TW201332171A - Method for fabricating piezoelectric composite material and piezoelectric power generating device - Google Patents

Method for fabricating piezoelectric composite material and piezoelectric power generating device Download PDF

Info

Publication number
TW201332171A
TW201332171A TW101102274A TW101102274A TW201332171A TW 201332171 A TW201332171 A TW 201332171A TW 101102274 A TW101102274 A TW 101102274A TW 101102274 A TW101102274 A TW 101102274A TW 201332171 A TW201332171 A TW 201332171A
Authority
TW
Taiwan
Prior art keywords
piezoelectric
piezoelectric ceramic
metal plate
weight
composite material
Prior art date
Application number
TW101102274A
Other languages
Chinese (zh)
Other versions
TWI501435B (en
Inventor
Wu-Sung Chuang
Chih-Chang Wei
Huey-Lin Hsieh
Cheng-Sheng Yu
Original Assignee
Betacera Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Betacera Inc filed Critical Betacera Inc
Priority to TW101102274A priority Critical patent/TWI501435B/en
Publication of TW201332171A publication Critical patent/TW201332171A/en
Application granted granted Critical
Publication of TWI501435B publication Critical patent/TWI501435B/en

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

The invention relates to a method for fabricating piezoelectric composite material comprising steps of mixing a piezoelectric ceramic powder, an adhesive, a cross-linking agent, a lubricant and a plasticizer to form a slurry; extruding the slurry to form a piezoelectric ceramic green fiber; sintering the piezoelectric ceramic green fiber to form the piezoelectric ceramic fiber; arranging the piezoelectric ceramic fiber in a mold according to a predetermined volumetric content; and adding a polymer into the mode to form a polymer matrix of piezoelectric composite material. A piezoelectric power generating device including a piezoelectric power generating element made of the piezoelectric composite material is also provided.

Description

壓電複合材料的製程及壓電發電裝置Piezoelectric composite process and piezoelectric power generation device

本發明係與壓電複合材料有關,特別是有關於壓電複合材料之製程。The present invention relates to piezoelectric composites, and more particularly to the fabrication of piezoelectric composites.

傳統壓電材料多為塊材型式,其質地堅硬易碎,機電轉換輸出受到限制,而侷限了壓電材料的發展運用。壓電複合材料則兼具壓電陶瓷優異的壓電特性與聚合物的柔軟性,可大幅提升其壓電性與機械性能,進一步拓展壓電材料的運用領域。Traditional piezoelectric materials are mostly block types, their texture is hard and brittle, and the electromechanical conversion output is limited, which limits the development and application of piezoelectric materials. Piezoelectric composite materials combine the excellent piezoelectric properties of piezoelectric ceramics with the flexibility of polymers, which can greatly improve their piezoelectricity and mechanical properties, and further expand the application of piezoelectric materials.

有關壓電複合材料的製造,常見的方法有雷射切割-填充法、注射成型法、脫模法及排列澆注法等。雷射切割-填充法係使用雷射光在壓電陶瓷塊上切割出多道橫向溝槽,接著再次使用雷射光在壓電陶瓷塊上切割出多道與橫向溝槽交叉的縱向溝槽以形成多個壓電陶瓷柱,然後於溝槽中填入聚合物以形成壓電複合材料。相較於傳統使用金剛石割刀的切割-填充法,此法具有高精度、無接觸及易操作等優點。然而,缺點是設備成本高,以及雷射的熱效應易導致陶瓷材料破裂而影響材料的結構與性能。Common methods for the manufacture of piezoelectric composite materials include laser cutting-filling, injection molding, demolding, and alignment casting. The laser cutting-filling method uses laser light to cut a plurality of lateral grooves on the piezoelectric ceramic block, and then uses the laser light to cut a plurality of longitudinal grooves intersecting the lateral grooves on the piezoelectric ceramic block to form A plurality of piezoelectric ceramic columns are then filled with a polymer in the trench to form a piezoelectric composite. Compared with the traditional cutting-filling method using a diamond cutter, this method has the advantages of high precision, no contact and easy operation. However, the disadvantage is the high cost of the equipment, and the thermal effects of the laser tend to cause the ceramic material to rupture and affect the structure and properties of the material.

注射成型法係使用具有多個管狀出料口的注射器在壓電陶瓷板上形成壓電陶瓷柱陣列,之後進行燒結,接著在陣列中填入聚合物以形成壓電複合材料。此法具有壓電陶瓷柱的尺寸、分布及體積含量可靈活控制等優點。然而,缺點是注射器的構造複雜以及壓電陶瓷柱的長度會受到限制。The injection molding method uses a syringe having a plurality of tubular discharge ports to form an array of piezoelectric ceramic columns on a piezoelectric ceramic plate, followed by sintering, and then filling the array with a polymer to form a piezoelectric composite. This method has the advantages of flexible size control of the size, distribution and volume content of the piezoelectric ceramic column. However, the disadvantage is that the construction of the syringe is complicated and the length of the piezoelectric ceramic column is limited.

脫模法係使用具有多個柱狀孔穴的模具,在壓電陶瓷板上,脫模形成壓電陶瓷柱陣列,之後進行燒結,接著在陣列中填入聚合物以形成壓電複合材料。此法的優點是模具的製作較簡單且價格低廉。然而,缺點是當壓電陶瓷柱的直徑低於100微米時,燒結時的熱應力易使壓電陶瓷柱陣列發生塌陷。The demolding method uses a mold having a plurality of columnar cavities on which a piezoelectric ceramic column array is demolded, followed by sintering, and then the polymer is filled in the array to form a piezoelectric composite. The advantage of this method is that the mold is simple to manufacture and inexpensive. However, the disadvantage is that when the diameter of the piezoelectric ceramic column is less than 100 μm, the thermal stress during sintering tends to collapse the piezoelectric ceramic column array.

排列澆注法係先製造壓電陶瓷纖維,接著依照預定的體積含量,將壓電陶瓷纖維排列,置入模具中;及將黏著劑例如是環氧樹脂灌入模具中,固化後脫模以形成1-3型壓電複合材料。排列澆注法之製程簡單、纖維體積含量易於控制,氣孔率低,適用於高性能傳感器、驅動器等裝置。The alignment casting method first manufactures piezoelectric ceramic fibers, and then arranges the piezoelectric ceramic fibers in a predetermined volume content, and places them into a mold; and deposits an adhesive such as epoxy resin into the mold, and demolds after solidification to form 1-3 type piezoelectric composite material. The arrangement casting method has simple process, easy control of fiber volume content and low porosity, and is suitable for high-performance sensors, drivers and the like.

目前在壓電陶瓷纖維的製造上,例如溶膠-凝膠(sol-gel)法、膠狀懸浮液紡絲法(VSSP)及擠壓成型法是常見的方法。其中的擠壓成型法係將壓電陶瓷粉末與黏結劑及交聯劑水溶液均勻混合,以形成一聚合物膠體。接著,將聚合物膠體藉由擠型機擠壓成型以形成陶瓷纖維生胚。然後,進行乾燥及燒結步驟,即形成壓電陶瓷纖維。雖然此方法製程簡單、成本低廉且不會造成環境污染,但是仍有擠壓困難、纖維之可塑性不佳等缺點。At present, in the manufacture of piezoelectric ceramic fibers, for example, a sol-gel method, a colloidal suspension spinning method (VSSP), and an extrusion molding method are common methods. The extrusion molding method uniformly mixes the piezoelectric ceramic powder with the binder and the aqueous solution of the crosslinking agent to form a polymer colloid. Next, the polymer colloid is extruded by an extruder to form a ceramic fiber green body. Then, a drying and sintering step is performed to form a piezoelectric ceramic fiber. Although this method is simple in process, low in cost, and does not cause environmental pollution, it has disadvantages such as difficulty in extrusion and poor plasticity of fibers.

另外,1-3型壓電複合材料是由一維連通的壓電陶瓷纖維相,平行排列於三維連通的聚合物基體相中而形成的兩相壓電複合材料。增加壓電發電元件的尺寸,可提高發電量。市場上對於具有高發電量且長期振動後表面不會龜裂的壓電發電元件仍有需求。In addition, the 1-3 type piezoelectric composite material is a two-phase piezoelectric composite material formed by a one-dimensionally connected piezoelectric ceramic fiber phase and arranged in parallel in a three-dimensionally connected polymer matrix phase. Increasing the size of the piezoelectric generating element can increase the amount of power generation. There is still a demand in the market for piezoelectric power generation elements having high power generation and long-term vibration without cracking the surface.

有鑑於此,本發明人為改善並解決上述之缺失,乃特潛心研究並配合學理之運用,終於提出一種設計合理且有效改善上述缺失之本發明。In view of the above, the present inventors have made great efforts to improve and solve the above-mentioned shortcomings, and have finally made a proposal to rationally and effectively improve the above-mentioned defects.

本發明之一目的,在於提供一種壓電複合材料的製程,可順利擠壓成型壓電陶瓷纖維,且擠出的壓電陶瓷纖維之可塑性良好;又,本發明之製程製成的壓電複合材料用於製造壓電發電元件時,具有高發電量且長期振動後表面不會龜裂。An object of the present invention is to provide a process for piezoelectric composite material, which can smoothly extrude a piezoelectric ceramic fiber, and the plasticity of the extruded piezoelectric ceramic fiber is good; and the piezoelectric composite made by the process of the invention When the material is used to manufacture a piezoelectric power generation element, it has a high power generation amount and does not crack after long-term vibration.

本發明之另一目的,在於提供一種壓電發電裝置,包含使用上述壓電複合材料製成的壓電發電元件。Another object of the present invention is to provide a piezoelectric power generator comprising a piezoelectric power generating element made of the above piezoelectric composite material.

為了達成上述之目的,本發明係為一種壓電陶瓷纖維之製法,該製法包括以下步驟:混合壓電陶瓷粉末、黏結劑、交聯劑、潤滑劑及增塑劑,以形成一漿料;對漿料進行擠壓成型步驟,以形成壓電陶瓷纖維生胚;對壓電陶瓷纖維生胚進行燒結步驟,以形成壓電陶瓷纖維;依照預定的體積含量,將壓電陶瓷纖維排列,置入模具中;及將黏著劑灌入模具中,以形成壓電複合材料。In order to achieve the above object, the present invention is a method for preparing a piezoelectric ceramic fiber, the method comprising the steps of: mixing a piezoelectric ceramic powder, a binder, a crosslinking agent, a lubricant, and a plasticizer to form a slurry; The slurry is subjected to an extrusion molding step to form a piezoelectric ceramic fiber green embryo; the piezoelectric ceramic fiber green embryo is subjected to a sintering step to form a piezoelectric ceramic fiber; and the piezoelectric ceramic fiber is arranged according to a predetermined volume content Into the mold; and the adhesive is poured into the mold to form a piezoelectric composite.

而且,本發明係一種壓電發電裝置,包含:支撐台;金屬板,具有彼此相反的第一表面及第二表面,金屬板的一端固定在支撐台上;及至少一壓電發電元件,鄰接於金屬板的第一表面及/或第二表面上,壓電發電元件係使用上述壓電複合材料製成。Furthermore, the present invention is a piezoelectric power generating apparatus comprising: a support table; a metal plate having first and second surfaces opposite to each other, one end of the metal plate being fixed on the support table; and at least one piezoelectric generating element adjacent On the first surface and/or the second surface of the metal plate, the piezoelectric generating element is made of the above piezoelectric composite material.

相較於習知,本發明之製程主要是利用添加潤滑劑及增塑劑,可順利擠壓成型,且擠出的纖維之可塑性良好,及藉由調整壓電複合材料中兩相的配比,製成具有高發電量且長期振動後表面不會龜裂的壓電發電元件以供壓電發電裝置使用。本發明之製程簡單、成本低廉且不會造成環境污染的優點,可應用於薄長型壓電發電元件的製作。Compared with the prior art, the process of the present invention mainly utilizes the addition of a lubricant and a plasticizer, can be smoothly extruded, and the plasticity of the extruded fiber is good, and the ratio of the two phases in the piezoelectric composite material is adjusted. A piezoelectric generating element having a high power generation amount and having no surface crack after long-term vibration is used for use in a piezoelectric power generator. The invention has the advantages of simple process, low cost and no environmental pollution, and can be applied to the manufacture of thin and long piezoelectric generating elements.

有關本發明之詳細說明及技術內容,配合圖式說明如下,然而所附圖式僅提供參考與說明用,並非用來對本發明加以限制者。The detailed description and technical content of the present invention are set forth in the accompanying drawings.

請參照第一圖,第一圖係表示本發明之一較佳實施例中壓電複合材料的製程的流程示意圖。本實施例係採用擠壓成型法製造壓電陶瓷纖維以及排列澆注法製造壓電複合材料。首先,請參考第一圖中之步驟100,使用混拌機均勻混合重量百分比為70wt%-95wt%的壓電陶瓷粉末、3.5~20wt%的黏結劑、0.5~5wt%的交聯劑水溶液、0.5~2.5wt%的潤滑劑與0.5~2.5wt%的增塑劑,以形成一漿料。Referring to the first drawing, the first drawing shows a schematic flow chart of the process of the piezoelectric composite material in a preferred embodiment of the present invention. In this embodiment, a piezoelectric ceramic fiber is produced by an extrusion molding method and a piezoelectric composite material is produced by an alignment casting method. First, please refer to step 100 in the first figure, using a mixer to uniformly mix 70% by weight to 95% by weight of piezoelectric ceramic powder, 3.5 to 20% by weight of a binder, 0.5 to 5% by weight of an aqueous solution of a crosslinking agent, 0.5 to 2.5 wt% of the lubricant and 0.5 to 2.5 wt% of the plasticizer to form a slurry.

壓電陶瓷粉末可具有化學式ABO3。化學式ABO3中,A可為鉛、鋇、鑭(lanthanum)、鍶(strontium)、鉀或鋰,B可為鈦、鋯(zirconium)、錳、鈷、鈮(niobium)、鐵、鋅、鎂、釔(yttrium)、錫、鎳或鎢。適用於本實施例的壓電陶瓷粉末 之尺寸可介於0.1~1.0微米,其重量百分比可介於70~95wt%。The piezoelectric ceramic powder may have the chemical formula ABO 3 . In the chemical formula ABO 3 , A may be lead, lanthanum, strontium, potassium or lithium, and B may be titanium, zirconium, manganese, cobalt, niobium, iron, zinc, magnesium. , yttrium, tin, nickel or tungsten. The piezoelectric ceramic powder suitable for the present embodiment may have a size of 0.1 to 1.0 μm and a weight percentage of 70 to 95% by weight.

合適的黏結劑可為甲基纖維素系諸如甲基纖維素、羥丙基甲基纖維素;聚乙烯醇系諸如聚乙烯醇、聚醋酸乙烯醇;或聚丙烯酸酯。黏結劑之重量百分比可介於3.5~20wt%。Suitable binders may be methylcelluloses such as methylcellulose, hydroxypropylmethylcellulose; polyvinyl alcohols such as polyvinyl alcohol, polyvinyl acetate; or polyacrylates. The weight percentage of the binder may range from 3.5 to 20% by weight.

交聯劑可為含硼酸、硼酸鹽、磷酸鹽、矽酸鹽或鋁酸鹽之水溶液。硼酸鹽可包括硼酸鈉或硼酸鉀。磷酸鹽可包括磷酸鈉、磷酸鉀或磷酸錳。矽酸鹽可包括矽酸鈉、矽酸鉀或矽酸鋁。鋁酸鹽可包括鋁酸鈉或鋁酸鉀。交聯劑可為濃度介於0.005~0.05M之水溶液,其重量百分比係介於0.5~5wt%。當交聯劑溶於水中時產生帶電荷的鹼性氫氧化物可與黏結劑形成立體網狀交聯作用,同時將陶瓷粉末束覆在其中,在自發性的脫水反應後形成緊密的立體網狀複合結構。The crosslinking agent can be an aqueous solution containing boric acid, borate, phosphate, citrate or aluminate. The borate may include sodium borate or potassium borate. Phosphates can include sodium phosphate, potassium phosphate or manganese phosphate. The citrate may include sodium citrate, potassium citrate or aluminum citrate. The aluminate may include sodium aluminate or potassium aluminate. The crosslinking agent may be an aqueous solution having a concentration of 0.005 to 0.05 M, and the weight percentage thereof is 0.5 to 5 wt%. When the cross-linking agent is dissolved in water, the charged alkaline hydroxide can form a three-dimensional network cross-linking with the binder, and at the same time, the ceramic powder bundle is coated therein to form a compact three-dimensional network after the spontaneous dehydration reaction. Composite structure.

適當的潤滑劑可為丙三醇或二丙二醇,其重量百分比可介於0.5~2.5wt%。適量的潤滑劑可促進擠型,避免漿料沾黏於後續步驟所使用擠出機的內壁及孔洞。A suitable lubricant may be glycerol or dipropylene glycol, which may range from 0.5 to 2.5% by weight. An appropriate amount of lubricant promotes extrusion and prevents the slurry from sticking to the inner walls and holes of the extruder used in subsequent steps.

增塑劑可選自由聚乙烯乙二醇、1,3丁二醇、1,4丁二醇及苯醇所組成之族群。增塑劑之重量百分比係介於0.5~2.5wt%。適量的增塑劑可改善擠出的纖維之可塑性,以達到所需規格。The plasticizer may be selected from the group consisting of polyethylene glycol, 1,3 butanediol, 1,4 butanediol and phenyl alcohol. The weight percentage of the plasticizer is between 0.5 and 2.5% by weight. The right amount of plasticizer improves the plasticity of the extruded fiber to the desired specification.

接著,步驟102利用三滾筒機將漿料中所含的粉末滾壓成細微粉末。接著步驟104利用擠出機進行擠壓成型,以形成所需規格之壓電陶瓷纖維生胚。擠壓成型之擠壓壓力可介於1~50kg/cm2。壓電陶瓷纖維生胚之直徑可介於75~1,000微米。Next, in step 102, the powder contained in the slurry is rolled into a fine powder by a three-roller. Next, step 104 is extrusion molded using an extruder to form a piezoelectric ceramic fiber green body of a desired specification. The extrusion pressure of extrusion can be between 1 and 50 kg/cm 2 . Piezoelectric ceramic fiber embryos can range in diameter from 75 to 1,000 microns.

接著,步驟106將纖維生胚經由烘乾爐於溫度80~120℃進行乾燥處理,去除纖維生胚內所含的水份。Next, in step 106, the fibrous green embryos are dried by a drying oven at a temperature of 80 to 120 ° C to remove water contained in the fibrous green embryos.

接著,步驟108在乾燥後的纖維生胚表面上塗敷鋯粉,增加表面耐磨度,並將其放置於氧化鋁基板上再放入坩鍋中。Next, in step 108, zirconium powder is coated on the surface of the dried fibrous green embryo to increase the surface abrasion resistance, and placed on an alumina substrate and placed in a crucible.

接著,步驟110將放置於坩鍋中的纖維生胚經由燒結爐於溫度1,000~1,300℃燒結2~3小時,燒結後成為壓電陶瓷纖維。Next, in step 110, the fibrous green embryos placed in the crucible are sintered at a temperature of 1,000 to 1,300 ° C for 2 to 3 hours through a sintering furnace, and sintered to become piezoelectric ceramic fibers.

經測定,壓電陶瓷纖維直徑約為250微米、長度為70~100毫米、真圓度誤差為0.07+0.001微米/1毫米、真直度誤差為0.25微米/100毫米、燒結密度大於99%、壓電應變常數d33大於600pC/N。The piezoelectric ceramic fiber has been determined to have a diameter of about 250 μm, a length of 70 to 100 mm, a roundness error of 0.07+0.001 μm/1 mm, a true straightness error of 0.25 μm/100 mm, a sintered density of more than 99%, and a pressure. The electrical strain constant d 33 is greater than 600 pC/N.

接著,步驟112依照35%~85%的體積含量,將壓電陶瓷纖維排列,置入模具中。壓電複合材料中所含的壓電陶瓷纖維之體積含量愈高,壓電應變常數d33也愈高。而且,壓電陶瓷纖維於壓電複合材料中周期性排列與非周期性排列也會影響壓電元件的厚度共振模式,非周期性排列會使厚度共振模式單純而不會影響其他性能。Next, in step 112, the piezoelectric ceramic fibers are arranged in a volume of 35% to 85%, and placed in a mold. The higher the volume content of the piezoelectric ceramic fibers contained in the piezoelectric composite material, the higher the piezoelectric strain constant d 33 is. Moreover, the periodic arrangement and non-periodic arrangement of piezoelectric ceramic fibers in the piezoelectric composite material also affect the thickness resonance mode of the piezoelectric element, and the non-periodic arrangement makes the thickness resonance mode simple without affecting other properties.

接著,步驟114將一黏著劑灌入該模具中,抽真空30~40分鐘,於160~180℃固化6~9小時後,脫模以形成1-3型壓電複合材料。合適的黏著劑可為環氧樹脂或矽酮樹脂。環氧樹脂黏著劑的製備方法為:選擇一種環氧樹脂為基質,以基質:固化劑的重量比為3:1在基質中加入固化劑,固化劑可以是順丁烯二酸酐或六氫鄰苯二甲酸酐,如有操作需要可加入稀釋劑例如鄰苯二甲酸二辛酯稀釋環氧樹脂,稀釋劑用量為環氧樹脂重量的1%。Next, in step 114, an adhesive is poured into the mold, vacuumed for 30 to 40 minutes, and cured at 160 to 180 ° C for 6 to 9 hours, and then demolded to form a 1-3 type piezoelectric composite material. A suitable adhesive can be an epoxy resin or an oxime resin. The epoxy resin adhesive is prepared by selecting an epoxy resin as a matrix and adding a curing agent to the matrix at a weight ratio of matrix:curing agent of 3:1. The curing agent may be maleic anhydride or hexahydroortho Phthalic anhydride, if necessary, may be added with a diluent such as dioctyl phthalate to dilute the epoxy resin, and the amount of the diluent is 1% by weight of the epoxy resin.

為了測試壓電複合材料的性能,將壓電複合材料切割成2毫米厚度的薄片,接著磨平,且披覆銀電極,置於矽油中,在1.5~2.5kV/mm、溫度100℃、15~25分鐘條件下,對壓電複合材料進行極化。經測定,壓電複合材料的d33大於300pC/N。In order to test the performance of the piezoelectric composite, the piezoelectric composite was cut into 2 mm thick sheets, then smoothed, and covered with silver electrodes, placed in eucalyptus oil at 1.5 to 2.5 kV/mm, temperature 100 ° C, 15 The piezoelectric composite was polarized for ~25 minutes. The piezoelectric composite has a d 33 greater than 300 pC/N.

接著,請參考第二圖,第二圖係本發明之第一實施例的壓電發電裝置的示意圖。本發明的壓電發電裝置20,包含:支撐台22、金屬板24及壓電發電元件26。金屬板24係具有彼此相反的第一表面241及第二表面242,金屬板24的一端24a固定在支撐台22上;壓電發電元件26係鄰接於金屬板24的第一表面241上,壓電發電元件26係使用上述壓電複合材料製成,壓電發電元件26為板狀,長度可為3~10公分,較佳為10公分,厚度可為30微米~3毫米。此外,可設置質量塊30放置在金屬板24的另一端24b的第一表面241上,以增加壓電發電元件26的振動。質量塊30的質量可為0.5~10克。Next, please refer to the second drawing, which is a schematic view of the piezoelectric power generating device of the first embodiment of the present invention. The piezoelectric power generator 20 of the present invention includes a support base 22, a metal plate 24, and a piezoelectric generating element 26. The metal plate 24 has a first surface 241 and a second surface 242 opposite to each other. One end 24a of the metal plate 24 is fixed on the support table 22; the piezoelectric generating element 26 is adjacent to the first surface 241 of the metal plate 24, and is pressed. The electric power generating element 26 is made of the above piezoelectric composite material, and the piezoelectric generating element 26 has a plate shape and may have a length of 3 to 10 cm, preferably 10 cm, and a thickness of 30 to 3 mm. Further, the mass block 30 may be placed on the first surface 241 of the other end 24b of the metal plate 24 to increase the vibration of the piezoelectric generating element 26. The mass 30 can have a mass of 0.5 to 10 grams.

接著,請參考第三圖,第三圖係本發明之第二實施例的壓電發電裝置的示意圖。本發明的壓電發電裝置20,包含:支撐台22、金屬板24及二壓電發電元件26、28。壓電發電元件26鄰接於金屬板24的第一表面241上,及壓電發電元件28鄰接於金屬板24的第二表面242上,壓電發電元件26、28係使用上述壓電複合材料製成,壓電發電元件26、28為板狀,長度可為3~10公分,較佳為10公分,厚度可為30微米~3毫米。此外,質量塊30放置在金屬板24的另一端24b的第一表面241上,以增加壓電發電元件26、28的振動。Next, please refer to the third drawing, which is a schematic view of a piezoelectric power generating apparatus according to a second embodiment of the present invention. The piezoelectric power generator 20 of the present invention includes a support base 22, a metal plate 24, and piezoelectric generator elements 26 and 28. The piezoelectric generating element 26 is adjacent to the first surface 241 of the metal plate 24, and the piezoelectric generating element 28 is adjacent to the second surface 242 of the metal plate 24. The piezoelectric generating elements 26 and 28 are made of the piezoelectric composite material described above. The piezoelectric generating elements 26 and 28 are plate-shaped and may have a length of 3 to 10 cm, preferably 10 cm, and a thickness of 30 to 3 mm. Further, the mass 30 is placed on the first surface 241 of the other end 24b of the metal plate 24 to increase the vibration of the piezoelectric generating elements 26, 28.

接著,請參考第四圖,第四圖係本發明之第三實施例的壓電發電裝置的示意圖。本發明的壓電發電裝置20,包含:支撐台22、金屬板24及壓電發電元件26。金屬板24,具有彼此相反的第一表面241及第二表面242,金屬板24的一端24a固定在支撐台22上。壓電發電元件26係鄰接於金屬板24的第一表面241上,壓電發電元件26係使用上述壓電複合材料製成,壓電發電元件26為板狀,長度可為3~10公分,較佳為10公分,厚度可為30微米~3毫米。二質量塊30、32分別放置在金屬板24的另一端24b之第一表面241及第二表面242上,以增加壓電發電元件26的振動。Next, please refer to the fourth drawing, which is a schematic view of a piezoelectric power generating apparatus according to a third embodiment of the present invention. The piezoelectric power generator 20 of the present invention includes a support base 22, a metal plate 24, and a piezoelectric generating element 26. The metal plate 24 has a first surface 241 and a second surface 242 opposite to each other, and one end 24a of the metal plate 24 is fixed to the support table 22. The piezoelectric generating element 26 is adjacent to the first surface 241 of the metal plate 24, and the piezoelectric generating element 26 is made of the above piezoelectric composite material. The piezoelectric generating element 26 has a plate shape and can be 3 to 10 cm in length. Preferably, it is 10 cm and the thickness can be 30 micrometers to 3 millimeters. The two masses 30, 32 are placed on the first surface 241 and the second surface 242 of the other end 24b of the metal plate 24, respectively, to increase the vibration of the piezoelectric generating element 26.

接著,請參考第五圖,第五圖係本發明之第四實施例的壓電發電裝置的示意圖。本發明的壓電發電裝置20,包含:支撐台22、金屬板24及二壓電發電元件26、28。金屬板24係具有彼此相反的第一表面241及第二表面242,金屬板24的一端24a固定在 支撐台22上。壓電發電元件26鄰接於金屬板24的第一表面241上,及壓電發電元件28鄰接於金屬板24的第二表面242上,壓電發電元件26、28係使用上述壓電複合材料製成,壓電發電元件26、28為板狀,長度可為3~10公分,較佳為10公分,厚度可為30微米~3毫米。二質量塊30、32分別放置在金屬板24的另一端24b之第一表面241及第二表面242上,以增加壓電發電元件26、28的振動。Next, please refer to FIG. 5, which is a schematic view of a piezoelectric power generator according to a fourth embodiment of the present invention. The piezoelectric power generator 20 of the present invention includes a support base 22, a metal plate 24, and piezoelectric generator elements 26 and 28. The metal plate 24 has a first surface 241 and a second surface 242 opposite to each other, and one end 24a of the metal plate 24 is fixed to the support table 22. The piezoelectric generating element 26 is adjacent to the first surface 241 of the metal plate 24, and the piezoelectric generating element 28 is adjacent to the second surface 242 of the metal plate 24. The piezoelectric generating elements 26 and 28 are made of the piezoelectric composite material described above. The piezoelectric generating elements 26 and 28 are plate-shaped and may have a length of 3 to 10 cm, preferably 10 cm, and a thickness of 30 to 3 mm. The two masses 30, 32 are placed on the first surface 241 and the second surface 242 of the other end 24b of the metal plate 24, respectively, to increase the vibration of the piezoelectric generating elements 26, 28.

以上所述僅為本發明之較佳實施例,非用以限定本發明之專利範圍,其他運用本發明之專利精神之等效變化,均應俱屬本發明之專利範圍。The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the invention, and other equivalent variations of the patent spirit of the present invention are all within the scope of the invention.

100~114...步驟100~114. . . step

20...壓電發電裝置20. . . Piezoelectric generator

22...支撐台twenty two. . . Support table

24...金屬板twenty four. . . Metal plate

24a...金屬板的一端24a. . . One end of a metal plate

24b...金屬板的一端24b. . . One end of a metal plate

26...壓電發電元件26. . . Piezoelectric generating element

28...壓電發電元件28. . . Piezoelectric generating element

30...質量塊30. . . Mass block

32...質量塊32. . . Mass block

241...第一表面241. . . First surface

242...第二表面242. . . Second surface

第一圖係表示本發明之一較佳實施例中壓電複合材料的製程的流程示意圖。The first figure is a flow chart showing the process of a piezoelectric composite material in a preferred embodiment of the present invention.

第二圖係表示本發明之第一實施例的壓電發電裝置的示意圖。The second drawing shows a schematic view of a piezoelectric power generator of a first embodiment of the present invention.

第三圖係表示本發明之第二實施例的壓電發電裝置的示意圖。The third diagram is a schematic view showing a piezoelectric power generator of a second embodiment of the present invention.

第四圖係表示本發明之第三實施例的壓電發電裝置的示意圖。The fourth figure is a schematic view showing a piezoelectric power generator of a third embodiment of the present invention.

第五圖係表示本發明之第四實施例的壓電發電裝置的示意圖。Fig. 5 is a schematic view showing a piezoelectric power generator of a fourth embodiment of the present invention.

100~114...步驟100~114. . . step

Claims (20)

一種壓電複合材料的製程,包括以下步驟:
(a)混合ㄧ壓電陶瓷粉末、一黏結劑、一交聯劑、一潤滑劑及一增塑劑,以形成一漿料;
(b)對該漿料進行一擠壓成型步驟,以形成一壓電陶瓷纖維生胚;
(c)對該壓電陶瓷纖維生胚進行一燒結步驟,以形成一壓電陶瓷纖維;
(d)依照預定的一體積含量,將該壓電陶瓷纖維排列,置入一模具中;及
(e)將一黏著劑灌入該模具中,以形成一壓電複合材料。
A process for piezoelectric composites, comprising the steps of:
(a) mixing a piezoelectric ceramic powder, a binder, a crosslinking agent, a lubricant, and a plasticizer to form a slurry;
(b) performing an extrusion molding step on the slurry to form a piezoelectric ceramic fiber green body;
(c) performing a sintering step on the piezoelectric ceramic fiber green body to form a piezoelectric ceramic fiber;
(d) arranging the piezoelectric ceramic fibers in a mold according to a predetermined volume content; and
(e) An adhesive is poured into the mold to form a piezoelectric composite.
如請求項1之壓電複合材料的製程,其中該步驟(a)中的該潤滑劑係丙三醇或二丙二醇,該潤滑劑之重量百分比係介於0.5~2.5wt%。The process of claim 1, wherein the lubricant in the step (a) is glycerol or dipropylene glycol, and the weight percentage of the lubricant is between 0.5 and 2.5% by weight. 如請求項1之壓電複合材料的製程,其中該步驟(a)中的該增塑劑係選自由聚乙烯乙二醇、1,3丁二醇、1,4丁二醇及苯醇所組成之族群,該增塑劑之重量百分比係介於0.5~2.5wt%。The process of claim 1, wherein the plasticizer in the step (a) is selected from the group consisting of polyethylene glycol, 1,3 butanediol, 1,4 butanediol, and phenyl alcohol. The group of constituents has a weight percentage of the plasticizer of 0.5 to 2.5% by weight. 如請求項1之壓電複合材料的製程,其中該步驟(a)中的該壓電陶瓷粉末係具有化學式ABO3,化學式ABO3中,A可為鉛、鋇、鑭(lanthanum)、鍶(strontium)、鉀或鋰,B可為鈦、鋯(zirconium)、錳、鈷、鈮(niobium)、鐵、鋅、鎂、釔(yttrium)、錫、鎳或鎢,該壓電陶瓷粉末之重量百分比係介於70~95wt%。The process of the piezoelectric composite material of claim 1, wherein the piezoelectric ceramic powder in the step (a) has a chemical formula ABO 3 , and in the chemical formula ABO 3 , A can be lead, lanthanum, lanthanum, lanthanum ( Strontium), potassium or lithium, B may be titanium, zirconium, manganese, cobalt, niobium, iron, zinc, magnesium, yttrium, tin, nickel or tungsten, the weight of the piezoelectric ceramic powder The percentage is between 70 and 95% by weight. 如請求項1之壓電複合材料的製程,其中該步驟(a)中的該壓電陶瓷粉末之尺寸係介於0.1~1.0微米。The process of claim 1, wherein the piezoelectric ceramic powder in the step (a) has a size of 0.1 to 1.0 μm. 如請求項1之壓電複合材料的製程,其中該步驟(a)中的該黏結劑係甲基纖維素或羥丙基甲基纖維素,該黏結劑之重量百分比介於3.5~20wt%。The process of the piezoelectric composite of claim 1, wherein the binder in the step (a) is methylcellulose or hydroxypropylmethylcellulose, and the weight percentage of the binder is between 3.5 and 20% by weight. 如請求項1之壓電複合材料的製程,其中該步驟(a)中的該交聯劑為含硼酸、硼酸鹽、磷酸鹽、矽酸鹽或鋁酸鹽之水溶液,該交聯劑為濃度介於0.005~0.05M之水溶液。The process of claim 1, wherein the crosslinking agent in the step (a) is an aqueous solution containing boric acid, borate, phosphate, citrate or aluminate, and the crosslinking agent is in a concentration. An aqueous solution between 0.005 and 0.05M. 如請求項7之壓電複合材料的製程,其中該步驟(a)中的該交聯劑之重量百分比係介於0.5~5wt%。The process of claim 4, wherein the weight percentage of the crosslinking agent in the step (a) is between 0.5 and 5% by weight. 如請求項1之壓電複合材料的製程,其中該步驟(b)中的擠壓壓力介於1~50kg/cm2The process of claim 1, wherein the pressing pressure in the step (b) is between 1 and 50 kg/cm 2 . 如請求項1之壓電複合材料的製程,其中該步驟(b)中的該壓電陶瓷纖維生胚之直徑介於75~1,000微米。The process of claim 1, wherein the piezoelectric ceramic fiber preform in the step (b) has a diameter of between 75 and 1,000 microns. 如請求項1之壓電複合材料的製程,其中該步驟(c)中的該燒結溫度介於1,000~1,300℃。The process of claim 1, wherein the sintering temperature in the step (c) is between 1,000 and 1,300 °C. 如請求項1之壓電複合材料的製程,更包括於該步驟(c)前進行一乾燥步驟,該乾燥步驟之溫度介於80~120℃。The process of the piezoelectric composite material of claim 1, further comprising performing a drying step before the step (c), the temperature of the drying step being between 80 and 120 °C. 如請求項1之壓電複合材料的製程,其中該步驟(d)中的體積分數為35%~85%。The process of claim 1, wherein the volume fraction in the step (d) is from 35% to 85%. 如請求項1之壓電複合材料的製程,其中該步驟(e)中的該黏著劑為環氧樹脂或矽酮樹脂。The process of claim 1, wherein the adhesive in the step (e) is an epoxy resin or an oxime resin. 一種壓電發電裝置,包含:
一支撐台;
一金屬板,具有彼此相反的一第一表面及一第二表面,該金屬板的一端固定在該支撐台上;及
至少一壓電發電元件,鄰接於該金屬板的第一表面及/或第二表面上,該壓電發電元件係使用請求項1之該壓電複合材料製成。
A piezoelectric power generating device comprising:
a support table;
a metal plate having a first surface and a second surface opposite to each other, one end of the metal plate being fixed on the support table; and at least one piezoelectric generating element adjacent to the first surface of the metal plate and/or On the second surface, the piezoelectric generating element is made of the piezoelectric composite material of claim 1.
如請求項15之壓電發電裝置,其中二壓電發電元件分別鄰接於該金屬板的第一表面及第二表面上。The piezoelectric power generator of claim 15, wherein the two piezoelectric generating elements are respectively adjacent to the first surface and the second surface of the metal plate. 如請求項15或16之壓電發電裝置,更包括一質量塊放置在該金屬板的另一端。A piezoelectric power generator according to claim 15 or 16, further comprising a mass placed at the other end of the metal plate. 如請求項15或16之壓電發電裝置,更包括二質量塊分別放置在該金屬板的另一端之該第一表面及該第二表面上。The piezoelectric power generating device of claim 15 or 16, further comprising two masses respectively disposed on the first surface and the second surface of the other end of the metal plate. 如請求項15之壓電發電裝置,其中該壓電發電元件為板狀,長度為3~10公分。The piezoelectric power generator of claim 15, wherein the piezoelectric generating element is plate-shaped and has a length of 3 to 10 cm. 如請求項15之壓電發電裝置,其中該壓電發電元件的厚度為30微米~3毫米。The piezoelectric power generator of claim 15, wherein the piezoelectric generating element has a thickness of 30 μm to 3 mm.
TW101102274A 2012-01-19 2012-01-19 Method for fabricating piezoelectric composite material and piezoelectric power generating device TWI501435B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101102274A TWI501435B (en) 2012-01-19 2012-01-19 Method for fabricating piezoelectric composite material and piezoelectric power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101102274A TWI501435B (en) 2012-01-19 2012-01-19 Method for fabricating piezoelectric composite material and piezoelectric power generating device

Publications (2)

Publication Number Publication Date
TW201332171A true TW201332171A (en) 2013-08-01
TWI501435B TWI501435B (en) 2015-09-21

Family

ID=49479132

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101102274A TWI501435B (en) 2012-01-19 2012-01-19 Method for fabricating piezoelectric composite material and piezoelectric power generating device

Country Status (1)

Country Link
TW (1) TWI501435B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI714934B (en) * 2018-12-25 2021-01-01 財團法人工業技術研究院 Ceramic fiber piezoelectric composite material and shoe

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5527480A (en) * 1987-06-11 1996-06-18 Martin Marietta Corporation Piezoelectric ceramic material including processes for preparation thereof and applications therefor
DE19615694C1 (en) * 1996-04-19 1997-07-03 Siemens Ag Piezo-actuator based on monolithic multi-layer structure
US6329741B1 (en) * 1999-04-30 2001-12-11 The Trustees Of Princeton University Multilayer ceramic piezoelectric laminates with zinc oxide conductors
JP4724728B2 (en) * 2008-03-31 2011-07-13 株式会社デンソー Manufacturing method of multilayer piezoelectric element
JP2012531036A (en) * 2009-06-19 2012-12-06 ソナベーション, インコーポレイテッド Method for manufacturing a piezoelectric ceramic body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI714934B (en) * 2018-12-25 2021-01-01 財團法人工業技術研究院 Ceramic fiber piezoelectric composite material and shoe

Also Published As

Publication number Publication date
TWI501435B (en) 2015-09-21

Similar Documents

Publication Publication Date Title
US8703040B2 (en) Method for manufacturing a piezoelectric ceramic body
CN101322919B (en) Method for preparing micropore ceramic separation film
Li et al. Direct ink writing of 3D piezoelectric ceramics with complex unsupported structures
CN103241989A (en) Preparation method for piezoelectric composite material and piezoelectric power generator
Li et al. Effects of solvent debinding on the microstructure and properties of 3D-printed alumina ceramics
CN102898141A (en) Preparation method of high-heat-conduction aluminum nitride ceramic shaped part
TW201902671A (en) Structured ceramic composite molded by natural materials and cold sintered
CN114228139B (en) 3D printing high-performance piezoelectric part with geometric configuration characteristic structure and preparation method thereof
Liu et al. 4D printing of lead zirconate titanate piezoelectric composites transducer based on direct ink writing
TWI501435B (en) Method for fabricating piezoelectric composite material and piezoelectric power generating device
CN105176006A (en) Preparation method of 1-3 type piezoelectric ceramic/epoxy resin composite material
CN105237028A (en) Multi-channel kaolin plate ceramic membrane support, preparation method and application thereof
CN101798201B (en) Niobate-based piezoelectric ceramic fiber/polymer 1-3 type composite material and preparation method
US20130285510A1 (en) Method for fabricating piezoelectric composite material and piezoelectric power generating device
CN102683576B (en) Piezoelectric actuator and manufacturing method thereof
WO2017221932A1 (en) Ceramic composite and production method for ceramic composite
CN115179387B (en) 3D printing preparation method for wood pile type PZT support structure composite material driver
CN103334021A (en) Manufacturing process of micro-channel core body
CN107935591B (en) Modified lead zirconate titanate powder, preparation method thereof and piezoelectric ceramic molding blank
CN105237027A (en) Preparation method and application of multi-channel cordierite plate ceramic membrane support
TWI379820B (en) Piezoelectric ceramic fibers and fabrication method thereof
CN115745580A (en) Preparation method and application of alumina ceramic 3D printing raw material using aluminum powder as binder component
CN113270591A (en) Preparation method of anode-supported SOFC electrolyte film
JP2018100781A (en) Manufacturing method of heat reservoir and heat reservoir
CN1472448A (en) Production method of nano ceramic spring

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees