TW201330275A - Thin-film transistor and manufacturing method for thin-film transistor - Google Patents

Thin-film transistor and manufacturing method for thin-film transistor Download PDF

Info

Publication number
TW201330275A
TW201330275A TW101142733A TW101142733A TW201330275A TW 201330275 A TW201330275 A TW 201330275A TW 101142733 A TW101142733 A TW 101142733A TW 101142733 A TW101142733 A TW 101142733A TW 201330275 A TW201330275 A TW 201330275A
Authority
TW
Taiwan
Prior art keywords
precursor
oxide
layer
film transistor
thin film
Prior art date
Application number
TW101142733A
Other languages
Chinese (zh)
Inventor
Tatsuya Shimoda
Takaaki Miyasako
Original Assignee
Japan Science & Tech Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science & Tech Agency filed Critical Japan Science & Tech Agency
Publication of TW201330275A publication Critical patent/TW201330275A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Abstract

One thin-film transistor (100) is provided with layered oxides (30), between a gate electrode (220) and a channel (40), comprising a layer (32) that is in contact with a gate electrode (20) and that comprises a first oxide (which may contain unavoidable impurities) containing bismuth (Bi) and niobium (Nb), and a layer (34) that is contact with the channel (40) and that comprises a second oxide (which may contain unavoidable impurities) which is one type selected from a group consisting of an oxide containing lanthanum (La) and tantalum (Ta), an oxide containing lanthanum (La) and zirconium (Zr), and an oxide containing strontium (Sr) and tantalum (Ta); and the channel (40) is a channel oxide (which may contain unavoidable impurities) and comprises indium (In) and zinc (Zn).

Description

薄膜電晶體以及薄膜電晶體之製造方法 Thin film transistor and method for manufacturing thin film transistor

本發明係關於一種薄膜電晶體以及薄膜電晶體之製造方法。 The present invention relates to a thin film transistor and a method of manufacturing a thin film transistor.

以往,已揭示有一種目的在於以低驅動電壓來高速地開關,而採用強介電體材料(例如BLT(Bi4-XLaXTi3O12)、PZT(Pb(ZrX,Ti1-X)O3))來作為閘極絕緣層之薄膜電晶體。另一方面,亦揭示有一種目的在於提高載體濃度,而採用氧化物導電性材料(例如銦錫氧化物(ITO)、氧化鋅(ZnO)或LSCO(LaXSr1-XCuO4))來作為通道層之薄膜電晶體(專利文獻1)。 In the past, it has been revealed that a purpose is to switch at a high speed with a low driving voltage, and to use a ferroelectric material (for example, BLT (Bi 4-X La X Ti 3 O 12 ), PZT (Pb (Zr X , Ti 1- X ) O 3 )) is used as a thin film transistor of a gate insulating layer. On the other hand, it is also disclosed that one purpose is to increase the concentration of the carrier, and an oxide conductive material such as indium tin oxide (ITO), zinc oxide (ZnO) or LSCO (La X Sr 1-X CuO 4 ) is used. A thin film transistor as a channel layer (Patent Document 1).

此處,就上述薄膜電晶體的製造方法來看,首先,係藉由電子束蒸鍍法來形成作為閘極電極之Ti及Pt的堆疊膜。再藉由溶膠-凝膠(Sol-Gel)法而於該閘極電極上形成上述BLT或PZT所構成的閘極絕緣層。進一步地,藉由RF濺鍍法而於該閘極絕緣層上形成ITO所構成的通道層。接著,藉由電子束蒸鍍法而於該通道層上形成Ti及Pt,藉以形成源極電極與汲極電極。之後,藉由RIE法及濕蝕刻法(HF與HCl的混合溶液),則元件區域便會自其他的元件區域分離(專利文獻1)。 Here, in view of the above-described method for producing a thin film transistor, first, a stacked film of Ti and Pt as gate electrodes is formed by electron beam evaporation. Further, a gate insulating layer made of the above BLT or PZT is formed on the gate electrode by a sol-gel method. Further, a channel layer made of ITO is formed on the gate insulating layer by RF sputtering. Next, Ti and Pt are formed on the channel layer by electron beam evaporation to form a source electrode and a drain electrode. Thereafter, by the RIE method and the wet etching method (mixed solution of HF and HCl), the element region is separated from the other element regions (Patent Document 1).

先前技術文獻 Prior technical literature

專利文獻1:日本特開2006-121029號公報 Patent Document 1: Japanese Laid-Open Patent Publication No. 2006-121029

然而,傳統的薄膜電晶體雖存在有幾個藉由複合氧化物來形成閘極絕緣層或通道的例,但能夠實現作為薄膜電晶體的高特性之材料及其適當製造方法的選擇仍不理想。此外,伴隨閘極絕緣膜以及/或是通道分別的高性能化,將此等堆疊時謀求整體性能的提高也為為了達成薄膜電晶體之高性能化待解決之技術課題之一。此外,除了閘極絕緣層以及通道以外,閘極電極、源極電極、或是汲極電極也藉由氧化物來形成之薄膜電晶體的實現上尚留有許多研究開發的空間。 However, although conventional thin film transistors have several examples in which a gate insulating layer or a via is formed by a composite oxide, it is still not preferable to realize a material having high characteristics as a thin film transistor and a suitable manufacturing method thereof. . In addition, with the high performance of the gate insulating film and/or the respective channels, it is one of the technical problems to be solved in order to achieve high performance of the thin film transistor in order to improve the overall performance of such a stack. In addition, in addition to the gate insulating layer and the channel, there are still many research and development spaces for the implementation of the thin film transistor in which the gate electrode, the source electrode, or the drain electrode are formed by oxide.

此外,習知技術中,由於真空程序或使用光微影法之程序等需要較長的時間及/或昂貴的設備之程序為一般採行者,因此原物料與製造能源的使用效率非常地差。若採用上述般製造方法的情況,由於為了製造薄膜電晶體而需要較多的處理與較長的時間,因此從工業性乃至量產性的觀點來看並不佳。又,習知技術亦存在有大面積化較為困難之問題。 Further, in the prior art, since the procedure of a vacuum process or a procedure using the photolithography method, which requires a long time and/or an expensive apparatus, is a general adopter, the use efficiency of the raw materials and the manufacturing energy source is extremely inferior. In the case of the above-described production method, since a large amount of processing and a long period of time are required for producing a thin film transistor, it is not preferable from the viewpoint of industriality and mass productivity. Moreover, the conventional technology also has a problem that it is difficult to have a large area.

本發明係藉由解決上述諸問題的至少1個,來實現氧化物至少適用於通道以及閘極絕緣層之薄膜電晶體的高性能化,或此種薄膜電晶體之製造程序的簡潔化與省能源化。其結果,本發明對於工業性乃至量產性優異之薄膜電晶體的提供有很大的貢獻。 The present invention achieves high performance of a thin film transistor in which an oxide is at least suitable for a channel and a gate insulating layer by solving at least one of the above problems, or simplification and saving of a manufacturing process of the thin film transistor Energyization. As a result, the present invention contributes greatly to the provision of a thin film transistor excellent in industrial properties and mass productivity.

本案發明者從許多存在之氧化物當中就能適當發揮閘極絕緣膜或是通道功能之氧化物的選擇與組合進行了努力研究與分析。發現到令人玩味的是,例如即便閘極絕緣層之氧化物性能高的情況下,若其和成為通道之氧化物的配搭性(例如各層間之界面的原子相互擴散程度以及此所造成之界面缺陷密度之差等)不良,則將此等加以堆疊時會有完全無法發揮閘極絕緣層之性能水準的情況、或是完全無法發揮閘極絕緣層或是通道之功能的情況。 The inventors of the present invention have diligently studied and analyzed the selection and combination of a gate insulating film or an oxide of a channel function from among many existing oxides. It has been found to be interesting, for example, if the oxide properties of the gate insulating layer are high, if they are combined with the oxide of the channel (for example, the degree of interdiffusion of atoms at the interface between the layers and the resulting If the difference in interface defect density is poor, etc., when stacking these or the like, the performance level of the gate insulating layer may not be fully realized, or the function of the gate insulating layer or the channel may not be fully realized.

但是,本案發明者,經過許多試誤與詳細分析的結果,成功地發現出一種通道層,若將閘極絕緣層與特定氧化物層進行組合而形成特殊的堆疊構造,則該閘極絕緣層之性能可適切地發揮出來。其結果,可實現將該等氧化物適用於通道以及閘極絕緣層之高性能薄膜電晶體。進而,本案發明者也發現到可藉由採用相較於以往可大幅簡化乃至節能化且易於大面積化之程序來製造該等氧化物。此外,當開發出可適用做為薄膜電晶體之閘極電極以及/或是源極電極、汲極電極的氧化物時,其效益更為提高。本發明係基於上述各觀點所創造出來的。 However, the inventor of the present invention succeeded in discovering a channel layer after many trial and error and detailed analysis results. If a gate insulating layer is combined with a specific oxide layer to form a special stacked structure, the gate insulating layer is formed. The performance can be properly played. As a result, a high performance thin film transistor in which the oxides are applied to the channel and the gate insulating layer can be realized. Further, the inventors of the present invention have found that the oxide can be produced by using a program which is greatly simplified or even energy-saving and which is easy to increase in size compared with the prior art. In addition, when an oxide which is applicable as a gate electrode of a thin film transistor and/or a source electrode or a drain electrode is developed, the efficiency is further improved. The present invention has been created based on the above various points of view.

本發明之一薄膜電晶體,係於閘極電極與通道之間具備有堆疊氧化物,該堆疊氧化物具有:第1氧化物(可含有不可避免之雜質)之層,係相接於該閘極電極,為由鉍(Bi)與鈮(Nb)所構成之氧化物、或是由鉍(Bi)與鋅 (Zn)與鈮(Nb)所構成之氧化物;以及,第2氧化物(可含有不可避免之雜質)之層,係相接於該通道,為選自由鑭(La)與鉭(Ta)所構成之氧化物、由鑭(La)與鋯(Zr)所構成之氧化物、以及由鍶(Sr)與鉭(Ta)所構成之氧化物之群中1種。進而,此薄膜電晶體之該通道為通道用氧化物(可含有不可避免之雜質)。 A thin film transistor of the present invention is provided with a stacked oxide between a gate electrode and a channel, the stacked oxide having a layer of a first oxide (which may contain unavoidable impurities) connected to the gate The electrode is an oxide composed of bismuth (Bi) and niobium (Nb) or bismuth (Bi) and zinc. An oxide composed of (Zn) and niobium (Nb); and a layer of a second oxide (which may contain unavoidable impurities) is in contact with the channel and is selected from the group consisting of lanthanum (La) and lanthanum (Ta). One of a group consisting of an oxide composed of lanthanum (La) and zirconium (Zr), and an oxide composed of strontium (Sr) and strontium (Ta). Further, the channel of the thin film transistor is an oxide for a channel (which may contain unavoidable impurities).

此薄膜電晶體係使得由相接於閘極電極之第1氧化物與相接於通道之第2氧化物之堆疊氧化物具備於閘極電極與通道之間。此處,第1氧化物雖介電係數相對高,但溢漏電流值大、表面平坦性低。另一方面,第2氧化物雖介電係數相對低,但溢漏電流值非常小,表面平坦性優異。進而,依據本案發明者之詳細分析,發現此堆疊氧化物藉由將第1氧化物配置於閘極側、將第2氧化物配置於通道側,可適當發揮出個別的優點。具體而言,第1氧化物此種高電容閘極絕緣物於電晶體特性中有助於汲極電流相對於閘極電壓之陡峭上升、導通電流之增加。再者,第2氧化物之存在有助於低溢漏電流與表面平滑性,從而可降低汲極相對於閘極電壓之關閉電流、增加電場效應遷移度。從而,依據此薄膜電晶體,可實現閘極絕緣層以及通道皆由氧化物所形成之高性能薄膜電晶體。 In the thin film electromorph system, a stacked oxide that is connected to the first oxide of the gate electrode and the second oxide that is in contact with the channel is provided between the gate electrode and the channel. Here, although the first oxide has a relatively high dielectric constant, the value of the overflow current is large and the surface flatness is low. On the other hand, although the dielectric constant of the second oxide is relatively low, the value of the overflow current is extremely small, and the surface flatness is excellent. Further, according to the detailed analysis by the inventors of the present invention, it has been found that the stacked oxide can appropriately exhibit individual advantages by disposing the first oxide on the gate side and the second oxide on the channel side. Specifically, the high-capacitance gate insulator such as the first oxide contributes to a steep rise in the gate current with respect to the gate voltage and an increase in the on-current in the transistor characteristics. Furthermore, the presence of the second oxide contributes to low leakage current and surface smoothness, thereby reducing the off current of the drain with respect to the gate voltage and increasing the mobility of the electric field effect. Therefore, according to the thin film transistor, a high-performance thin film transistor in which the gate insulating layer and the via are formed of an oxide can be realized.

進而,作為上述薄膜電晶體之其他樣態,閘極電極係選自由鑭(La)與鎳(Ni)所構成之氧化物、由銻(Sb)與錫(Sn)所構成之氧化物、以及由銦(In)與錫(Sn)所構成之氧化物之群中1種的閘極電極用氧化物(可含有不可避免 之雜質)為較佳一樣態。藉此,可實現閘極電極、閘極絕緣層、以及通道全部由氧化物所形成之高性能薄膜電晶體。 Further, as another aspect of the thin film transistor, the gate electrode is selected from the group consisting of an oxide composed of lanthanum (La) and nickel (Ni), an oxide composed of bismuth (Sb) and tin (Sn), and An oxide for a gate electrode of a group consisting of an oxide composed of indium (In) and tin (Sn) (may contain an inevitable oxide The impurity is the preferred state. Thereby, the gate electrode, the gate insulating layer, and the high-performance thin film transistor in which the channel is entirely formed of an oxide can be realized.

上述薄膜電晶體之其他樣態,該薄膜電晶體進一步具備有源極電極以及汲極電極,且該源極電極以及該汲極電極係由銦(In)與錫(Sn)所構成之氧化物(可含有不可避免之雜質)或是由鑭(La)與鎳(Ni)所構成之氧化物(可含有不可避免之雜質)乃為較佳一樣態。藉此,可實現閘極電極、閘極絕緣層、通道、源極電極、以及汲極電極全部由氧化物所形成之高性能薄膜電晶體。 In another aspect of the thin film transistor, the thin film transistor further includes a source electrode and a drain electrode, and the source electrode and the gate electrode are oxides composed of indium (In) and tin (Sn) The oxide (which may contain unavoidable impurities) or an oxide composed of lanthanum (La) and nickel (Ni) (which may contain unavoidable impurities) is preferred. Thereby, a high-performance thin film transistor in which the gate electrode, the gate insulating layer, the channel, the source electrode, and the drain electrode are all formed of an oxide can be realized.

此外,本發明之一薄膜電晶體之製造方法,係於閘極電極層之形成製程(以下也稱為「閘極電極層形成製程」)與形成通道用氧化物(可含有不可避免之雜質)之通道之形成製程(以下也稱為「通道形成製程」)之間包含有下述(1)以及(2)之各製程:(1)第1氧化物形成製程,係藉由將以含鉍(Bi)之前驅體及含鈮(Nb)之前驅體為溶質之前驅體溶液、或是以含鉍(Bi)之前驅體、含鋅(Zn)之前驅體、及含鈮(Nb)之前驅體為溶質之前驅體溶液之第1前驅體溶液於含氧氛圍中加熱,而使得由該鉍(Bi)與該鈮(Nb)、或是由該鉍(Bi)與該鋅(Zn)與該鈮(Nb)所構成的第1氧化物(可含有無法避免之雜質)以相接於閘極電極層的方式來形成;(2)第2氧化物形成製程,係藉由將選自以含鑭(La)之前驅體及含鉭(Ta)之前驅體為溶質之前驅體溶液、以含鑭(La)之前驅體及含有鋯(Zr)之前驅體為溶質之前驅 體溶液、及以含鍶(Sr)之前驅體及含鉭(Ta)之前驅體為溶質之前驅體溶液之群中1種的第2前驅體溶液在含氧氛圍中加熱,而使得由該鑭(La)與該鉭(Ta)、由該鑭(La)與該鋯(Zr)、或是由該鍶(Sr)與該鉭(Ta)所構成的第2氧化物(可含有無法避免之雜質)以相接於通道的方式來形成。 Further, a method for producing a thin film transistor of the present invention is a process for forming a gate electrode layer (hereinafter also referred to as a "gate electrode layer forming process") and forming an oxide for a channel (which may contain unavoidable impurities). The formation process of the channel (hereinafter also referred to as "channel formation process") includes the following processes (1) and (2): (1) the first oxide formation process is performed by (Bi) precursors and precursors containing niobium (Nb) are precursor solutions of solute, or precursors containing bismuth (Bi), precursors containing zinc (Zn), and before containing niobium (Nb) The first precursor solution in which the precursor is a solute precursor solution is heated in an oxygen-containing atmosphere such that the bismuth (Bi) and the bismuth (Nb) or the bismuth (Bi) and the zinc (Zn) The first oxide (which may contain unavoidable impurities) composed of the niobium (Nb) is formed to be in contact with the gate electrode layer; and (2) the second oxide formation process is selected from The precursor of the lanthanum (La) precursor and the precursor of lanthanum (Ta) are used as the precursor solution of the solute, the precursor of the lanthanum (La) precursor and the precursor containing the zirconium (Zr) are used as the precursor of the solute. a body solution, and a second precursor solution containing one of a group consisting of a strontium (Sr) precursor and a precursor containing strontium (Ta) as a solute precursor solution is heated in an oxygen-containing atmosphere. La (La) and the tantalum (Ta), the second oxide composed of the tantalum (La) and the zirconium (Zr), or the tantalum (Sr) and the tantalum (Ta) (may contain unavoidable The impurities are formed in such a manner as to be in contact with the channel.

此外,於各製程之間進行基板移動、檢查等無關乎本發明主旨之製程亦無妨。 Further, it is also possible to carry out a process such as substrate movement, inspection, and the like which are not related to the gist of the present invention.

依據此薄膜電晶體之製造方法,便可藉由不使用光微影法之較簡單的處理(例如噴墨法、網版印刷法、凹版/凸版印刷法或奈米壓印法)來形成第1氧化物及第2氧化物。進而,亦容易大面積化。因此,依據此薄膜電晶體之製造方法,便可提供一種工業性乃至量產性優異之薄膜電晶體的製造方法。 According to the method for manufacturing the thin film transistor, the simpler processing without using the photolithography method (for example, an inkjet method, a screen printing method, a gravure/emboss printing method, or a nanoimprint method) can be used to form the first 1 oxide and second oxide. Furthermore, it is also easy to increase the area. Therefore, according to the method for producing a thin film transistor, it is possible to provide a method for producing a thin film transistor which is excellent in industrial properties and mass productivity.

又,作為上述薄膜電晶體之製造方法的其他樣態,更進一步地,閘極電極層之形成製程係將閘極電極用前驅體溶液(以含鑭(La)之前驅體及含鎳(Ni)之前驅體為溶質之前驅體溶液、以含銻(Sb)之前驅體及含錫(Sn)之前驅體為溶質之前驅體溶液、或以含銦(In)之前驅體與含錫(Sn)之前驅體為溶質之前驅體溶液)在含氧氛圍中加熱,藉以形成由該鑭(La)與該鎳(Ni)所構成的氧化物、由該銻(Sb)與該錫(Sn)所構成的氧化物、或由該銦(In)與該錫(Sn)所構成的氧化物亦即閘極電極用氧化物(可含有無法避免之雜質)之製程,此為一較佳樣態。藉此,便可實現閘極電極、閘極絕緣層、以及通道皆由氧 化物所形成之高性能的薄膜電晶體。 Further, as another aspect of the method for manufacturing the thin film transistor, further, the gate electrode layer forming process is a precursor solution for a gate electrode (with a lanthanum (La) precursor and a nickel-containing (Ni) The precursor is a solute precursor solution, a precursor containing bismuth (Sb) and a precursor containing tin (Sn) as a solute precursor solution, or a precursor containing indium (In) and tin ( The Sn) precursor is a solute precursor solution) heated in an oxygen-containing atmosphere to form an oxide composed of the lanthanum (La) and the nickel (Ni), and the bismuth (Sb) and the tin (Sn) a preferred method of forming an oxide or an oxide composed of the indium (In) and the tin (Sn), that is, an oxide for a gate electrode (which may contain unavoidable impurities) state. Thereby, the gate electrode, the gate insulating layer, and the channel are all made of oxygen. A high performance thin film transistor formed by the compound.

又,作為上述薄膜電晶體之製造方法的其他樣態,係於第1氧化物形成製程或是第2氧化物形成製程進一步包含有壓模製程,係在形成第1氧化物或是第2氧化物之前,將使用第1前驅體溶液作為起始材之第1前驅體層或是使用第2前驅體溶液作為起始材之第2前驅體層於含氧雰圍中、80℃以上300℃以下加熱之狀態下施以壓模加工,來對該第1前驅體層或是該第2前驅體層形成壓模構造,此為又一較佳樣態。藉此,便不需真空程序或使用光微影法之程序、或紫外線照射製程等之需要較長的時間及/或昂貴設備之製程。又,由於不需上述各製程,而係藉由較低溫的加熱處理來形成第1氧化物與第2氧化物,因此工業性乃至量產性優異。 Further, as another aspect of the method for producing the thin film transistor, the first oxide forming process or the second oxide forming process further includes a press molding process for forming the first oxide or the second oxide. Before using the first precursor layer, the first precursor layer using the first precursor solution or the second precursor layer using the second precursor solution as a starting material is heated in an oxygen-containing atmosphere at 80 ° C or higher and 300 ° C or lower. In a state where a stamper is applied to form a stamper structure for the first precursor layer or the second precursor layer, this is another preferred embodiment. Thereby, there is no need for a vacuum program or a procedure using photolithography, or a process such as an ultraviolet irradiation process, which requires a long time and/or expensive equipment. Further, since the first oxide and the second oxide are formed by a relatively low-temperature heat treatment without requiring the above-described respective processes, industrial properties and mass productivity are excellent.

此外,上述薄膜電晶體之製造方法又一樣態,於該通道之形成製程係進一步包含有壓模製程,係在形成該通道用氧化物之前,將使用該通道用前驅體溶液作為起始材之通道用前驅體層於含氧雰圍中、80℃以上300℃以下加熱之狀態下施以壓模加工,來對該通道用前驅體層形成壓模構造,此為又一較佳樣態。藉此,真空程序、使用光微影法之程序、或是紫外線照射程序等需要相對長時間以及/或是昂貴設備之程序將變得不必要。此外,由於無須前述程序,能藉由相對低溫之加熱處理來形成閘極電極用氧化物,故於工業性乃至於量產性優異。 In addition, the manufacturing method of the above-mentioned thin film transistor is the same, and the forming process of the channel further includes a molding process for using the precursor solution for the channel as a starting material before forming the oxide for the channel. The channel precursor layer is subjected to compression molding in an oxygen-containing atmosphere at a temperature of 80 ° C or more and 300 ° C or less to form a stamper structure for the channel precursor layer. This is another preferred embodiment. As a result, procedures that require relatively long periods of time and/or expensive equipment, such as vacuum procedures, procedures using photolithography, or ultraviolet irradiation procedures, become unnecessary. Further, since the oxide for the gate electrode can be formed by heat treatment at a relatively low temperature without the above-described procedure, it is excellent in industrial properties and mass productivity.

此外,上述薄膜電晶體之製造方法之又一其他樣態,該閘極電極層之形成製程係進一步具備有壓模製程,係在形成該閘極電極用氧化物之前,將使用該閘極電極用前驅體溶液作為起始材之閘極電極用前驅體層於含氧雰圍中、80℃以上300℃以下加熱之狀態下施以壓模加工,來對該閘極電極用前驅體層形成壓模構造,此為又一較佳樣態。藉此,真空程序、使用光微影法之程序、或是紫外線照射程序等需要相對長時間以及/或是昂貴設備之程序將變得不必要。此外,由於無須前述程序,能藉由相對低溫之加熱處理來形成閘極電極用氧化物,故於工業性乃至於量產性優異。 In still another aspect of the method for fabricating the thin film transistor, the gate electrode layer forming process further includes a stamping process, and the gate electrode is used before forming the oxide for the gate electrode. The precursor layer for a gate electrode using a precursor solution as a starting material is subjected to compression molding in an oxygen-containing atmosphere at a temperature of 80° C. or higher and 300° C. or lower to form a stamper structure for the precursor layer for the gate electrode. This is another preferred form. As a result, procedures that require relatively long periods of time and/or expensive equipment, such as vacuum procedures, procedures using photolithography, or ultraviolet irradiation procedures, become unnecessary. Further, since the oxide for the gate electrode can be formed by heat treatment at a relatively low temperature without the above-described procedure, it is excellent in industrial properties and mass productivity.

再者,上述薄膜電晶體之製造方法之又一其他樣態,係於形成源極電極以及汲極電極之製程進一步具備有壓模製程,係於形成源極電極用氧化物或是汲極電極用氧化物之前,將由源極/汲極電極用前驅體溶液所構成之源極/汲極電極用前驅體層於含氧雰圍中、80℃以上300℃以下加熱之狀態下施以壓模加工,來對該源極/汲極電極用前驅體層形成壓模構造,此為又一較佳樣態。藉此,真空程序、使用光微影法之程序、或是紫外線照射程序等需要相對長時間以及/或是昂貴設備之程序將變得不必要。此外,由於無須前述程序,能藉由相對低溫之加熱處理來形成源極電極用氧化物以及汲極電極用氧化物,故於工業性乃至於量產性優異。 Furthermore, in still another aspect of the method for fabricating the thin film transistor, the process of forming the source electrode and the drain electrode further includes a stamping process for forming an oxide for the source electrode or a gate electrode. Before the oxide is used, the source/drain electrode precursor layer composed of the source/drain electrode precursor solution is subjected to compression molding in an oxygen-containing atmosphere and heated at 80° C. or higher and 300° C. or lower. It is a further preferred aspect to form a stamper structure for the source/drain electrode precursor layer. As a result, procedures that require relatively long periods of time and/or expensive equipment, such as vacuum procedures, procedures using photolithography, or ultraviolet irradiation procedures, become unnecessary. In addition, since the oxide for the source electrode and the oxide for the gate electrode can be formed by heat treatment at a relatively low temperature without the above-described procedure, it is excellent in industrial properties and mass productivity.

另一方面,本案中「壓模」有時也稱為「奈米壓印」。 On the other hand, the "molding" in this case is sometimes called "nano imprinting".

依據本發明之一薄膜電晶體,可實現閘極絕緣層以及通道皆由氧化物所形成之高性能薄膜電晶體。此外,依據本發明之一薄膜電晶體之製造方法,由於能以相對簡潔之處理來形成第1氧化物以及第2氧化物,而可提供一種在工業性乃至於量產性優異之薄膜電晶體之製造方法。 According to the thin film transistor of the present invention, a high-performance thin film transistor in which the gate insulating layer and the via are formed of an oxide can be realized. Further, according to the method for producing a thin film transistor of the present invention, since the first oxide and the second oxide can be formed by a relatively simple process, a thin film transistor excellent in industrial properties and mass productivity can be provided. Manufacturing method.

以下依據添附圖式來詳加敘述作為本發明實施形態之薄膜電晶體100及其製造方法。此外,在此說明當中,針對所有的圖式,若未特別言及,則對共通的部分便賦予共通的參考符號。又,圖式中,本實施形態之要素並不一定在保持相互的縮小比例之情況下加以記載。再者,為了方便觀看各圖式,乃省略一部分的符號。 Hereinafter, a thin film transistor 100 as an embodiment of the present invention and a method of manufacturing the same will be described in detail based on the accompanying drawings. In addition, in this description, unless otherwise stated, the common reference part is given to the common part. Further, in the drawings, the elements of the present embodiment are not necessarily described while maintaining the reduction ratio of each other. Furthermore, in order to facilitate the viewing of the various figures, a part of the symbols are omitted.

<第1實施形態> <First embodiment>

圖1A~圖1M係分別顯示本實施形態之薄膜電晶體100的製造方法一過程之剖面示意圖。此外,考慮了文字的容易觀看程度,而使圖1H之後的圖式編號為圖1J。又,本實施形態之薄膜電晶體雖係採用所謂的底部閘極(bottom gate)構造,但本實施形態並未限定於此構造。因此,本發明所屬技術領域中具通常知識者應當可應用通常的技術常識,並參照本實施形態的說明,而藉由改變製程的順序,來形成頂部閘極(top gate)構造。再者,本申請中溫度的表示係表示加熱器之設定溫度。由 於係將圖式予以簡化,因此省略了關於從各電極之引出電極的圖案化記載。 1A to 1M are schematic cross-sectional views showing a process of manufacturing the thin film transistor 100 of the present embodiment, respectively. Further, the degree of easy viewing of the characters is considered, and the drawing numbers after FIG. 1H are numbered as FIG. 1J. Further, although the thin film transistor of the present embodiment has a so-called bottom gate structure, the present embodiment is not limited to this structure. Therefore, those having ordinary skill in the art to which the present invention pertains should be able to apply the general technical common knowledge, and refer to the description of the embodiment, and form a top gate structure by changing the order of the processes. Furthermore, the temperature in the present application means the set temperature of the heater. by Since the drawings are simplified, the patterning of the extraction electrodes from the respective electrodes is omitted.

〔薄膜電晶體100之製程〕 [Process of Thin Film Transistor 100]

(1)閘極電極之形成 (1) Formation of gate electrode

於本實施形態,首先,如圖1A所示般,於作為基材之高耐熱玻璃基板(具體而言,康寧(註冊商標)1737)10上以公知的旋塗法來形成閘極電極用前驅體層20a,其中,該閘極電極用前驅體層20a係使用以含鑭(La)之前驅體以及含鎳(Ni)之前驅體為溶質之前驅體溶液(稱為閘極電極用前驅體溶液。以下,對於閘極電極用前驅體溶液亦同)作為起始材。之後,作為預備燒結,係約5分鐘於250℃加熱。此外,此預備燒結係於氧雰圍中或是大氣中(以下也總稱為「含氧雰圍」)進行。之後,作為正式燒結,係使得閘極電極用前驅體層20a於氧雰圍中(例如100體積%,但不限定於此。關於以下之「氧雰圍」亦同)約20分鐘於550℃加熱,如圖1B所示般,於高耐熱玻璃10上形成由鑭(La)與鎳(Ni)所構成之閘極電極用氧化物層20(但可包含有無法避免之雜質。以下亦同)。 In the present embodiment, first, as shown in FIG. 1A, a precursor for a gate electrode is formed on a highly heat-resistant glass substrate (specifically, Corning (registered trademark) 1737) 10 as a substrate by a known spin coating method. The body layer 20a, wherein the precursor electrode layer 20a for the gate electrode uses a precursor containing lanthanum (La) and a precursor containing nickel (Ni) as a solute precursor solution (referred to as a precursor solution for a gate electrode). Hereinafter, the precursor solution for a gate electrode is also used as a starting material. Thereafter, as a preliminary sintering, it was heated at 250 ° C for about 5 minutes. Further, the preliminary sintering is carried out in an oxygen atmosphere or in the atmosphere (hereinafter also collectively referred to as "oxygen-containing atmosphere"). Thereafter, as the main sintering, the gate electrode precursor layer 20a is heated in an oxygen atmosphere (for example, 100% by volume, but not limited thereto. The same applies to the following "oxygen atmosphere") at 550 ° C for about 20 minutes, such as As shown in Fig. 1B, an oxide layer 20 for a gate electrode made of lanthanum (La) and nickel (Ni) is formed on the high heat resistant glass 10 (although impurities which are unavoidable may be contained, the same applies hereinafter).

此處,於本實施形態,作為上述基材雖採用了高耐熱玻璃,但本實施形態之基材不限定於高耐熱玻璃。例如,也可使用高耐熱玻璃以外之包含絕緣性基板(例如SiO2/Si基板、氧化鋁(Al2O3)基板、STO(SrTiO)基板、於Si基板表面經由SiO2層以及Ti層而形成有 STO(SrTiO)層之絕緣性基板等)、半導體基板(例如Si基板、SiC基板、Ge基板等)的各種基材。 Here, in the present embodiment, the high heat resistant glass is used as the base material, but the base material of the present embodiment is not limited to the high heat resistant glass. For example, an insulating substrate other than the high heat resistant glass (for example, an SiO 2 /Si substrate, an alumina (Al 2 O 3 ) substrate, an STO (SrTiO) substrate), and a surface of the Si substrate via the SiO 2 layer and the Ti layer may be used. Various substrates of a semiconductor substrate (for example, a Si substrate, a SiC substrate, a Ge substrate, or the like) formed with an STO (SrTiO) layer insulating substrate or the like.

此外,用以形成本實施形態之閘極電極用氧化物層20之含鑭(La)之前驅體的例為醋酸鑭。作為其他的例可採用硝酸鑭、氯化鑭或各種鑭烷氧化物(例如鑭異丙氧化物、鑭丁氧化物、鑭乙氧化物、鑭甲氧乙氧化物)。此外,用以形成本實施形態之閘極電極用氧化物層20之含鎳(Ni)之前驅體的例為醋酸鎳。作為其他的例可採用硝酸鎳、氯化鎳或各種鎳烷氧化物(例如鎳異丙氧化物、鎳丁氧化物、鎳乙氧化物、鎳甲氧乙氧化物)。 Further, an example of the yttrium-containing (La) precursor for forming the gate electrode oxide layer 20 of the present embodiment is yttrium acetate. As another example, cerium nitrate, cerium chloride or various cerium oxides (for example, cerium isopropoxide, cerium oxide, cerium ethoxide, cerium methoxy ethoxylate) may be used. Further, an example of the nickel (Ni)-containing precursor for forming the gate electrode oxide layer 20 of the present embodiment is nickel acetate. As another example, nickel nitrate, nickel chloride or various nickel alkoxides (for example, nickel isopropoxide, nickel butoxide, nickel ethoxylate, nickel methoxyethoxylate) may be used.

進而,本實施形態中,雖係採用鑭(La)與鎳(Ni)所構成的閘極電極用氧化物層20,但閘極電極用氧化物層20未限定於此組成。例如亦可採用由銻(Sb)與錫(Sn)所構成的閘極電極用氧化物層(但可包含有無法避免之雜質。以下亦同。)。此情況下,作為銻(Sb)之前驅體的例可採用醋酸銻、硝酸銻、氯化銻或各種銻烷氧化物(例如銻異丙氧化物、銻丁氧化物、銻乙氧化物、銻甲氧乙氧化物)。又,作為含錫(Sn)之前驅體的例可採用醋酸錫、硝酸錫、氯化錫或各種錫烷氧化物(例如錫異丙氧化物、錫丁氧化物、錫乙氧化物、錫甲氧乙氧化物)。又,亦可採用銦(In)與錫(Sn)所構成的氧化物(但可包含有無法避免之雜質。以下亦同。)。此情況下,作為含銦(In)之前驅體的例可採用醋酸銦、硝酸銦、氯化銦、或各種銦烷氧化物(例如銦異丙氧化物、銦丁氧化物、 銦乙氧化物、銦甲氧乙氧化物)。又,含錫(Sn)之前驅體的例係與上述例相同。 Further, in the present embodiment, the gate electrode oxide layer 20 composed of lanthanum (La) and nickel (Ni) is used, but the gate electrode oxide layer 20 is not limited to this composition. For example, an oxide layer for a gate electrode made of bismuth (Sb) and tin (Sn) may be used (although impurities which are unavoidable may be contained. The same applies hereinafter). In this case, as an example of the precursor of cerium (Sb), cerium acetate, cerium nitrate, cerium chloride or various cerium oxides (for example, cerium isopropoxide, cerium oxide, cerium oxide, cerium oxide) may be used. Methoxyethoxylate). Further, as an example of the tin-containing (Sn) precursor, tin acetate, tin nitrate, tin chloride or various tin alkoxides (for example, tin isopropoxide, tin oxide, tin ethoxylate, tinplate) may be used. Oxy ethoxylate). Further, an oxide composed of indium (In) and tin (Sn) may be used (although impurities which are unavoidable may be contained. The same applies hereinafter). In this case, as an example of the indium (In)-containing precursor, indium acetate, indium nitrate, indium chloride, or various indium alkoxides (for example, indium isopropoxide, indium butoxide, or the like) may be used. Indium ethoxylate, indium methoxy ethoxylate). Further, the example of the tin-containing (Sn) precursor is the same as the above example.

(2)閘極絕緣層之形成 (2) Formation of gate insulating layer

其次,如圖1C所示般,於閘極電極用氧化物層20上,以公知之旋塗法來形成以含鉍(Bi)之前驅體以及含鈮(Nb)之前驅體為溶質之前驅體溶液(稱為第1前驅體溶液。以下,對於第1前驅體之溶液同樣。)作為起始材之第1前驅體層32a。之後,作為預備燒結,係於250℃加熱約5分鐘。於本實施形態,最終為了得到充分的第1氧化物層32之厚度(例如約180nm),係使得前述以旋塗法形成第1前驅體層32a與預備燒結反覆進行5次。之後,作為正式燒結,係使得第1前驅體層32a於氧雰圍中於550℃加熱約20分鐘,而如圖1D所示般,於閘極電極用氧化物層20上形成由鉍(Bi)與鈮(Nb)所構成之第1氧化物層32(可含有不可避免之雜質。以下亦同。)。此外,由鉍(Bi)與鈮(Nb)所構成之第1氧化物層32也稱為BNO層。 Next, as shown in FIG. 1C, on the gate electrode oxide layer 20, a ruthenium-containing (Bi) precursor and a ruthenium-containing (Nb) precursor are formed as a solute by a known spin coating method. The bulk solution (referred to as a first precursor solution. Hereinafter, the same as the solution of the first precursor) is the first precursor layer 32a as a starting material. Thereafter, it was heated at 250 ° C for about 5 minutes as a preliminary sintering. In the present embodiment, in order to obtain a sufficient thickness (for example, about 180 nm) of the first oxide layer 32, the first precursor layer 32a is formed by spin coating and the preliminary sintering is repeated five times. Thereafter, as the main sintering, the first precursor layer 32a is heated at 550 ° C for about 20 minutes in an oxygen atmosphere, and as shown in FIG. 1D, bismuth (Bi) is formed on the gate electrode oxide layer 20. The first oxide layer 32 composed of niobium (Nb) (which may contain unavoidable impurities. The same applies hereinafter). Further, the first oxide layer 32 composed of bismuth (Bi) and niobium (Nb) is also referred to as a BNO layer.

此處,本實施形態之第1氧化物層32所使用之含鉍(Bi)之前驅體之例為辛酸鉍。作為其他例可採用氯化鉍、硝酸鉍、或是各種鉍烷氧化物(例如鉍異丙氧化物、鉍丁氧化物、鉍乙氧化物、鉍甲氧乙氧化物)。此外,本實施形態之第1氧化物層32所使用之含鈮(Nb)之前驅體之例為辛酸鈮。其他例可採用氯化鈮、硝酸鈮、或是各種鈮烷氧化物(例如鈮異丙氧化物、鈮丁氧化物、鈮乙氧化物、鈮甲氧乙氧化物)。 Here, an example of the bismuth (Bi)-containing precursor used in the first oxide layer 32 of the present embodiment is bismuth octoate. As another example, ruthenium chloride, ruthenium nitrate, or various decane oxides (for example, ruthenium isopropoxide, ruthenium oxide, ruthenium ethoxylate, ruthenium methoxy ethoxylate) may be used. Further, an example of the niobium (Nb)-containing precursor used in the first oxide layer 32 of the present embodiment is bismuth octoate. Other examples may be cerium chloride, cerium nitrate or various cerium oxides (e.g., cerium isopropoxide, cerium oxide, cerium ethoxylate, cerium methoxy ethoxylate).

之後,如圖1E所示般,於第1氧化物層32上以公知之旋塗法來形成第2前驅體層34a,其中該第2前驅體層34a係係使用以含鑭(La)之前驅體以及含鉭(Ta)之前驅體為溶質之前驅體溶液(稱為第2前驅體溶液。以下,針對第2前驅體之溶液亦同)作為起始材。之後,作為預備燒結,係於250℃加熱約5分鐘。於本實施形態,最終為了得到充分之第2氧化物層34之厚度(例如約20nm),係使得前述利用旋塗法形成第2前驅體層34a與預備燒結實施1次。之後,作為正式燒結係使得第2前驅體層34a於氧雰圍中於550℃加熱約15分鐘,而如圖1F所示般,於第1氧化物層32上形成由鑭(La)與鉭(Ta)所構成之第2氧化物層34(可含有不可避免之雜質。以下亦同。)。此外,由鑭(La)與鉭(Ta)所構成之第2氧化物層34也稱為LTO層。 Thereafter, as shown in FIG. 1E, a second precursor layer 34a is formed on the first oxide layer 32 by a known spin coating method, wherein the second precursor layer 34a is used to contain a lanthanum (La) precursor. And the precursor containing ruthenium (Ta) is a solute precursor solution (referred to as a second precursor solution. Hereinafter, the solution for the second precursor is also the same) as a starting material. Thereafter, it was heated at 250 ° C for about 5 minutes as a preliminary sintering. In the present embodiment, in order to obtain a sufficient thickness (for example, about 20 nm) of the second oxide layer 34, the second precursor layer 34a is formed by the spin coating method and the preliminary sintering is performed once. Thereafter, as a main sintering system, the second precursor layer 34a is heated at 550 ° C for about 15 minutes in an oxygen atmosphere, and as shown in FIG. 1F, lanthanum (La) and tantalum (Ta) are formed on the first oxide layer 32. The second oxide layer 34 (which may contain unavoidable impurities. The same applies hereinafter). Further, the second oxide layer 34 composed of lanthanum (La) and tantalum (Ta) is also referred to as an LTO layer.

另一方面,本實施形態之薄膜電晶體100,上述第1氧化物層32與第2氧化物層34之堆疊氧化物係當作閘極絕緣層30來使用。此外,本實施形態之第1氧化物層32之鉍(Bi)與鈮(Nb)之原子組成比,當鉍(Bi)為1時鈮(Nb)為1。此外,本實施形態之第2氧化物層34之鑭(La)與鉭(Ta)之原子組成比,當鑭(La)為1時鉭(Ta)為1.5。此外,此時第1氧化物層32之厚度為約160nm,第2氧化物層34之厚度為約20nm。此外,關於第1氧化物層32之鉍(Bi)與鈮(Nb)之原子組成比,當鉍(Bi)為1時只要鈮(Nb)為0.33以上3以下,即可高準確地發揮本實施形態之效果的至少一部分。此外,關於第2氧化 物層34之鑭(La)與鉭(Ta)之原子組成比,當鑭(La)為1時只要鉭(Ta)為0.11以上9以下,即可高準確地發揮本實施形態之效果的至少一部分。 On the other hand, in the thin film transistor 100 of the present embodiment, the stacked oxide of the first oxide layer 32 and the second oxide layer 34 is used as the gate insulating layer 30. Further, in the first oxide layer 32 of the present embodiment, the atomic composition ratio of bismuth (Bi) to niobium (Nb) is 铌 (Nb) when the bismuth (Bi) is 1. Further, in the second oxide layer 34 of the present embodiment, the atomic composition ratio of lanthanum (La) to tantalum (Ta) is 钽 (Ta) is 1.5 when lanthanum (La) is 1. Further, at this time, the thickness of the first oxide layer 32 is about 160 nm, and the thickness of the second oxide layer 34 is about 20 nm. Further, regarding the atomic composition ratio of bismuth (Bi) and bismuth (Nb) in the first oxide layer 32, when bismuth (Bi) is 1, ytterbium (Nb) is 0.33 or more and 3 or less, and the present embodiment can be used with high accuracy. At least a part of the effects of the embodiment. In addition, regarding the second oxidation The atomic composition ratio of the lanthanum (La) to the cerium (Ta) of the material layer 34 is such that when lanthanum (La) is 1, the yttrium (Ta) is 0.11 or more and 9 or less, and at least the effect of the embodiment can be exhibited with high accuracy. portion.

此處,本實施形態之第2氧化物層34所使用之含鑭(La)之前驅體之例為醋酸鑭。其他例方面可採用硝酸鑭、氯化鑭、或是各種鑭烷氧化物(例如鑭異丙氧化物、鑭丁氧化物、鑭乙氧化物、鑭甲氧乙氧化物)。此外,本實施形態之第2氧化物層34所使用之含鉭(Ta)之前驅體之例為鉭丁氧化物。其他例可採用硝酸鉭、氯化鉭、或是其他各種鉭烷氧化物(例如鉭異丙氧化物、鉭丁氧化物、鉭乙氧化物、鉭甲氧乙氧化物)。 Here, an example of the yttrium-containing (La) precursor used in the second oxide layer 34 of the present embodiment is yttrium acetate. In other examples, cerium nitrate, cerium chloride, or various decane oxides (e.g., cerium isopropoxide, cerium oxide, cerium ethoxide, cerium methoxy ethoxylate) may be used. Further, an example of the tantalum-containing (Ta) precursor used in the second oxide layer 34 of the present embodiment is a ruthenium oxide. Other examples include cerium nitrate, cerium chloride, or various other decane oxides (e.g., cerium isopropoxide, cerium oxide, cerium ethoxide, cerium methoxy ethoxylate).

進而,本實施形態中,雖採用由鑭(La)與鉭(Ta)所構成的第2氧化物層34,但第2氧化物層34未限定於此組成。例如,亦可採用鑭(La)與鋯(Zr)所構成的第2氧化物層(但可包含有無法避免之雜質。以下亦同。又,亦稱作LZO層。)。此情況下,含鑭(La)之前驅體的例為醋酸鑭。作為其他的例可採用硝酸鑭、氯化鑭或各種鑭烷氧化物(例如鑭異丙氧化物、鑭丁氧化物、鑭乙氧化物、鑭甲氧乙氧化物)。又,含有鋯(Zr)之前驅體的例為鋯丁氧化物。作為其他的例可採用硝酸鋯、氯化鋯或其他各種的鋯烷氧化物(例如鋯異丙氧化物、鋯丁氧化物、鋯乙氧化物、鋯甲氧乙氧化物)。又,亦可採用鍶(Sr)與鉭(Ta)所構成的第2氧化物層(但可包含有無法避免之雜質。以下亦同。又,亦稱作STO層。)。此情況下,含鍶(Sr)之前驅體的例為醋酸鍶。作為其他例可採用硝 酸鍶、氯化鍶或各種鍶烷氧化物(例如鍶異丙氧化物、鍶丁氧化物、鍶乙氧化物、鍶甲氧乙氧化物)。又,含鉭(Ta)之前驅體的例係與上述例相同。 Further, in the present embodiment, the second oxide layer 34 composed of lanthanum (La) and tantalum (Ta) is used, but the second oxide layer 34 is not limited to this composition. For example, a second oxide layer composed of lanthanum (La) and zirconium (Zr) may be used (although impurities which are unavoidable may be contained. The same applies hereinafter. Also referred to as an LZO layer). In this case, an example of the precursor containing lanthanum (La) is yttrium acetate. As another example, cerium nitrate, cerium chloride or various cerium oxides (for example, cerium isopropoxide, cerium oxide, cerium ethoxide, cerium methoxy ethoxylate) may be used. Further, an example of a precursor containing zirconium (Zr) is zirconium butoxide. As another example, zirconium nitrate, zirconium chloride or various other zirconium alkoxides (e.g., zirconium isopropoxide, zirconium butoxide, zirconium ethoxide, zirconium oxymethane) may be used. Further, a second oxide layer composed of strontium (Sr) and tantalum (Ta) may be used (although impurities which are unavoidable may be contained. The same applies hereinafter. Also referred to as an STO layer). In this case, an example of the precursor containing ruthenium (Sr) is ruthenium acetate. As another example, nitrate can be used. Barium strontium, strontium chloride or various decane oxides (for example bismuth isopropoxide, bismuth oxide, cesium ethoxylate, methoxymethoxy ethoxylate). Further, the example of the precursor containing ruthenium (Ta) is the same as the above example.

(3)通道之形成 (3) Formation of the channel

之後,如圖1G所示般,於第2氧化物層34上以公知之旋塗法來形成通道用前驅體層40a,其中該通道用前驅體層40a係使用以含銦(In)之前驅體以及含鋅(Zn)之前驅體為溶質之通道用前驅體溶液(以下,針對通道用前驅體之溶液亦同)作為起始材。之後,作為預備燒結係使得通道用前驅體層40a於250℃加熱約5分鐘。之後,作為正式燒結,係使得通道用前驅體層40a於氧雰圍中,於350℃以上550℃以下加熱約15分鐘,而如圖1H所示般,於第2氧化物層34上形成由銦(In)與鋅(Zn)所構成之通道用氧化物層40(可含有不可避免之雜質。以下亦同。)。此外,由銦(In)與鋅(Zn)所構成之通道用氧化物層40也稱為IZO層。此外,本實施形態之通道用氧化物層40之銦(In)與鋅(Zn)之原子組成比,當銦(In)為1時鋅(Zn)為0.5。此外,通道用氧化物層40之厚度為約20nm。此外,尤其通道用氧化物40當中銦(In)為1時鋅(Zn)的原子組成比為0.25以上1以下之薄膜電晶體,從提高電場效應遷移度的觀點來看為較佳的一樣態。 Thereafter, as shown in FIG. 1G, a channel precursor layer 40a is formed on the second oxide layer 34 by a known spin coating method, wherein the channel precursor layer 40a is used to include an indium (In) precursor and A precursor solution for a channel containing a zinc (Zn) precursor as a solute (hereinafter, a solution for a channel precursor is also the same) is used as a starting material. Thereafter, as a preliminary sintering system, the channel precursor layer 40a was heated at 250 ° C for about 5 minutes. Thereafter, as the main sintering, the channel precursor layer 40a is heated in an oxygen atmosphere at 350 ° C. or higher and 550 ° C or lower for about 15 minutes, and as shown in FIG. 1H, indium is formed on the second oxide layer 34. In) an oxide layer 40 for channel formed of zinc (Zn) (which may contain unavoidable impurities. The same applies hereinafter). Further, the channel oxide layer 40 composed of indium (In) and zinc (Zn) is also referred to as an IZO layer. Further, in the channel oxide layer 40 of the present embodiment, the atomic composition ratio of indium (In) to zinc (Zn) is 0.5, and when indium (In) is 1, zinc (Zn) is 0.5. Further, the thickness of the channel oxide layer 40 is about 20 nm. Further, in particular, a thin film transistor having an atomic composition ratio of zinc (Zn) of 0.25 or more and 1 or less when indium (In) is 1 in the channel oxide 40 is preferable from the viewpoint of improving electric field effect mobility. .

此處,本實施形態之通道用氧化物層40所使用之含銦(In)之前驅體之例為乙醯丙酮酸銦。其他例可採用硝酸銦、氯化銦、或是各種銦烷氧化物(例如銦異丙氧 化物、銦丁氧化物、銦乙氧化物、銦甲氧乙氧化物)。此外,本實施形態之通道用氧化物層40所使用之含鋅(Zn)之前驅體之例為氯化鋅。其他例可採用硝酸鋅、醋酸鋅、或是各種鋅烷氧化物(例如鋅異丙氧化物、鋅丁氧化物、鋅乙氧化物、鋅甲氧乙氧化物)。 Here, an example of the indium (In) precursor used for the channel oxide layer 40 of the present embodiment is indium acetylacetonate. Other examples may use indium nitrate, indium chloride, or various indium alkoxides (eg, indium isopropoxy Compound, indium butoxide, indium ethoxylate, indium methoxy ethoxylate). Further, an example of the zinc-containing (Zn) precursor used in the channel oxide layer 40 of the present embodiment is zinc chloride. Other examples may be zinc nitrate, zinc acetate, or various zinc alkoxides (e.g., zinc isopropoxide, zinc butoxide, zinc ethoxylate, zinc methoxyethoxylate).

進而,於本實施形態,雖採用了由銦(In)與鋅(Zn)所構成之通道用氧化物層40,但通道用氧化物層不限定於此組成。例如,通道用氧化物即便為選自由鎵(Ga)與鋅(Zn)所構成之氧化物、鋁(Al)與鋅(Zn)所構成之氧化物、鋅(Zn)與錫(Sn)所構成之氧化物、鋅(Zn)與銦(In)與錫(Sn)所構成之氧化物、銦(In)與鎵(Ga)與鋅(Zn)所構成之氧化物、鑭(La)與銦(In)與鋅(Zn)所構成之氧化物、鉿(Hf)與銦(In)與鋅(Zn)所構成之氧化物、鈧(Sc)與銦(In)與鋅(Zn)所構成之氧化物之群中1種,也可發揮本實施形態之至少一部分的效果。此外,含鎵(Ga)、鋅(Zn)、鋁(Al)、銦(In)、或是錫(Sn)之前驅體之例可採用金屬有機酸鹽、金屬無機酸鹽、金屬鹵化物、或是各種金屬烷氧化物。 Further, in the present embodiment, the channel oxide layer 40 made of indium (In) and zinc (Zn) is used, but the channel oxide layer is not limited to this composition. For example, the channel oxide is an oxide composed of gallium (Ga) and zinc (Zn), an oxide composed of aluminum (Al) and zinc (Zn), and zinc (Zn) and tin (Sn). An oxide composed of an oxide, zinc (Zn), indium (In), and tin (Sn), an oxide composed of indium (In), gallium (Ga), and zinc (Zn), and lanthanum (La) An oxide composed of indium (In) and zinc (Zn), an oxide composed of yttrium (Hf) and indium (In) and zinc (Zn), strontium (Sc) and indium (In) and zinc (Zn) One of the constituent oxide groups can also exert at least a part of the effects of the present embodiment. In addition, examples of gallium (Ga), zinc (Zn), aluminum (Al), indium (In), or tin (Sn) precursors may be metal organic acid salts, metal inorganic acid salts, metal halides, Or a variety of metal alkoxides.

從而,形成通道用氧化物層40之製程可採用的一樣態為:將使用選自以含銦(In)之前驅體以及含鋅(Zn)之前驅體為溶質之前驅體溶液、以含鎵(Ga)之前驅體以及含鋅(Zn)之前驅體為溶質之前驅體溶液、以含鋁(Al)之前驅體以及含鋅(Zn)之前驅體為溶質之前驅體溶液、以含鋅(Zn)之前驅體以及含錫(Sn)之前驅體為溶質之前驅體 溶液、以含鋅(Zn)之前驅體與含銦(In)之前驅體與含錫(Sn)之前驅體為溶質之前驅體溶液、以含銦(In)之前驅體與含鎵(Ga)之前驅體與含鋅(Zn)之前驅體為溶質之前驅體溶液、以含鑭(La)之前驅體與含銦(In)之前驅體與含鋅(Zn)之前驅體為溶質之前驅體溶液、以含鉿(Hf)之前驅體與含銦(In)之前驅體與含鋅(Zn)之前驅體為溶質之前驅體溶液、以含鈧(Sc)之前驅體與含銦(In)之前驅體與含鋅(Zn)之前驅體為溶質之前驅體溶液所組成群中1種的通道用前驅體溶液作為起始材之通道用前驅體層在含氧雰圍中進行加熱,藉以形成選自由該銦(In)與該鋅(Zn)所構成之氧化物、由該鎵(Ga)與該鋅(Zn)所構成之氧化物、由該鋁(Al)與該鋅(Zn)所構成之氧化物、由該鋅(Zn)與該錫(Sn)所構成之氧化物、由該鋅(Zn)與該銦(In)與該錫(Sn)所構成之氧化物、由該銦(In)與該鎵(Ga)與該鋅(Zn)所構成之氧化物、由該鑭(La)與該銦(In)與該鋅(Zn)所構成之氧化物、由該鉿(Hf)與該銦(In)與該鋅(Zn)所構成之氧化物、由該鈧(Sc)與該銦(In)與該鋅(Zn)所構成之氧化物所組成群中1種的通道用氧化物。此外,一般認為由於最終所得上述各氧化物為非晶質狀氧化物,所以和相接於通道之第2氧化物可得到良好界面狀態,結果可提高電晶體本身之電氣特性。 Therefore, the process for forming the channel oxide layer 40 can be carried out in such a manner that a precursor solution selected from the group consisting of a precursor containing indium (In) and a precursor containing zinc (Zn) as a solute is used, and gallium is used. (Ga) precursor and zinc-containing (Zn) precursor are solute precursor solution, aluminum-containing (Al) precursor and zinc-containing (Zn) precursor are solute precursor solution, zinc-containing (Zn) precursors and tin-containing (Sn) precursors are solute precursors The solution, the zinc-containing (Zn) precursor and the indium-containing (In) precursor and the tin-containing (Sn) precursor are the solute precursor solution, the indium-containing (In) precursor and the gallium-containing (Ga) Before the precursor and the zinc-containing (Zn) precursor are the solute precursor solution, before the lanthanum-containing (La) precursor and the indium-containing (In) precursor and the zinc-containing (Zn) precursor are used as the solute The body solution, the precursor containing yttrium (Hf) and the precursor containing indium (In) and the precursor containing zinc (Zn) are precursor solutions of solute, precursors containing strontium (Sc) and indium containing (In) before the precursor and the zinc-containing (Zn) precursor is a solute precursor solution, one of the channel precursor precursor solution is used as a starting material for the passage of the precursor layer in an oxygen-containing atmosphere, Forming an oxide composed of the indium (In) and the zinc (Zn), an oxide composed of the gallium (Ga) and the zinc (Zn), and the aluminum (Al) and the zinc (Zn) An oxide composed of the zinc (Zn) and the tin (Sn), an oxide composed of the zinc (Zn) and the indium (In) and the tin (Sn), The indium (In) and the oxide formed by the gallium (Ga) and the zinc (Zn) (La) and an oxide composed of the indium (In) and the zinc (Zn), an oxide composed of the hafnium (Hf) and the indium (In) and the zinc (Zn), and the crucible (Sc) And an oxide for a channel of the group consisting of the indium (In) and the oxide composed of the zinc (Zn). Further, it is considered that since each of the above-mentioned oxides is an amorphous oxide, a good interface state can be obtained with the second oxide which is in contact with the channel, and as a result, electrical characteristics of the transistor itself can be improved.

此外,上述各通道用氧化物之厚度為5nm以上80nm以下之薄膜電晶體,從獲得高電場效應遷移度(μFE)之觀點來看為適宜的一樣態。進而,該厚度為20nm以上40nm以下之薄膜電晶體為更適宜的一樣態。尤其, 只要由銦(In)與鋅(Zn)所構成之通道用氧化物層40之厚度範圍為前述20nm以上80nm以下,可得到1(cm2/Vs)以上之電場效應遷移度(μFE),只要該厚度為20nm以上40nm以下,可得到5(cm2/Vs)以上之電場效應遷移度(μFE)。 Further, the thin film transistor in which the thickness of the oxide for each channel is 5 nm or more and 80 nm or less is suitable from the viewpoint of obtaining high electric field effect mobility (μ FE ). Further, the thin film transistor having a thickness of 20 nm or more and 40 nm or less is more suitable. In particular, as long as the thickness of the channel oxide layer 40 composed of indium (In) and zinc (Zn) is in the range of 20 nm or more and 80 nm or less, an electric field effect mobility of 1 (cm 2 /Vs) or more can be obtained (μ FE As long as the thickness is 20 nm or more and 40 nm or less, an electric field effect mobility (μ FE ) of 5 (cm 2 /Vs) or more can be obtained.

(4)源極電極以及汲極電極之形成 (4) Formation of source electrode and drain electrode

之後,如圖1J所示般,於通道用氧化物層40上以公知光微影法來形成經圖案化之光阻膜90後,於通道用氧化物層40以及光阻膜90上以公知濺鍍法來形成ITO(indium tin oxide)層50。本實施形態之靶材為含有5wt%氧化錫(SnO2)之ITO,係於室溫下形成者。之後,若去除光阻膜90,則如圖1K所示般,於通道用氧化物層40上形成ITO層之汲極電極52以及源極電極54。 Thereafter, as shown in FIG. 1J, the patterned photoresist film 90 is formed on the channel oxide layer 40 by a known photolithography method, and is known on the channel oxide layer 40 and the photoresist film 90. A ITO (indium tin oxide) layer 50 is formed by sputtering. The target of the present embodiment is ITO containing 5 wt% of tin oxide (SnO 2 ), which is formed at room temperature. Thereafter, when the photoresist film 90 is removed, the drain electrode 52 and the source electrode 54 of the ITO layer are formed on the channel oxide layer 40 as shown in FIG. 1K.

之後,於汲極電極52、源極電極54、以及通道用氧化物層40上以公知光微影法來形成經圖案化之光阻膜90後,以光阻膜90、汲極電極52之一部分、以及源極電極54之一部分作為罩體,以公知氬(Ar)電漿之乾式蝕刻法來去除露出之通道用氧化物層40。其結果,藉由形成經圖案化之通道用氧化物層40,來製造薄膜電晶體100。 Thereafter, after the patterned photoresist film 90 is formed on the gate electrode 52, the source electrode 54, and the channel oxide layer 40 by a known photolithography method, the photoresist film 90 and the drain electrode 52 are used. A portion and a portion of the source electrode 54 are used as a cover, and the exposed channel oxide layer 40 is removed by dry etching of a known argon (Ar) plasma. As a result, the thin film transistor 100 is fabricated by forming the patterned channel oxide layer 40.

如上述般,本實施形態之薄膜電晶體100特別值得一提的是閘極電極、閘極絕緣層、通道、源極電極、以及汲極電極皆由金屬氧化物所形成。進而,於本實施形態,由於閘極電極、閘極絕緣層、以及通道皆將各種前驅體之溶液在含氧雰圍中加熱所形成,故相較於以往之 方法可容易達成大面積化,且工業性乃至於量產性可格外提高。 As described above, the thin film transistor 100 of the present embodiment is particularly worth mentioning that the gate electrode, the gate insulating layer, the channel, the source electrode, and the drain electrode are all formed of a metal oxide. Further, in the present embodiment, since the gate electrode, the gate insulating layer, and the channel are formed by heating a solution of various precursors in an oxygen-containing atmosphere, it is compared with the conventional one. The method can easily achieve a large area, and industrial and even mass production can be particularly improved.

〔薄膜電晶體100之特性〕 [Characteristics of Thin Film Transistor 100]

其次,發明者針對以上述製造方法所製造之薄膜電晶體100之各種特性進行調查。 Next, the inventors investigated various characteristics of the thin film transistor 100 manufactured by the above-described manufacturing method.

〔1.電流-電壓特性〕 [1. Current-voltage characteristics]

圖2係薄膜電晶體100之Vg-Id特性圖。此外,表1顯示了薄膜電晶體100關於次臨界特性(SS)、電場效應遷移度(μFE)、以及堆疊氧化物之閘極絕緣層30的每單位面積之電容(COX)的特性。 2 is a Vg-Id characteristic diagram of the thin film transistor 100. Further, Table 1 shows the characteristics of the thin film transistor 100 with respect to the subcritical characteristic (SS), the electric field effect mobility ( μFE ), and the capacitance per unit area (C OX ) of the gate insulating layer 30 of the stacked oxide.

如圖2以及表1所示般,對上述第1實施形態之薄膜電晶體100之Vg-Id特性調查結果,可得到電晶體之良好特性。 As shown in Fig. 2 and Table 1, the Vg-Id characteristics of the thin film transistor 100 of the first embodiment described above were obtained, and good characteristics of the crystal were obtained.

另一方面,如上述般,本實施形態之薄膜電晶體100特別值得一提的是,將由第1氧化物層32以及第2氧化物層34所形成之堆疊氧化物當作閘極絕緣層30使用這點。本案發明者經過許多試誤後,發現了介電係數非常高(代表性而言,εr值為60以上250以下)之由鉍(Bi)與鈮(Nb)所構成之第1氧化物層32。但是,於本實施形態,發現若於第1氧化物層32上配置屬非晶質狀氧化物之通道層,則所謂的溢漏電流變多(代表性而言,於 1MV/cm下為10-6A/cm2以上),表面平坦性降低,進而其與通道材料之界面之原子相互擴散變得非常大,故難以獲得電晶體之充分特性。之後,經過更進一步的研究與詳細分析之結果,發現若使得作為單體之溢漏電流非常少(代表性而言,於1MV/cm為10-7A/cm2級數以下)、表面平坦性非常優異、且其與通道材料之界面之原子相互擴散受到抑制之第2氧化物層34介設於第1氧化物層32與通道用氧化物層40之間,則可得到電晶體所需充分的特性。 On the other hand, as described above, the thin film transistor 100 of the present embodiment is particularly worthy of mentioning that the stacked oxide formed by the first oxide layer 32 and the second oxide layer 34 is regarded as the gate insulating layer 30. Use this. After many trial and error, the inventor of the present invention found that the first oxide layer composed of bismuth (Bi) and niobium (Nb) has a very high dielectric constant (typically, ε r is 60 or more and 250 or less). 32. However, in the present embodiment, it has been found that when a channel layer which is an amorphous oxide is disposed on the first oxide layer 32, the so-called overflow current increases (representatively, 10 at 1 MV/cm). -6 A/cm 2 or more), the surface flatness is lowered, and the mutual diffusion of atoms with the interface of the channel material becomes very large, so that it is difficult to obtain sufficient characteristics of the crystal. After that, after further research and detailed analysis, it was found that if the leakage current as a monomer is very small (representatively, it is 10 -7 A/cm 2 or less in 1 MV/cm), the surface is flat. The second oxide layer 34 which is excellent in properties and whose atomic interdiffusion at the interface with the channel material is suppressed is interposed between the first oxide layer 32 and the channel oxide layer 40, thereby obtaining a transistor. Fully versatile.

此外,由第1氧化物層32以及第2氧化物層34所形成之堆疊氧化物的閘極絕緣層30之合成電容以5×10-8F/cm2以上1×10-6F/cm2以下為佳。只要於此範圍內,則電晶體特性中可謀求汲極電流相對於閘極電壓之陡峭的上升、導通電流之增加,且汲極相對於閘極電壓之關閉電流的降低、電場效應遷移度之增加亦成為可能。以前述觀點而言,更佳之合成電容範圍為1×10-7F/cm2以上1×10-6F/cm2以下。此外,基於謀求前述電晶體特性提升之觀點,由第1氧化物層32以及第2氧化物層34所形成之堆疊氧化物的合成介電係數以60以上200以下為佳。 Further, the combined capacitance of the gate insulating layer 30 of the stacked oxide formed by the first oxide layer 32 and the second oxide layer 34 is 5 × 10 -8 F / cm 2 or more and 1 × 10 -6 F / cm 2 is better. In this range, in the transistor characteristics, a steep rise in the gate current with respect to the gate voltage and an increase in the on-current can be achieved, and the shutdown current of the drain with respect to the gate voltage can be reduced, and the electric field effect mobility can be reduced. Increases are also possible. From the foregoing viewpoints, a more preferable synthetic capacitance range is 1 × 10 -7 F / cm 2 or more and 1 × 10 -6 F / cm 2 or less. Further, the composite dielectric coefficient of the stacked oxide formed of the first oxide layer 32 and the second oxide layer 34 is preferably 60 or more and 200 or less, from the viewpoint of improving the transistor characteristics.

〔2.利用剖面TEM之觀察〕 [2. Observation by section TEM]

又,在各種分析過程中,確認了在第1氧化物層32係包含有結晶相及非晶質相。更詳細地來看,可知第1氧化物層32係包含有結晶相、微結晶相及非晶質相。圖3係顯示包含有經由與本實施形態第1氧化物32的 製造製程相同之製程所製作之第1氧化物之堆疊構造的剖面TEM(Transmission Electron Microscopy)相片。如圖3所示,確認了第1氧化物32中係存在有於至少一部分具有結晶構造之區域。更詳細地來看,在第1氧化物32中確認到非晶質相、微結晶相及結晶相。此外,本申請中,「微結晶相」係意指當形成有某一層狀材料的情況下,其結晶相從該層之膜厚方向的上端到下端並非成為一樣地成長之結晶相。又,依據後續發明者等的研究,由於第1氧化物層32係包含有微結晶之非晶質狀,因此雖然第1氧化物層32一般來說係具備有高介電係數,但被認為溢漏電流值會超過薄膜電晶體的適用容許範圍,且第1氧化物層32的表面平坦性低。 Further, in various analysis processes, it was confirmed that the first oxide layer 32 contains a crystal phase and an amorphous phase. In more detail, it is understood that the first oxide layer 32 contains a crystal phase, a microcrystalline phase, and an amorphous phase. Fig. 3 is a view showing the inclusion of the first oxide 32 according to the first embodiment. A cross-sectional TEM (Transmission Electron Microscopy) photograph of a stack structure of a first oxide produced by a process having the same process. As shown in FIG. 3, it was confirmed that at least a part of the first oxide 32 has a crystal structure. In more detail, the amorphous phase, the microcrystalline phase, and the crystalline phase were confirmed in the first oxide 32. In the present application, the term "microcrystalline phase" means a crystal phase in which the crystal phase does not grow in the same manner from the upper end to the lower end in the film thickness direction of the layer when a certain layered material is formed. Further, according to the study by the inventors of the present invention, since the first oxide layer 32 contains an amorphous state of microcrystals, the first oxide layer 32 is generally provided with a high dielectric constant, but is considered to be considered to have a high dielectric constant. The value of the overflow current exceeds the applicable allowable range of the thin film transistor, and the surface flatness of the first oxide layer 32 is low.

另一方面,第2氧化物層34並未確認到特定的結晶構造,而係獲得實質上為非晶質狀的層,此為令人玩味之發現。圖4係顯示經由與本實施形態第2氧化物34的製造製程相同之製程所製作之第2氧化物表面的AFM(Atomic force microscopy)像。如圖4所示,確認到第2氧化物層34不同於具有一定的結晶構造之第1氧化物層32而是非晶質狀。因此,被認為這般的第2氧化物層34會有助於與通道用氧化物層40之良好接合界面(原子相互擴散較少的界面)的形成,其結果,便可降低溢漏電流。又,本實施形態中,由於第1氧化物層32及第2氧化物層34係藉由在未完全地結晶化之狀態所形成,來發揮上述電氣特性,因此本實施形態之閘極絕 緣層30係藉由較低溫的加熱處理所形成,這一點值得特別說明。 On the other hand, the second oxide layer 34 does not have a specific crystal structure, but a substantially amorphous layer is obtained, which is an interesting taste. Fig. 4 shows an AFM (Atomic Force Microscopy) image of the surface of the second oxide produced by the same process as the manufacturing process of the second oxide 34 of the present embodiment. As shown in FIG. 4, it was confirmed that the second oxide layer 34 is amorphous unlike the first oxide layer 32 having a constant crystal structure. Therefore, it is considered that the second oxide layer 34 contributes to the formation of a good bonding interface (an interface where atoms are mutually diffused) with the channel oxide layer 40, and as a result, the overflow current can be reduced. Further, in the present embodiment, since the first oxide layer 32 and the second oxide layer 34 are formed in a state in which they are not completely crystallized, the electrical characteristics are exhibited. The edge layer 30 is formed by a relatively low temperature heat treatment, which is particularly noteworthy.

<第2實施形態> <Second embodiment>

本實施形態,除了基材、閘極電極、以及第2氧化物層之鑭(La)與鉭(Ta)之原子組成比不同以外,其餘和第1實施形態同樣。從而,和第1實施形態重複之說明予以省略。 In the present embodiment, the atomic composition ratios of lanthanum (La) and tantalum (Ta) of the base material, the gate electrode, and the second oxide layer are the same as those of the first embodiment. Therefore, the description overlapping with the first embodiment will be omitted.

圖1M顯示了本實施形態之薄膜電晶體200構造之剖面示意圖。本實施形態之薄膜電晶體200之閘極電極係由鉑(Pt)層220所形成。此鉑層220係以公知濺鍍法而於作為基材之SiO2/Si基板(亦即矽基板上形成有氧化矽膜之基板)210上所形成者。此外,為了提高鉑(Pt)層220與作為基材之SiO2/Si基板的接著性,於本實施形態,係於SiO2上形成有約10nm厚之TiOX膜(未圖示)。此外,本實施形態之第2氧化物層234之鑭(La)與鉭(Ta)之原子組成比,當鑭(La)為1時則鉭(Ta)為4。 Fig. 1M is a schematic cross-sectional view showing the structure of the thin film transistor 200 of the present embodiment. The gate electrode of the thin film transistor 200 of the present embodiment is formed of a platinum (Pt) layer 220. The platinum layer 220 is formed by a known sputtering method on a SiO 2 /Si substrate (that is, a substrate on which a hafnium oxide film is formed on a tantalum substrate) 210 as a substrate. Further, in order to improve the adhesion between the platinum (Pt) layer 220 and the SiO 2 /Si substrate as the substrate, in the present embodiment, a TiO X film (not shown) having a thickness of about 10 nm is formed on the SiO 2 . Further, in the second oxide layer 234 of the present embodiment, the atomic composition ratio of lanthanum (La) to tantalum (Ta) is 钽 (Ta) is 4 when 镧 (La) is 1.

<第3實施形態> <Third embodiment>

本實施形態除了第2氧化物層不同以外,其餘和第2實施形態同樣。從而,和第1以及第2實施形態重複之說明予以省略。 This embodiment is the same as the second embodiment except that the second oxide layer is different. Therefore, the description overlapping with the first and second embodiments will be omitted.

圖1M也顯示本實施形態之薄膜電晶體300構造之剖面示意圖。本實施形態之第2氧化物層334係由前驅體溶液所形成之鑭(La)與鋯(Zr)所構成的所謂複合氧化物,其中該前驅體溶液係以含鑭(La)之前驅體及含有鋯(Zr)之前驅體為溶質。此外,有關本實施形態之第2氧 化物層334中之鑭(La)與鋯(Zr)的原子組成比,當鑭(La)為3時則鋯(Zr)為7。又,此時之第1氧化物層32的厚度為約160nm,第2氧化物層334的厚度為約20nm。 Fig. 1M also shows a schematic cross-sectional view of the structure of the thin film transistor 300 of the present embodiment. The second oxide layer 334 of the present embodiment is a so-called composite oxide composed of lanthanum (La) and zirconium (Zr) formed by a precursor solution, wherein the precursor solution is a lanthanum-containing (La) precursor. And the precursor containing zirconium (Zr) is a solute. Further, regarding the second oxygen of the embodiment The atomic composition ratio of lanthanum (La) to zirconium (Zr) in the layer 334 is 7. When lanthanum (La) is 3, zirconium (Zr) is 7. Further, at this time, the thickness of the first oxide layer 32 is about 160 nm, and the thickness of the second oxide layer 334 is about 20 nm.

<第4實施形態> <Fourth embodiment>

本實施形態除了第2氧化物層不同以外,其餘和第2實施形態相同。從而,和第1以及第2實施形態為重複之說明予以省略。 This embodiment is the same as the second embodiment except that the second oxide layer is different. Therefore, the description of the first and second embodiments will be omitted.

圖1M也顯示本實施形態之薄膜電晶體400構造之剖面示意圖。本實施形態之第2氧化物層434係由前驅體溶液所形成之鍶(Sr)與鉭(Ta)所構成的所謂複合氧化物,其中該前驅體溶液係以含鍶(Sr)之前驅體及含鉭(Ta)之前驅體作為之溶質。此外,有關本實施形態的第2氧化物層434中之鍶(Sr)與鉭(Ta)的原子組成比,當鍶(Sr)為1時則鉭(Ta)為1。又,此時的第1氧化物層32的厚度為約160nm,第2氧化物層434的厚度為約20nm。 Fig. 1M also shows a schematic cross-sectional view of the structure of the thin film transistor 400 of the present embodiment. The second oxide layer 434 of the present embodiment is a so-called composite oxide composed of strontium (Sr) and strontium (Ta) formed of a precursor solution, wherein the precursor solution is a strontium-containing (Sr) precursor. And the solute containing the precursor of cerium (Ta). Further, in the second oxide layer 434 of the present embodiment, the atomic composition ratio of strontium (Sr) to strontium (Ta) is 钽 (Ta) is 1 when 锶(Sr) is 1. Further, the thickness of the first oxide layer 32 at this time is about 160 nm, and the thickness of the second oxide layer 434 is about 20 nm.

〔第2乃至第4實施形態之薄膜電晶體200、300、400之特性〕 [Characteristics of Thin Film Transistors 200, 300, and 400 of Second to Fourth Embodiments]

對上述第2乃至第4實施形態之薄膜電晶體200、300、400之Vg-Id特性進行調查之結果,得到了不遜於第1實施形態之薄膜電晶體100的結果。 As a result of examining the Vg-Id characteristics of the thin film transistors 200, 300, and 400 of the second to fourth embodiments, the results are not inferior to those of the thin film transistor 100 of the first embodiment.

圖5係薄膜電晶體200、300、400之Vg-Id特性圖。此外,表2係顯示薄膜電晶體200、300、400之關於次臨界特性(SS)、電場效應遷移度(μFE)、以及堆疊氧化物之閘極絕緣層30的每單位面積之電容(COX)的特性。 Fig. 5 is a Vg-Id characteristic diagram of the thin film transistors 200, 300, and 400. In addition, Table 2 shows the capacitance per unit area of the thin film transistors 200, 300, 400 with respect to the subcritical characteristic (SS), the electric field effect mobility ( μFE ), and the gate insulating layer 30 of the stacked oxide (C). OX ) characteristics.

此外,即便採用上述各第2氧化物層334、434之情況,溢漏電流值代表性而言於1MV/cm為10-7A/cm2級數以下。尤其,屬LZO層之第2氧化物層334之溢漏電流值代表性而言於1MV/cm為10-8A/cm2級數以下。 Further, even in the case of the above-described respective second oxide layers 334 and 434, the overflow current value is typically 1 MV/cm or less in the range of 10 -7 A/cm 2 or less. In particular, the value of the overflow current of the second oxide layer 334 belonging to the LZO layer is typically 1 MV/cm or less in the order of 10 -8 A/cm 2 .

此外,當採用屬LTO層之第2氧化物層234之情況,第1氧化物層32與第2氧化物層234之堆疊氧化物的合成比介電係數εr為約123。此外,當採用屬LZO層之第2氧化物層334之情況,第1氧化物層32與第2氧化物層334之堆疊氧化物的合成比介電係數εr為約94。另一方面,當採用屬STO層之第2氧化物層434之情況,第1氧化物層32與第2氧化物層434之堆疊氧化物的合成比介電係數εr為約134而成為高數值,此點特別值得一提。 Further, in the case where the second oxide layer 234 belonging to the LTO layer is used, the composite specific dielectric constant ε r of the stacked oxide of the first oxide layer 32 and the second oxide layer 234 is about 123. Further, when the second oxide layer 334 belonging to the LZO layer is used, the composite specific dielectric constant ε r of the stacked oxide of the first oxide layer 32 and the second oxide layer 334 is about 94. On the other hand, when the second oxide layer 434 belonging to the STO layer is used, the composite specific dielectric constant ε r of the stacked oxide of the first oxide layer 32 and the second oxide layer 434 is about 134 and becomes high. The value, this point is especially worth mentioning.

另一方面,上述各實施形態中之第1氧化物層32係藉由將以含鉍(Bi)之前驅體及含鈮(Nb)之前驅體為溶質之前驅體溶液予以燒結所形成。本申請中如上所述地,將以前驅體溶液作為起始材並將其予以燒結藉以形成第1氧化物層32與其他的氧化物層之方法基於方便 說明起見而亦稱作「溶液法」。藉由該溶液法所形成之第1氧化物層32由於介電損失較小,因此為一種適當的絕緣層。圖6係顯示藉由溶液法所形成之第1氧化物層32的tanδ值之圖表,該tanδ值係表示介電損失相對於頻率(Hz)的比率。此外,圖6亦一併顯示作為本實施形態第1氧化物層32的變形例(「其他實施例1」)之藉由公知的濺鍍法所形成之BNO層,以及作為「其他實施例2」之與第1實施形態同樣地藉由溶液法所形成之鉍(Bi)與鋅(Zn)與鈮(Nb)所構成的複合氧化物(BZNO層)之結果。又,關於此其他實施例2中之複合氧化物的前驅體溶液,含鉍(Bi)之前驅體的例為辛酸鉍。作為其他的例可採用氯化鉍、硝酸鉍或各種鉍烷氧化物。又,含鋅(Zn)之前驅體的例為氯化鋅。作為其他的例可採用硝酸鋅、醋酸鋅或各種鋅烷氧化物(例如鋅異丙氧化物、鋅丁氧化物、鋅乙氧化物、鋅甲氧乙氧化物)。此外,當採用醋酸鋅來作為含鋅(Zn)之前驅體的情況,為了提高鋅的溶解性,因此於醋酸鋅中少量加入添加物單乙醇胺係為一較佳樣態。作為其他的添加物亦可採用二乙基胺乙醇、乙醯丙酮、或二乙醇胺等。又,含鈮(Nb)之前驅體的例為辛酸鈮。作為其他的例可採用氯化鈮、硝酸鈮或各種鈮烷氧化物(例如鈮異丙氧化物、鈮丁氧化物、鈮乙氧化物、鈮甲氧乙氧化物)。 On the other hand, the first oxide layer 32 in each of the above embodiments is formed by sintering a precursor solution containing a ruthenium (Bi) precursor and a ruthenium (Nb) precursor as a solute. As described above in the present application, the method of forming the precursor oxide solution as a starting material and sintering it to form the first oxide layer 32 and other oxide layers is convenient. For the sake of explanation, it is also called "solution method". The first oxide layer 32 formed by the solution method is a suitable insulating layer because of a small dielectric loss. Fig. 6 is a graph showing the tan δ value of the first oxide layer 32 formed by the solution method, which represents the ratio of dielectric loss to frequency (Hz). In addition, FIG. 6 also shows a BNO layer formed by a known sputtering method as a modification of the first oxide layer 32 of the present embodiment ("Other Embodiment 1"), and as "Other Embodiment 2" The results of the composite oxide (BZNO layer) composed of bismuth (Bi) and zinc (Zn) and niobium (Nb) formed by a solution method in the same manner as in the first embodiment. Further, as for the precursor solution of the composite oxide in the other Example 2, the bismuth (Bi)-containing precursor is ruthenium octoate. As another example, ruthenium chloride, ruthenium nitrate or various decane oxides may be used. Further, an example of the zinc-containing (Zn) precursor is zinc chloride. As another example, zinc nitrate, zinc acetate or various zinc alkoxides (for example, zinc isopropoxide, zinc butoxide, zinc ethoxylate, zinc methoxyethoxylate) may be used. Further, in the case where zinc acetate is used as the zinc-containing (Zn) precursor, in order to increase the solubility of zinc, it is preferable to add a small amount of the additive monoethanolamine to zinc acetate. As another additive, diethylamine ethanol, acetamidineacetone, or diethanolamine can also be used. Further, an example of a precursor containing cerium (Nb) is bismuth octoate. As another example, cerium chloride, cerium nitrate or various decane oxides (for example, cerium isopropoxide, cerium oxide, cerium ethoxide, cerium methoxy ethoxylate) may be used.

如圖6所示,可得知相較於其他實施例2,本實施形態之第1氧化物層32及藉由濺鍍法所形成之BNO層(其他實施例1)的tanδ值(即介電損失)較少。再者,亦 明白了縱使組成相同,相較於藉由濺鍍法所形成之BNO層(其他實施例1),藉由溶液法所形成之第1氧化物層32的介電損失更少。 As shown in Fig. 6, it can be seen that the tan oxide value of the first oxide layer 32 of the present embodiment and the BNO layer (other embodiment 1) formed by the sputtering method is different from that of the other embodiment 2. Less electrical loss). Furthermore, also It is understood that even if the composition is the same, the dielectric loss of the first oxide layer 32 formed by the solution method is less than that of the BNO layer formed by the sputtering method (other embodiment 1).

如上所述,藉由溶液法所形成之第1氧化物層32係具備有比介電係數高且介電損失少之特性。進而,由於不需真空裝置等之複雜且昂貴的設備,而可以較短時間來形成,因此對於工業性乃至量產性優異之薄膜電晶體的提供有很大的貢獻。同樣地,藉由溶液法所形成之第2氧化物層34、234、334、434、通道用氧化物40、以及閘極電極用氧化物20、220由於亦不需真空裝置等之複雜且昂貴的設備,而可以較短時間來形成,因此對於工業性乃至量產性優異之薄膜電晶體的提供有很大的貢獻。因此,具備有使用溶液法所形成的第1氧化物層32之薄膜電晶體便可謂言其第1氧化物層32中不含鋅(Zn)且可實現薄膜電晶體的高性能化這一點係相當優異。此外,上述「其他實施例2」中所採用的BZNO膜,從介電損失的觀點來看,雖然劣於第1氧化物層32(即BNO層),但由於使用BZNO膜之薄膜電晶體的溢漏電流較少,因此BZNO膜亦為可取代BNO層之一例。 As described above, the first oxide layer 32 formed by the solution method has characteristics of higher dielectric constant and less dielectric loss. Further, since it is not required to be complicated and expensive equipment such as a vacuum device, it can be formed in a short period of time, and therefore contributes greatly to the provision of a thin film transistor excellent in industriality and mass productivity. Similarly, the second oxide layers 34, 234, 334, and 434 formed by the solution method, the channel oxide 40, and the gate electrode oxides 20 and 220 are also complicated and expensive without requiring a vacuum device or the like. The equipment can be formed in a short period of time, and therefore contributes greatly to the provision of industrial and even mass-produced thin film transistors. Therefore, the thin film transistor including the first oxide layer 32 formed by the solution method can be said to have no zinc (Zn) in the first oxide layer 32 and can realize high performance of the thin film transistor. Quite excellent. Further, the BZNO film used in the above "Other Example 2" is inferior to the first oxide layer 32 (i.e., the BNO layer) from the viewpoint of dielectric loss, but is a thin film transistor using a BZNO film. The leakage current is small, so the BZNO film is also an example of a substitutable BNO layer.

<第5實施形態> <Fifth Embodiment>

於本實施形態,主要於第1實施形態之部分層之形成過程中施以壓模加工這點以外,其餘和第1實施形態同樣。從而,和第1實施形態重複之說明予以省略。 In the present embodiment, the same applies to the first embodiment except that the stamper is applied during the formation of the partial layer of the first embodiment. Therefore, the description overlapping with the first embodiment will be omitted.

〔薄膜電晶體500之製程〕 [Process of Thin Film Transistor 500]

圖7A~圖7G分別為本實施形態之薄膜電晶體500之製造方法之一過程的剖面示意圖。此外,為了讓圖式簡潔化,針對從各電極引出之電極的圖案化之記載予以省略。 7A to 7G are schematic cross-sectional views showing a process of a method of manufacturing the thin film transistor 500 of the present embodiment. In addition, in order to simplify the drawing, the description of the patterning of the electrodes drawn from the respective electrodes is omitted.

(1)閘極電極之形成 (1) Formation of gate electrode

於本實施形態,首先,於作為基材之SiO2/Si基板(以下也簡稱為「基板」)210上以公知旋塗法來形成閘極電極用前驅體層520a(其使用以含鑭(La)之前驅體以及含鎳(Ni)之前驅體為溶質之前驅體溶液作為起始材)。之後,作為預備燒結,係使得閘極電極用前驅體層520a於大氣中在150℃加熱約5分鐘。藉由此預備燒結可使得閘極電極用前驅體層520a中之溶劑充分蒸發,且可形成可呈現後續塑性變形特性之較佳的凝膠狀態(被認為乃熱分解前之殘存有機鏈之狀態)。為了能以更高準確度來實現前述觀點,預備燒結溫度以80℃以上250℃以下為佳。之後,為了進行閘極電極之圖案化,如圖7A所示般,在加熱至200℃之狀態下,使用閘極電極用模M1,以5MPa之壓力施以壓模加工。其結果,藉由本實施形態之閘極電極用模M1,形成出具備有層厚約100nm~約300nm之厚層部與層厚約10nm~約100nm之薄層部的閘極電極用前驅體層520a。 In the present embodiment, first, a precursor electrode layer 520a for a gate electrode is formed on a SiO 2 /Si substrate (hereinafter also simply referred to as "substrate") 210 as a substrate by a known spin coating method (which is used to contain lanthanum (La) The precursor and the precursor containing nickel (Ni) are the precursor solution of the solute as the starting material). Thereafter, as the preliminary sintering, the gate electrode precursor layer 520a was heated in the air at 150 ° C for about 5 minutes. By preparing the sintering, the solvent in the precursor electrode layer 520a for the gate electrode can be sufficiently evaporated, and a preferable gel state (which is considered to be the state of the residual organic chain before thermal decomposition) can be formed which can exhibit subsequent plastic deformation characteristics. . In order to achieve the above viewpoint with higher accuracy, the preliminary sintering temperature is preferably 80 ° C or more and 250 ° C or less. After that, in order to pattern the gate electrode, as shown in FIG. 7A, the gate electrode mold M1 was used, and the stamper was applied at a pressure of 5 MPa while being heated to 200 °C. As a result, the gate electrode precursor layer 520a having a thick layer portion having a layer thickness of about 100 nm to about 300 nm and a thin layer portion having a layer thickness of about 10 nm to about 100 nm is formed by the gate electrode mold M1 of the present embodiment. .

此外,依據發明者之研究,於上述壓模加工之際,藉由將閘極電極用前驅體層520a以80℃以上300℃以下之範圍內來加熱,則閘極電極用前驅體層520a之塑性變形能力會變高,且可將主溶劑充分去除。從而,對 閘極電極用前驅體層520a施以壓模加工之際,以80℃以上300℃以下之範圍內進行加熱乃為較佳之一樣態。此處,當壓模加工時之加熱溫度未達80℃之情況,由於受到閘極電極用前驅體層520a前驅體層之溫度降低的影響使得各前驅體層之塑性變形能力降低,故壓模構造之成型時的成型實現性、或是成型後之可靠性乃至於安定性會變得欠缺。此外,當壓模加工時之加熱溫度超過300℃之情況,由於為塑性變形能力根源之有機鏈的分解(氧化熱分解)不斷進行,故塑性變形能力會降低。再者,從前述觀點而言,對閘極電極用前驅體層520a進行壓模加工之際,以100℃以上250℃以下之範圍內進行加熱為更佳之一樣態。 Further, according to the study by the inventors, plastic deformation of the gate electrode precursor layer 520a is performed by heating the gate electrode precursor layer 520a in a range of 80 ° C or more and 300 ° C or less in the above-described press molding process. The ability will become high and the main solvent can be removed sufficiently. Thus, right When the gate electrode precursor layer 520a is subjected to a press molding process, heating in a range of 80 ° C or more and 300 ° C or less is preferable. Here, when the heating temperature at the time of the press molding is less than 80 ° C, the plastic deformation ability of each precursor layer is lowered by the influence of the temperature decrease of the precursor layer of the precursor electrode layer 520a for the gate electrode, so that the molding of the stamper structure is formed. The dimensional realization of the molding, or the reliability after molding, may be deficient in stability. Further, when the heating temperature at the time of press molding exceeds 300 ° C, since the decomposition of the organic chain (oxidative thermal decomposition) which is the source of the plastic deformation ability is continuously performed, the plastic deformation ability is lowered. Further, from the above viewpoint, when the gate electrode precursor layer 520a is subjected to press molding, heating in a range of 100 ° C or more and 250 ° C or less is more preferable.

之後,藉由對閘極電極用前驅體層520a進行全面蝕刻,而如圖7B所示般,從對應於閘極電極之區域以外的區域來去除閘極電極用前驅體層520a(對閘極電極用前驅體層520a全面之蝕刻製程)。此外,本實施形態之蝕刻製程係使用未採真空程序之濕式蝕刻技術來進行,但利用採電漿之所謂的乾式蝕刻技術來蝕刻亦無妨。此外,也可採用於大氣壓下進行電漿處理之公知技術。 Thereafter, the gate electrode precursor layer 520a is completely etched, and as shown in FIG. 7B, the gate electrode precursor layer 520a is removed from the region other than the region corresponding to the gate electrode (for the gate electrode) The precursor layer 520a is fully etched). Further, the etching process of the present embodiment is performed by a wet etching technique which does not employ a vacuum process, but it may be etched by a so-called dry etching technique using a plasma slurry. Further, a well-known technique of performing plasma treatment under atmospheric pressure can also be employed.

之後,作為正式燒結,係使得閘極電極用前驅體層520a於氧雰圍中於580℃加熱約15分鐘,而如圖7C所示般,於基板210上形成由鑭(La)與鎳(Ni)所構成之閘極電極用氧化物層520(但可包含有無法避免之雜質。以下亦同。)。 Thereafter, as the main sintering, the gate electrode precursor layer 520a is heated at 580 ° C for about 15 minutes in an oxygen atmosphere, and as shown in FIG. 7C, lanthanum (La) and nickel (Ni) are formed on the substrate 210. The gate electrode oxide layer 520 is formed (although it may contain unavoidable impurities. The same applies hereinafter).

(2)閘極絕緣層之形成 (2) Formation of gate insulating layer

其次,於基板210以及經圖案化之閘極電極用氧化物層520上和第1實施形態同樣地形成第1前驅體層32a(使用以含鉍(Bi)之前驅體以及含鈮(Nb)之前驅體為溶質之前驅體溶液作為起始材)。和第1實施形態同樣地進行預備燒結之後,作為正式燒結,係使得第1前驅體層32a於氧雰圍中於550℃加熱約20分鐘。 Next, the first precursor layer 32a is formed on the substrate 210 and the patterned gate electrode oxide layer 520 in the same manner as in the first embodiment (before using the bismuth (Bi)-containing precursor and the ytterbium-containing (Nb) layer. The precursor is a solute precursor solution as a starting material). After the preliminary sintering was carried out in the same manner as in the first embodiment, the first precursor layer 32a was heated at 550 ° C for about 20 minutes in an oxygen atmosphere as the main sintering.

之後,於第1氧化物層32上和第1實施形態同樣地形成第2前驅體層34a(使用以含鑭(La)之前驅體以及含鉭(Ta)之前驅體為溶質之前驅體溶液作為起始材)。與第1實施形態同樣地進行預備燒結後,作為正式燒結,係使得第2前驅體層34a於氧雰圍中於550℃加熱約15分鐘。其結果,如圖7D所示般,於第1氧化物層32上形成由鑭(La)與鉭(Ta)所構成之第2氧化物層34(可含有不可避免之雜質。以下亦同。)。 Thereafter, the second precursor layer 34a is formed on the first oxide layer 32 in the same manner as in the first embodiment (the precursor solution containing yttrium (La) precursor and yttrium (Ta) precursor is used as the solute precursor solution. Starting material). After the preliminary sintering was carried out in the same manner as in the first embodiment, the second precursor layer 34a was heated at 550 ° C for about 15 minutes in an oxygen atmosphere as the main sintering. As a result, as shown in FIG. 7D, a second oxide layer 34 made of lanthanum (La) and tantalum (Ta) is formed on the first oxide layer 32 (it is possible to contain unavoidable impurities. The same applies hereinafter. ).

另一方面,本實施形態之薄膜電晶體500,上述第1氧化物層32與第2氧化物層34之堆疊氧化物係作為閘極絕緣層30來使用。此外,本實施形態之第1氧化物層32之厚度為約180nm,第2氧化物層34之厚度為約20nm。 On the other hand, in the thin film transistor 500 of the present embodiment, the stacked oxide of the first oxide layer 32 and the second oxide layer 34 is used as the gate insulating layer 30. Further, the thickness of the first oxide layer 32 of the present embodiment is about 180 nm, and the thickness of the second oxide layer 34 is about 20 nm.

(3)通道之形成 (3) Formation of the channel

之後,於第2氧化物層34上,與第1實施形態同樣地形成通道用前驅體層(使用以含銦(In)之前驅體及含鋅(Zn)之前驅體為溶質之通道用前驅體溶液作為起始材)。之後,與第1實施形態相同地進行預備燒結及 正式燒結。其結果,便會在第2氧化物層34上形成由銦(In)與鋅(Zn)所構成的通道用氧化物層40(可含有無法避免之雜質。以下亦同。)。此外,本實施形態的通道用氧化物層40的厚度為約20nm。 Then, on the second oxide layer 34, a channel precursor layer is formed in the same manner as in the first embodiment (a precursor for a channel containing a precursor containing indium (In) and a precursor containing zinc (Zn) as a solute is used. The solution is used as a starting material). Thereafter, preliminary sintering is performed in the same manner as in the first embodiment. Formal sintering. As a result, a channel oxide layer 40 made of indium (In) and zinc (Zn) is formed on the second oxide layer 34 (it may contain unavoidable impurities. The same applies hereinafter). Further, the thickness of the channel oxide layer 40 of the present embodiment is about 20 nm.

此外,本實施形態中,為了進行通道的圖案化,亦可採用在針對通道用前驅體層之預備燒結後,與閘極電極的圖案化同樣地,使用通道專用的模(未圖示)來施以壓模加工之其他一樣態。亦即,進一步包含有在形成通道用氧化物40之前,先在含氧氛圍中,以加熱至80℃以上300℃以下之狀態施以壓模加工,以對通道用前驅體層形成壓模構造之壓模製程,此為可採用之其他一樣態。又,針對用以形成通道之壓模加工,亦可適用相同於閘極電極的圖案化之較佳加熱溫度範圍或壓力等諸條件。 Further, in the present embodiment, in order to pattern the channel, after the preliminary sintering for the channel precursor layer, a channel-specific mode (not shown) may be used in the same manner as the patterning of the gate electrode. The other state of the die-casting process. In other words, before the formation of the channel oxide 40, the press molding process is performed in an oxygen-containing atmosphere in a state of heating to 80 ° C or more and 300 ° C or less to form a stamper structure for the channel precursor layer. The stamping process, which is the other state that can be used. Further, for the stamper processing for forming the channel, conditions such as a preferable heating temperature range or pressure similar to the patterning of the gate electrode can be applied.

(4)源極電極以及汲極電極之形成 (4) Formation of source electrode and drain electrode

於本實施形態,之後,採用溶液法之情況下施以壓模加工,以形成由ITO層所構成之源極電極以及汲極電極。具體而言,如以下所述。 In the present embodiment, then, in the case of the solution method, press molding is performed to form a source electrode and a drain electrode composed of an ITO layer. Specifically, it is as follows.

首先,於通道用氧化物層40上以公知旋塗法來形成源極/汲極電極用前驅體層550a(係使用以含銦(In)之前驅體以及含錫(Sn)之前驅體為溶質之源極/汲極電極用前驅體溶液(以下針對源極/汲極電極用前驅體之溶液亦同)作為起始材)。 First, a source/drain electrode precursor layer 550a is formed on the channel oxide layer 40 by a known spin coating method (using an indium-containing (In) precursor and a tin-containing (Sn) precursor as a solute. The source/drain electrode precursor solution (the same applies to the source/drain electrode precursor solution) is used as the starting material).

此處,本實施形態之源極/汲極電極用氧化物層550所使用之含銦(In)之前驅體之例可採用醋酸銦、硝酸 銦、氯化銦、或是各種銦烷氧化物(例如銦異丙氧化物、銦丁氧化物、銦乙氧化物、銦甲氧乙氧化物)。此外,本實施形態之源極/汲極電極用氧化物層550所使用之含錫(Sn)之前驅體之例可採用醋酸錫、硝酸錫、氯化錫、或是各種錫烷氧化物(例如錫異丙氧化物、錫丁氧化物、錫乙氧化物、錫甲氧乙氧化物)。 Here, examples of the indium (In) precursor used for the source/drain electrode oxide layer 550 of the present embodiment may be indium acetate or nitric acid. Indium, indium chloride, or various indium alkoxides (eg, indium isopropoxide, indium butoxide, indium ethoxylate, indium methoxy ethoxylate). Further, examples of the tin-containing (Sn) precursor used in the source/drain electrode oxide layer 550 of the present embodiment may be tin acetate, tin nitrate, tin chloride, or various tin alkoxides (for example). For example, tin isopropoxide, tin oxide, tin ethoxylate, tin methoxy oxide).

之後,作為預備燒結,係以約5分鐘的時間在大氣中將源極/汲極電極用前驅體層550a於150℃加熱。之後,為了進行源極/汲極電極的圖案化,如圖7E所示,以加熱至200℃之狀態,使用源極/汲極電極用模M2,而在5MPa的壓力下施以壓模加工。 Thereafter, as a preliminary sintering, the source/drain electrode precursor layer 550a was heated at 150 ° C in the atmosphere for about 5 minutes. Thereafter, in order to pattern the source/drain electrodes, as shown in FIG. 7E, the source/drain electrode mold M2 is used in a state of being heated to 200 ° C, and compression molding is performed under a pressure of 5 MPa. .

其結果,於將來成為源極電極及汲極電極之區域(圖7F的(a))上形成層厚約100nm~約300nm的源極/汲極電極用前驅體層550a。又,於將來會殘留通道用氧化物層40之區域(圖7F的(b))上形成層厚約10nm~約100nm的源極/汲極電極用前驅體層550a。另一方面,於將來通道用氧化物層40會被去除之區域(圖7F的(c))上形成層厚約10nm~約100nm的源極/汲極電極用前驅體層550a。此外,藉由使用源極/汲極電極用模M2,並在1MPa以上20MPa以下的壓力下施以壓模加工,便可獲得本實施形態之效果的至少一部分。 As a result, a source/drain electrode precursor layer 550a having a layer thickness of about 100 nm to about 300 nm is formed in a region (a) of the source electrode and the drain electrode in the future. Further, a source/drain electrode precursor layer 550a having a layer thickness of about 10 nm to about 100 nm is formed in a region (Fig. 7F (b)) in which the channel oxide layer 40 remains in the future. On the other hand, a source/drain electrode precursor layer 550a having a layer thickness of about 10 nm to about 100 nm is formed in a region where the channel oxide layer 40 is removed ((c) of FIG. 7F). Further, at least a part of the effects of the present embodiment can be obtained by using the source/drain electrode mold M2 and applying a press molding at a pressure of 1 MPa or more and 20 MPa or less.

之後,作為正式燒結,係以約5分鐘的時間在大氣中將源極/汲極電極用前驅體層550a於250℃以上400℃以下進行加熱來形成源極/汲極電極用氧化物層550。 Thereafter, as the main sintering, the source/drain electrode precursor layer 550a is heated in the atmosphere at 250 ° C. or higher and 400 ° C or lower in the atmosphere for about 5 minutes to form the source/drain electrode oxide layer 550.

之後,針對源極/汲極電極用氧化物層550的整面,利用氬(Ar)電漿來進行乾蝕刻。其結果,最薄之區域(圖7F的(c))的源極/汲極電極用氧化物層550會最先被蝕刻,之後,露出的通道用氧化物層40會持續地被蝕刻。接著,當第2薄之區域(圖7F的(b))的源極/汲極電極用氧化物層550被蝕刻,且最薄區域(圖7F的(c))處的通道用氧化物層40被蝕刻後,便停止電漿處理。如此地,本實施形態中,係藉由調整上述區域(b)與區域(c)的各層厚度,而在殘留有區域(b)的通道用氧化物層40之狀態下,去除區域(c)的通道用氧化物層40。其結果,如圖7G所示,便可實現通道區域自身的分離,且形成為源極電極554及汲極電極552透過通道區域而被完全地分離。 Thereafter, dry etching is performed on the entire surface of the source/drain electrode oxide layer 550 by argon (Ar) plasma. As a result, the source/drain electrode oxide layer 550 in the thinnest region ((c) of FIG. 7F) is first etched, and then the exposed channel oxide layer 40 is continuously etched. Next, the oxide layer 550 for the source/drain electrode of the second thin region ((b) of FIG. 7F) is etched, and the oxide layer for the channel at the thinnest region ((c) of FIG. 7F) is etched. After 40 is etched, the plasma treatment is stopped. As described above, in the present embodiment, the thickness of each layer in the regions (b) and (c) is adjusted, and the region (c) is removed in a state in which the channel oxide layer 40 of the region (b) remains. The channel uses an oxide layer 40. As a result, as shown in FIG. 7G, the separation of the channel region itself can be achieved, and the source electrode 554 and the drain electrode 552 are completely separated by the channel region.

本實施形態中,再者,係在氮氛圍中,於500℃加熱約15分鐘,藉以製造本實施形態之薄膜電晶體500。由於會因此加熱處理而導致ITO中的氧缺陷,該缺陷會成為導電性的氧缺陷載體,因此便可謀求導電性提升。圖8係本實施形態所製造之薄膜電晶體500之光學顯微鏡所得平面照片。如圖8所示般,藉由本實施形態之壓模製程,可實現次微級數(sub-micro order)(具體來說為約500nm)之通道區域的分離,此值得特別提出說明。又,本實施形態中所形成之源極電極554及汲極電極552的電阻率為10-3Ωcm的級數以下。 In the present embodiment, the film transistor 500 of the present embodiment is produced by heating at 500 ° C for about 15 minutes in a nitrogen atmosphere. Since the oxygen treatment in the ITO is caused by the heat treatment, the defect becomes a conductive oxygen-defective carrier, so that the conductivity can be improved. Fig. 8 is a plan view of an optical microscope obtained by the thin film transistor 500 manufactured in the present embodiment. As shown in Fig. 8, the separation of the channel regions of the sub-micro order (specifically, about 500 nm) can be realized by the compression molding process of the present embodiment, which is particularly worthy of explanation. Further, the source electrode 554 and the drain electrode 552 formed in the present embodiment have a resistivity of 10 -3 Ωcm or less.

此外,本實施形態之蝕刻製程雖係藉由利用氬(Ar)電漿之乾蝕刻來蝕刻,但若採行不使用真空程序之濕蝕刻技術來進行亦無妨。 Further, although the etching process of the present embodiment is etched by dry etching using argon (Ar) plasma, it may be carried out by a wet etching technique which does not use a vacuum program.

此外,依據發明者之研究,上述預備燒結之際,若將源極/汲極電極用前驅體層550a於80℃以上250℃以下之範圍內進行加熱,則源極/汲極電極用前驅體層550a之塑性變形能力會變高,且可將主溶劑充分去除。 從而,將源極/汲極電極用前驅體層550a於80℃以上250℃以下之範圍內進行加熱為較佳一樣態。此外,針對前述預備燒結之際的溫度範圍上限以及調整的根據係和關於上述閘極電極用前驅體層520a之預備燒結的根據相同。此外,源極/汲極電極用前驅體層550a之加熱溫度的更佳範圍為100℃以上250℃以下。 Further, according to the research by the inventors, when the source/drain electrode precursor layer 550a is heated in the range of 80 ° C or more and 250 ° C or less, the source/drain electrode precursor layer 550a is used in the preliminary sintering. The plastic deformation ability becomes high, and the main solvent can be sufficiently removed. Therefore, it is preferable to heat the source/drain electrode precursor layer 550a in a range of 80 ° C or more and 250 ° C or less. Further, the upper limit of the temperature range and the adjustment according to the preliminary sintering are the same as the basis for the preliminary sintering of the precursor electrode layer 520a for the gate electrode. Further, the heating temperature of the source/drain electrode precursor layer 550a is more preferably in the range of 100 ° C to 250 ° C.

如上所述,本實施形態中,係採用針對部份氧化物層施以壓模加工藉以形成壓模構造之「壓模製程」。藉由採用此壓模製程,便不需真空程序或使用光微影法之程序、或紫外線的照射製程等之需要較長的時間及/或昂貴設備之製程。又,本實施形態中,由於源極電極與汲極電極也藉由溶液法來形成,故構成閘極電極、閘極絕緣膜、通道、源極電極及汲極電極元件之所有氧化物層皆以溶液法來形成,這一點值得特別說明。因此,本實施形態之薄膜電晶體500的工業性乃至量產性極為優異。 As described above, in the present embodiment, a "die-casting process" in which a part of the oxide layer is subjected to press molding to form a stamper structure is employed. By using this stamping process, there is no need for a vacuum process or a procedure using photolithography, or an ultraviolet irradiation process, which requires a long time and/or expensive equipment. Further, in the present embodiment, since the source electrode and the drain electrode are also formed by a solution method, all the oxide layers constituting the gate electrode, the gate insulating film, the channel, the source electrode, and the drain electrode element are It is formed by the solution method, which deserves special explanation. Therefore, the thin film transistor 500 of the present embodiment is extremely excellent in industrial property and mass productivity.

〔第5實施形態之薄膜電晶體500之特性〕 [Characteristics of Thin Film Transistor 500 of Fifth Embodiment]

針對上述第5實施形態之薄膜電晶體500之Vg- Id特性進行調查之結果,可得到電晶體之良好特性。 Vg- of the thin film transistor 500 of the fifth embodiment described above As a result of investigation of the Id characteristics, good characteristics of the transistor can be obtained.

圖9係薄膜電晶體500之Vg-Id特性圖。此外,表3係顯示薄膜電晶體500關於次臨界特性(SS)、電場效應遷移度(μFE)之特性。此外,圖9之VD係在薄膜電晶體500之源極電極與汲極電極間所施加的電壓(V)。 Fig. 9 is a Vg-Id characteristic diagram of the thin film transistor 500. Further, Table 3 shows the characteristics of the thin film transistor 500 with respect to subcritical characteristics (SS) and electric field effect mobility (μ FE ). Further, V D of FIG. 9 is a voltage (V) applied between the source electrode and the drain electrode of the thin film transistor 500.

如圖9以及表3所示般,薄膜電晶體500之ON/OFF比為大約106之級數。如上述般,構成薄膜電晶體500之各層皆為氧化物層,且係採用溶液法以及壓模加工所形成,但確認了可發揮電晶體本身之功能。 As shown in FIG. 9 and Table 3, the ON/OFF ratio of the thin film transistor 500 is about 10 6 steps. As described above, each of the layers constituting the thin film transistor 500 is an oxide layer and is formed by a solution method and a press molding process, but it has been confirmed that the function of the transistor itself can be exhibited.

<第6實施形態> <Sixth embodiment>

於本實施形態,主要係於第5實施形態之閘極絕緣層之形成過程中施以壓模加工,除此以外,係和第5實施形態同樣。從而,和第1或是第5實施形態重複之說明予以省略。 In the present embodiment, the stamping process is mainly performed in the formation of the gate insulating layer in the fifth embodiment, and the fifth embodiment is similar to the fifth embodiment. Therefore, the description overlapping with the first or fifth embodiment will be omitted.

〔薄膜電晶體600之製程〕 [Process of Thin Film Transistor 600]

圖10A~圖10D分別為本實施形態之薄膜電晶體600之製造方法之一過程的剖面示意圖。此外,為了簡化圖式,針對從各電極所引出之電極的圖案化之記載予以省略。 10A to 10D are schematic cross-sectional views showing a process of a method of manufacturing the thin film transistor 600 of the present embodiment. Further, in order to simplify the drawing, the description of the patterning of the electrodes drawn from the respective electrodes is omitted.

(1)閘極電極之形成 (1) Formation of gate electrode

於本實施形態,係和第5實施形態同樣,首先於作為基材之SiO2/Si基板210上形成閘極電極用前驅體層520a。之後,作為預備燒結,以約5分鐘使得閘極電極用前驅體層520a在80℃以上250℃以下進行加熱。之後,為了進行閘極電極之圖案化,如圖10A所示般,於80℃以上300℃以下加熱之狀態下,使用閘極電極用模M1,以1MPa以上20MPa以下之壓力施以壓模加工。其結果,藉由本實施形態之閘極電極用模M1,形成具備層厚約100~約300nm之厚層部與層厚約10nm~約100nm之薄層部的閘極電極用前驅體層520a。 In the present embodiment, as in the fifth embodiment, the gate electrode precursor layer 520a is first formed on the SiO 2 /Si substrate 210 as a substrate. Thereafter, as a preliminary sintering, the gate electrode precursor layer 520a is heated at 80 ° C or more and 250 ° C or less in about 5 minutes. Then, in order to pattern the gate electrode, as shown in FIG. 10A, the gate electrode mold M1 is used, and the gate electrode mold M1 is used, and the stamper is applied at a pressure of 1 MPa or more and 20 MPa or less in a state of being heated at 80 ° C or more and 300 ° C or less. . As a result, the gate electrode precursor layer 520a having a thick layer portion having a thickness of about 100 to 300 nm and a thin layer portion having a layer thickness of about 10 nm to about 100 nm is formed by the gate electrode mold M1 of the present embodiment.

之後,對閘極電極用前驅體層520a進行全面蝕刻,而從對應於閘極電極區域以外的區域來去除閘極電極用前驅體層520a(對於閘極電極用前驅體層520a全面之蝕刻製程)。之後,和第5實施形態同樣地進行正式燒結,以於基板210上形成由鑭(La)與鎳(Ni)所構成之閘極電極用氧化物層520(但可包含有無法避免之雜質。以下亦同。)。 Thereafter, the gate electrode precursor layer 520a is completely etched, and the gate electrode precursor layer 520a (the etching process for the gate electrode precursor layer 520a) is removed from the region other than the gate electrode region. Thereafter, main sintering is performed in the same manner as in the fifth embodiment to form an oxide layer 520 for a gate electrode made of lanthanum (La) and nickel (Ni) on the substrate 210 (although impurities which are unavoidable may be contained). The same is true below.).

(2)閘極絕緣層之形成 (2) Formation of gate insulating layer

其次,於基板210以及經圖案化之閘極電極用氧化物層520上,和第1實施形態同樣地形成第1前驅體層632a(使用以含鉍(Bi)之前驅體以及含鈮(Nb)之前驅體為溶質之前驅體溶液作為起始材)。之後,於含氧雰圍中,在加熱至80℃以上250℃以下之狀態下進行預備燒結。 Next, on the substrate 210 and the patterned gate electrode oxide layer 520, the first precursor layer 632a is formed in the same manner as in the first embodiment (using a bismuth (Bi)-containing precursor and a ytterbium-containing (Nb) layer. The precursor is a solute precursor solution as a starting material). Thereafter, preliminary sintering is performed in a state of being heated to 80 ° C or more and 250 ° C or less in an oxygen-containing atmosphere.

接著,於第1前驅體層632a上,和第1實施形態同樣地形成第2前驅體層634a(使用以含鑭(La)之前驅體以及含鉭(Ta)之前驅體為溶質之前驅體溶液作為起始材)。之後,於含氧雰圍中,在加熱至80℃以上250℃以下之狀態下進行預備燒結。 Next, on the first precursor layer 632a, a second precursor layer 634a is formed in the same manner as in the first embodiment (a precursor solution containing a lanthanum (La) precursor and a ruthenium (Ta) precursor is used as a solute precursor solution. Starting material). Thereafter, preliminary sintering is performed in a state of being heated to 80 ° C or more and 250 ° C or less in an oxygen-containing atmosphere.

於本實施形態,對於僅進行了預備燒結之堆疊狀態的第1前驅體層632a以及第2前驅體層634a施以壓模加工。具體而言,為了進行閘極絕緣層之圖案化,如圖10B所示般,在加熱至80℃以上300℃以下之狀態下,使用閘極絕緣層用模M3,以1MPa以上20MPa以下之壓力施以壓模加工。其結果,藉由本實施形態之閘極絕緣層用模M3而形成具備有第1前驅體層632a與第2前驅體層634a(皆具有層厚約100nm~約300nm之厚層部與層厚約10nm~約100nm之薄層部)之堆疊構造的閘極絕緣層用前驅體層630a。 In the present embodiment, the first precursor layer 632a and the second precursor layer 634a in the stacked state in which only preliminary sintering is performed are subjected to press molding. Specifically, in order to pattern the gate insulating layer, as shown in FIG. 10B, in the state of being heated to 80 ° C or more and 300 ° C or less, the gate insulating layer mold M3 is used, and the pressure is 1 MPa or more and 20 MPa or less. Apply compression molding. As a result, the first precursor layer 632a and the second precursor layer 634a are formed by the gate insulating layer mold M3 of the present embodiment (all having a thick layer portion having a layer thickness of about 100 nm to about 300 nm and a layer thickness of about 10 nm). A precursor insulating layer 630a for a gate insulating layer of a stacked structure of about 100 nm.

之後,對閘極絕緣層用前驅體層630a進行全面蝕刻,而如圖10C所示般,從對應於閘極絕緣層630之區域以外的區域來去除閘極絕緣層用前驅體層630a(對閘極絕緣層用前驅體層630a全面之蝕刻製程)。此外,本實施形態之閘極絕緣層用前驅體層630a之蝕刻製程雖使用了未採真空程序之濕式蝕刻技術來進行,但以使用電漿之所謂的乾式蝕刻技術來蝕刻亦無妨。 Thereafter, the gate insulating layer precursor layer 630a is completely etched, and as shown in FIG. 10C, the gate insulating layer precursor layer 630a is removed from the region other than the region corresponding to the gate insulating layer 630 (for the gate) The insulating layer is etched by the precursor layer 630a. Further, although the etching process for the precursor insulating layer 630a of the gate insulating layer of the present embodiment is performed by a wet etching technique using no vacuum process, it may be etched by a so-called dry etching technique using plasma.

之後,以約20分鐘在550℃進行正式燒結,以於閘極電極用氧化物層520上形成具備有第1氧化物層632與第2氧化物層634之堆疊氧化物之閘極絕緣層 630(但可包含有無法避免之雜質。以下亦同。)。此外,本實施形態之第1氧化物層632之厚度為約50nm~約250nm,第2氧化物層634之厚度為約5nm~約50nm。 Thereafter, the main sintering is performed at 550 ° C for about 20 minutes to form a gate insulating layer including the stacked oxide of the first oxide layer 632 and the second oxide layer 634 on the gate electrode oxide layer 520. 630 (but can contain unavoidable impurities. The same applies below.). Further, the thickness of the first oxide layer 632 of the present embodiment is from about 50 nm to about 250 nm, and the thickness of the second oxide layer 634 is from about 5 nm to about 50 nm.

(3)通道、源極電極、以及汲極電極之形成 (3) Formation of channel, source electrode, and drain electrode

之後,和第5實施形態同樣地,以形成通道用氧化物層40之後,源極電極554以及汲極電極552會經由通道區域而完全分離的方式來形成。其結果,製造出圖10E所示薄膜電晶體600。從而,如上述般,藉由採用溶液法以及壓模製程,由於閘極電極、閘極絕緣層、通道、源極電極、以及汲極電極皆可簡便地圖案化,故本實施形態之薄膜電晶體600在工業性乃至於量產性極為優異。 Thereafter, similarly to the fifth embodiment, after the channel oxide layer 40 is formed, the source electrode 554 and the drain electrode 552 are formed to be completely separated via the channel region. As a result, the thin film transistor 600 shown in Fig. 10E was produced. Therefore, as described above, since the gate electrode, the gate insulating layer, the channel, the source electrode, and the gate electrode can be easily patterned by the solution method and the press molding process, the thin film electricity of the embodiment The crystal 600 is extremely excellent in industrial properties and mass productivity.

<第7實施形態> <Seventh embodiment>

於本實施形態,主要針對第2實施形態之通道材料採用氧化銦,除此以外,係和第2實施形態同樣。從而,和第1或是第2實施形態重複之說明予以省略。 In the present embodiment, the indium oxide is mainly used for the channel material of the second embodiment, and the second embodiment is similar to the second embodiment. Therefore, the description overlapping with the first or second embodiment will be omitted.

圖1M亦顯示本實施形態之薄膜電晶體700構造之剖面示意圖。其中,本實施形態之薄膜電晶體700之通道材料如上述般為氧化銦。 Fig. 1M also shows a schematic cross-sectional view of the structure of the thin film transistor 700 of the present embodiment. The channel material of the thin film transistor 700 of the present embodiment is indium oxide as described above.

於本實施形態之通道形成製程中,首先,於第2氧化物層34上以公知旋塗法來形成通道用前驅體層(使用以含銦(In)之前驅體為溶質之通道用前驅體溶液作為起始材)。之後,作為預備燒結,係使得此前驅體層於250℃加熱約5分鐘。之後,作為正式燒結,係使得此前驅體層於氧雰圍中,於350℃以上550℃以下加熱約15分 鐘,以於第2氧化物層34上形成由氧化銦所構成之通道用氧化物層740。此外,通道用氧化物層740之厚度為約20nm。 In the channel formation process of the present embodiment, first, a precursor layer for a channel is formed on the second oxide layer 34 by a known spin coating method (a precursor solution for a channel using a precursor containing indium (In) as a solute is used. As a starting material). Thereafter, as the preliminary sintering, the precursor layer was heated at 250 ° C for about 5 minutes. After that, as the main sintering, the precursor layer is heated in an oxygen atmosphere at 350 ° C or higher and 550 ° C or lower for about 15 minutes. A channel oxide layer 740 made of indium oxide is formed on the second oxide layer 34. Further, the thickness of the channel oxide layer 740 is about 20 nm.

此處,本實施形態之通道用氧化物層740所使用之含銦(In)之前驅體之例為乙醯丙酮酸銦。其他例可採用硝酸銦、氯化銦、或是各種銦烷氧化物(例如銦異丙氧化物、銦丁氧化物、銦乙氧化物、銦甲氧乙氧化物)。 Here, an example of the indium (In) precursor used for the channel oxide layer 740 of the present embodiment is indium acetylacetonate. Other examples may include indium nitrate, indium chloride, or various indium alkoxides (e.g., indium isopropoxide, indium butoxide, indium ethoxylate, indium methoxyethoxylate).

此外,對於藉由和本實施形態之通道用氧化物層740為同樣製程所形成之氧化銦層之X光繞射(XRD)進行調查,得到了令人玩味的結果。圖11A顯示藉由和薄膜電晶體700之通道製程為同樣製程所形成之氧化銦層之X光繞射(XRD)結果圖。比較起見,圖11B顯示了藉由和第1實施形態之薄膜電晶體之通道製程為同樣製程所形成之IZO層之X光繞射(XRD)結果。 Further, the X-ray diffraction (XRD) of the indium oxide layer formed by the same process as the channel oxide layer 740 of the present embodiment was investigated, and an interesting result was obtained. Figure 11A is a graph showing the X-ray diffraction (XRD) results of an indium oxide layer formed by the same process as that of the thin film transistor 700. For comparison, Fig. 11B shows the X-ray diffraction (XRD) results of the IZO layer formed by the same process as that of the thin film transistor of the first embodiment.

圖11A中,確認出被認為顯示In2O3(222)之(a)所示波峰與被認為顯示In2O3(400)之(b)所示波峰。從而,可知本實施形態之通道用氧化物層740至少具有結晶性。另一方面,圖11B中,如前述般,由於未確認到波峰,故確認了至少於本測定範圍中為非晶質狀。此外,圖11A之(c)之波峰係源自形成有氧化銦層之基板上的氧化矽(SiO2)之波峰,圖11B之(d)之波峰係源自形成有IZO層之基板(石英)的波峰。 In Fig. 11A, it is confirmed that the peak indicated by (a) of In 2 O 3 (222) and the peak indicated by (b) of In 2 O 3 (400) are considered to be displayed. Therefore, it is understood that the channel oxide layer 740 of the present embodiment has at least crystallinity. On the other hand, in FIG. 11B, as described above, since no peak was observed, it was confirmed that it was amorphous at least in the measurement range. Further, the peak of (c) of FIG. 11A is derived from the peak of yttrium oxide (SiO 2 ) on the substrate on which the indium oxide layer is formed, and the peak of (d) of FIG. 11B is derived from the substrate on which the IZO layer is formed (quartz The crest.

其次,調查本實施形態之薄膜電晶體700之電氣特性。圖12係本實施形態之薄膜電晶體700之Vg-Id特 性圖。此外,表4係顯示薄膜電晶體700有關次臨界特性(SS)、電場效應遷移度(μFE)之特性。 Next, the electrical characteristics of the thin film transistor 700 of the present embodiment were investigated. Fig. 12 is a Vg-Id characteristic diagram of the thin film transistor 700 of the present embodiment. Further, Table 4 shows the characteristics of the thin film transistor 700 regarding the subcritical characteristic (SS) and the electric field effect mobility (μ FE ).

如圖12以及表4所示般,薄膜電晶體700之ON/OFF比為超過107之級數的值。此外,確認了該其他電氣特性對電晶體而言也為良好結果。 As shown in FIG. 12 and Table 4, the ON/OFF ratio of the thin film transistor 700 is a value exceeding the order of 107. In addition, it was confirmed that this other electrical property is also a good result for the transistor.

從而,薄膜電晶體700即便其構成之一部分的通道為具有結晶性之情況,也可得到良好的電氣特性。 Therefore, the thin film transistor 700 can obtain good electrical characteristics even if the channel of one of the constituent crystal layers is crystalline.

<其他實施形態> <Other Embodiments>

為了適當地達成上述各實施形態之效果,第1前驅體溶液的溶劑較佳為選自乙醇、丙醇、丁醇、2-甲氧乙醇、2-乙氧基乙醇、2-丁氧基乙醇的群之2種醇的混合溶劑。又,第2前驅體溶液的溶劑較佳為選自乙醇、丙醇、丁醇、2-甲氧乙醇、2-乙氧基乙醇、2-丁氧基乙醇的群之1種醇溶劑,或選自醋酸、丙酸、辛酸的群之1種羧酸溶劑。又,通道用前驅體溶液的溶劑較佳為選自乙醇、丙醇、丁醇、2-甲氧乙醇、2-乙氧基乙醇、2-丁氧基乙醇的群之1種醇溶劑,或選自醋酸、丙酸、辛酸的群之1種羧酸溶劑。 In order to appropriately achieve the effects of the above embodiments, the solvent of the first precursor solution is preferably selected from the group consisting of ethanol, propanol, butanol, 2-methoxyethanol, 2-ethoxyethanol, and 2-butoxyethanol. A mixture of two alcohols in a group. Further, the solvent of the second precursor solution is preferably an alcohol solvent selected from the group consisting of ethanol, propanol, butanol, 2-methoxyethanol, 2-ethoxyethanol, and 2-butoxyethanol, or A carboxylic acid solvent selected from the group consisting of acetic acid, propionic acid, and octanoic acid. Further, the solvent of the channel precursor solution is preferably an alcohol solvent selected from the group consisting of ethanol, propanol, butanol, 2-methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, or A carboxylic acid solvent selected from the group consisting of acetic acid, propionic acid, and octanoic acid.

進而,為了適當地達成上述各實施形態之效果,閘極電極層用前驅體溶液的溶劑較佳為選自乙醇、丙醇、 丁醇、2-甲氧乙醇、2-乙氧基乙醇、2-丁氧基乙醇的群之1種醇溶劑,或選自醋酸、丙酸、辛酸的群之1種羧酸溶劑。此外,源極/汲極電極用前驅體溶液之溶劑以選自乙醇、丙醇、丁醇、2-甲氧乙醇、2-乙氧基乙醇、2-丁氧乙醇的群1種之醇類溶劑、或是選自醋酸、丙酸、辛酸的群1種的羧酸溶劑為佳。 Further, in order to appropriately achieve the effects of the above embodiments, the solvent of the precursor solution for the gate electrode layer is preferably selected from the group consisting of ethanol and propanol. An alcohol solvent of a group of butanol, 2-methoxyethanol, 2-ethoxyethanol, or 2-butoxyethanol, or a carboxylic acid solvent selected from the group consisting of acetic acid, propionic acid, and octanoic acid. Further, the solvent of the precursor solution for the source/drain electrode is an alcohol selected from the group consisting of ethanol, propanol, butanol, 2-methoxyethanol, 2-ethoxyethanol, and 2-butoxyethanol. A solvent or a carboxylic acid solvent selected from the group consisting of acetic acid, propionic acid, and octanoic acid is preferred.

又,上述各實施形態中,作為溶液法中的正式燒結,只要是用以形成第1氧化物之加熱溫度為450℃以上700℃以下,便可獲得上述各實施形態的至少一部分效果。又,作為溶液法中的正式燒結,只要是用以形成第2氧化物之加熱溫度為250℃以上700℃以下,便可獲得上述各實施形態的至少一部分效果。又,作為溶液法中的正式燒結,只要是用以形成通道用氧化物之加熱溫度為250℃以上700℃以下,便可獲得上述各實施形態的至少一部分效果。 Further, in the above-described respective embodiments, as the main sintering in the solution method, at least a part of the effects of the above embodiments can be obtained as long as the heating temperature for forming the first oxide is 450 ° C or more and 700 ° C or less. Further, as the main sintering in the solution method, at least a part of the effects of the above embodiments can be obtained as long as the heating temperature for forming the second oxide is 250 ° C or more and 700 ° C or less. Further, as the main sintering in the solution method, at least a part of the effects of the above embodiments can be obtained as long as the heating temperature for forming the channel oxide is from 250 ° C to 700 ° C.

進而,上述各實施形態中,作為溶液法中的正式燒結,只要是用以形成閘極電極用氧化物之加熱溫度為500℃以上900℃以下,便可獲得上述各實施形態的至少一部分效果。此外,作為溶液法中的正式燒結,只要是用以形成源極/汲極電極用氧化物之加熱溫度為450℃以上700℃以下,便可獲得上述各實施形態的至少一部效果。 Further, in the above-described respective embodiments, as the main sintering in the solution method, at least a part of the effects of the above embodiments can be obtained as long as the heating temperature for forming the oxide for the gate electrode is 500 ° C or more and 900 ° C or less. Further, as the main sintering in the solution method, at least one effect of each of the above embodiments can be obtained as long as the heating temperature for forming the source/drain electrode oxide is 450 ° C or more and 700 ° C or less.

此外,於上述第5以及第6實施形態中,在幾個氧化物層的形成之際,係進行施以壓模加工之「壓模製程」。此壓模製程中的壓力不限於所代表性地例示之 5MPa。如幾個例子所述,只要此壓模製程中的壓力為1MPa以上20MPa以下的範圍內之壓力,便可獲得上述各實施形態的至少一部分效果。 Further, in the fifth and sixth embodiments described above, in the formation of several oxide layers, a "die-casting process" for performing press molding is performed. The pressure in this compression molding process is not limited to the representative ones. 5MPa. As described in several examples, at least a part of the effects of the above embodiments can be obtained as long as the pressure in the press molding process is in the range of 1 MPa to 20 MPa.

於上述第5以及第6實施形態中,係針對已獲得高塑性變形能力各前驅體層施以壓模加工。其結果,則縱使是施以壓模加工之際所施加之壓力為1MPa以上20MPa以下的低壓力,但各前驅體層仍會隨著模的表面形狀而變形,從而便可以高精確度來形成期望的壓模構造。又,藉由將該壓力設定為1MPa以上20MPa以下之低壓力範圍,則在施以壓模加工之際模便不易損傷,且亦有利於大面積化。 In the fifth and sixth embodiments described above, the precursor layers are subjected to compression molding for the high plastic deformation ability. As a result, even if the pressure applied during the press molding is a low pressure of 1 MPa or more and 20 MPa or less, each precursor layer is deformed along with the surface shape of the mold, so that the desired degree can be formed with high precision. The die structure. Further, by setting the pressure to a low pressure range of 1 MPa or more and 20 MPa or less, the mold is less likely to be damaged when the press molding is performed, and it is also advantageous in increasing the area.

此處,使上述壓力為「1MPa以上20MPa以下」的範圍內之理由如以下所述。首先,若該壓力小於1MPa的情況,則會有壓力過低而無法將各前驅體層壓模的情況之緣故。另一方面,若該壓力為20MPa,由於可充分地將前驅體層壓模,因此便不須施加其以上的壓力之緣故。從上述觀點來看,上述第5及第6實施形態之壓模製程中,較佳係以2MPa以上10MPa以下的範圍內之壓力來施以壓模加工。 Here, the reason why the pressure is in the range of "1 MPa or more and 20 MPa or less" is as follows. First, when the pressure is less than 1 MPa, there is a case where the pressure is too low and the respective precursors cannot be laminated. On the other hand, if the pressure is 20 MPa, since the precursor can be sufficiently laminated, it is not necessary to apply the above pressure. From the above viewpoints, in the press molding process of the fifth and sixth embodiments, it is preferable to apply a press molding at a pressure in a range of 2 MPa or more and 10 MPa or less.

又,用以形成上述各實施形態中的各氧化物層之預備燒結之際,預備燒結溫度最佳為100℃以上250℃以下。此係因為能夠使各種前驅體層中的溶劑更高準確度地蒸發的緣故。又,特別是,之後進行壓模製程的情況下,藉由在上述溫度範圍下進行預備燒結,便可形成能 夠在將來獲得可塑性變形的特性之較適當的凝膠狀態(為熱分解前且殘留有有機鏈之狀態)。 Further, in order to form the preliminary sintering of each oxide layer in each of the above embodiments, the preliminary sintering temperature is preferably 100 ° C or more and 250 ° C or less. This is because the solvent in the various precursor layers can be evaporated with higher accuracy. Further, in particular, in the case where the press molding process is subsequently performed, the preliminary sintering can be performed in the above temperature range to form the energy. A more appropriate gel state (in a state before the thermal decomposition and an organic chain remains) in which a plastically deformable property can be obtained in the future.

此外,於上述第5以及第6實施形態之壓模製程中,使用事先加熱至80℃以上300℃以下之模(代表性者為閘極電極用模M1、源極/汲極電極用模M2、或是閘極絕緣層用模M3)來施以壓模加工為其他較佳樣態。 Further, in the press molding process of the fifth and sixth embodiments, a mold which is previously heated to 80 ° C or more and 300 ° C or less is used (the representative is the gate electrode mold M1, the source/drain electrode mold M2). Or, the gate insulating layer is molded by the mold M3) into other preferred modes.

使模的較佳溫度為80℃以上300℃以下之理由如以下所述。首先,在未達80℃的情況,會因各前驅體層的溫度降低而導致各前驅體層的塑性變形能力降低。進而,在大於300℃的情況,則會因各前驅體層的固化反應過度進行而導致各前驅體層的塑性變形能力降低。從上述觀點來看,在壓模製程中,更佳係使用已被加熱至100℃以上250℃以下的模來施以壓模加工。 The reason why the preferred temperature of the mold is 80 ° C or more and 300 ° C or less is as follows. First, in the case of less than 80 ° C, the plastic deformation ability of each precursor layer is lowered due to a decrease in the temperature of each precursor layer. Further, in the case of more than 300 ° C, the curing reaction of each precursor layer is excessively performed, and the plastic deformation ability of each precursor layer is lowered. From the above point of view, in the press molding process, it is more preferable to apply a stamper by using a mold which has been heated to 100 ° C or more and 250 ° C or less.

又,上述壓模製程中,較佳係針對壓模面所接觸之各前驅體層的表面預先施以脫模處理,及/或針對其模的壓模面預先施以脫模處理,之後,再針對各前驅體層施以壓模加工。藉由施以上述處理,由於可降低各前驅體層與模之間的摩擦力,因此便可對各前驅體層更加精確度良好地施以壓模加工。此外,可使用於脫模處理之脫模劑可例示界面活性劑(例如氟系界面活性劑、矽系界面活性劑、非離子系界面活性劑等)、含氟類鑽石碳等。 Further, in the above-mentioned press molding process, it is preferable to apply a mold release treatment to the surface of each of the precursor layers which are contacted by the stamper surface, and/or to apply a mold release treatment to the stamper surface of the mold, and then, Compression molding is applied to each precursor layer. By applying the above treatment, since the frictional force between each of the precursor layers and the mold can be reduced, the stamping process can be performed with higher precision for each of the precursor layers. Further, the release agent used for the release treatment may, for example, be a surfactant (for example, a fluorine-based surfactant, a ruthenium-based surfactant, a nonionic surfactant, or the like), or a fluorine-containing diamond carbon.

又,在針對上述各實施形態的各前驅體層之壓模製程與正式燒結製程之間包含有以該前驅體層會在施有壓模加工之各前驅體層(例如閘極電極層用前驅體層)當 中層厚最薄的區域處被去除之條件來整體地蝕刻該前驅體層之製程係為一更佳樣態。此係因為能夠較正式燒結各前驅體層後再進行蝕刻,要容易去除不需要的區域之緣故。因此,於上述各實施形態,可取代於正式燒結後進行整面蝕刻的製程,採用前述更佳的一樣態。 Further, in the press molding process and the main sintering process for each of the precursor layers of the above embodiments, each precursor layer (for example, a precursor layer for a gate electrode layer) in which the precursor layer is subjected to press molding is included. The process in which the thinnest region of the middle layer is removed to completely etch the precursor layer is a better state. This is because the precursor layers can be sintered more conventionally and then etched, and it is easy to remove unnecessary regions. Therefore, in the above embodiments, the above-described more preferable state can be employed instead of the process of performing the entire surface etching after the main sintering.

如上所述,上述各實施形態的揭示係為了說明該等實施形態而記載,而非用以限定本發明而記載。再者,包含有各實施形態的其他組合之本發明範圍內所存在的變形例亦應包含於申請專利範圍。 As described above, the disclosure of the above embodiments is described for the purpose of describing the embodiments, and is not intended to limit the invention. Further, modifications that are within the scope of the invention, including other combinations of the embodiments, are also included in the scope of the claims.

10‧‧‧高耐熱玻璃 10‧‧‧High heat resistant glass

20,520‧‧‧閘極電極用氧化物層 20,520‧‧‧Oxide layer for gate electrode

20a,520a‧‧‧閘極電極用前驅體層 20a, 520a‧‧ ‧ precursor layer for gate electrode

30,630‧‧‧閘極絕緣層 30,630‧‧‧ gate insulation

32,632‧‧‧第1氧化物層 32,632‧‧‧1st oxide layer

32a,632a‧‧‧第1前驅體層 32a, 632a‧‧‧1st precursor layer

34,234,334,434,634‧‧‧第2氧化物層 34,234,334,434,634‧‧‧2nd oxide layer

34a,634a‧‧‧第2前驅體層 34a, 634a‧‧‧2nd precursor layer

40,740‧‧‧通道用氧化物層 40,740‧‧‧Oxide layer for channels

40a‧‧‧通道用前驅體層 40a‧‧‧Precursor layer for channels

50‧‧‧ITO層 50‧‧‧ITO layer

52,552‧‧‧汲極電極 52,552‧‧‧汲electrode

54,554‧‧‧源極電極 54,554‧‧‧Source electrode

90‧‧‧光阻膜 90‧‧‧Photoresist film

210‧‧‧基板 210‧‧‧Substrate

100,200,300,400,500,600,700‧‧‧薄膜電晶體 100,200,300,400,500,600,700‧‧‧film transistor

220‧‧‧鉑層 220‧‧ ‧ platinum layer

550‧‧‧源極/汲極電極用氧化物層 550‧‧‧Oxide layer for source/drain electrodes

550a‧‧‧源極/汲極電極用前驅體層 550a‧‧‧Precursor layer for source/drain electrodes

630a‧‧‧閘極絕緣層用前驅體層 630a‧‧‧Precursor layer for gate insulation

M1‧‧‧閘極電極用模 M1‧‧‧ gate electrode mold

M2‧‧‧源極/汲極電極用模 M2‧‧‧ source/drain electrode

M3‧‧‧閘極絕緣層用模 M3‧‧‧mode for gate insulation

圖1A係顯示本發明之第1實施形態之薄膜電晶體之製造方法之一過程的剖面示意圖。 Fig. 1A is a schematic cross-sectional view showing a process of a method for producing a thin film transistor according to a first embodiment of the present invention.

圖1B係顯示本發明之第1實施形態之薄膜電晶體之製造方法之一過程的剖面示意圖。 Fig. 1B is a schematic cross-sectional view showing a process of a method for producing a thin film transistor according to a first embodiment of the present invention.

圖1C係顯示本發明之第1實施形態之薄膜電晶體之製造方法之一過程的剖面示意圖。 Fig. 1C is a schematic cross-sectional view showing a process of a method for producing a thin film transistor according to a first embodiment of the present invention.

圖1D係顯示本發明之第1實施形態之薄膜電晶體之製造方法之一過程的剖面示意圖。 Fig. 1D is a schematic cross-sectional view showing a process of a method for producing a thin film transistor according to a first embodiment of the present invention.

圖1E係顯示本發明之第1實施形態之薄膜電晶體之製造方法之一過程的剖面示意圖。 Fig. 1E is a schematic cross-sectional view showing a process of a method for producing a thin film transistor according to a first embodiment of the present invention.

圖1F係顯示本發明之第1實施形態之薄膜電晶體之製造方法之一過程的剖面示意圖。 Fig. 1F is a schematic cross-sectional view showing a process of a method for producing a thin film transistor according to a first embodiment of the present invention.

圖1G係顯示本發明之第1實施形態之薄膜電晶體之製造方法之一過程的剖面示意圖。 Fig. 1G is a schematic cross-sectional view showing a process of a method for producing a thin film transistor according to a first embodiment of the present invention.

圖1H係顯示本發明之第1實施形態之薄膜電晶體之製造方法之一過程的剖面示意圖。 Fig. 1H is a schematic cross-sectional view showing a process of a method for producing a thin film transistor according to a first embodiment of the present invention.

圖1J係顯示本發明之第1實施形態之薄膜電晶體之製造方法之一過程的剖面示意圖。 Fig. 1J is a schematic cross-sectional view showing a process of a method for producing a thin film transistor according to a first embodiment of the present invention.

圖1K係顯示本發明之第1實施形態之薄膜電晶體之製造方法之一過程的剖面示意圖。 Fig. 1K is a schematic cross-sectional view showing a process of a method for producing a thin film transistor according to the first embodiment of the present invention.

圖1L係顯示本發明之第1實施形態之薄膜電晶體之製造方法之一過程的剖面示意圖。 Fig. 1 is a schematic cross-sectional view showing a process of a method for producing a thin film transistor according to a first embodiment of the present invention.

圖1M係顯示本發明之第1實施形態之薄膜電晶體之製造方法之一過程的剖面示意圖。 Fig. 1M is a schematic cross-sectional view showing a process of a method for producing a thin film transistor according to a first embodiment of the present invention.

圖2係顯示本發明之第1實施形態之薄膜電晶體之Vg-Id特性圖。 Fig. 2 is a graph showing the Vg-Id characteristics of the thin film transistor of the first embodiment of the present invention.

圖3係顯示經過和本發明之第1實施形態之第1氧化物之製程為相同製程所製作之包含第1氧化物的堆疊構造之剖面TEM照片。 Fig. 3 is a cross-sectional TEM photograph showing a stack structure including a first oxide produced by the same process as that of the first oxide of the first embodiment of the present invention.

圖4係顯示經過和本發明之第1實施形態之第2氧化物之製程為相同製程所製作之第2氧化物表面之AFM像。 Fig. 4 is a view showing an AFM image of the surface of the second oxide which is produced by the same process as the second oxide of the first embodiment of the present invention.

圖5係顯示本發明之第2乃至第4實施形態之薄膜電晶體之Vg-Id特性圖。 Fig. 5 is a graph showing the Vg-Id characteristics of the thin film transistor of the second to fourth embodiments of the present invention.

圖6係顯示本發明之第1乃至第4實施形態之第1氧化物層相對於頻率(Hz)之tanδ值之圖。 Fig. 6 is a graph showing tan δ values of the first oxide layer according to the first to fourth embodiments of the present invention with respect to frequency (Hz).

圖7A係顯示本發明之第5實施形態之薄膜電晶體之製造方法之一過程的剖面示意圖。 Fig. 7A is a schematic cross-sectional view showing a process of a method for producing a thin film transistor according to a fifth embodiment of the present invention.

圖7B係顯示本發明之第5實施形態之薄膜電晶體之製造方法之一過程的剖面示意圖。 Fig. 7B is a schematic cross-sectional view showing a process of a method for producing a thin film transistor according to a fifth embodiment of the present invention.

圖7C係顯示本發明之第5實施形態之薄膜電晶體之製造方法之一過程的剖面示意圖。 Fig. 7C is a schematic cross-sectional view showing a process of a method for producing a thin film transistor according to a fifth embodiment of the present invention.

圖7D係顯示本發明之第5實施形態之薄膜電晶體之製造方法之一過程的剖面示意圖。 Fig. 7D is a schematic cross-sectional view showing a process of a method for producing a thin film transistor according to a fifth embodiment of the present invention.

圖7E係顯示本發明之第5實施形態之薄膜電晶體之製造方法之一過程的剖面示意圖。 Fig. 7E is a schematic cross-sectional view showing a process of a method for producing a thin film transistor according to a fifth embodiment of the present invention.

圖7F係顯示本發明之第5實施形態之薄膜電晶體之製造方法之一過程的剖面示意圖。 Fig. 7F is a schematic cross-sectional view showing a process of a method for producing a thin film transistor according to a fifth embodiment of the present invention.

圖7G係顯示本發明之第5實施形態之薄膜電晶體之製造方法之一過程的剖面示意圖。 Fig. 7G is a schematic cross-sectional view showing a process of a method for producing a thin film transistor according to a fifth embodiment of the present invention.

圖8係顯示本發明之第5實施形態之薄膜電晶體之利用光學顯微鏡所得平面照片。 Fig. 8 is a plan view showing a film obtained by an optical microscope of a thin film transistor according to a fifth embodiment of the present invention.

圖9係顯示本發明之第5實施形態之薄膜電晶體之Vg-Id特性圖。 Fig. 9 is a graph showing the Vg-Id characteristics of the thin film transistor of the fifth embodiment of the present invention.

圖10A係顯示本發明之第6實施形態之薄膜電晶體之製造方法之一過程的剖面示意圖。 Fig. 10A is a schematic cross-sectional view showing a process of a method for producing a thin film transistor according to a sixth embodiment of the present invention.

圖10B係顯示本發明之第6實施形態之薄膜電晶體之製造方法之一過程的剖面示意圖。 Fig. 10B is a schematic cross-sectional view showing a process of a method for producing a thin film transistor according to a sixth embodiment of the present invention.

圖10C係顯示本發明之第6實施形態之薄膜電晶體之製造方法之一過程的剖面示意圖。 Fig. 10C is a schematic cross-sectional view showing a process of a method for producing a thin film transistor according to a sixth embodiment of the present invention.

圖10D係顯示本發明之第6實施形態之薄膜電晶體之製造方法之一過程的剖面示意圖。 Fig. 10D is a schematic cross-sectional view showing a process of a method for producing a thin film transistor according to a sixth embodiment of the present invention.

圖10E係顯示本發明之第6實施形態之薄膜電晶體之製造方法之一過程的剖面示意圖。 Fig. 10E is a schematic cross-sectional view showing a process of a method for producing a thin film transistor according to a sixth embodiment of the present invention.

圖11A係顯示藉由和本發明之第7實施形態之薄膜電晶體之通道製程為同樣的製程所形成之氧化銦層之X光繞射(XRD)之結果圖。 Fig. 11A is a view showing the results of X-ray diffraction (XRD) of an indium oxide layer formed by the same process as that of the thin film transistor of the seventh embodiment of the present invention.

圖11B係顯示藉由和本發明之第1實施形態之薄膜電晶體之通道製程為同樣的製程所形成之IZO層之X光繞射(XRD)之結果圖。 Fig. 11B is a view showing the result of X-ray diffraction (XRD) of the IZO layer formed by the same process as that of the thin film transistor of the first embodiment of the present invention.

圖12係顯示本發明之第7實施形態之薄膜電晶體之Vg-Id特性圖。 Fig. 12 is a view showing the Vg-Id characteristic of the thin film transistor of the seventh embodiment of the present invention.

10(210)‧‧‧高耐熱玻璃 10(210)‧‧‧High heat resistant glass

20(220)‧‧‧閘極電極用氧化物層 20(220)‧‧‧Oxide layer for gate electrode

30‧‧‧閘極絕緣層 30‧‧‧ gate insulation

32‧‧‧第1氧化物層 32‧‧‧1st oxide layer

34,234,334,434‧‧‧第2氧化物層 34,234,334,434‧‧‧2nd oxide layer

40(740)‧‧‧通道用氧化物層 40 (740) ‧ ‧ channel oxide layer

52‧‧‧汲極電極 52‧‧‧汲electrode

54‧‧‧源極電極 54‧‧‧Source electrode

Claims (28)

一種薄膜電晶體,係於閘極電極與通道之間具備有堆疊氧化物,該堆疊氧化物具有:第1氧化物(可含有不可避免之雜質)之層,係相接於該閘極電極,為由鉍(Bi)與鈮(Nb)所構成之氧化物、或是由鉍(Bi)與鋅(Zn)與鈮(Nb)所構成之氧化物;以及,第2氧化物(可含有不可避免之雜質)之層,係相接於該通道,為選自由鑭(La)與鉭(Ta)所構成之氧化物、由鑭(La)與鋯(Zr)所構成之氧化物、以及由鍶(Sr)與鉭(Ta)所構成之氧化物之群中1種;該通道為通道用氧化物(可含有不可避免之雜質)。 A thin film transistor is provided with a stacked oxide between a gate electrode and a channel, the stacked oxide having a layer of a first oxide (which may contain unavoidable impurities) connected to the gate electrode, An oxide composed of bismuth (Bi) and niobium (Nb), or an oxide composed of bismuth (Bi) and zinc (Zn) and niobium (Nb); and, second oxide (may not contain a layer of impurities to be avoided, which is connected to the channel, is an oxide selected from lanthanum (La) and tantalum (Ta), an oxide composed of lanthanum (La) and zirconium (Zr), and One of a group of oxides composed of strontium (Sr) and strontium (Ta); this channel is an oxide for channels (which may contain unavoidable impurities). 如申請專利範圍第1項之薄膜電晶體,其中該通道用氧化物為非晶質狀。 The thin film transistor of claim 1, wherein the channel oxide is amorphous. 如申請專利範圍第1項之薄膜電晶體,其中該通道係選自由銦(In)與鋅(Zn)所構成之氧化物、由鎵(Ga)與鋅(Zn)所構成之氧化物、由鋁(Al)與鋅(Zn)所構成之氧化物、由鋅(Zn)與錫(Sn)所構成之氧化物、由鋅(Zn)與銦(In)與錫(Sn)所構成之氧化物、由銦(In)與鎵(Ga)與鋅(Zn)所構成之氧化物、由鑭(La)與銦(In)與鋅(Zn)所構成之氧化物、由鉿(Hf)與銦(In)與鋅(Zn)所構成之氧化物、由鈧(Sc)與銦(In)與鋅(Zn)所構成之氧化物、以及氧化銦之群中1種的通道用氧化物。 The thin film transistor of claim 1, wherein the channel is selected from the group consisting of an oxide composed of indium (In) and zinc (Zn), an oxide composed of gallium (Ga) and zinc (Zn), An oxide composed of aluminum (Al) and zinc (Zn), an oxide composed of zinc (Zn) and tin (Sn), and an oxidation of zinc (Zn) and indium (In) and tin (Sn) An oxide composed of indium (In), gallium (Ga) and zinc (Zn), an oxide composed of lanthanum (La) and indium (In) and zinc (Zn), and yttrium (Hf) An oxide composed of indium (In) and zinc (Zn), an oxide composed of strontium (Sc), indium (In) and zinc (Zn), and an oxide for channel in a group of indium oxide. 如申請專利範圍第1至3項中任一項之薄膜電晶體,其中該閘極電極係選自由鑭(La)與鎳(Ni)所構成之氧化物、由銻(Sb)與錫(Sn)所構成之氧化物、以及由銦(In)與錫(Sn)所構成之氧化物之群中1種的閘極電極用 氧化物(可含有不可避免之雜質)。 The thin film transistor according to any one of claims 1 to 3, wherein the gate electrode is selected from the group consisting of oxides of lanthanum (La) and nickel (Ni), and bismuth (Sb) and tin (Sn) a gate electrode for one of the oxides and the oxides composed of indium (In) and tin (Sn) Oxide (which may contain unavoidable impurities). 如申請專利範圍第1至4項中任一項之薄膜電晶體,係進一步具備有源極電極以及汲極電極;且該源極電極以及該汲極電極係由銦(In)與錫(Sn)所構成之氧化物(可含有不可避免之雜質)或是由鑭(La)與鎳(Ni)所構成之氧化物(可含有不可避免之雜質)。 The thin film transistor according to any one of claims 1 to 4, further comprising a source electrode and a drain electrode; and the source electrode and the drain electrode are made of indium (In) and tin (Sn) An oxide (which may contain unavoidable impurities) or an oxide composed of lanthanum (La) and nickel (Ni) (which may contain unavoidable impurities). 如申請專利範圍第1至5項中任一項之薄膜電晶體,其中該第2氧化物為非晶質狀。 The thin film transistor according to any one of claims 1 to 5, wherein the second oxide is amorphous. 如申請專利範圍第1至6項中任一項之薄膜電晶體,其中該第1氧化物包含有結晶相以及非晶質相。 The thin film transistor according to any one of claims 1 to 6, wherein the first oxide comprises a crystalline phase and an amorphous phase. 如申請專利範圍第1至7項中任一項之薄膜電晶體,其中該堆疊氧化物之合成電容為5×10-8F/cm2以上1×10-6F/cm2以下。 The thin film transistor according to any one of claims 1 to 7, wherein the stacked oxide has a combined capacitance of 5 × 10 -8 F/cm 2 or more and 1 × 10 -6 F/cm 2 or less. 如申請專利範圍第1至7項中任一項之薄膜電晶體,其中該堆疊氧化物之合成介電係數為60以上200以下。 The thin film transistor according to any one of claims 1 to 7, wherein the stacked oxide has a composite dielectric constant of 60 or more and 200 or less. 如申請專利範圍第1至8項中任一項之薄膜電晶體,其中該通道層之厚度為5nm以上80nm以下。 The thin film transistor according to any one of claims 1 to 8, wherein the channel layer has a thickness of 5 nm or more and 80 nm or less. 如申請專利範圍第1至8項中任一項之薄膜電晶體,其中該第1氧化物係由鉍(Bi)與鈮(Nb)所構成之氧化物(可含有不可避免之雜質),且該鉍(Bi)為1時則該鈮(Nb)之原子組成比為0.33以上3以下;該第2氧化物係由鑭(La)與鉭(Ta)所構成之氧化物(可含有不可避免之雜質),且該鑭(La)為1時則該鉭(Ta)之原子組成比為0.11以上9以下。 The thin film transistor according to any one of claims 1 to 8, wherein the first oxide is an oxide composed of bismuth (Bi) and niobium (Nb) (which may contain unavoidable impurities), and When the bismuth (Bi) is 1, the atomic composition ratio of the cerium (Nb) is 0.33 or more and 3 or less; and the second oxide is an oxide composed of lanthanum (La) and tantalum (Ta) (which may be inevitably contained) When the lanthanum (La) is 1, the atomic composition ratio of the lanthanum (Ta) is 0.11 or more and 9 or less. 如申請專利範圍第1或2項之薄膜電晶體,其中該通道用氧化物係由銦(In)與鋅(Zn)所構成之氧化物,且該銦(In)為1時則該鋅(Zn)之原子組成比為0.25以上1以下。 The thin film transistor according to claim 1 or 2, wherein the channel oxide is an oxide composed of indium (In) and zinc (Zn), and the indium (In) is 1 when the zinc ( The atomic composition ratio of Zn) is 0.25 or more and 1 or less. 一種薄膜電晶體之製造方法,係在閘極電極層之形成製程與形成通道用氧化物(可含有不可避免之雜質)之通道的形成製程之間包含有第1氧化物形成製程及第2氧化物形成製程;該第1氧化物形成製程係藉由將第1前驅體層(為使用以含鉍(Bi)之前驅體及含鈮(Nb)之前驅體為溶質之前驅體溶液、或是以含鉍(Bi)之前驅體、含鋅(Zn)之前驅體、及含鈮(Nb)之前驅體為溶質之前驅體溶液之第1前驅體溶液作為起始材)於含氧氛圍中加熱,而使得由該鉍(Bi)與該鈮(Nb)、或是由該鉍(Bi)與該鋅(Zn)與該鈮(Nb)所構成的第1氧化物(可含有無法避免之雜質)以相接於閘極電極層的方式來形成;該第2氧化物形成製程係藉由將第2前驅體層(使用選自以含鑭(La)之前驅體及含鉭(Ta)之前驅體為溶質之前驅體溶液、以含鑭(La)之前驅體及含有鋯(Zr)之前驅體為溶質之前驅體溶液、及以含鍶(Sr)之前驅體及含鉭(Ta)之前驅體為溶質之前驅體溶液之群中1種的第2前驅體溶液作為起始材)在含氧氛圍中加熱,而使得由該鑭(La)與該鉭(Ta)、由該鑭(La)與該鋯(Zr)、或是由該鍶(Sr)與該鉭(Ta)所構成的第2氧化物(可含有無法避免 之雜質)以相接於通道的方式來形成。 A method for manufacturing a thin film transistor includes a first oxide formation process and a second oxidation between a formation process of a gate electrode layer and a formation process of a channel for forming an oxide for a channel (which may contain unavoidable impurities) The first oxide forming process is performed by using a first precursor layer (for using a precursor containing bismuth (Bi) and a precursor containing ruthenium (Nb) as a precursor solution of solute, or The precursor containing bismuth (Bi), the precursor containing zinc (Zn), and the precursor containing ruthenium (Nb) as the precursor solution of the precursor solution of the solute as a starting material are heated in an oxygen-containing atmosphere. And the first oxide (which may contain unavoidable impurities) composed of the bismuth (Bi) and the bismuth (Nb) or the bismuth (Bi) and the zinc (Zn) and the niobium (Nb) Formed in contact with the gate electrode layer; the second oxide forming process is performed by using a second precursor layer (using a precursor selected from the group consisting of lanthanum (La) and ruthenium (Ta) The precursor is a solute precursor solution, a precursor containing lanthanum (La) and a precursor containing zirconium (Zr) as a precursor solution of solute, and a precursor containing strontium (Sr) The precursor containing ruthenium (Ta) is a second precursor solution of a group of solute precursor solutions as a starting material) heated in an oxygen-containing atmosphere so that the lanthanum (La) and the lanthanum (Ta) are heated. a second oxide composed of the lanthanum (La) and the zirconium (Zr) or the yttrium (Sr) and the lanthanum (Ta) (which may be unavoidable) The impurities are formed in such a manner as to be in contact with the channel. 如申請專利範圍第13項之薄膜電晶體之製造方法,其中該通道用氧化物為非晶質狀。 The method for producing a thin film transistor according to claim 13, wherein the channel oxide is amorphous. 如申請專利範圍第13項之薄膜電晶體之製造方法,其中該通道之形成製程係將使用選自以含銦(In)之前驅體以及含鋅(Zn)之前驅體為溶質之前驅體溶液、以含鎵(Ga)之前驅體以及含鋅(Zn)之前驅體為溶質之前驅體溶液、以含鋁(Al)之前驅體以及含鋅(Zn)之前驅體為溶質之前驅體溶液、以含鋅(Zn)之前驅體以及含錫(Sn)之前驅體為溶質之前驅體溶液、以含鋅(Zn)之前驅體與含銦(In)之前驅體與含錫(Sn)之前驅體為溶質之前驅體溶液、以含銦(In)之前驅體與含鎵(Ga)之前驅體與含鋅(Zn)之前驅體為溶質之前驅體溶液、以含鑭(La)之前驅體與含銦(In)之前驅體與含鋅(Zn)之前驅體為溶質之前驅體溶液、以含鉿(Hf)之前驅體與含銦(In)之前驅體與含鋅(Zn)之前驅體為溶質之前驅體溶液、以含鈧(Sc)之前驅體與含銦(In)之前驅體與含鋅(Zn)之前驅體為溶質之前驅體溶液、以及含銦(In)之前驅體所組成群中1種的通道用前驅體溶液作為起始材之通道用前驅體層在含氧雰圍中進行加熱,藉以形成選自由該銦(In)與該鋅(Zn)所構成之氧化物、由該鎵(Ga)與該鋅(Zn)所構成之氧化物、由該鋁(Al)與該鋅(Zn)所構成之氧化物、由該鋅(Zn)與該錫(Sn)所構成之氧化物、由該鋅(Zn)與該銦(In)與該錫(Sn)所構成之氧化物、由該銦(In)與該鎵(Ga)與該鋅(Zn)所構成之氧化物、由該鑭(La)與該銦(In)與該 鋅(Zn)所構成之氧化物、由該鉿(Hf)與該銦(In)與該鋅(Zn)所構成之氧化物、由該鈧(Sc)與該銦(In)與該鋅(Zn)所構成之氧化物、以及氧化銦所組成群中1種的通道用氧化物。 The method for manufacturing a thin film transistor according to claim 13 , wherein the formation process of the channel is to use a precursor solution selected from the group consisting of a precursor containing indium (In) and a precursor containing zinc (Zn) as a solute. a precursor solution containing a gallium (Ga) precursor and a zinc-containing (Zn) precursor as a solute precursor solution, a precursor containing an aluminum (Al) precursor, and a zinc-containing (Zn) precursor as a solute precursor solution The zinc-containing (Zn) precursor and the tin-containing (Sn) precursor are the solute precursor solution, the zinc-containing (Zn) precursor and the indium-containing (In) precursor and the tin-containing (Sn) The precursor is a solute precursor solution, a precursor containing indium (In) and a precursor containing gallium (Ga) and a precursor containing zinc (Zn) are precursor solutions of solute, containing lanthanum (La) The precursor and the indium-containing (In) precursor and the zinc-containing (Zn) precursor are the solute precursor solution, the yttrium-containing (Hf) precursor and the indium-containing (In) precursor and zinc-containing ( The precursor of Zn) is a solute precursor solution, a precursor containing cerium (Sc), a precursor containing indium (In) and a precursor containing zinc (Zn) as a precursor solution of solute, and indium ( In) precursor One channel in the group is heated with a precursor layer using a precursor solution as a starting material in an oxygen-containing atmosphere to form an oxide selected from the group consisting of the indium (In) and the zinc (Zn). An oxide composed of gallium (Ga) and the zinc (Zn), an oxide composed of the aluminum (Al) and the zinc (Zn), and the zinc (Zn) and the tin (Sn) An oxide, an oxide composed of the zinc (Zn) and the indium (In) and the tin (Sn), and an oxide composed of the indium (In) and the gallium (Ga) and the zinc (Zn) From the lanthanum (La) and the indium (In) An oxide composed of zinc (Zn), an oxide composed of the hafnium (Hf) and the indium (In) and the zinc (Zn), and the indium (Sc) and the indium (In) and the zinc ( One of the oxides composed of Zn) and one of the group consisting of indium oxide. 如申請專利範圍第13至15項中任一項之薄膜電晶體之製造方法,其中用以形成該第1氧化物之加熱溫度為450℃以上700℃以下;用以形成該第2氧化物之加熱溫度為250℃以上700℃;用以形成該通道用氧化物之加熱溫度為250℃以上700℃以下。 The method for producing a thin film transistor according to any one of claims 13 to 15, wherein a heating temperature for forming the first oxide is 450 ° C or higher and 700 ° C or lower; for forming the second oxide The heating temperature is from 250 ° C to 700 ° C; the heating temperature for forming the oxide for the channel is from 250 ° C to 700 ° C. 如申請專利範圍第13至16項中任一項之薄膜電晶體之製造方法,其中該閘極電極層之形成製程係將電極層用前驅體層(為使用以含鑭(La)之前驅體及含鎳(Ni)之前驅體為溶質之前驅體溶液、以含銻(Sb)之前驅體及含錫(Sn)之前驅體為溶質之前驅體溶液、或以含銦(In)之前驅體與含錫(Sn)之前驅體為溶質之前驅體溶液之閘極電極用前驅體溶液作為起始材)在含氧氛圍中加熱,藉以形成為由該鑭(La)與該鎳(Ni)所構成的氧化物、由該銻(Sb)與該錫(Sn)所構成的氧化物、或由該銦(In)與該錫(Sn)所構成的氧化物之閘極電極用氧化物(可含有無法避免之雜質)之製程。 The method for manufacturing a thin film transistor according to any one of claims 13 to 16, wherein the gate electrode layer forming process is a precursor layer for an electrode layer (for use with a lanthanum (La) precursor and The precursor containing nickel (Ni) is a solute precursor solution, a precursor containing bismuth (Sb) and a precursor containing tin (Sn) as a solute precursor solution, or a precursor containing indium (In) And the precursor solution containing the tin (Sn) precursor as the precursor of the solute precursor solution is heated in an oxygen atmosphere, thereby forming the lanthanum (La) and the nickel (Ni) The oxide to be formed, the oxide composed of the antimony (Sb) and the tin (Sn), or the oxide for the gate electrode of the oxide composed of the indium (In) and the tin (Sn) Processes that can contain unavoidable impurities). 如申請專利範圍第17項之薄膜電晶體之製造方法,其中用以形成該閘極電極用氧化物之加熱溫度為500℃以上900℃以下。 The method for producing a thin film transistor according to claim 17, wherein the heating temperature for forming the oxide for the gate electrode is 500 ° C or more and 900 ° C or less. 如申請專利範圍第13至18項中任一項之薄膜電晶體之製造方法,係進一步包含有形成源極電極以及汲極電極之製程;該形成源極電極以及汲極電極之製程係將源極/汲極電極用前驅體層(為使用以含銦(In)之前驅體與含錫(Sn)之前驅體為溶質之前驅體溶液或是含鑭(La)之前驅體與含鎳(Ni)之前驅體為溶質之前驅體溶液之源極/汲極電極用前驅體溶液作為起始材)於含氧雰圍中加熱,藉以形成為由該銦(In)與該錫(Sn)所構成之氧化物、或是由該鑭(La)與該鎳(Ni)所構成之氧化物之源極/汲極電極用氧化物(可含有不可避免之雜質)。 The method for manufacturing a thin film transistor according to any one of claims 13 to 18, further comprising a process of forming a source electrode and a drain electrode; the process for forming the source electrode and the drain electrode is a source Precursor layer for pole/drain electrodes (for use of precursors containing indium (In) and precursors containing tin (Sn) as precursor solution of solute or precursor of lanthanum (La) and nickel (Ni The precursor is a source of the solute precursor solution and the precursor solution for the drain electrode is used as a starting material to be heated in an oxygen-containing atmosphere, thereby forming the indium (In) and the tin (Sn). The oxide or the source/drain electrode oxide (which may contain unavoidable impurities) of the oxide composed of the lanthanum (La) and the nickel (Ni). 如申請專利範圍第19項之薄膜電晶體之製造方法,其中用以形成該源極/汲極電極用氧化物之加熱溫度為450℃以上700℃以下。 The method for producing a thin film transistor according to claim 19, wherein the heating temperature for forming the source/drain electrode oxide is 450 ° C or more and 700 ° C or less. 如申請專利範圍第13至15項中任一項之薄膜電晶體之製造方法,係於該第1氧化物形成製程或是該第2氧化物形成製程進一步包含有壓模製程,係在形成該第1氧化物或是該第2氧化物之前,將使用該第1前驅體溶液作為起始材之第1前驅體層或是使用該第2前驅體溶液作為起始材之第2前驅體層於含氧雰圍中、80℃以上300℃以下加熱之狀態下施以壓模加工,來對該第1前驅體層或是該第2前驅體層形成壓模構造。 The method for producing a thin film transistor according to any one of claims 13 to 15, wherein the first oxide forming process or the second oxide forming process further comprises a stamping process, Before using the first oxide or the second oxide, the first precursor layer using the first precursor solution as a starting material or the second precursor layer using the second precursor solution as a starting material is included The press molding process is performed in an oxygen atmosphere at a temperature of 80 ° C or more and 300 ° C or less to form a stamper structure for the first precursor layer or the second precursor layer. 如申請專利範圍第13至15項中任一項之薄膜電晶體之製造方法,係於該通道之形成製程進一步包含有壓模製程,係在形成該通道用氧化物之前,將使用該通 道用前驅體溶液作為起始材之通道用前驅體層於含氧雰圍中、80℃以上300℃以下加熱之狀態下施以壓模加工,來對該通道用前驅體層形成壓模構造。 The method for manufacturing a thin film transistor according to any one of claims 13 to 15, wherein the forming process of the channel further comprises a stamping process, and the pass is used before forming the oxide for the channel. The channel precursor precursor is used as a channel for the channel precursor, and the precursor layer is subjected to compression molding in an oxygen-containing atmosphere at a temperature of 80° C. or higher and 300° C. or lower to form a stamper structure for the channel precursor layer. 如申請專利範圍第17或18項之薄膜電晶體之製造方法,係於該閘極電極層之形成製程進一步具備有壓模製程,係在形成該閘極電極用氧化物之前,將使用該閘極電極用前驅體溶液作為起始材之閘極電極用前驅體層於含氧雰圍中、80℃以上300℃以下加熱之狀態下施以壓模加工,來對該閘極電極用前驅體層形成壓模構造。 The method for manufacturing a thin film transistor according to claim 17 or 18, wherein the gate electrode layer forming process further comprises a stamping process, and the gate is used before forming the oxide for the gate electrode. The precursor electrode layer for a gate electrode using a precursor electrode as a starting material is subjected to compression molding in an oxygen-containing atmosphere at a temperature of 80 ° C or more and 300 ° C or less to form a pressure of the precursor layer for the gate electrode. Mold construction. 如申請專利範圍第19或20項之薄膜電晶體之製造方法,係於該形成源極電極以及汲極電極之製程進一步具備有壓模製程,係於形成該源極/汲極電極用氧化物之前,將使用該源極/汲極電極用前驅體溶液作為起始材之源極/汲極電極用前驅體層於含氧雰圍中、80℃以上300℃以下加熱之狀態下施以壓模加工,來對該源極/汲極電極用前驅體層形成壓模構造。 The method for manufacturing a thin film transistor according to claim 19 or 20, wherein the method of forming the source electrode and the drain electrode further comprises a stamping process for forming the source/drain electrode oxide Previously, the source/drain electrode precursor layer was used as a starting material for the source/drain electrode precursor layer in an oxygen-containing atmosphere and heated at 80° C. or higher and 300° C. or lower for compression molding. The stamper structure is formed on the source/drain electrode precursor layer. 如申請專利範圍第13至24項中任一項之薄膜電晶體之製造方法,其中該第2氧化物為非晶質狀。 The method for producing a thin film transistor according to any one of claims 13 to 24, wherein the second oxide is amorphous. 如申請專利範圍第13至25項中任一項之薄膜電晶體之製造方法,其中該第1氧化物包含有結晶相以及非晶質相。 The method for producing a thin film transistor according to any one of claims 13 to 25, wherein the first oxide comprises a crystalline phase and an amorphous phase. 如申請專利範圍第13至24項中任一項之薄膜電晶體之製造方法,其中於該壓模製程係以1MPa以上20MPa以下之範圍內的壓力來施以該壓模加工。 The method for producing a thin film transistor according to any one of claims 13 to 24, wherein the press molding process is performed at a pressure in a range of 1 MPa or more and 20 MPa or less. 如申請專利範圍第13至24項中任一項之薄膜電晶體之製造方法,其中於該壓模製程係事先使用被加熱至80℃以上300℃以下範圍內之溫度的模來施以該壓模加工。 The method for producing a thin film transistor according to any one of claims 13 to 24, wherein the molding process is performed by using a mold heated to a temperature in a range of 80 ° C or more and 300 ° C or less in advance. Mold processing.
TW101142733A 2011-11-18 2012-11-16 Thin-film transistor and manufacturing method for thin-film transistor TW201330275A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011252174A JP5598928B2 (en) 2011-11-18 2011-11-18 THIN FILM TRANSISTOR AND METHOD FOR PRODUCING THIN FILM TRANSISTOR

Publications (1)

Publication Number Publication Date
TW201330275A true TW201330275A (en) 2013-07-16

Family

ID=48429655

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101142733A TW201330275A (en) 2011-11-18 2012-11-16 Thin-film transistor and manufacturing method for thin-film transistor

Country Status (3)

Country Link
JP (1) JP5598928B2 (en)
TW (1) TW201330275A (en)
WO (1) WO2013073601A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102183760B1 (en) * 2013-03-22 2020-11-27 고쿠리츠켄큐카이하츠호진 카가쿠기쥬츠신코키코 Dielectric layer and manufacturing method of dielectric layer, and solid-state electronic device and manufacturing method of solid-state electronic device
JP6238660B2 (en) * 2013-09-19 2017-11-29 国立大学法人北陸先端科学技術大学院大学 THIN FILM TRANSISTOR AND METHOD FOR PRODUCING THIN FILM TRANSISTOR
EP3086360B1 (en) * 2013-12-16 2020-06-24 Japan Advanced Institute of Science and Technology Method for producing semiconductor element using aliphatic polycarbonate
JP6241848B2 (en) * 2014-01-31 2017-12-06 国立研究開発法人物質・材料研究機構 Thin film transistor structure, thin film transistor manufacturing method, and semiconductor device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117619A (en) * 2007-11-06 2009-05-28 Idemitsu Kosan Co Ltd Method for manufacturing organic thin film transistor, and organic thin film transistor
JP2010258057A (en) * 2009-04-22 2010-11-11 Konica Minolta Holdings Inc Metal oxide semiconductor, method of manufacturing the same, and thin film transistor using the same
CN102870245B (en) * 2010-05-07 2015-07-29 独立行政法人科学技术振兴机构 The manufacture method of function device, field-effect transistor and thin-film transistor

Also Published As

Publication number Publication date
JP2013110175A (en) 2013-06-06
JP5598928B2 (en) 2014-10-01
WO2013073601A1 (en) 2013-05-23

Similar Documents

Publication Publication Date Title
TWI591830B (en) Thin film transistor and thin film transistor manufacturing method
TWI621142B (en) Method for manufacturing dielectric layer and dielectric layer, and method for manufacturing solid state electronic device and solid state electronic device
JP5278717B1 (en) Solid state electronic equipment
JP6033594B2 (en) THIN FILM TRANSISTOR AND METHOD FOR PRODUCING THIN FILM TRANSISTOR
TW201330275A (en) Thin-film transistor and manufacturing method for thin-film transistor
JP5615945B2 (en) Multilayer capacitor and method of manufacturing multilayer capacitor
TWI467612B (en) Solid electronic devices (1)
TWI610351B (en) Oxide layer and manufacturing method thereof, and capacitor, semiconductor device, mems comprising the same
TW201324788A (en) Method for producing die-pressed structural body, thin-film transistor, thin-film capacitor, actuator, piezoelectric inkjet head, and optical device
US9293325B2 (en) Thin film transistor and method for fabricating thin film transistor
JP6238660B2 (en) THIN FILM TRANSISTOR AND METHOD FOR PRODUCING THIN FILM TRANSISTOR
TW201741245A (en) Oxide dielectric body, method for producing same, solid-state electronic device and method for manufacturing solid-state electronic device
JP2016167565A (en) Conductive material, solid-state electronic device, etching mask material, method for producing conductive material, and method for producing etching mask material