TW201336074A - Semiconductor structure and method for forming the same - Google Patents

Semiconductor structure and method for forming the same Download PDF

Info

Publication number
TW201336074A
TW201336074A TW101106357A TW101106357A TW201336074A TW 201336074 A TW201336074 A TW 201336074A TW 101106357 A TW101106357 A TW 101106357A TW 101106357 A TW101106357 A TW 101106357A TW 201336074 A TW201336074 A TW 201336074A
Authority
TW
Taiwan
Prior art keywords
source
dielectric layer
drain region
semiconductor structure
substrate
Prior art date
Application number
TW101106357A
Other languages
Chinese (zh)
Other versions
TWI456765B (en
Inventor
Chien-Wen Chu
Wing-Chor Chan
Shyi-Yuan Wu
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Priority to TW101106357A priority Critical patent/TWI456765B/en
Publication of TW201336074A publication Critical patent/TW201336074A/en
Application granted granted Critical
Publication of TWI456765B publication Critical patent/TWI456765B/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)
  • Non-Volatile Memory (AREA)

Abstract

A semiconductor structure and a method for forming the same are provided. The semiconductor structure comprises a substrate, a first source/drain region, a second source/drain region, a first stack structure and a second stack structure. The first source/drain region is formed in the substrate. The second source/drain region is formed in the substrate. The first stack structure is on the substrate between the first source/drain region and the second source/drain region. The first stack structure comprises a first dielectric layer and a first conductive layer on the first dielectric layer. The second stack structure is on the first stack structure. The second stack structure comprises a second dielectric layer and a second conductive layer on the second dielectric layer.

Description

半導體結構及其形成方法Semiconductor structure and method of forming same

本發明係有關於半導體結構及其形成方法,特別係有關於金屬氧化半導體及其形成方法。The present invention relates to semiconductor structures and methods of forming the same, and more particularly to metal oxide semiconductors and methods of forming the same.

在近幾十年間,半導體業界持續縮小半導體結構的尺寸,並同時改善速率、效能、密度及積體電路的單位成本。In recent decades, the semiconductor industry has continued to shrink the size of semiconductor structures while improving the unit cost of speed, performance, density, and integrated circuits.

舉例來說,為了提高半導體結構例如橫向雙擴散金屬氧化半導體(LDMOS)或延伸汲極金屬氧化半導體(EDMOS)的崩潰電壓(breakdown voltage; BVdss),一種方法係降低汲極區的摻雜濃度並增加漂移長度。然而,此方法會提高半導體結構的特定開啟電阻(Ron,sp),使得半導體結構無法得到良好權衡的Ron,sp與BVdss,以得到期望較小的靈敏值(figure of merit; FOM= Ron,sp/BVdss)。For example, in order to increase the breakdown voltage (BVdss) of a semiconductor structure such as a lateral double-diffused metal oxide semiconductor (LDMOS) or an extended-dip metal-oxide-semiconductor (EDMOS), one method is to reduce the doping concentration of the drain region and Increase the drift length. However, this method increases the specific turn-on resistance (Ron, sp) of the semiconductor structure, so that the semiconductor structure cannot obtain good trade-offs of Ron, sp and BVdss to obtain a desired small sensitivity (fimure of merit; FOM= Ron, sp /BVdss).

本揭露係有關於半導體結構及其形成方法。半導體結構的操作效能佳。The disclosure relates to semiconductor structures and methods of forming the same. The semiconductor structure operates well.

提供一種半導體結構。半導體結構包括基底、第一源/汲極區、第二源/汲極區、第一堆疊結構與第二堆疊結構。第一源/汲極區形成於基底中。第二源/汲極區形成於基底中。第一堆疊結構位於第一源/汲極區與第二源/汲極區之間的基底上。第一堆疊結構包括第一介電層與第一導電層。第一導電層位於第一介電層上。第二堆疊結構位於第一堆疊結構上。第二堆疊結構包括第二介電層與第二導電層。第二導電層位於第二介電層上。A semiconductor structure is provided. The semiconductor structure includes a substrate, a first source/drain region, a second source/drain region, a first stack structure, and a second stack structure. The first source/drain region is formed in the substrate. A second source/drain region is formed in the substrate. The first stack structure is on a substrate between the first source/drain region and the second source/drain region. The first stack structure includes a first dielectric layer and a first conductive layer. The first conductive layer is on the first dielectric layer. The second stack structure is on the first stack structure. The second stack structure includes a second dielectric layer and a second conductive layer. The second conductive layer is on the second dielectric layer.

提供一種半導體結構的形成方法。方法包括以下步驟。形成第一源/汲極區於基底中。形成第二源/汲極區於基底中。形成第一介電層於第一源/汲極區與第二源/汲極區之間的基底上,並形成第一導電層於第一介電層上,以形成第一堆疊結構。形成第二介電層於第一堆疊結構的第一導電層上,並形成第二導電層於第二介電層上,以形成第二堆疊結構。A method of forming a semiconductor structure is provided. The method includes the following steps. A first source/drain region is formed in the substrate. A second source/drain region is formed in the substrate. Forming a first dielectric layer on the substrate between the first source/drain region and the second source/drain region, and forming a first conductive layer on the first dielectric layer to form a first stacked structure. Forming a second dielectric layer on the first conductive layer of the first stacked structure and forming a second conductive layer on the second dielectric layer to form a second stacked structure.

下文特舉較佳實施例,並配合所附圖式,作詳細說明如下:DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the preferred embodiment will be described in detail with reference to the accompanying drawings.

第一實施例First embodiment

第1圖繪示半導體結構的上視圖。第2圖繪示第1圖中半導體結構沿AB線的剖面圖。第3圖繪示第1圖中半導體結構沿CD線的剖面圖。Figure 1 shows a top view of the semiconductor structure. 2 is a cross-sectional view of the semiconductor structure taken along line AB in FIG. 1. Figure 3 is a cross-sectional view of the semiconductor structure taken along line CD in Figure 1.

請參照第2圖與第3圖,半導體結構包括基底102。舉例來說,基底102可包括塊矽(bulk silicon)、絕緣層上覆矽(silicon on insulator; SOI)等等。基底102可由磊晶製程或非磊晶製程形成。第一摻雜區104包括摻雜井106與摻雜井108。摻雜井106係利用佈植步驟形成於基底102中。摻雜井108係利用佈植步驟形成於摻雜井106。第二摻雜區110係利用佈植步驟形成於第一摻雜區104的摻雜井106中。第一源/汲極區112係利用佈植步驟形成於第一摻雜區104的摻雜井108中。第二源/汲極區114係利用佈植步驟形成於第二摻雜區110中。重摻雜區116係利用佈植步驟形成於第二摻雜區110中。Referring to FIGS. 2 and 3, the semiconductor structure includes a substrate 102. For example, substrate 102 can include bulk silicon, silicon on insulator (SOI), and the like. The substrate 102 can be formed by an epitaxial process or a non-epilation process. The first doped region 104 includes a doping well 106 and a doping well 108. The doping well 106 is formed in the substrate 102 using a implantation step. The doping well 108 is formed in the doping well 106 using a implantation step. The second doped region 110 is formed in the doping well 106 of the first doped region 104 using a implantation step. The first source/drain region 112 is formed in the doping well 108 of the first doped region 104 using a implantation step. The second source/drain region 114 is formed in the second doping region 110 using a implantation step. The heavily doped region 116 is formed in the second doped region 110 using a implantation step.

請參照第1圖與第2圖,數個互相分開的絕緣結構118係形成於第一源/汲極區112與第二源/汲極區114之間的第一摻雜區104的摻雜井106與摻雜井108上。絕緣結構118並不限於如第2圖所示由局部矽氧化(local oxidation of silicon; LOCOS)製程形成的場氧化物(FOX)。於實施例中,絕緣結構118可包括淺溝槽隔離(STI)、深溝槽隔離(DTI)或其他合適的結構。Referring to FIGS. 1 and 2, a plurality of mutually separated insulating structures 118 are doped in the first doping region 104 between the first source/drain region 112 and the second source/drain region 114. Well 106 and doping well 108. The insulating structure 118 is not limited to the field oxide (FOX) formed by a local oxidation of silicon (LOCOS) process as shown in FIG. In an embodiment, the insulating structure 118 may comprise shallow trench isolation (STI), deep trench isolation (DTI), or other suitable structure.

請參照第2圖與第3圖,第一堆疊結構120係形成於第一源/汲極區112與第二源/汲極區114之間的第一摻雜區104與第二摻雜區110上。第一堆疊結構120包括第一介電層122與第一導電層124。第一介電層122係形成在第一源/汲極區112與第二源/汲極區114之間的第一摻雜區104與第二摻雜區110上。第一導電層124係形成在第一介電層122上。於實施例中,舉例來說,第一堆疊結構120係在基底102上形成介電材料(未顯示),並在介電材料上形成導電材料(未顯示),然後圖案化介電材料與導電材料所形成。介電材料與導電材料可利用圖案化的罩幕層進行蝕刻步驟而同時圖案化,使得形成的第一介電層122的側邊係對齊第一導電層124的側邊。第一介電層122可包括氧化物或氮化物,例如氧化矽、氮化矽、或氮氧化矽。舉例來說,第一介電層122係為氧化物,或者具有氧化物-氮化物-氧化物(oxide-nitride-oxide; ONO)結構。第一導電層124可包括多晶矽、金屬矽化物、金屬或其他合適的材料。Referring to FIGS. 2 and 3 , the first stacked structure 120 is formed in the first doping region 104 and the second doping region between the first source/drain region 112 and the second source/drain region 114 . 110 on. The first stacked structure 120 includes a first dielectric layer 122 and a first conductive layer 124. The first dielectric layer 122 is formed on the first doping region 104 and the second doping region 110 between the first source/drain region 112 and the second source/drain region 114. The first conductive layer 124 is formed on the first dielectric layer 122. In an embodiment, for example, the first stack structure 120 forms a dielectric material (not shown) on the substrate 102, and forms a conductive material (not shown) on the dielectric material, and then patterns the dielectric material and the conductive material. The material is formed. The dielectric material and the conductive material may be patterned while etching using the patterned mask layer such that the sides of the formed first dielectric layer 122 are aligned with the sides of the first conductive layer 124. The first dielectric layer 122 may include an oxide or a nitride such as hafnium oxide, tantalum nitride, or hafnium oxynitride. For example, the first dielectric layer 122 is an oxide or has an oxide-nitride-oxide (ONO) structure. The first conductive layer 124 can comprise polysilicon, metal halide, metal, or other suitable material.

請參照第2圖與第3圖,第二堆疊結構126係形成於第一堆疊結構120上。第二堆疊結構126包括第二介電層128與形成在第二介電層128上的第二導電層130。於實施例中,舉例來說,第二堆疊結構126係在形成介電材料(未顯示),並在介電材料上形成導電材料(未顯示),然後圖案化介電材料與導電材料所形成。介電材料與導電材料可利用圖案化的罩幕層進行蝕刻步驟而同時圖案化,使得形成的第二介電層128的側邊係對齊第二導電層130的側邊。第二介電層128可包括氧化物或氮化物,例如氧化矽、氮化矽、或氮氧化矽。舉例來說,第二介電層128係為氧化物,或者具有氧化物-氮化物-氧化物(oxide-nitride-oxide; ONO)結構。第二導電層130可包括多晶矽、金屬矽化物、金屬或其他合適的材料。Referring to FIGS. 2 and 3 , the second stack structure 126 is formed on the first stack structure 120 . The second stack structure 126 includes a second dielectric layer 128 and a second conductive layer 130 formed on the second dielectric layer 128. In an embodiment, for example, the second stack structure 126 is formed by forming a dielectric material (not shown) and forming a conductive material (not shown) on the dielectric material, and then patterning the dielectric material and the conductive material. . The dielectric material and the conductive material may be patterned simultaneously using a patterned mask layer such that the sides of the formed second dielectric layer 128 are aligned with the sides of the second conductive layer 130. The second dielectric layer 128 may include an oxide or a nitride such as hafnium oxide, tantalum nitride, or hafnium oxynitride. For example, the second dielectric layer 128 is an oxide or has an oxide-nitride-oxide (ONO) structure. The second conductive layer 130 may include polysilicon, metal halide, metal, or other suitable material.

請參照第1圖與第2圖,第一堆疊結構120具有數個互相分開的凸出部132。第一堆疊結構120的凸出部132係延伸超過第二堆疊結構126。此外,凸出部132係對應地延伸至絕緣結構118上。Referring to FIGS. 1 and 2, the first stack structure 120 has a plurality of protrusions 132 that are separated from each other. The projections 132 of the first stack structure 120 extend beyond the second stack structure 126. In addition, the projections 132 extend correspondingly to the insulating structure 118.

請參照第3圖,第二堆疊結構126係位於第一堆疊結構120的頂表面與側面上。此外,第二堆疊結構126可延伸至第一摻雜區104的摻雜井106上。Referring to FIG. 3, the second stack structure 126 is located on the top surface and the side surface of the first stack structure 120. Moreover, the second stack structure 126 can extend onto the doping well 106 of the first doped region 104.

請參照第2圖與第3圖,於一些實施例中,第一摻雜區104的摻雜井106與摻雜井108,及第一源/汲極區112與第二源/汲極區114係具有第一導電型例如N導電型。基底102、第二摻雜區110與重摻雜區116係具有相對於第一導電型的第二導電型例如P導電型。於其他實施例中,第一導電型係為P導電型,且第二導電型係為N導電型。Referring to FIGS. 2 and 3 , in some embodiments, the doping well 106 and the doping well 108 of the first doping region 104 , and the first source/drain region 112 and the second source/drain region The 114 series has a first conductivity type such as an N conductivity type. The substrate 102, the second doped region 110, and the heavily doped region 116 have a second conductivity type, such as a P conductivity type, relative to the first conductivity type. In other embodiments, the first conductivity type is a P conductivity type, and the second conductivity type is an N conductivity type.

於實施例中,舉例來說,半導體結構係為金屬氧化半導體,例如橫向雙擴散金屬氧化半導體(LDMOS)或延伸汲極MOS (extended drain MOS; EDMOS)。第一源/汲極區112係用作汲極。第二源/汲極區114係用作源極。第一堆疊結構120係用作控制半導體結構之通道的主要閘極結構。於此例中,第一堆疊結構120的第一介電層122係用作閘介電層,第一堆疊結構120的第一導電層124係用作閘電極層。由第二介電層128與第二導電層130形成的第二堆疊結構126,其對阻抗高電壓的功能扮演重要的角色,並能夠降低堆積層的電阻(accumulation layer resistance)。In an embodiment, for example, the semiconductor structure is a metal oxide semiconductor such as a lateral double-diffused metal oxide semiconductor (LDMOS) or an extended drain MOS (EDMOS). The first source/drain region 112 is used as a drain. The second source/drain region 114 serves as a source. The first stacked structure 120 serves as the primary gate structure for controlling the channels of the semiconductor structure. In this example, the first dielectric layer 122 of the first stacked structure 120 is used as a gate dielectric layer, and the first conductive layer 124 of the first stacked structure 120 is used as a gate electrode layer. The second stacked structure 126 formed of the second dielectric layer 128 and the second conductive layer 130 plays an important role in the function of impedance high voltage and can reduce the accumulation layer resistance.

實施例之半導體結構在飄移區中具有數個互相分開的絕緣結構118。此外,第一堆疊結構120的凸出部132係延伸至絕緣結構118上。因此能夠沿著第一堆疊結構120之第一導電層124的邊緣引起電場峰。此外,半導體結構能得到良好權衡的特定開啟電阻(specific on-state resistance; Ron,sp)與崩潰電壓(breakdown voltage; BVdss),以得到期望的靈敏值(figure of merit; FOM)。The semiconductor structure of an embodiment has a plurality of spaced apart insulating structures 118 in the drift region. Additionally, the projections 132 of the first stack structure 120 extend onto the insulating structure 118. It is thus possible to cause an electric field peak along the edge of the first conductive layer 124 of the first stack structure 120. In addition, the semiconductor structure can obtain a good trade-off between specific on-state resistance (Ron, sp) and breakdown voltage (BVdss) to obtain a desired figure of merit (FOM).

於實施例中,第一堆疊結構120之第一介電層122的厚度係小於第二堆疊結構126之第二介電層128的厚度,因此半導體結構能具有高的汲極崩潰電壓。此外,第二介電層128的厚度係小於絕緣結構118的厚度,因此能降低半導體結構累積層的電阻。更詳細地來說,第一介電層122與第二介電層128可分別具有均一的厚度。在絕緣結構118具有不均一的厚度的例子中,第二介電層128的厚度係小於絕緣結構118的最大厚度。舉例來說,第二介電層128的厚度係小於為場氧化物之絕緣結構118的最大厚度。In an embodiment, the thickness of the first dielectric layer 122 of the first stacked structure 120 is less than the thickness of the second dielectric layer 128 of the second stacked structure 126, and thus the semiconductor structure can have a high drain breakdown voltage. In addition, the thickness of the second dielectric layer 128 is less than the thickness of the insulating structure 118, thereby reducing the resistance of the accumulation layer of the semiconductor structure. In more detail, the first dielectric layer 122 and the second dielectric layer 128 may each have a uniform thickness. In the example where the insulating structure 118 has a non-uniform thickness, the thickness of the second dielectric layer 128 is less than the maximum thickness of the insulating structure 118. For example, the thickness of the second dielectric layer 128 is less than the maximum thickness of the insulating structure 118 that is a field oxide.

實施例之半導體結構可以具有多晶-絕緣-多晶電容(poly-insulator-poly capacitor; PIP capacitor)製程的CMOS製程來形成,因此製程可相容於其他裝置的製程,並降低製造成本低。The semiconductor structure of the embodiment can be formed by a CMOS process having a poly-insulator-poly capacitor (PIP) process, so that the process can be compatible with the process of other devices and the manufacturing cost is reduced.

第二實施例Second embodiment

第4圖與第5圖繪示半導體結構的剖面圖。第二實施例之半導體結構的上視圖可類似於第1圖。舉例來說,第4圖為沿著第1圖中的AB線所繪製出。第5圖為沿著第1圖中的CD線所繪製出。第4圖與第5圖所示的半導體結構與第2圖與第3圖所示的半導體結構的差異在於,第4圖與第5圖所示的半導體結構係省略了第2圖與第3圖中的第一摻雜區104的摻雜井108。換句話說,第一源/汲極區212係形成在第一摻雜區204的摻雜井206中。4 and 5 illustrate cross-sectional views of the semiconductor structure. The top view of the semiconductor structure of the second embodiment can be similar to FIG. For example, Figure 4 is drawn along line AB in Figure 1. Figure 5 is drawn along the CD line in Figure 1. The semiconductor structure shown in FIGS. 4 and 5 differs from the semiconductor structure shown in FIGS. 2 and 3 in that the semiconductor structures shown in FIGS. 4 and 5 are omitted from FIG. 2 and FIG. The doping well 108 of the first doped region 104 in the figure. In other words, the first source/drain region 212 is formed in the doping well 206 of the first doped region 204.

第三實施例Third embodiment

第6圖繪示半導體結構的上視圖。第7圖繪示第6圖中半導體結構沿EF線的剖面圖。第6圖與第7圖繪示之第三實施例的半導體結構與第1圖與第2圖繪示之第一實施例的半導體結構的差異在於,絕緣結構318係形成在第一摻雜區304的摻雜井306上。於一實施例中,第6圖中半導體結構沿GH線的剖面圖係類似於第3圖。Figure 6 shows a top view of the semiconductor structure. Figure 7 is a cross-sectional view of the semiconductor structure taken along line EF of Figure 6. The semiconductor structure of the third embodiment illustrated in FIGS. 6 and 7 is different from the semiconductor structure of the first embodiment illustrated in FIGS. 1 and 2 in that the insulating structure 318 is formed in the first doping region. The doping well 306 of 304. In one embodiment, the cross-sectional view of the semiconductor structure along line GH in FIG. 6 is similar to FIG.

第四實施例Fourth embodiment

第8圖繪示半導體結構的上視圖。第9圖繪示第8圖中半導體結構沿IJ線的剖面圖。第10圖繪示第8圖中半導體結構沿KL線的剖面圖。第8圖至第10圖所示之半導體結構與第1圖至第3圖所示之半導體結構的差異在於,第二堆疊結構426具有數個互相分開的凸出部434,其延伸超過第一堆疊結構420。請參照第8圖與第9圖,第二堆疊結構426的凸出部434係延伸在絕緣結構418與第一堆疊結構420之間的第一摻雜區404的摻雜井406上。此外,凸出部434係對應地延伸至絕緣結構418上,因此能夠沿著第二堆疊結構426之第二導電層424的邊緣引起電場峰。此外,半導體結構能得到良好權衡的Ron,sp與BVdss,以得到期望的FOM。請參照第10圖,第二堆疊結構426係位於第一堆疊結構420的頂表面與側面上。Figure 8 is a top view of the semiconductor structure. Figure 9 is a cross-sectional view of the semiconductor structure taken along line IJ of Figure 8. Figure 10 is a cross-sectional view of the semiconductor structure taken along line KL of Figure 8. The difference between the semiconductor structure shown in FIGS. 8 to 10 and the semiconductor structure shown in FIGS. 1 to 3 is that the second stacked structure 426 has a plurality of mutually separated projections 434 extending beyond the first. Stack structure 420. Referring to FIGS. 8 and 9 , the protrusion 434 of the second stacked structure 426 extends over the doping well 406 of the first doping region 404 between the insulating structure 418 and the first stacked structure 420 . In addition, the projections 434 extend correspondingly to the insulating structure 418, thereby enabling an electric field peak along the edges of the second conductive layer 424 of the second stacked structure 426. In addition, the semiconductor structure can be well balanced with Ron, sp and BVdss to achieve the desired FOM. Referring to FIG. 10, the second stack structure 426 is located on the top surface and the side surface of the first stack structure 420.

第五實施例Fifth embodiment

第11圖繪示半導體結構的上視圖。第12圖繪示第11圖中半導體結構沿MN線的剖面圖。第11圖與第12圖繪示之第五實施例的半導體結構與第8圖與第9圖繪示之第四實施例的半導體結構的差異在於,數個互相分開的頂摻雜區536係對應地形成在絕緣結構518下方的第一摻雜區504的摻雜井506中。於實施例中,頂摻雜區536係具有第二導電型例如P導電型。使用頂摻雜區536能降低半導體結構的特定開啟電阻,並提升崩潰電壓。於一實施例中,第11圖中半導體結構沿OP線的剖面圖係類似於第10圖。Figure 11 is a top view of the semiconductor structure. Figure 12 is a cross-sectional view of the semiconductor structure taken along line MN of Figure 11. The semiconductor structure of the fifth embodiment shown in FIGS. 11 and 12 differs from the semiconductor structure of the fourth embodiment shown in FIGS. 8 and 9 in that a plurality of mutually separated top doped regions 536 are Correspondingly formed in the doping well 506 of the first doped region 504 below the insulating structure 518. In an embodiment, the top doped region 536 has a second conductivity type, such as a P conductivity type. The use of a top doped region 536 can reduce the specific turn-on resistance of the semiconductor structure and increase the breakdown voltage. In one embodiment, the cross-sectional view of the semiconductor structure along the OP line in FIG. 11 is similar to FIG.

根據上述實施例,半導體結構具有互相分開的絕緣結構,且第一堆疊結構或第二堆疊結構的凸出部係對應地延伸至絕緣結構上。因此半導體結構能得到良好權衡的特定開啟電阻(specific on-state resistance; Ron,sp)與崩潰電壓(breakdown voltage; BVdss),並得到期望的靈敏值(figure of merit; FOM)。第一堆疊結構之第一介電層的厚度係小於第二堆疊結構之第二介電層的厚度,因此能提高半導體結構的汲極崩潰電壓。此外,第二介電層的厚度係小於絕緣結構的厚度,能降低半導體結構累積層的電阻。使用頂摻雜區能降低半導體結構的特定開啟電阻,並提升崩潰電壓。實施例之半導體結構可相容於其他裝置的製程,且製造成本低。According to the above embodiment, the semiconductor structure has insulating structures separated from each other, and the protrusions of the first stacked structure or the second stacked structure are correspondingly extended to the insulating structure. Therefore, the semiconductor structure can obtain a good balance of specific on-state resistance (Ron, sp) and breakdown voltage (BVdss), and obtain a desired figure of merit (FOM). The thickness of the first dielectric layer of the first stacked structure is less than the thickness of the second dielectric layer of the second stacked structure, thereby increasing the drain breakdown voltage of the semiconductor structure. In addition, the thickness of the second dielectric layer is less than the thickness of the insulating structure, which can reduce the electrical resistance of the accumulation layer of the semiconductor structure. The use of a top doped region can reduce the specific turn-on resistance of the semiconductor structure and increase the breakdown voltage. The semiconductor structure of the embodiments is compatible with the fabrication of other devices and is inexpensive to manufacture.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟悉此項技藝者,在不脫離本發明之精神和範圍內,當可做些許更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

102...基底102. . . Base

104、204、304、404、504...第一摻雜區104, 204, 304, 404, 504. . . First doped region

106、108、206、306、406、506...摻雜井106, 108, 206, 306, 406, 506. . . Doping well

110...第二摻雜區110. . . Second doped region

112、212、512...第一源/汲極區112, 212, 512. . . First source/bungee area

114、514...第二源/汲極區114,514. . . Second source/bungee area

116...重摻雜區116. . . Heavily doped region

118、318、418、518...絕緣結構118, 318, 418, 518. . . Insulation structure

120、420...第一堆疊結構120, 420. . . First stack structure

122...第一介電層122. . . First dielectric layer

124...第一導電層124. . . First conductive layer

126、426...第二堆疊結構126, 426. . . Second stack structure

128...第二介電層128. . . Second dielectric layer

130、430...第二導電層130, 430. . . Second conductive layer

132、434...凸出部132, 434. . . Protrusion

536...頂摻雜區536. . . Top doped region

第1圖繪示根據一實施例之半導體結構的上視圖。1 is a top view of a semiconductor structure in accordance with an embodiment.

第2圖繪示根據一實施例之半導體結構的剖面圖。2 is a cross-sectional view of a semiconductor structure in accordance with an embodiment.

第3圖繪示根據一實施例之半導體結構的剖面圖。3 is a cross-sectional view of a semiconductor structure in accordance with an embodiment.

第4圖繪示根據一實施例之半導體結構的剖面圖。4 is a cross-sectional view of a semiconductor structure in accordance with an embodiment.

第5圖繪示根據一實施例之半導體結構的剖面圖。FIG. 5 is a cross-sectional view of a semiconductor structure in accordance with an embodiment.

第6圖繪示根據一實施例之半導體結構的上視圖。Figure 6 illustrates a top view of a semiconductor structure in accordance with an embodiment.

第7圖繪示根據一實施例之半導體結構的剖面圖。FIG. 7 is a cross-sectional view of a semiconductor structure in accordance with an embodiment.

第8圖繪示根據一實施例之半導體結構的上視圖。Figure 8 illustrates a top view of a semiconductor structure in accordance with an embodiment.

第9圖繪示根據一實施例之半導體結構的剖面圖。Figure 9 is a cross-sectional view of a semiconductor structure in accordance with an embodiment.

第10圖繪示根據一實施例之半導體結構的剖面圖。Figure 10 is a cross-sectional view of a semiconductor structure in accordance with an embodiment.

第11圖繪示根據一實施例之半導體結構的上視圖。11 is a top view of a semiconductor structure in accordance with an embodiment.

第12圖繪示根據一實施例之半導體結構的剖面圖。Figure 12 is a cross-sectional view of a semiconductor structure in accordance with an embodiment.

102...基底102. . . Base

104...第一摻雜區104. . . First doped region

106、108...摻雜井106, 108. . . Doping well

110...第二摻雜區110. . . Second doped region

112...第一源/汲極區112. . . First source/bungee area

114...第二源/汲極區114. . . Second source/bungee area

116...重摻雜區116. . . Heavily doped region

118...絕緣結構118. . . Insulation structure

120...第一堆疊結構120. . . First stack structure

122...第一介電層122. . . First dielectric layer

124...第一導電層124. . . First conductive layer

126...第二堆疊結構126. . . Second stack structure

128...第二介電層128. . . Second dielectric layer

130...第二導電層130. . . Second conductive layer

132...凸出部132. . . Protrusion

Claims (10)

一種半導體結構,包括:
一基底;
一第一源/汲極區,形成於該基底中;
一第二源/汲極區,形成於該基底中;
一第一堆疊結構,位於該第一源/汲極區與該第二源/汲極區之間的該基底上,其中該第一堆疊結構包括一第一介電層與一第一導電層,該第一導電層位於該第一介電層上;以及
一第二堆疊結構,位於該第一堆疊結構上,其中該第二堆疊結構包括一第二介電層與一第二導電層,該第二導電層位於該第二介電層上。
A semiconductor structure comprising:
a substrate;
a first source/drain region formed in the substrate;
a second source/drain region formed in the substrate;
a first stacked structure on the substrate between the first source/drain region and the second source/drain region, wherein the first stacked structure comprises a first dielectric layer and a first conductive layer The first conductive layer is located on the first dielectric layer; and a second stacked structure is disposed on the first stacked structure, wherein the second stacked structure includes a second dielectric layer and a second conductive layer. The second conductive layer is on the second dielectric layer.
如申請專利範圍第1項所述之半導體結構,其中該第一介電層的厚度係小於該第二介電層的厚度。The semiconductor structure of claim 1, wherein the first dielectric layer has a thickness less than a thickness of the second dielectric layer. 如申請專利範圍第1項所述之半導體結構,更包括數個互相分開的絕緣結構,位於該第一源/汲極區與該第二源/汲極區之間的該基底上。The semiconductor structure of claim 1, further comprising a plurality of mutually separated insulating structures on the substrate between the first source/drain region and the second source/drain region. 如申請專利範圍第3項所述之半導體結構,其中該第二介電層的厚度係小於該絕緣結構的厚度。The semiconductor structure of claim 3, wherein the thickness of the second dielectric layer is less than the thickness of the insulating structure. 如申請專利範圍第3項所述之半導體結構,其中該第一堆疊結構或該第二堆疊結構具有數個互相分開的凸出部,對應地延伸至該些絕緣結構上。The semiconductor structure of claim 3, wherein the first stacked structure or the second stacked structure has a plurality of mutually separated projections correspondingly extending to the insulating structures. 如申請專利範圍第5項所述之半導體結構,其中該第二堆疊結構的該凸出部係延伸在該絕緣結構與該第一堆疊結構之間的該基底上。The semiconductor structure of claim 5, wherein the protrusion of the second stacked structure extends over the substrate between the insulating structure and the first stacked structure. 如申請專利範圍第1項所述之半導體結構,更包括:
一第一摻雜區,形成於該基底中,並具有一第一導電型;以及
一第二摻雜區,形成於該第一摻雜區中,並具有相對於該第一導電型的一第二導電型,
其中該第一源/汲極區係形成於該第一摻雜區中並具有該第一導電型,該第二源/汲極區係形成於該第二摻雜區中並具有該第一導電型。
For example, the semiconductor structure described in claim 1 of the patent scope further includes:
a first doped region formed in the substrate and having a first conductivity type; and a second doped region formed in the first doped region and having a first conductivity type Second conductivity type,
Wherein the first source/drain region is formed in the first doped region and has the first conductivity type, and the second source/drain region is formed in the second doped region and has the first Conductive type.
如申請專利範圍第7項所述之半導體結構,更包括數個互相分開的頂摻雜區,形成於該第一源/汲極區與該第二源/汲極區之間的該第一摻雜區中,並具有該第二導電型。The semiconductor structure of claim 7, further comprising a plurality of mutually separated top doped regions, the first formed between the first source/drain region and the second source/drain region In the doped region, and having the second conductivity type. 如申請專利範圍第1項所述之半導體結構,其中該第一介電層的側邊係對齊該第一導電層的側邊,該第二介電層的側邊係對齊該第二導電層的側邊。The semiconductor structure of claim 1, wherein a side of the first dielectric layer is aligned with a side of the first conductive layer, and a side of the second dielectric layer is aligned with the second conductive layer. Side of the side. 一種半導體結構的形成方法,包括:
形成一第一源/汲極區於一基底中;
形成一第二源/汲極區於該基底中;
形成一第一介電層於該第一源/汲極區與該第二源/汲極區之間的該基底上,並形成一第一導電層於該第一介電層上,以形成一第一堆疊結構;以及
形成一第二介電層於該第一堆疊結構的該第一導電層上,並形成一第二導電層於該第二介電層上,以形成一第二堆疊結構。
A method of forming a semiconductor structure, comprising:
Forming a first source/drain region in a substrate;
Forming a second source/drain region in the substrate;
Forming a first dielectric layer on the substrate between the first source/drain region and the second source/drain region, and forming a first conductive layer on the first dielectric layer to form a first stacked structure; and forming a second dielectric layer on the first conductive layer of the first stacked structure, and forming a second conductive layer on the second dielectric layer to form a second stack structure.
TW101106357A 2012-02-24 2012-02-24 Semiconductor structure and method for forming the same TWI456765B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101106357A TWI456765B (en) 2012-02-24 2012-02-24 Semiconductor structure and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101106357A TWI456765B (en) 2012-02-24 2012-02-24 Semiconductor structure and method for forming the same

Publications (2)

Publication Number Publication Date
TW201336074A true TW201336074A (en) 2013-09-01
TWI456765B TWI456765B (en) 2014-10-11

Family

ID=49627484

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101106357A TWI456765B (en) 2012-02-24 2012-02-24 Semiconductor structure and method for forming the same

Country Status (1)

Country Link
TW (1) TWI456765B (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101049876B1 (en) * 2008-11-19 2011-07-19 주식회사 동부하이텍 Horizontal dimos device and manufacturing method thereof
US20110241114A1 (en) * 2010-04-02 2011-10-06 Taiwan Semiconductor Manufacturing Company, Ltd. High voltage mos transistor

Also Published As

Publication number Publication date
TWI456765B (en) 2014-10-11

Similar Documents

Publication Publication Date Title
KR100974697B1 (en) Lateral double diffused metal oxide semiconductor device and manufacturing method of lateral double diffused metal oxide semiconductor device
US10505038B2 (en) Semiconductor structure and associated fabricating method
US20170263761A1 (en) Semiconductor device capable of high-voltage operation
US10879389B2 (en) Semiconductor device capable of high-voltage operation
US20170263717A1 (en) Semiconductor device capable of high-voltage operation
TW201351651A (en) Semiconductor device and methods for forming the same
KR20140112629A (en) Lateral double diffused metal oxide semiconductor and method for fabricating the same
TWI644441B (en) High voltage device and manufacturing method thereof
TW201801289A (en) Semiconductor device and method of manufacturing a semiconductor device
TW201519446A (en) Lateral double diffused metal oxide semiconductor device and manufacturing method thereof
CN113838906B (en) LDMOS transistor and preparation method thereof
CN106298923B (en) High voltage metal oxide semiconductor transistor element and manufacturing method thereof
US9035386B2 (en) Semiconductor structure and method for manufacturing the same
JP2012160685A (en) Semiconductor device and method of manufacturing semiconductor device
TWI429073B (en) Semiconductor structure and method for forming the same
TWI612664B (en) Semiconductor device
TWI619200B (en) Metal oxide semiconductor device with dual-well and manufacturing method thereof
TW201336074A (en) Semiconductor structure and method for forming the same
US9070766B1 (en) Semiconductor device and method of forming the same
TWI578534B (en) High voltage metal-oxide-semiconductor transistor device
US9029950B2 (en) Semiconductor structure and method for forming the same
TWI527192B (en) Semiconductor structure and method for forming the same
CN103296080B (en) Semiconductor structure and forming method thereof
TWI575744B (en) Semiconductor structure and method of manufacturing the same
TWI449178B (en) Semiconductor structure and manufacturing process thereof