TW201332288A - Switch capacitor dynamic on off time control circuit and control method thereof - Google Patents
Switch capacitor dynamic on off time control circuit and control method thereof Download PDFInfo
- Publication number
- TW201332288A TW201332288A TW101117916A TW101117916A TW201332288A TW 201332288 A TW201332288 A TW 201332288A TW 101117916 A TW101117916 A TW 101117916A TW 101117916 A TW101117916 A TW 101117916A TW 201332288 A TW201332288 A TW 201332288A
- Authority
- TW
- Taiwan
- Prior art keywords
- capacitor
- time
- transistor
- circuit
- switch
- Prior art date
Links
Landscapes
- Dc-Dc Converters (AREA)
Abstract
Description
實施例揭露關於一種切換式電容動態開關時間控制電路。 Embodiments disclose a switched capacitor dynamic switching time control circuit.
目前電源管理晶片(Power Management IC)在可攜帶式電子產品上的運用已經越來越廣泛,從手機、個人數位助理(Personal Digital Assistant,PDA)、甚至是筆記型電腦,電源管理都是一個很大且重要的課題。在電源管理晶片中,直流/直流電壓轉換器是最為常見的電路。在直流/直流電壓轉換器的操作中,是利用上下橋的功率電晶體(Power MOS)作切換來提供穩定的輸出電壓,然而輸出電流會因為Power MOS不斷切換的關係會產生漣波(ripple)。 At present, Power Management ICs have become more and more widely used in portable electronic products. From mobile phones, personal digital assistants (PDAs), and even notebook computers, power management is a very A big and important topic. DC/DC voltage converters are the most common circuits in power management ICs. In the operation of the DC/DC voltage converter, the power transistor (Power MOS) of the upper and lower bridges is used for switching to provide a stable output voltage. However, the output current will generate ripples due to the continuous switching of the Power MOS. .
而控制方式針對不同的運作模式以及需求有相當多不同的方式。一般常見的控制方法有脈波寬度調整(pulse width modulation)以及脈波頻率調整(pulse frequency modulation)兩種,前者固定頻率並調整脈波的責任週期來改變控制開關訊號,後者則以可能固定開啟或是關閉的時間,但調整開關週期頻率的方式來進行等效的責任週期改變。 The control method has quite a number of different ways for different modes of operation and needs. Commonly used control methods include pulse width modulation and pulse frequency modulation. The former fixes the frequency and adjusts the duty cycle of the pulse to change the control switch signal. The latter can be fixedly turned on. Either the time of the shutdown, but adjust the cycle frequency of the switch to make the equivalent duty cycle change.
對於低功耗的直流/直流電壓轉換器,在控制器的設計上,由於平均輸出電流低所以常採用非連續導通模式(discontinuous conduction mode)操作,因此在操作上會儘量要求降低功耗,所以採用非定頻的控制(PFM)取代常用的定頻控制(PWM)以降低不必 要的開關周期,降低整個直流/直流轉換器電路上之切換損失來達到整體效率提升或是更低輸入能量可用範圍的目的。 For the low-power DC/DC voltage converter, in the design of the controller, since the average output current is low, the discontinuous conduction mode operation is often used, so the operation is required to reduce the power consumption as much as possible. Use non-fixed frequency control (PFM) to replace the commonly used fixed frequency control (PWM) to reduce unnecessary The desired switching period reduces the switching losses across the DC/DC converter circuit to achieve overall efficiency gain or lower input energy usable range.
直流/直流電壓轉換器在非連續導通模式操作時,電感電流在放電時會降至零準位並與輸出或是輸入切開,使輸出電流不連續故稱為非連續導通。而在電感電流達到零準位時,會因為電感電流漣波(inductor current ripple)的關係有可能發生電感電流逆流的情況,此時電感電流逆流的能量是由輸出電容所提供的,電流路徑是由輸出端流到零電位(VSS)進一步會形成能量的浪費,或是由於開關時間不準確造成電流必須經過二極體導通的方式流至輸出端,因此直流/直流電壓轉換器的轉換效率就會降低。為了避免此問題的發生,在一般直流/直流電壓轉換器中都會加上零電流偵測電路,當電感電流即將發生逆流時,會由零電流偵測電路迅速通知系統電路,把會形成逆流路徑上的電晶體關閉,避免逆流的發生,以維持較高的轉換效率。因此準確的關閉開關就成為一個控制上最重要的部分。 When the DC/DC voltage converter is operated in the discontinuous conduction mode, the inductor current will drop to the zero level when it is discharged and cut off from the output or the input, so that the output current is discontinuous, so it is called discontinuous conduction. When the inductor current reaches the zero level, the inductor current may flow backward due to the inductor current ripple. At this time, the energy of the inductor current backflow is provided by the output capacitor, and the current path is The flow from the output to the zero potential (VSS) further causes waste of energy, or the current must flow through the diode to the output due to inaccurate switching time, so the conversion efficiency of the DC/DC voltage converter is Will decrease. In order to avoid this problem, a zero current detection circuit is added to the general DC/DC voltage converter. When the inductor current is about to flow backward, the zero current detection circuit will quickly notify the system circuit that a reverse flow path will be formed. The upper transistor is turned off to avoid the occurrence of backflow to maintain high conversion efficiency. Therefore, the accurate closing of the switch becomes the most important part of the control.
而在製造準確的開關時間上,有使用零電流偵測電路(zero current detection),或是利用輸入輸出電壓關係而計算出上下橋開關時間的方式。 In the manufacture of accurate switching time, there is a method of using zero current detection or calculating the switching time of the upper and lower bridges by using the relationship between input and output voltages.
實施例提出一種切換式電容動態開關時間控制電路。 The embodiment proposes a switched capacitor dynamic switching time control circuit.
根據實施例之一種切換式電容動態開關時間控制電路,包括第一時間產生器以及第二時間產生器;其中,第一時間產生器括 有一第一電容,第一時間產生器透過第一電容之充電以決定一第一時間;第二時間產生器包括有一第二電容,第二時間產生器與第一時間產生器連接,當第一時間結束時,第二時間產生器透過第二電容之充電以決定一第二時間。 A switched capacitor dynamic switching time control circuit according to an embodiment, comprising a first time generator and a second time generator; wherein the first time generator comprises a first capacitor, the first time generator is charged by the first capacitor to determine a first time; the second time generator includes a second capacitor, and the second time generator is coupled to the first time generator, when the first At the end of the time, the second time generator is charged by the second capacitor to determine a second time.
根據實施例之一種切換式電容動態開關時間控制方法,包括有:一第一電容回應第一電流進行充電;判斷該第一電容之充電狀態,當該第一電容之充電電壓超過一門檻值時停止充電,該第一電容開始充電至停止充電之時間定義為一第一時間;產生一分壓於一第二電容之一端,該第二電容回應該第二電流源產生之一第二電流進行放電;判斷該第二電容之放電狀態,當該第二電容之放電電壓超過一門檻值時停止放電,該第二電容開始放電至停止放電之時間定義為一第二時間。 According to an embodiment, a switching capacitor dynamic switching time control method includes: a first capacitor responding to a first current for charging; determining a state of charge of the first capacitor, when a charging voltage of the first capacitor exceeds a threshold value Stop charging, the time when the first capacitor starts charging to stop charging is defined as a first time; generating a voltage divider to one end of a second capacitor, the second capacitor responding to the second current source generating a second current Discharging; determining the discharge state of the second capacitor, stopping discharging when the discharge voltage of the second capacitor exceeds a threshold value, and defining a time during which the second capacitor begins to discharge to stop discharging is defined as a second time.
以上之關於實施例之說明及以下之實施方式之說明係用以示範與解釋實施例之精神與原理,並且提供專利申請範圍更進一步之解釋。 The above description of the embodiments and the following embodiments are intended to illustrate and explain the spirit and principles of the embodiments, and to provide further explanation of the scope of the patent application.
以下在實施方式中詳細敘述實施例之詳細特徵以及優點,其內容足以使任何熟習相關技藝者了解實施例之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何熟習相關技藝者可輕易地理解實施例相關之目的及優點。以下之實施例係之詳細說明並非用以任何觀點限制與實施例相關之範疇。 The detailed features and advantages of the embodiments are described in detail in the following detailed description of the embodiments of the embodiments of the invention. The objects and advantages associated with the embodiments can be readily understood by those skilled in the art. The following detailed description of the embodiments is not intended to limit the scope of the embodiments.
請參考『第1圖』,係為實施例所揭露之切換式電容動態開關時間控制電路,不使用先前技術中耗能的比較器與運算放大器。以下為了方便說明,將簡稱時間控制電路。 Please refer to FIG. 1 for the switched capacitor dynamic switching time control circuit disclosed in the embodiment, without using the energy consuming comparator and operational amplifier in the prior art. Hereinafter, for convenience of explanation, the time control circuit will be referred to simply.
時間控制電路係由一第一時間產生器10以及一第二時間產生器20組成。第一時間產生器10係電性連接於一電源電壓Vin與一接地電位Vss之間,第二時間產生器20同樣電性連接於電源電壓Vin與接地電位Vss之間,接地電位Vss之典型值為0伏特,電源電壓Vin也有表示成Vcc,代表一高於0伏特之電位,通常係為5伏特。 The time control circuit is composed of a first time generator 10 and a second time generator 20. The first time generator 10 is electrically connected between a power supply voltage Vin and a ground potential Vss, and the second time generator 20 is also electrically connected between the power supply voltage Vin and the ground potential Vss, and the ground potential Vss is a typical value. At 0 volts, the supply voltage Vin is also expressed as Vcc, representing a potential above 0 volts, typically 5 volts.
第一時間產生器10包括有一第一電流源、一與第一電流源連接之一第一電容C1、以及一連接於第一電流源與第一電容C1之間之一第一比較器,第一比較器決定第一電流源對第一電容C1充電之一第一時間。第二時間產生器20與第一時間產生器連接。第二時間產生器包括有一第二電流源、一連接於第二電流源與第二電容C2之間之一第二比較器、以及一與第二電容C2連接之第三電容C3,當第一時間結束時,第二電容C2透過第二電流源放電,並由第二比較器以決定第二電容C2放電之一第二時間。這邊的第一比較器、第二比較器、第一電流源、第二電流源將於以下的實施例中說明。 The first time generator 10 includes a first current source, a first capacitor C1 connected to the first current source, and a first comparator connected between the first current source and the first capacitor C1. A comparator determines a first time that the first current source charges the first capacitor C1. The second time generator 20 is coupled to the first time generator. The second time generator includes a second current source, a second comparator connected between the second current source and the second capacitor C2, and a third capacitor C3 connected to the second capacitor C2. At the end of the time, the second capacitor C2 is discharged through the second current source, and the second comparator determines the discharge of the second capacitor C2 for a second time. The first comparator, the second comparator, the first current source, and the second current source herein will be described in the following embodiments.
此外,時間控制電路更包括有一輸入電流源30,與該第一時間產生器10連接,其中第一時間產生器10中之第一電流源與第二時間產生器20中之第二電流源係為輸入電流源30之鏡映電 流。在實施例中,輸入電流源係由一第一電晶體M1、一第二電晶體M2以及一連接於第一電晶體M1與第二電晶體M2之第一開關S1組成。第一電晶體M1為一PMOS電晶體,第二電晶體M2係為一NMOS電晶體。第一電晶體M1的源極連接至電源電壓Vin,汲極連接至一第一開關S1之第一端,閘極連接至一偏壓電源Vb。第二電晶體M2的汲極連接至第一開關S1之第二端,源極連接至接地電位Vss,閘極與汲極連接在一起。當第一開關S1受控制而關閉時,此時將形成導通路徑,第一電晶體M1與一第二電晶體M2將當成輸入電流源,以利後續第一時間產生器10以及一第二時間產生器20中的電流鏡電路產生鏡映電流。 In addition, the time control circuit further includes an input current source 30 coupled to the first time generator 10, wherein the first current source in the first time generator 10 and the second current source in the second time generator 20 Mirror image for input current source 30 flow. In an embodiment, the input current source is composed of a first transistor M1, a second transistor M2, and a first switch S1 connected to the first transistor M1 and the second transistor M2. The first transistor M1 is a PMOS transistor, and the second transistor M2 is an NMOS transistor. The source of the first transistor M1 is connected to the power supply voltage Vin, the drain is connected to the first end of a first switch S1, and the gate is connected to a bias power supply Vb. The drain of the second transistor M2 is connected to the second terminal of the first switch S1, the source is connected to the ground potential Vss, and the gate is connected to the drain. When the first switch S1 is controlled to be turned off, a conduction path will be formed at this time, and the first transistor M1 and the second transistor M2 will be regarded as input current sources to facilitate the subsequent first time generator 10 and a second time. The current mirror circuit in generator 20 produces a mirror current.
實施例中使用多個開關,這些開關實際上可利用電晶體或者邏輯閘來實施,其開啟或關閉受到邏輯電路的控制。在實施例中,若提到開關關閉,係指該開關所在之路徑形成通路,若為開關開啟,則指該開關所在之路徑形成斷路。 Multiple switches are used in the embodiments, which can actually be implemented using transistors or logic gates that are turned on or off controlled by logic circuitry. In the embodiment, if the switch is turned off, it means that the path where the switch is located forms a path, and if the switch is turned on, it means that the path where the switch is located forms an open circuit.
以下說明第一時間產生器10與第二時間產生器20的實施例組成與運作。 The composition and operation of the embodiment of the first time generator 10 and the second time generator 20 are explained below.
第一時間產生器10包括有第三電晶體M3、第四電晶體M4、第五電晶體M5、第一電容C1、第二開關S2以及第三開關S3。第三電晶體M3係為一PMOS電晶體,第四電晶體M4係為一PMOS電晶體,第五電晶體M5係為一NMOS電晶體,第三電晶體M3的源極與第四電晶體M4的源極都連接至電源電壓Vin,兩個電晶體的閘極也都連接至一偏壓電源Vb。第二開關S2的第一 端與第三電晶體M3的汲極連接,第二開關S2的第二端連接至第一電容C1的第一端,第一電容C1的第二端連接至接地電位Vss。第四電晶體M4的汲極連接至第五電晶體M5之汲極,第五電晶體M5之源極連接至接地電位Vss,第五電晶體M5之閘極連接至第二開關S2之第二端與第一電容C1之第一端之間。第三開關S3之第一端連接至第二開關S2之第二端與第一電容C1之第一端之間,第三開關S3之第二端連接至接地電位Vss。 The first time generator 10 includes a third transistor M3, a fourth transistor M4, a fifth transistor M5, a first capacitor C1, a second switch S2, and a third switch S3. The third transistor M3 is a PMOS transistor, the fourth transistor M4 is a PMOS transistor, the fifth transistor M5 is an NMOS transistor, the source of the third transistor M3 and the fourth transistor M4 The sources are all connected to the power supply voltage Vin, and the gates of the two transistors are also connected to a bias power supply Vb. First of the second switch S2 The terminal is connected to the drain of the third transistor M3, the second end of the second switch S2 is connected to the first end of the first capacitor C1, and the second end of the first capacitor C1 is connected to the ground potential Vss. The drain of the fourth transistor M4 is connected to the drain of the fifth transistor M5, the source of the fifth transistor M5 is connected to the ground potential Vss, and the gate of the fifth transistor M5 is connected to the second of the second switch S2. The terminal is between the first end of the first capacitor C1. The first end of the third switch S3 is connected between the second end of the second switch S2 and the first end of the first capacitor C1, and the second end of the third switch S3 is connected to the ground potential Vss.
在第一時間產生器10中,第三電晶體M3係用來作為電流源使用,亦即前述之第一電流源。當第二開關S2受控而關閉時,第三電晶體M3會回應來自第一電晶體M1之輸入電流源而產生一鏡射電流,以對第一電容C1充電。而第五電晶體M5係作為前述之第一比較器之實施例,第五電晶體M5與第一電容C1搭配,以決定一第一時間,亦即當第一電容C1的充電量超過第五電晶體M5的導通的門檻電壓Vth時的充電時間為第一時間。當實施例所揭露之時間控制電路應用於直流/直流轉換器時,第一時間係為對電感進行充電時間,或者稱為上橋開啟時間。 In the first time generator 10, the third transistor M3 is used as a current source, that is, the aforementioned first current source. When the second switch S2 is controlled to be turned off, the third transistor M3 generates a mirror current in response to the input current source from the first transistor M1 to charge the first capacitor C1. The fifth transistor M5 is used as the first embodiment of the first comparator, and the fifth transistor M5 is matched with the first capacitor C1 to determine a first time, that is, when the charging amount of the first capacitor C1 exceeds the fifth. The charging time at the threshold voltage Vth at which the transistor M5 is turned on is the first time. When the time control circuit disclosed in the embodiment is applied to the DC/DC converter, the first time is the charging time of the inductor, or the upper bridge opening time.
第二時間產生器20包括有第六電晶體M6、第七電晶體M7以及第八電晶體M8、第二電容C2、第三電容C3、第四開關S4、第五開關S5、第六開關S6以及第七開關S7。第六電晶體M6係為NMOS電晶體,第七電晶體M7係為PMOS電晶體,第八電晶體M8係為NMOS電晶體。第七電晶體M7的閘極連接至偏壓電源Vb,源極連接至電源電壓Vin,汲極連接至第八電晶體M8的 汲極,第八電晶體M8的源極連接至接地電位Vss。第八電晶體M8的閘極連接至第六開關S6的第一端以及第七開關S7的第一端,第七開關S7的第二端連接至接地電位Vss。第五開關S5的第二端連接至第六電晶體M6的汲極,第六電晶體M6的源極連接至接地電位Vss,閘極連接至第二電晶體M2的閘極。 The second time generator 20 includes a sixth transistor M6, a seventh transistor M7, and an eighth transistor M8, a second capacitor C2, a third capacitor C3, a fourth switch S4, a fifth switch S5, and a sixth switch S6. And a seventh switch S7. The sixth transistor M6 is an NMOS transistor, the seventh transistor M7 is a PMOS transistor, and the eighth transistor M8 is an NMOS transistor. The gate of the seventh transistor M7 is connected to the bias power supply Vb, the source is connected to the power supply voltage Vin, and the drain is connected to the eighth transistor M8. The drain of the eighth transistor M8 is connected to the ground potential Vss. The gate of the eighth transistor M8 is connected to the first end of the sixth switch S6 and the first end of the seventh switch S7, and the second end of the seventh switch S7 is connected to the ground potential Vss. The second end of the fifth switch S5 is connected to the drain of the sixth transistor M6, the source of the sixth transistor M6 is connected to the ground potential Vss, and the gate is connected to the gate of the second transistor M2.
第三電容C3與第四開關S4相互並聯,第三電容C3的第一端連接至電源電壓Vin,第四開關S4的第一端連接至電源電壓Vin,第三電容C3的第二端與第四開關S4的第二端彼此連接,並連接至第五開關S5的第一端,第五開關S5的第二端連接至第二電容C2的第一端,第二電容C2的第二端連接至接地電位Vss。 The third capacitor C3 and the fourth switch S4 are connected in parallel with each other. The first end of the third capacitor C3 is connected to the power supply voltage Vin, the first end of the fourth switch S4 is connected to the power supply voltage Vin, and the second end of the third capacitor C3 is connected to the second capacitor C3. The second ends of the four switches S4 are connected to each other and connected to the first end of the fifth switch S5, the second end of the fifth switch S5 is connected to the first end of the second capacitor C2, and the second end of the second capacitor C2 is connected To the ground potential Vss.
在第二時間產生器20中,第六電晶體M6係作為前述之第二電流源之實施例,第八電晶體M8係作為前述第二比較器之實施例,第八電晶體M8與第二電容C2以及第三電容C3搭配,以決定一第二時間。當實施例所揭露之時間控制電路應用於直流/直流轉換器時,第二時間稱為一電感進行放電時間,或者稱為下橋開啟時間。 In the second time generator 20, the sixth transistor M6 is an embodiment of the second current source described above, and the eighth transistor M8 is used as an embodiment of the second comparator, the eighth transistor M8 and the second The capacitor C2 and the third capacitor C3 are matched to determine a second time. When the time control circuit disclosed in the embodiment is applied to a DC/DC converter, the second time is called an inductor for discharging time, or is called a bridge opening time.
本揭露之實施例係以固定電流源對電容充電或放電至電晶體之導通電壓(threshold voltage),並利用第五電晶體M5、第八電晶體M8作為比較器使用。當實施例所揭露之時間控制電路應用於直流/直流轉換器時,且於直流/直流轉換器中之電感為充電狀態時,第一電流源會對第一電容C1進行充電動作,而其充電周期(on period)之時間TON可由下式得到:
由控制電流與電容產生充電周期的時間後,第二時間產生器中的第二電容C2與第三電容C3控制充電周期完成後之放電時間,而其分壓電壓VC2值可由下式得到:
由分壓電壓值,加上取樣輸入端電壓的電壓值Vin,利用定電流放電電容C2上之電壓可得到電感放電周期(off period)之時間TOFF如下式:
綜合式(1)(2)(3)以及輸入輸出電壓,可得在非連續導通模式穩態電感充放電時間的平衡式,而調整電容分壓的參數α可調整分壓內容,進而依據不同的輸入輸出電壓關係產生正確的放電時間以配合充電時間,以達到低耗損的零電流開關。 The integrated equations (1), (2) and (3) and the input and output voltages can be used to balance the steady-state inductor charging and discharging time in the discontinuous conduction mode, and the parameter α for adjusting the capacitance partial pressure can adjust the partial pressure content, and then according to different The input-output voltage relationship produces the correct discharge time to match the charging time to achieve a low-loss zero-current switch.
以下配合『第2A圖』至『第2C圖』以及『第3圖』說明本發明的操作過程。 Hereinafter, the operation of the present invention will be described with reference to "2A" to "2C" and "3".
訊號CPout係為控制本發明之電路之控制訊號,當本發明應用於直流/直流轉換器時,這個訊號可以來自於比較器。此處可以將訊號CPout視為控制訊號。 The signal CPout is a control signal for controlling the circuit of the present invention. When the present invention is applied to a DC/DC converter, this signal can come from the comparator. Here, the signal CPout can be regarded as a control signal.
在時間控制電路中,一共有第一開關S1、第二開關S2、第三開關S3、第四開關S4、第五開關S5、第六開關S6、以及第七開 關S7,其中第二開關S2與第五開關S5會同時開啟或關閉,而第三開關S3、第四開關S4以及第七開關S7會同時開啟或關閉,第一開關S1的開啟或關閉會與第三開關S3、第四開關S4以及第七開關S7的開啟或關閉相反,亦即。當第三開關S3、第四開關S4以及第七開關S7為開啟時,第一開關S1為關閉。因此在實施例中,將第一開關S1與一反向器(圖中未示)連接,就可以使用相同的邏輯控制訊號控制第一開關S1、第三開關S3、第四開關S4以及第七開關S7。 In the time control circuit, there are a total of the first switch S1, the second switch S2, the third switch S3, the fourth switch S4, the fifth switch S5, the sixth switch S6, and the seventh open S7, wherein the second switch S2 and the fifth switch S5 are simultaneously turned on or off, and the third switch S3, the fourth switch S4, and the seventh switch S7 are simultaneously turned on or off, and the first switch S1 is turned on or off. The third switch S3, the fourth switch S4, and the seventh switch S7 are turned on or off instead, that is,. When the third switch S3, the fourth switch S4, and the seventh switch S7 are turned on, the first switch S1 is turned off. Therefore, in the embodiment, by connecting the first switch S1 with an inverter (not shown), the first switch S1, the third switch S3, the fourth switch S4, and the seventh can be controlled by using the same logic control signal. Switch S7.
當第一開關S1關閉時,第三電晶體M3當作電流源使用,此時將對第一電容C1充電,由『第3圖』可以看到第一電容C1的電壓VC1逐步地上升。在這個階段,第三開關S3、第四開關S4、以及第七開關S7係為開啟。而第二電容C2的電壓維持在充飽的狀態。當第一電容C1的電壓超過第五電晶體M5的導通電壓Vth時,第二開關S2即打開形成斷路,此時第一電容C1的充電階段結束,進入放電階段。 When the first switch S1 is turned off, the third transistor M3 is used as a current source. At this time, the first capacitor C1 is charged. From FIG. 3, it can be seen that the voltage V C1 of the first capacitor C1 gradually rises. At this stage, the third switch S3, the fourth switch S4, and the seventh switch S7 are turned on. The voltage of the second capacitor C2 is maintained in a fully charged state. When the voltage of the first capacitor C1 exceeds the turn-on voltage Vth of the fifth transistor M5, the second switch S2 is turned on to form an open circuit. At this time, the charging phase of the first capacitor C1 ends and enters the discharging phase.
在放電階段,第二開關S2、第五開關S5開啟,因此電流源不再對第一電容C1充電,此時第一電容C1放電。此時,第三開關S3、第四開關S4、以及第七開關S7仍然維持開啟。第六開關S6關閉,使得第二電容C2可以進行放電,而當第二電容C2放電低於第八電晶體的導通電壓Vth時,這個放電階段結束,進入靜態階段(Idle period)。 During the discharge phase, the second switch S2 and the fifth switch S5 are turned on, so the current source no longer charges the first capacitor C1, and the first capacitor C1 is discharged. At this time, the third switch S3, the fourth switch S4, and the seventh switch S7 remain open. The sixth switch S6 is turned off so that the second capacitor C2 can be discharged, and when the second capacitor C2 is discharged lower than the turn-on voltage Vth of the eighth transistor, the discharge phase ends and enters the Idle period.
在靜態階段,第二開關S2與第五開關S5開啟,第三、第四 以及第七開關S7關閉,第六開關S6開啟,在這個階段,第二第容C2以及第三電容C3會放電完畢。 In the static phase, the second switch S2 and the fifth switch S5 are turned on, third, fourth And the seventh switch S7 is turned off, and the sixth switch S6 is turned on. At this stage, the second and second capacitors C2 and C3 are discharged.
當應用實施例所揭露的時間控制電路至直流/直流轉換器時,這些類比積體電路本身可能會有元件不匹配的影響和系統電路反應所需的延遲時間。由於不同的零電流開關點會造成不一樣的直流/直流轉換器中電感電流放電狀態,如果電感電流尚未放盡或是電感電流放電過度對於電感兩端電壓值產生的變動。因此可以利用此一電壓變化並透過電路如:反向器,比較器或是放大器,來進行電壓狀態的偵測。經過偵測後調整第三電容C3之電容值,藉以調整分壓比例,進而產生配合製程或是延遲變異之放電時間值,以此修正製程以及延遲之放電時間不準確,更增進系統的功耗效率。 When applying the time control circuit disclosed in the embodiment to the DC/DC converter, these analog integrated circuits themselves may have the effects of component mismatch and the delay time required for the system circuit to react. Since different zero current switching points will cause different inductor current discharge states in the DC/DC converter, if the inductor current has not been exhausted or the inductor current is excessively discharged, the voltage value across the inductor changes. Therefore, this voltage change can be utilized to detect the voltage state through a circuit such as an inverter, a comparator or an amplifier. After the detection, the capacitance value of the third capacitor C3 is adjusted, thereby adjusting the voltage division ratio, thereby generating a discharge time value that matches the process or delay variation, thereby correcting the inaccurate discharge time of the process and the delay, and improving the power consumption of the system. effectiveness.
因此在一實施例中,更包括有一組校正電路40,與第三電容C3連接,作為對於製程變異或延遲產生之不準確電感放電時間之校正機制。校正電路用來改變第三電容的電容值,以使得輸入以及製程等非理想效應誤差,可透過改變第三電容值來校正放電時間。因此,第三電容C3的電容值在一實施例中是可被調整的。 Thus, in one embodiment, a set of correction circuits 40 is further included coupled to the third capacitor C3 as a correction mechanism for inaccurate inductor discharge times for process variations or delays. The correction circuit is used to change the capacitance value of the third capacitor to make non-ideal effect errors such as input and process, and the discharge time can be corrected by changing the third capacitance value. Therefore, the capacitance value of the third capacitor C3 can be adjusted in one embodiment.
在一實施例中,校正電路40可用五位元連續近似電路(successive approximation register)實現。『第4圖』所示之校正電路40中包括有一控制邏輯41、一控制電路42以及一近似電路43。控制邏輯41受到外部電壓VGN的控制,並輸出時脈訊號Clk給近似電路43。控制邏輯41同時受到一致能訊號En的控制。控制電 路42則回應近似電路43的輸出以決定增加或降低第三電容C3的電容值。 In an embodiment, the correction circuit 40 can be implemented with a five-bit successive approximation register. The correction circuit 40 shown in FIG. 4 includes a control logic 41, a control circuit 42, and an approximation circuit 43. The control logic 41 is controlled by the external voltage V GN and outputs a clock signal Clk to the approximation circuit 43. The control logic 41 is simultaneously controlled by the uniform energy signal En. Control circuit 42 then responds to the output of approximation circuit 43 to determine to increase or decrease the capacitance of third capacitor C3.
『第5圖』所示之近似電路43係為一5位元連續近似電路,包括有五個暫存器431、432、433、434、435、一個多工器436以及一D型正反器437。暫存器432、433、434、43分別配置一邏輯閘452、453、454、455配合運作。另外還設置邏輯閘456、457。這些邏輯閘都是或閘。用來作為感應器的反向器44產生一轉態訊號Comp,這個訊號表示過長或過短的零電流偵測(zero current diction,ZCD),轉態訊號Comp會分別儲存於暫存器431、432、433、434、435。在五位元中,最大有效位元(Most Significant Bit,MSB)ZA[4]設定為高電壓準位(亦即邏輯1),以利開始校正程序的進行。由圖中可知,反向器44所輸出的轉態訊號Comp受到一外部電壓VLX決定。若外部電壓VLX為低電壓準位,此時轉態訊號Comp將變成高電壓準位並輸入至近似電路43中以增加第三電容C3的電容值。VLX為低電壓準位表示過短的關閉時間。反之,若外部電壓VLX為高電壓準位,此時轉態訊號Comp將變成低電壓準位,以降低第三電容C3的電容值。VLX為高電壓準位表示過長的關閉時間。經過比較之後,目前運作中的暫存器將會觸發下一個暫存器以將控制碼ZA[n-1]設定成1,以利下一個比較的進行,同時接收轉態訊號Comp,以決定是否將輸出訊號ZA[n]設定成0或1。經過五次的比較後將會決定最低有效位元的準位,且D型正反器437會被設定成高電壓準位並且鎖住。此時,近似 電路43的狀態將會被保持以輸出正確的關閉時間。而輸入自外部電路的一鎖定訊號Lock會將近似電路43鎖定或者使近似電路43的最低有效位元繼續運作。 The approximation circuit 43 shown in FIG. 5 is a 5-bit continuous approximation circuit including five registers 431, 432, 433, 434, 435, a multiplexer 436, and a D-type flip-flop. 437. The registers 432, 433, 434, and 43 are respectively configured to cooperate with a logic gate 452, 453, 454, and 455. In addition, logic gates 456, 457 are also provided. These logic gates are either gates or gates. The inverter 44 used as the sensor generates a transition signal Comp, which indicates a zero current diction (ZCD) that is too long or too short, and the transition signal Comp is stored in the register 431, respectively. , 432, 433, 434, 435. Among the five bits, the Most Significant Bit (MSB) ZA[4] is set to a high voltage level (ie, logic 1) to facilitate the start of the calibration procedure. As can be seen from the figure, the transition signal Comp output by the inverter 44 is determined by an external voltage V LX . If the external voltage V LX is at a low voltage level, the transition signal Comp will become a high voltage level and input to the approximation circuit 43 to increase the capacitance value of the third capacitor C3. V LX indicates a too short off time for low voltage levels. On the contrary, if the external voltage V LX is at a high voltage level, the transition signal Comp will become a low voltage level at this time to lower the capacitance value of the third capacitor C3. V LX is a high voltage level indicating an excessively long off time. After comparison, the currently operating scratchpad will trigger the next register to set the control code ZA[n-1] to 1, in order to facilitate the next comparison, and receive the transition signal Comp to determine Whether to set the output signal ZA[n] to 0 or 1. After five comparisons, the level of the least significant bit will be determined, and the D-type flip-flop 437 will be set to a high voltage level and locked. At this time, the state of the approximating circuit 43 will be maintained to output the correct off time. A lock signal Lock input from the external circuit locks the approximation circuit 43 or causes the least significant bit of the approximation circuit 43 to continue to operate.
在另一實施例中,校正電路可利用爬山法(mountain climbing method)或是上下數計數器(up down counter)來實現校正電路。 In another embodiment, the correction circuit can implement the correction circuit using a mountain climbing method or an up down counter.
本揭露之實施例之切換式電容動態開關時間控制電路,其主要由一組切換式電容電路與控制邏輯構成,其可達到極低的功率消耗,不需使用放大器或是比較器電路來鎖住或是判斷電壓訊號,僅使用一顆有控制電流源之電晶體做為比較器,即可製造出平衡之上下橋之開關訊號,使電感電流可以準確的放電至零準位,使直流/直流電壓轉換器可以高效率的操作在非連續導通模式(discontinuous conduction mode)。此外,在靜態時電路完全關閉不耗能,並在開啟時控制電流讓電路維持在非常低的電流水平。 The switched capacitor dynamic switching time control circuit of the embodiment of the present disclosure is mainly composed of a set of switched capacitor circuits and control logic, which can achieve extremely low power consumption without using an amplifier or a comparator circuit to lock Or to judge the voltage signal, only use a transistor with a control current source as a comparator to create a switching signal that balances the upper and lower bridges, so that the inductor current can be accurately discharged to zero level, so that DC/DC The voltage converter can operate in a discontinuous conduction mode with high efficiency. In addition, the circuit is completely closed when quiescent and does not consume energy, and the current is controlled to keep the circuit at a very low current level when turned on.
特別說明的是,雖然實施例所提出的時間控制電路之出發點是為了要解決直流/直流電壓轉換器的功率消耗以及零電流控制電路的問題,但是並非意謂本發明將只能應用於直流/直流電壓轉換器。只要電路中需要有充放電的控制,均可應用本發明。 In particular, although the timing of the time control circuit proposed in the embodiment is to solve the problem of the power consumption of the DC/DC voltage converter and the zero current control circuit, it is not intended that the present invention can only be applied to DC/ DC voltage converter. The present invention can be applied as long as the charge and discharge control is required in the circuit.
雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。 Although the present invention has been disclosed above in the foregoing embodiments, it is not intended to limit the invention. It is within the scope of the invention to be modified and modified without departing from the spirit and scope of the invention. Please refer to the attached patent application for the scope of protection defined by the present invention.
10‧‧‧第一時間產生器 10‧‧‧First time generator
20‧‧‧第二時間產生器 20‧‧‧Second time generator
30‧‧‧輸入電流源 30‧‧‧Input current source
40‧‧‧校正電路 40‧‧‧correction circuit
41‧‧‧控制邏輯 41‧‧‧Control logic
42‧‧‧控制電路 42‧‧‧Control circuit
43‧‧‧近似電路 43‧‧‧ Approximate circuit
44‧‧‧反向器 44‧‧‧ reverser
431‧‧‧暫存器 431‧‧‧ 存存器
432‧‧‧暫存器 432‧‧‧ 存存器
433‧‧‧暫存器 433‧‧‧ 存存器
434‧‧‧暫存器 434‧‧‧ register
435‧‧‧暫存器 435‧‧‧ register
436‧‧‧多工器 436‧‧‧Multiplexer
437‧‧‧D型正反器 437‧‧‧D type flip-flop
452‧‧‧邏輯閘 452‧‧‧Logic gate
453‧‧‧邏輯閘 453‧‧‧Logic gate
454‧‧‧邏輯閘 454‧‧‧Logic gate
455‧‧‧邏輯閘 455‧‧‧Logic gate
456‧‧‧邏輯閘 456‧‧‧Logic gate
457‧‧‧邏輯閘 457‧‧‧Logic gate
C1‧‧‧第一電容 C1‧‧‧first capacitor
C2‧‧‧第二電容 C2‧‧‧second capacitor
C3‧‧‧第三電容 C3‧‧‧ third capacitor
M1‧‧‧第一電晶體 M1‧‧‧first transistor
M2‧‧‧第二電晶體 M2‧‧‧second transistor
3‧‧‧第三電晶體 3‧‧‧ Third transistor
M4‧‧‧第四電晶體 M4‧‧‧ fourth transistor
M5‧‧‧第五電晶體 M5‧‧‧ fifth transistor
M6‧‧‧第六電晶體 M6‧‧‧ sixth transistor
M7‧‧‧第七電晶體 M7‧‧‧ seventh transistor
M8‧‧‧第八電晶體 M8‧‧‧ eighth transistor
S1‧‧‧第一開關 S1‧‧‧ first switch
S2‧‧‧第二開關 S2‧‧‧ second switch
S3‧‧‧第三開關 S3‧‧‧ third switch
S4‧‧‧第四開關 S4‧‧‧fourth switch
S5‧‧‧第五開關 S5‧‧‧ fifth switch
S6‧‧‧第六開關 S6‧‧‧ sixth switch
S7‧‧‧第七開關 S7‧‧‧ seventh switch
Vb‧‧‧偏壓電源 Vb‧‧‧ bias power supply
Vin‧‧‧電源電壓 Vin‧‧‧Power supply voltage
Vss‧‧‧接地電位 Vss‧‧‧ Ground potential
VGN‧‧‧外部電壓 V GN ‧‧‧External voltage
VC1‧‧‧電壓 V C1 ‧‧‧ voltage
VC2‧‧‧分壓電壓 V C2 ‧‧ ‧ voltage divider
Clk‧‧‧時脈訊號 Clk‧‧‧ clock signal
En‧‧‧致能訊號 En‧‧‧Enable signal
Comp‧‧‧轉態訊號 Comp‧‧‧Transition signal
Lock‧‧‧鎖定訊號 Lock‧‧‧Lock signal
第1圖係為實施例所揭露之切換式電容動態開關時間控制電路。 FIG. 1 is a switched capacitor dynamic switching time control circuit disclosed in the embodiment.
第2圖係為實施例所揭露之切換式電容動態開關時間控制電路之操作示意圖。 FIG. 2 is a schematic diagram of the operation of the switched capacitor dynamic switching time control circuit disclosed in the embodiment.
第3圖係為實施例所揭露之切換式電容動態開關時間控制電路之時序圖。 FIG. 3 is a timing diagram of the switched capacitor dynamic switching time control circuit disclosed in the embodiment.
第4圖係為實施例所揭露之校正電路。 Figure 4 is a correction circuit disclosed in the embodiment.
第5圖係為第4圖之實施例所揭露之近似電路。 Figure 5 is an approximation of the circuit disclosed in the embodiment of Figure 4.
10‧‧‧第一時間產生器 10‧‧‧First time generator
20‧‧‧第二時間產生器 20‧‧‧Second time generator
30‧‧‧輸入電流源 30‧‧‧Input current source
C1‧‧‧第一電容 C1‧‧‧first capacitor
C2‧‧‧第二電容 C2‧‧‧second capacitor
C3‧‧‧第三電容 C3‧‧‧ third capacitor
M1‧‧‧第一電晶體 M1‧‧‧first transistor
M2‧‧‧第二電晶體 M2‧‧‧second transistor
M3‧‧‧第三電晶體 M3‧‧‧ third transistor
M4‧‧‧第四電晶體 M4‧‧‧ fourth transistor
M5‧‧‧第五電晶體 M5‧‧‧ fifth transistor
M6‧‧‧第六電晶體 M6‧‧‧ sixth transistor
M7‧‧‧第七電晶體 M7‧‧‧ seventh transistor
M8‧‧‧第八電晶體 M8‧‧‧ eighth transistor
S1‧‧‧第一開關 S1‧‧‧ first switch
S2‧‧‧第二開關 S2‧‧‧ second switch
S3‧‧‧第三開關 S3‧‧‧ third switch
S4‧‧‧第四開關 S4‧‧‧fourth switch
S5‧‧‧第五開關 S5‧‧‧ fifth switch
S6‧‧‧第六開關 S6‧‧‧ sixth switch
S7‧‧‧第七開關 S7‧‧‧ seventh switch
Vb‧‧‧偏壓電源 Vb‧‧‧ bias power supply
Vin‧‧‧電源電壓 Vin‧‧‧Power supply voltage
Vss‧‧‧接地電位 Vss‧‧‧ Ground potential
VC1‧‧‧電壓 V C1 ‧‧‧ voltage
VC2‧‧‧分壓電壓 V C2 ‧‧ ‧ voltage divider
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/727,381 US20130181752A1 (en) | 2012-01-17 | 2012-12-26 | Timing control circuit for switching capacitor dynamic switch and control method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261587425P | 2012-01-17 | 2012-01-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201332288A true TW201332288A (en) | 2013-08-01 |
Family
ID=48755985
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101117916A TW201332288A (en) | 2012-01-17 | 2012-05-18 | Switch capacitor dynamic on off time control circuit and control method thereof |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103208862A (en) |
TW (1) | TW201332288A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110932729A (en) * | 2018-09-20 | 2020-03-27 | 瑞昱半导体股份有限公司 | Successive approximation register analog-to-digital converter and control circuit thereof |
TWI750777B (en) * | 2020-03-03 | 2021-12-21 | 奇景光電股份有限公司 | Voltage generating circuit with timing skipping control |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103650313B (en) * | 2011-05-05 | 2018-09-21 | 北极砂技术有限公司 | DC-DC converter with modular grade |
CN106300967B (en) * | 2015-05-11 | 2018-09-14 | 台湾类比科技股份有限公司 | Driving circuit according to capacitor charge and discharge toggle switch |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7106130B2 (en) * | 2003-09-05 | 2006-09-12 | Delta Electronics, Inc. | Variable frequency PWM controller circuit |
JP4424546B2 (en) * | 2005-01-13 | 2010-03-03 | Okiセミコンダクタ株式会社 | Pulse width modulation circuit |
US7449923B2 (en) * | 2005-08-17 | 2008-11-11 | Freescale Semiconductor, Inc. | Amplifier circuit for double sampled architectures |
TW200810359A (en) * | 2006-08-04 | 2008-02-16 | Richtek Technology Corp | Control circuit and method for a constant on-time PWM switching converter |
KR101079522B1 (en) * | 2009-09-14 | 2011-11-03 | 삼성전기주식회사 | Reference signal generator and pwm control circuit for lcd backlight |
-
2012
- 2012-05-18 TW TW101117916A patent/TW201332288A/en unknown
- 2012-10-26 CN CN2012104180659A patent/CN103208862A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110932729A (en) * | 2018-09-20 | 2020-03-27 | 瑞昱半导体股份有限公司 | Successive approximation register analog-to-digital converter and control circuit thereof |
CN110932729B (en) * | 2018-09-20 | 2023-04-07 | 瑞昱半导体股份有限公司 | Successive approximation register analog-to-digital converter and control circuit thereof |
TWI750777B (en) * | 2020-03-03 | 2021-12-21 | 奇景光電股份有限公司 | Voltage generating circuit with timing skipping control |
US11323034B2 (en) | 2020-03-03 | 2022-05-03 | Himax Technologies Limited | Voltage generating circuit with timing skipping control |
Also Published As
Publication number | Publication date |
---|---|
CN103208862A (en) | 2013-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7760124B2 (en) | System and method for A/D conversion | |
US7876081B2 (en) | DC-DC converter with substantially constant on-time and constant switching frequency | |
US7859239B2 (en) | Switching regulator and method of adjusting pulse width | |
US7696739B2 (en) | Electronic switch circuit, converter and method of operation | |
US8988052B2 (en) | Control circuit for power supply including a detection circuit and a regulation circuit for regulating switching timing | |
US9203301B2 (en) | Feedback for controlling the switching frequency of a voltage regulator | |
US9742390B2 (en) | DC-DC converter with improved discontinuous conduction mode efficiency | |
US10256797B2 (en) | Oscillator | |
US8129975B2 (en) | Synchronous rectifying DC-DC converter | |
JP5451123B2 (en) | Power supply device, power supply control device, and control method for power supply device | |
US9559592B2 (en) | Synchronous rectifier timer for discontinuous mode DC/DC converter | |
US8294434B2 (en) | Constant current output control type switching regulator | |
US20180191356A1 (en) | Control circuit | |
JP2009194971A (en) | Current negative feedback circuit and dc-dc converter using the same | |
US20210126539A1 (en) | Combined Buck-Boost Converter Using a Single Inductor | |
KR20090132922A (en) | Sawtooth wave generating circuit and switch mode power supply having the same | |
TW201810894A (en) | DCDC converter | |
TW201332288A (en) | Switch capacitor dynamic on off time control circuit and control method thereof | |
TWI680635B (en) | Active frequency control switching power supply system | |
EP4050803A1 (en) | Tracking analog-to-digital converter for power converters | |
CN117175891A (en) | Power converter with inductor current monitoring circuit | |
US20130181752A1 (en) | Timing control circuit for switching capacitor dynamic switch and control method thereof | |
Ma | Robust multiple-phase switched-capacitor DC-DC converter with digital interleaving regulation scheme | |
US20240313633A1 (en) | Voltage converter and adjustment method capable of adjusting zero-crossing reference current | |
KR101197821B1 (en) | Circuit for variable ramp current and variable ramp compensation circuit comprising the same |