separates the water droplets generated by the condensation caused by the cooling of the gas in the gas cooler 55 from the residual gas.

GPU 40可包括一配置於壓縮級42、44、46中一者下游之 汞吸附器60。在圖3之實施例中,將汞吸附器60配置於第三壓縮級46之下游,即低壓壓縮單元48之下游。應瞭解,汞吸附器60亦可配置於第一壓縮級42之下游,或第二壓縮級44之下游。 GPU 40 may include a downstream of one of compression stages 42, 44, 46. Mercury adsorber 60. In the embodiment of FIG. 3, the mercury adsorber 60 is disposed downstream of the third compression stage 46, downstream of the low pressure compression unit 48. It should be appreciated that the mercury adsorber 60 can also be disposed downstream of the first compression stage 42 or downstream of the second compression stage 44.

部分淨化之富二氧化碳煙氣經由管道38進入GPU 40中,並導入第一壓縮級42中。管道54視情況經由中間冷卻單元56將壓縮氣體自第一壓縮級42輸送至第二壓縮級44。管道58視情況經由未顯示之中間冷卻單元將壓縮氣體自第二壓縮級44輸送至第三壓縮級46。管道66將壓縮氣體自第三壓縮級46輸送至汞吸附器60。管道68將壓縮氣體自汞吸附器60輸送至氣體乾燥器70。 The partially purified carbon dioxide rich flue gas enters GPU 40 via conduit 38 and is introduced into first compression stage 42. The conduit 54 transports compressed gas from the first compression stage 42 to the second compression stage 44 via the intermediate cooling unit 56 as appropriate. The conduit 58 transports compressed gas from the second compression stage 44 to the third compression stage 46 via an intermediate cooling unit, not shown, as appropriate. The conduit 66 delivers compressed gas from the third compression stage 46 to the mercury adsorber 60. The conduit 68 delivers compressed gas from the mercury adsorber 60 to the gas dryer 70.

汞吸附器60具有一種填料,該填料包括一種對汞具有親和性之汞吸附劑。該吸附劑可(例如)為硫浸漬之活性碳,或另一已知本身對汞具親和性之物質。因此,當壓縮之富二氧化碳煙氣穿過填料時,該氣體中至少部分汞含量將吸附於填料之汞吸附劑上。將已移除至少部分汞含量之壓縮之富二氧化碳煙氣經由流體連通管道68輸送至氣體乾燥器70。 The mercury adsorber 60 has a filler comprising a mercury adsorbent having an affinity for mercury. The adsorbent can, for example, be a sulfur impregnated activated carbon, or another substance known to have an affinity for mercury itself. Thus, as the compressed carbon dioxide-rich flue gas passes through the packing, at least a portion of the mercury content of the gas will adsorb to the mercury adsorbent of the packing. The compressed carbon dioxide rich flue gas from which at least a portion of the mercury content has been removed is delivered to the gas dryer 70 via the fluid communication conduit 68.

當填料按照其吸附能力吸附汞時,以新填料替換廢填料。根據一實施例,GPU 40可具有兩並聯汞吸附器60,彼等並聯吸附器60中一者運作時,使另一並聯吸附器填料替換。根據另一實施例,富二氧化碳煙氣可於填料替換期間排放至大氣。 When the filler adsorbs mercury according to its adsorption capacity, the waste filler is replaced with a new filler. According to an embodiment, GPU 40 may have two parallel mercury adsorbers 60 that, when operating in one of the parallel adsorbers 60, replace the other parallel adsorber packing. According to another embodiment, the carbon dioxide rich flue gas may be vented to the atmosphere during the replacement of the filler.

GPU 40包括至少一氣體乾燥器70。氣體乾燥器70用於移 除壓縮氣體中至少部分殘留水蒸氣含量。同樣,壓縮氣體中至少部分NOx含量可吸附於氣體乾燥器中。 GPU 40 includes at least one gas dryer 70. A gas dryer 70 is used to remove at least a portion of the residual water vapor content of the compressed gas. Similarly, the compressed gas is at least partially adsorbed on the NO x content of the gas drier.

自汞吸附器60之壓縮之富二氧化碳煙氣經由流體連通管道68進入氣體乾燥器70。氣體乾燥器70具有填料112,該填料包括對水蒸氣具有親和性之分子篩。分子篩可(例如)包括鋁矽酸鹽礦物質、黏土、多孔玻璃、微孔木炭、沸石、活性碳或具有小分子(諸如水蒸氣)可擴散穿過並吸附之鬆散結構之合成化合物、或其組合。在一實施例中,該分子篩包括水合鋁矽酸鹽。該分子篩可(例如)為3A或4A分子篩。因此,當壓縮之富二氧化碳煙氣穿過填料112時,氣體中至少部分水蒸氣含量將吸附於填料112之分子篩上。 The compressed carbon dioxide rich flue gas from the mercury adsorber 60 enters the gas dryer 70 via a fluid communication conduit 68. The gas dryer 70 has a packing 112 comprising a molecular sieve having an affinity for water vapor. The molecular sieve may, for example, comprise an aluminosilicate mineral, clay, porous glass, microporous charcoal, zeolite, activated carbon or a synthetic compound having a loose structure through which small molecules such as water vapor can diffuse and adsorb, or combination. In one embodiment, the molecular sieve comprises hydrated aluminosilicate. The molecular sieve can be, for example, a 3A or 4A molecular sieve. Thus, as the compressed carbon dioxide rich flue gas passes through the packing 112, at least a portion of the water vapor content of the gas will adsorb to the molecular sieve of the packing 112.

在一實例中,經由管道72離開氣體乾燥器70之壓縮之富二氧化碳煙氣具有30℃之溫度,及恰低於30巴絕對壓力之絕對壓力。氣體中水蒸氣及NOx含量亦有所減少。此種氣體適於在CO2液化單元74及高壓壓縮單元76中進一步處理,且最終經由管道80送至二氧化碳封存78,如圖3中所示。例如,CO2液化單元74之熱交換器(亦稱為冷卻箱)可由鋁製得。 In one example, the compressed carbon dioxide rich flue gas exiting gas dryer 70 via line 72 has a temperature of 30 ° C and an absolute pressure just below 30 bar absolute. NO x gas and water vapor content also decreased. Such a gas adapted in a CO 2 liquefaction unit 74 and the high pressure compression unit 76 for further processing and ultimately sent to the carbon dioxide storage 78 via pipe 80, as shown in FIG. 3. For example, the heat exchanger (also referred to as a cooling tank) of the CO 2 liquefaction unit 74 can be made of aluminum.

氣體乾燥器70具有再生系統120以間歇再生氣體乾燥器70之水蒸氣吸附能力。配備供給管道122以提供系統120再生氣體。該再生系統使用部分富二氧化碳煙氣流作為再生氣體。用作再生氣體之部分富二氧化碳煙氣流係自煙氣冷凝器下游及氣體乾燥器上游提取,如煙氣之流動方向所 見。在圖3之實施例中,用作再生氣體之富二氧化碳煙氣流係直接自煙氣冷凝器下游提取。再生系統120包括一加熱再生氣體之加熱器124。使加熱迴路126連接至加熱器124以使加熱介質(諸如蒸汽)於加熱器124中循環。加熱之再生氣體經由流體連通管道128離開加熱器124。將一溫度感應器130配置於管道128中以測量加熱之再生氣體之溫度。將一閥門132配置於加熱迴路126中以控制加熱介質流向加熱器124。溫度感應器130控制閥門132以提供適量加熱介質。為再生氣體乾燥器70之填料112物質,加熱器124通常可將再生氣體加熱至約130℃至315℃之溫度。在一實施例中,其中,將包括水合鋁矽酸鹽之3A或4A分子篩用作乾燥劑,再生溫度較佳可介於約200℃至290℃之範圍內。 The gas dryer 70 has a regeneration system 120 to intermittently regenerate the water vapor adsorption capacity of the gas dryer 70. A supply conduit 122 is provided to provide system 120 regeneration gas. The regeneration system uses a portion of the carbon dioxide rich flue gas stream as the regeneration gas. The carbon dioxide-rich flue gas stream used as the regeneration gas is extracted from the downstream of the flue gas condenser and upstream of the gas dryer, such as the flow direction of the flue gas. see. In the embodiment of Figure 3, the carbon dioxide rich flue gas stream used as the regeneration gas is extracted directly from the downstream of the flue gas condenser. The regeneration system 120 includes a heater 124 that heats the regeneration gas. Heating circuit 126 is coupled to heater 124 to circulate a heating medium, such as steam, in heater 124. The heated regeneration gas exits the heater 124 via a fluid communication conduit 128. A temperature sensor 130 is disposed in the conduit 128 to measure the temperature of the heated regeneration gas. A valve 132 is disposed in the heating circuit 126 to control the flow of the heating medium to the heater 124. Temperature sensor 130 controls valve 132 to provide an appropriate amount of heating medium. To regenerate the material 112 of the gas dryer 70, the heater 124 typically heats the regeneration gas to a temperature of between about 130 ° C and 315 ° C. In one embodiment, wherein the 3A or 4A molecular sieve comprising hydrated aluminosilicate is used as a desiccant, the regeneration temperature is preferably in the range of from about 200 °C to 290 °C.

分別將再生閥門134、136配置於管道128及148上。在再生序列期間,開啟閥門134、136以使再生氣體穿過氣體乾燥器70。 Regenerative valves 134, 136 are disposed on conduits 128 and 148, respectively. During the regeneration sequence, valves 134, 136 are opened to pass the regeneration gas through gas dryer 70.

分別將氣體乾燥器隔離閥142、144配置於管道68、72上。在再生序列期間,關閉閥門142、144以隔離氣體乾燥器70,並將加熱之再生氣體自再生及加熱系統120經由與管道128流體連通之管道146提供至氣體乾燥器70。再生氣體加熱填料112物質,並導致水蒸氣及NOx解吸附。含解吸附之水蒸氣及NOx之廢再生氣體經由管道148離開氣體乾燥器70。管道148將廢再生氣體輸送至鍋爐之燃燒區,使其與經由供給管14提供之燃料及經由管道20提供之混合再循 環煙氣之氧氣一起燃燒。 Gas dryer isolation valves 142, 144 are disposed on conduits 68, 72, respectively. During the regeneration sequence, valves 142, 144 are closed to isolate gas dryer 70, and heated regeneration gas is supplied from regeneration and heating system 120 to gas dryer 70 via conduit 146 in fluid communication with conduit 128. A filler material 112 is heated regeneration gas, and water vapor and NO x resulting in desorption. Containing water vapor and desorption of the NO x regeneration waste gas leaving the gas drier 70 via line 148. The conduit 148 delivers the spent regeneration gas to the combustion zone of the boiler for combustion with the fuel provided via the supply conduit 14 and the oxygen of the mixed recycle flue gas provided via conduit 20.

應瞭解,當關閉閥門142、144時,富二氧化碳氣體未經由管道68穿過氣體乾燥器70。根據一實施例,GPU 40可具有兩個並聯氣體乾燥器70,彼等並聯氣體乾燥器70中一者運作時,使另一並聯氣體乾燥器70再生。根據另一實施例,於氣體乾燥器70之填料112再生期間,可將富二氧化碳煙氣排放至大氣。 It will be appreciated that the carbon dioxide rich gas does not pass through the gas dryer 70 via conduit 68 when the valves 142, 144 are closed. According to an embodiment, GPU 40 may have two parallel gas dryers 70 that, when operating in one of the parallel gas dryers 70, regenerate another parallel gas dryer 70. According to another embodiment, the carbon dioxide rich flue gas may be vented to the atmosphere during regeneration of the packing 112 of the gas dryer 70.

雖然本發明已參考若干較佳實施例加以描述,但熟習此項技術者將理解,對其元件可作多種變化且可替代等效項,而不脫離本發明之範圍。此外,可作諸多修改以使特定狀況或物質適應本發明教義而不脫離其範圍精髓。因此,希望本發明不限於以最佳模式揭示用於實施本發明之特定實施例,但本發明將包括屬於隨附專利申請範圍之所有實施例。而且,使用術語第一、第二等並不表示任何順序或重要性,相反,術語第一、第二等係用以區分不同元件。 While the invention has been described with respect to the embodiments of the present invention, it will be understood In addition, many modifications may be made to adapt a particular situation or substance to the teachings of the invention. Therefore, it is intended that the invention not be limited to the particular embodiments of the invention, Moreover, the use of the terms first, second, etc. does not denote any <RTIgt; </ RTI> order or importance. Instead, the terms first, second, etc. are used to distinguish different elements.

1‧‧‧鍋爐系統 1‧‧‧Boiler system

2‧‧‧鍋爐 2‧‧‧Boiler

4‧‧‧汽輪機發電系統 4‧‧‧ Turbine Power Generation System

6‧‧‧氣體淨化系統 6‧‧‧Gas purification system

8‧‧‧粉塵移除過濾器 8‧‧‧dust removal filter

10‧‧‧濕式洗滌器 10‧‧‧ Wet scrubber

12‧‧‧燃料儲存裝置 12‧‧‧fuel storage device

14‧‧‧供給管 14‧‧‧Supply tube

16‧‧‧氧氣源 16‧‧‧Oxygen source

18‧‧‧供給管道 18‧‧‧Supply pipeline

20‧‧‧管道 20‧‧‧ Pipes

22‧‧‧蒸汽管 22‧‧‧ steam pipe

24‧‧‧管道 24‧‧‧ Pipes

26‧‧‧管道 26‧‧‧ Pipes

28‧‧‧循環泵 28‧‧‧Circulating pump

30‧‧‧漿液循環管 30‧‧‧Slurry circulation tube

32‧‧‧管道 32‧‧‧ Pipes

33‧‧‧氣體分流點 33‧‧‧ gas distribution point

34‧‧‧管道 34‧‧‧ Pipes

36‧‧‧煙氣冷凝器 36‧‧‧Fume condenser

37‧‧‧處理管 37‧‧‧Processing tube

38‧‧‧管道 38‧‧‧ Pipes

40‧‧‧GPU 40‧‧‧GPU

41‧‧‧壓縮機 41‧‧‧Compressor

42‧‧‧第一壓縮級 42‧‧‧First compression stage

44‧‧‧第二壓縮級 44‧‧‧second compression stage

46‧‧‧第三壓縮級 46‧‧‧ third compression stage

48‧‧‧低壓壓縮單元 48‧‧‧Low compression unit

50‧‧‧驅動軸 50‧‧‧ drive shaft

52‧‧‧馬達 52‧‧‧Motor

54‧‧‧管道 54‧‧‧ Pipes

55‧‧‧氣體冷卻器 55‧‧‧ gas cooler

56‧‧‧中間冷卻單元 56‧‧‧Intermediate cooling unit

57‧‧‧氣液分離器 57‧‧‧ gas-liquid separator

60‧‧‧汞吸附器 60‧‧‧ Mercury adsorber

64‧‧‧管道 64‧‧‧ Pipes

66‧‧‧管道 66‧‧‧ Pipes

68‧‧‧管道 68‧‧‧ Pipes

70‧‧‧氣體乾燥器 70‧‧‧ gas dryer

72‧‧‧管道 72‧‧‧ Pipes

74‧‧‧CO2液化單元 74‧‧‧CO 2 liquefaction unit

76‧‧‧高壓壓縮單元 76‧‧‧High pressure compression unit

78‧‧‧二氧化碳封存 78‧‧‧Carbon dioxide storage

80‧‧‧管道 80‧‧‧ Pipes

112‧‧‧填料 112‧‧‧Filling

120‧‧‧再生系統 120‧‧‧Regeneration system

122‧‧‧供給管道 122‧‧‧Supply pipeline

124‧‧‧加熱器 124‧‧‧heater

126‧‧‧加熱迴路 126‧‧‧heating circuit

128‧‧‧管道 128‧‧‧ Pipes

130‧‧‧溫度感應器 130‧‧‧temperature sensor

132‧‧‧閥門 132‧‧‧ Valve

134‧‧‧再生閥門 134‧‧‧Regeneration valve

136‧‧‧再生閥門 136‧‧‧Regeneration valve

142‧‧‧隔離閥 142‧‧‧Isolation valve

144‧‧‧隔離閥 144‧‧‧Isolation valve

146‧‧‧管道 146‧‧‧ Pipes

148‧‧‧管道 148‧‧‧ Pipes

圖1示意性地描述鍋爐系統之一實施例。 Figure 1 schematically depicts an embodiment of a boiler system.

圖2示意性地描述氣體乾燥器之一實施例。 Figure 2 schematically depicts an embodiment of a gas dryer.

圖3示意性地描述GPU之一實施例。 FIG. 3 schematically depicts one embodiment of a GPU.

1‧‧‧鍋爐系統 1‧‧‧Boiler system

2‧‧‧鍋爐 2‧‧‧Boiler

4‧‧‧汽輪機發電系統 4‧‧‧ Turbine Power Generation System

6‧‧‧氣體淨化系統 6‧‧‧Gas purification system

8‧‧‧粉塵移除過濾器 8‧‧‧dust removal filter

10‧‧‧濕式洗滌器 10‧‧‧ Wet scrubber

12‧‧‧燃料儲存裝置 12‧‧‧fuel storage device

14‧‧‧供給管 14‧‧‧Supply tube

16‧‧‧氧氣源 16‧‧‧Oxygen source

18‧‧‧供給管道 18‧‧‧Supply pipeline

20‧‧‧管道 20‧‧‧ Pipes

22‧‧‧蒸汽管 22‧‧‧ steam pipe

24‧‧‧管道 24‧‧‧ Pipes

26‧‧‧管道 26‧‧‧ Pipes

28‧‧‧循環泵 28‧‧‧Circulating pump

30‧‧‧漿液循環管 30‧‧‧Slurry circulation tube

32‧‧‧管道 32‧‧‧ Pipes

33‧‧‧氣體分流點 33‧‧‧ gas distribution point

34‧‧‧管道 34‧‧‧ Pipes

36‧‧‧煙氣冷凝器 36‧‧‧Fume condenser

37‧‧‧處理管 37‧‧‧Processing tube

38‧‧‧管道 38‧‧‧ Pipes

40‧‧‧GPU 40‧‧‧GPU

80‧‧‧管道 80‧‧‧ Pipes

122‧‧‧供給管道 122‧‧‧Supply pipeline

148‧‧‧管道 148‧‧‧ Pipes

Claims (10)

一種淨化於鍋爐中在含氧氣之氣體存在下燃燒燃料所產生之富二氧化碳煙氣之方法,該方法包括:於煙氣冷凝器中移除煙氣中至少部分水含量;於該煙氣冷凝器下游配置之壓縮器中壓縮富二氧化碳煙氣,如煙氣流動方向所見;使用該壓縮器下游配置之氣體乾燥器中之分子篩移除煙氣中至少部分殘留水含量;藉由提取煙氣冷凝器下游及壓縮器上游之部分富二氧化碳煙氣,將所提取煙氣加熱至適於分子篩再生之溫度,使該加熱煙氣通過氣體乾燥器以解吸附分子篩之水及NOx而使該分子篩再生;及使含解吸附水及NOx之富二氧化碳煙氣返回至鍋爐。 A method for purifying carbon dioxide-rich flue gas produced by burning a fuel in a boiler in the presence of an oxygen-containing gas, the method comprising: removing at least a portion of water content of the flue gas in a flue gas condenser; and the flue gas condenser Compressing carbon dioxide-rich flue gas in a downstream configured compressor, as seen in the direction of flow of the flue gas; using molecular sieves in a gas dryer disposed downstream of the compressor to remove at least a portion of residual water content in the flue gas; by extracting a flue gas condenser section upstream and downstream of the carbon dioxide rich flue gas of the compressor, the extracted flue gas is heated to a temperature suitable for regeneration of the molecular sieve, so that the flue gas is heated in order to desorb water and gas dryer through a sieve of the NO x regeneration of the molecular sieve; and adsorbed water-containing solutions of NO x and CO rich flue gas is returned to the boiler. 如請求項1之方法,其中該溫度係介於130℃至315℃之範圍內。 The method of claim 1, wherein the temperature is in the range of 130 ° C to 315 ° C. 如請求項2之方法,其中該溫度係介於200℃至290℃之範圍內。 The method of claim 2, wherein the temperature is in the range of from 200 °C to 290 °C. 如請求項1之方法,其進一步包括使煙氣流在煙氣冷凝器上游進行粉塵移除,如煙氣流動方向所見。 The method of claim 1, further comprising subjecting the flue gas stream to dust removal upstream of the flue gas condenser, as seen in the direction of flow of the flue gas. 如請求項1之方法,其進一步包括使煙氣流在煙氣冷凝器上游進行二氧化硫移除,如煙氣流動方向所見。 The method of claim 1, further comprising subjecting the flue gas stream to sulfur dioxide removal upstream of the flue gas condenser, as seen in the direction of flow of the flue gas. 一種用於淨化於鍋爐(2)中在含氧氣之氣體存在下燃燒燃料所產生之富二氧化碳煙氣流之氣體純化系統,該氣體純化系統包括: 一種用於移除煙氣中至少部分水含量之煙氣冷凝器(36);一種用於壓縮富二氧化碳煙氣之該煙氣冷凝器下游配置之壓縮器(41),如富二氧化碳煙氣之流動方向所見;一種用於移除煙氣中至少部分殘留水含量之壓縮器(41)下游配置之含分子篩之氣體乾燥器(70),如富二氧化碳煙氣之流動方向所見;一種用於解吸附分子篩之水及NOx之氣體乾燥器再生系統(120);該氣體乾燥器再生系統(120)包括:一用於提取煙氣冷凝器(36)下游及壓縮器(41)上游之部分富二氧化碳煙氣流並將該部分富二氧化碳煙氣流引導經過氣體乾燥器(70)並返回至鍋爐(2)之氣體導管(122),及一用於將所提取之部分富二氧化碳煙氣在其進入氣體乾燥器(70)前加熱至適於分子篩再生之溫度之煙氣加熱器(124)。 A gas purification system for purifying a carbon dioxide-rich flue gas stream produced by burning a fuel in a boiler (2) in the presence of an oxygen-containing gas, the gas purification system comprising: a method for removing at least a portion of water content of the flue gas a flue gas condenser (36); a compressor (41) disposed downstream of the flue gas condenser for compressing the carbon dioxide rich flue gas, as seen in the flow direction of the carbon dioxide rich flue gas; and a method for removing at least the flue gas the water content of the residual portion of the compressor (41) arranged downstream of the molecular sieve-containing gas dryer (70), the direction of flow as seen in the carbon dioxide rich flue gas; water desorption of a gas and the molecular sieve of the NO x regeneration system for drier (120); the gas dryer regeneration system (120) includes: a portion of a carbon dioxide-rich flue gas stream downstream of the flue gas condenser (36) and upstream of the compressor (41) and directing the portion of the carbon dioxide-rich flue gas stream The gas dryer (70) is returned to the gas conduit (122) of the boiler (2), and a portion is used to heat the extracted portion of the carbon dioxide-rich flue gas to be suitable for molecular sieve regeneration before it enters the gas dryer (70) The temperature of the flue gas heater (124). 如請求項6之煙氣處理系統,其中該溫度係介於130℃至315℃範圍內。 The flue gas treatment system of claim 6, wherein the temperature is in the range of 130 ° C to 315 ° C. 如請求項7之煙氣處理系統,其中該溫度係介於200℃至290℃範圍內。 The flue gas treatment system of claim 7, wherein the temperature is in the range of from 200 °C to 290 °C. 如請求項6之煙氣處理系統,其進一步包括一該煙氣冷凝器(36)上游配置之粉塵移除過濾器(8),如煙氣之流動方向所見。 The flue gas treatment system of claim 6, further comprising a dust removal filter (8) disposed upstream of the flue gas condenser (36), as seen in the direction of flow of the flue gas. 如請求項6之煙氣處理系統,其進一步包括一該煙氣冷凝器(36)上游之用於移除二氧化硫之洗滌器(10),如煙氣之流動方向所見。 The flue gas treatment system of claim 6 further comprising a scrubber (10) upstream of the flue gas condenser (36) for removing sulfur dioxide, as seen in the direction of flow of the flue gas.
TW101123321A 2011-06-29 2012-06-28 A method of cleaning a carbon dioxide rich flue gas TW201304851A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11017197 2011-06-29

Publications (1)

Publication Number Publication Date
TW201304851A true TW201304851A (en) 2013-02-01

Family

ID=48168912

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101123321A TW201304851A (en) 2011-06-29 2012-06-28 A method of cleaning a carbon dioxide rich flue gas

Country Status (1)

Country Link
TW (1) TW201304851A (en)

Similar Documents

Publication Publication Date Title
AU2012213152B2 (en) Apparatus and system for NOX reduction in wet flue gas
CA2830701C (en) A method of treating a carbon dioxide rich flue gas and a flue gas treatment system
AU2012206357B2 (en) A method of cleaning a carbon dioxide containing gas, and a carbon dioxide purification system
US8702845B2 (en) System and method for low NOx emitting regeneration of desiccants
US20110139046A1 (en) Emissionless Oxyfuel Combustion Process and a Combustion System Using Such a Process
US8951488B2 (en) Method and system for NOx reduction in flue gas
EP2623178A1 (en) A gas processing unit comprising a device for removing nitrogen oxides.
EP2540377A1 (en) A method of cleaning a carbon dioxide rich flue gas
EP2724770A1 (en) Absorption unit for drying flue gas
TW201304851A (en) A method of cleaning a carbon dioxide rich flue gas
TW201336573A (en) A gas processing unit comprising a device for removing nitrogen oxides
Stallmann et al. Apparatus and system for NO x reduction in wet flue gas
JP2005164205A (en) Combustion method for combustion equipment, and combustion equipment
Stallmann et al. Method and system for NO x reduction in flue gas
CZ28872U1 (en) Solid sorbent-based engineering system for catching CO2 from combustion products