TW201330178A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
TW201330178A
TW201330178A TW101100025A TW101100025A TW201330178A TW 201330178 A TW201330178 A TW 201330178A TW 101100025 A TW101100025 A TW 101100025A TW 101100025 A TW101100025 A TW 101100025A TW 201330178 A TW201330178 A TW 201330178A
Authority
TW
Taiwan
Prior art keywords
gate structure
ion implantation
sidewall
implantation process
manufacturing
Prior art date
Application number
TW101100025A
Other languages
Chinese (zh)
Inventor
Ling-Chun Chou
Shin-Chuan Huang
I-Chang Wang
Ching-Wen Hung
Buo-Chin Hsu
Yi-Han Ye
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW101100025A priority Critical patent/TW201330178A/en
Publication of TW201330178A publication Critical patent/TW201330178A/en

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A method for manufacturing a semiconductor device includes providing a substrate having a first gate structure and a second gate structure formed thereon; blanketly forming a seal layer covering the first gate structure and the second gate structure on the substrate; performing a first ion implantation to form first light-doped drains (LDDs) in the substrate respectively at two sides of the first gate structure; and performing a second ion implantation to form second LDDs in the substrate respectively at two sides of the second gate structure; wherein at least one of the first ion implantation and the second ion implantation is performed to penetrate through the seal layer.

Description

半導體元件之製作方法Semiconductor component manufacturing method

本發明有關於一種半導體元件之製作方法,尤指一種可改善超淺接面(ultra shallow junction,USJ)之半導體元件之製作方法。The invention relates to a method for fabricating a semiconductor device, and more particularly to a method for fabricating a semiconductor device capable of improving an ultra shallow junction (USJ).

為了提高金氧半導體場效電晶體(metal-oxide-semiconductor field effect transistor,MOSFET)的操作效能,傳統常見的方法為縮小MOSFET的尺寸,如此除了可改善元件的操作效能外,還能同時提高元件的密度和降低製造成本。由於習知MOSFET之閘極長度(gate length)的縮小,源極與汲極與其間之通道便容易相互作用,而影響了閘極對於其通道之開啟/關閉狀態的控制能力,進一步引起短通道效應(short channel effects,SCE)。為了解決前述之短通道效應問題,習知技術提出增加主體摻雜濃度、降低閘極氧化層的厚度、以及淺接面(shallow junction)甚或超淺接面(ultra shallow junction)等方法。In order to improve the operational efficiency of a metal-oxide-semiconductor field effect transistor (MOSFET), the conventional method is to reduce the size of the MOSFET, so that in addition to improving the operational performance of the device, the component can be simultaneously improved. Density and reduced manufacturing costs. Due to the reduction of the gate length of the conventional MOSFET, the source and the drain are easily interacted with each other, which affects the gate's ability to control the on/off state of the channel, further causing short channels. Short channel effects (SCE). In order to solve the aforementioned short channel effect problem, the prior art proposes methods of increasing the doping concentration of the host, reducing the thickness of the gate oxide layer, and shallow junction or even ultra shallow junction.

一般來說,具有超淺接面之汲極/源極延伸區域的製作係以低能量離子佈植進入矽基底的淺表面。然而在縮小元件尺寸的同時,源極、汲極與通道的摻雜原子濃度必須提高,接面深度減小及摻雜原子濃度分佈形狀會有較顯著的變化,因此掌握摻雜元素擴散的行為便顯得相當重要。換句話說隨著MOS電晶體尺寸的持續縮小,超淺接合面的製作越形困難。因此,目前仍需要一種可改善超淺接合面以及提供高性能元件之半導體元件的製作方法。In general, the fabrication of the drain/source extension regions with ultra-shallow junctions is implanted into the shallow surface of the germanium substrate with low energy ions. However, while reducing the size of the components, the concentration of dopant atoms in the source, drain and channel must be increased, the junction depth is reduced, and the shape of the dopant concentration distribution is significantly changed. Therefore, the behavior of doping element diffusion is mastered. It is very important. In other words, as the size of the MOS transistor continues to shrink, the fabrication of the ultra-shallow joint is more difficult. Therefore, there is still a need for a method of fabricating a semiconductor component that can improve ultra-shallow bonding surfaces and provide high performance components.

因此,本發明之一目的係在於提供一可改善超淺接合面之半導體元件之製作方法。Accordingly, it is an object of the present invention to provide a method of fabricating a semiconductor device that improves the ultra-shallow junction.

根據本發明所提供之申請專利範圍,係提供一種半導體元件製作方法,該方法首先提供一基底,該基底上形成有一第一閘極結構與一第二閘極結構。該製作方法更包含於該基底上全面性地形成一遮蓋層(seal layer),且該遮蓋層係覆蓋該第一閘極結構與該第二閘極結構。此外本發明所提供之製作方法尚包含進行一第一離子佈植製程,以於該第一閘極結構兩側之基底內分別形成一第一輕摻雜汲極(lightly-doped drain,以下簡稱為LDD);以及進行一第二離子佈植製程,以於該第二閘極結構兩側之基底內分別形成一第二LDD。值得注意的是,該第一輕摻雜汲極製程與該第二輕摻雜汲極製程至少其中之一係穿透該遮蓋層。According to the patent application scope of the present invention, there is provided a method of fabricating a semiconductor device, which first provides a substrate having a first gate structure and a second gate structure formed thereon. The manufacturing method further includes integrally forming a seal layer on the substrate, and the cover layer covers the first gate structure and the second gate structure. In addition, the manufacturing method provided by the present invention further includes performing a first ion implantation process to form a first lightly doped drain (hereinafter referred to as a lightly-doped drain) in the substrate on both sides of the first gate structure. And performing a second ion implantation process to form a second LDD in the substrate on both sides of the second gate structure. It is noted that at least one of the first lightly doped drain process and the second lightly doped drain process penetrates the cover layer.

根據本發明所提供之半導體元件之製作方法,係於進行第一離子佈植製程或/和第二離子佈植製程之前於基底上全面性地形成該遮蓋層,因此該第一離子佈植製程與該第二離子佈植製程至少其中之一係穿透該遮蓋層而形成該第一LDD或/和該第二LDD。由於該遮蓋層的設置,可使得第一LDD或/和該第二LDD獲得所需的超淺接面輪廓。因此,本發明所提供之半導體元件之製作方法係可在半導體元件持續微縮的趨勢下,改善LDD的超淺接面,故可有效抑制短通道效應,改善半導體元件之效能。The method for fabricating a semiconductor device according to the present invention is to form the mask layer on the substrate comprehensively before performing the first ion implantation process or/and the second ion implantation process, and thus the first ion implantation process At least one of the second ion implantation process penetrates the mask layer to form the first LDD or/and the second LDD. Due to the arrangement of the cover layer, the first LDD or/and the second LDD can be made to obtain the desired ultra-shallow junction profile. Therefore, the method for fabricating the semiconductor device provided by the present invention can improve the ultra-shallow junction of the LDD under the tendency of the semiconductor device to continuously shrink, so that the short channel effect can be effectively suppressed and the performance of the semiconductor device can be improved.

請參閱第1圖至第3圖,第1圖至第3圖係為本發明所提供之一半導體元件之製作方法之一第一較佳實施例之示意圖。如第1圖所示,本較佳實施例首先提供一基底100,基底100上定義有一第一區域102與一第二區域104,第一區域102內與第二區域104內則分別形成有一第一閘極結構110與一第二閘極結構112,且基底100內係形成有複數個用以提供電性隔離的淺溝隔離(shallow trench isolation,STI) 106。在本較佳實施例中,第一閘極結構110係為一p型MOS(p-MOS)元件之閘極結構;而第二閘極結構112係為一n型MOS(n-MOS)元件之閘極結構。如第1圖所示,第一閘極結構110與第二閘極結構112由下而上分別依序包含一閘極介電層110a與112a、一閘極導電層110b與112b,以及用以定義閘極結構110/112的圖案化硬遮罩110c與112c。Please refer to FIG. 1 to FIG. 3 . FIG. 1 to FIG. 3 are schematic diagrams showing a first preferred embodiment of a method for fabricating a semiconductor device according to the present invention. As shown in FIG. 1 , the preferred embodiment first provides a substrate 100 having a first region 102 and a second region 104 defined therein, and a first region 102 and a second region 104 are respectively formed with a first region. A gate structure 110 and a second gate structure 112 are formed, and a plurality of shallow trench isolation (STI) 106 are formed in the substrate 100 for providing electrical isolation. In the preferred embodiment, the first gate structure 110 is a gate structure of a p-type MOS (p-MOS) device; and the second gate structure 112 is an n-type MOS (n-MOS) device. The gate structure. As shown in FIG. 1, the first gate structure 110 and the second gate structure 112 sequentially include a gate dielectric layer 110a and 112a, a gate conductive layer 110b and 112b, respectively, from bottom to top, and Patterned hard masks 110c and 112c defining gate structures 110/112.

請繼續參閱第1圖。接下來,係於基底100上全面性地(blanketly)形成一遮蓋層(seal layer) 120。如第1圖所示,遮蓋層120係覆蓋第一閘極結構110與第二閘極結構112。在本較佳實施例中,遮蓋層120可包含氧化矽、氮化矽、包含氧化矽與氮化矽的複合膜層、含碳的氮化矽層、氮碳化矽(silicon carbon nitride,SiCN)、六氯二矽烷(hexachlorodisilane,HCD)、或摻雜碳的六氯基矽烷(carbon doped hexachlorodisilane,CHCD),但不限於此。遮蓋層120具有一厚度,且該厚度係介於25埃(angstrom)至50埃。而在形成遮蓋層120之後,更於基底100上形成一蝕刻率不同於遮蓋層120之絕緣層(圖未示),並藉由一回蝕刻方法移除部分絕緣層,而於第一閘極結構110之側壁與第二閘極結構112之側壁分別形成一第一側壁子122。且如第1圖所示,被絕緣層覆蓋之部分遮蓋層120亦可作為部分第一側壁子122。Please continue to see Figure 1. Next, a cover layer 120 is formed on the substrate 100 in a blanket. As shown in FIG. 1, the cover layer 120 covers the first gate structure 110 and the second gate structure 112. In the preferred embodiment, the mask layer 120 may include tantalum oxide, tantalum nitride, a composite film layer containing tantalum oxide and tantalum nitride, a carbon-containing tantalum nitride layer, and silicon carbon nitride (SiCN). , hexachlorodisilane (HCD), or carbon doped hexachlorodisilane (CHCD), but is not limited thereto. The cover layer 120 has a thickness ranging from 25 angstroms to 50 angstroms. After the mask layer 120 is formed, an insulating layer (not shown) having an etching rate different from that of the mask layer 120 is formed on the substrate 100, and a portion of the insulating layer is removed by an etch back method, and the first gate is removed. A sidewall of the structure 110 and a sidewall of the second gate structure 112 respectively form a first sidewall 122. As shown in FIG. 1, a portion of the cover layer 120 covered by the insulating layer may also serve as a portion of the first side wall member 122.

請參閱第2圖。在形成第一側壁子122之後,係於基底100上形成一圖案化遮罩130,例如一圖案化光阻,且圖案化遮罩130係覆蓋第二區域104,而暴露出第一區域102。隨後如第2圖所示,係進行一第一離子佈植製程132,例如一斜向離子佈植(tilted ion implantation)製程。第一離子佈植製程132係將p型摻雜質,例如硼(boron,B)或二氟化硼(boron difluoride,BF2)等摻雜質穿透遮蓋層120佈植入第一閘極結構110兩側之基底100內,而於第一閘極結構110兩側之基底100內分別形成一第一LDD 110d。此外第一離子佈植製程132更可利用圖案化遮罩130配合不同導電型態的摻雜質、能量、以及摻雜角度形成其他摻雜區域,例如可利用磷(phosphorous,P)或砷(Arsenic,Ar)等n型摻雜質形成一口袋型摻雜區(pocket region)(圖未示),或利用鍺(germanium,Ge)、氟(Fluorine,F)或碳(carbon,C)等摻雜質進行共摻雜(co-implant)。Please refer to Figure 2. After forming the first sidewall sub-122, a patterned mask 130, such as a patterned photoresist, is formed on the substrate 100, and the patterned mask 130 covers the second region 104 to expose the first region 102. Subsequently, as shown in Fig. 2, a first ion implantation process 132 is performed, such as a tilted ion implantation process. The first ion implantation process 132 is configured to implant a p-type dopant, such as boron (boron, B) or boron difluoride (BF 2 ), into the first gate. A substrate 100 is formed on both sides of the structure 110, and a first LDD 110d is formed in the substrate 100 on both sides of the first gate structure 110. In addition, the first ion implantation process 132 can further form other doped regions by using the patterned mask 130 to match the doping, energy, and doping angles of different conductivity types, for example, phosphorus (P) or arsenic can be utilized. Arsenic, Ar) and other n-type dopants form a pocket-type pocket region (not shown), or use germanium (Ge), fluorine (Fluorine, F) or carbon (carbon, C), etc. The dopant is co-implanted.

請參閱第3圖。在形成第一LDD 110d之後,係移除圖案化遮罩130,而於基底100上形成另一圖案化遮罩140。圖案化遮罩140係覆蓋第一區域102,而暴露出第二區域104。隨後如第3圖所示,係進行一第二離子佈植製程142,例如一斜向離子佈植製程,以將n型摻雜質,例如P或Ar等摻雜質穿透遮蓋層120佈植入第二閘極結構112兩側之基底100內,而分別形成一第二LDD 112d。第二離子佈植製程142亦可利用圖案化遮罩140配合不同導電型態的摻雜質、能量、以及摻雜角度形成其他摻雜區域,例如可利用B或BF2等p型摻雜質形成一口袋型摻雜區(圖未示),或利用Ge、F或C等摻雜質進行共摻雜。之後,係移除圖案化遮罩140,以暴露出遮蓋層120並進行後續製程,例如源極/汲極等的製程(示於第9圖至第12圖)。值得注意的是,在本較佳實施例中,雖是先形成p型LDD後形成n型LDD,但在本較佳實施例之一變化型中,亦可先形成n型LDD後形成p型LDD。Please refer to Figure 3. After the first LDD 110d is formed, the patterned mask 130 is removed and another patterned mask 140 is formed on the substrate 100. The patterned mask 140 covers the first region 102 and exposes the second region 104. Then, as shown in FIG. 3, a second ion implantation process 142, such as an oblique ion implantation process, is performed to pass the n-type dopant, such as P or Ar, into the cover layer 120. The substrate 100 is implanted in the substrate 100 on both sides of the second gate structure 112 to form a second LDD 112d. The second ion implantation process 142 can also form other doped regions by using the patterned mask 140 to match the doping, energy, and doping angles of different conductivity types, for example, p-type dopants such as B or BF 2 can be used. A pocket-type doped region (not shown) is formed, or co-doped with a dopant such as Ge, F or C. Thereafter, the patterned mask 140 is removed to expose the mask layer 120 and subsequent processes such as source/drain electrodes (shown in Figures 9 through 12). It should be noted that in the preferred embodiment, the n-type LDD is formed after the p-type LDD is formed first. However, in a variation of the preferred embodiment, the n-type LDD may be formed first to form a p-type. LDD.

根據本第一較佳實施例所提供之半導體元件之製作方法,係於形成p型LDD與n型LDD之前於基底100上全面性地形成遮蓋層120,因此第一離子佈植製程132與第二離子佈植製程142皆必需穿透遮蓋層120,即n型與p型之摻雜質皆必需穿透遮蓋層120方能進入基底100,是以第一LDD 110d與第二LDD 112d可獲得具有超淺接面的輪廓。The method for fabricating the semiconductor device according to the first preferred embodiment is to form the mask layer 120 on the substrate 100 before forming the p-type LDD and the n-type LDD. Therefore, the first ion implantation process 132 and the first The two-ion implantation process 142 must penetrate the cover layer 120, that is, the n-type and p-type dopants must penetrate the cover layer 120 to enter the substrate 100, and the first LDD 110d and the second LDD 112d are available. A profile with an ultra-shallow junction.

請參閱第4圖至第6圖,第4圖至第6圖係為本發明所提供之一半導體元件之製作方法之一第二較佳實施例之示意圖。值得注意的是,第二較佳實施例中,與第一較佳實施例相同之元件係具有相同之符號說明。本較佳實施例與第一較佳實施例不同之處在於:本較佳實施例係於提供具有第一閘極結構110與第二閘極結構112之基底100後,即於第一閘極結構110之側壁與第二閘極結構112之側壁分別形成一第一側壁子122。第一側壁子122之寬度係不大於65埃,但不限於此。並且在形成第一側壁子122之後,於基底100上全面性地形成一遮蓋層120,遮蓋層120之厚度及其材料選擇係與第一較佳實施例相同,故於此係不再贅述。Please refer to FIG. 4 to FIG. 6 . FIG. 4 to FIG. 6 are schematic diagrams showing a second preferred embodiment of a method for fabricating a semiconductor device according to the present invention. It is to be noted that in the second preferred embodiment, the same components as those of the first preferred embodiment have the same reference numerals. The preferred embodiment differs from the first preferred embodiment in that the preferred embodiment is provided after the substrate 100 having the first gate structure 110 and the second gate structure 112 is provided, that is, at the first gate. A sidewall of the structure 110 and a sidewall of the second gate structure 112 respectively form a first sidewall 122. The width of the first side wall 122 is not more than 65 angstroms, but is not limited thereto. After the first sidewalls 122 are formed, a mask layer 120 is formed on the substrate 100 in a comprehensive manner. The thickness of the mask layer 120 and the material selection thereof are the same as those of the first preferred embodiment, and thus will not be described herein.

請參閱第5圖。在形成遮蓋層120之後,係於基底100上形成一圖案化遮罩130,例如一圖案化光阻,且圖案化遮罩130係覆蓋第二區域104,而暴露出第一區域102。隨後如第5圖所示,係進行一第一離子摻雜製程132。第一離子佈植製程132係將前述摻雜質穿透遮蓋層120佈植入第一閘極結構110兩側之基底100內,而於第一閘極結構110兩側之基底100內分別形成一第一LDD 110d。Please refer to Figure 5. After the mask layer 120 is formed, a patterned mask 130, such as a patterned photoresist, is formed on the substrate 100, and the patterned mask 130 covers the second region 104 to expose the first region 102. A first ion doping process 132 is then performed as shown in FIG. The first ion implantation process 132 is formed by implanting the dopant penetrating cover layer 120 into the substrate 100 on both sides of the first gate structure 110, and forming respectively in the substrate 100 on both sides of the first gate structure 110. A first LDD 110d.

在形成第一LDD 110d之後,係移除圖案化遮罩130,並於基底100上形成另一圖案化遮罩140,且圖案化遮罩140係覆蓋第一區域102,而暴露出第二區域104。隨後如第6圖所示,係進行一第二離子摻雜製程142,以將前述摻雜質穿透遮蓋層120佈植入第二閘極結構112兩側之基底100內,而分別形成一第二LDD 112d。之後,係移除圖案化遮罩140,以暴露出遮蓋層120並進行後續製程,例如源極/汲極等的製程(示於第9圖至第12圖)。值得注意的是,在本較佳實施例中,雖是先形成p型LDD後形成n型LDD,但在本較佳實施例之一變化型中,亦可先形成n型LDD後形成p型LDD。After forming the first LDD 110d, the patterned mask 130 is removed, and another patterned mask 140 is formed on the substrate 100, and the patterned mask 140 covers the first region 102 to expose the second region. 104. Then, as shown in FIG. 6, a second ion doping process 142 is performed to implant the dopant penetrating capping layer 120 into the substrate 100 on both sides of the second gate structure 112 to form a The second LDD 112d. Thereafter, the patterned mask 140 is removed to expose the mask layer 120 and subsequent processes such as source/drain electrodes (shown in Figures 9 through 12). It should be noted that in the preferred embodiment, the n-type LDD is formed after the p-type LDD is formed first. However, in a variation of the preferred embodiment, the n-type LDD may be formed first to form a p-type. LDD.

根據本第二較佳實施例所提供之半導體元件之製作方法,係於形成第一側壁子122之後方形成遮蓋層120,因此可更準確控制第一側壁子122的寬度,同時可避免遮蓋層120在蝕刻製程中受到損傷。更重要的是,本較佳實施例係於形成p型LDD與n型LDD之前於基底100上全面性地形成遮蓋層120,因此第一離子佈植製程132與第二離子佈植製程142皆必需穿透遮蓋層120,即n型與p型之摻雜質皆必需穿透遮蓋層120方能進入基底100,是以第一LDD 110d與第二LDD 112d係可獲得具有超淺接面的輪廓。According to the manufacturing method of the semiconductor device provided in the second preferred embodiment, the mask layer 120 is formed after the first sidewall spacer 122 is formed, so that the width of the first sidewall spacer 122 can be more accurately controlled, and the mask layer can be avoided. 120 is damaged during the etching process. More importantly, the preferred embodiment forms the mask layer 120 on the substrate 100 before forming the p-type LDD and the n-type LDD. Therefore, the first ion implantation process 132 and the second ion implantation process 142 are both It is necessary to penetrate the mask layer 120, that is, the n-type and p-type dopants must penetrate the mask layer 120 to enter the substrate 100, so that the first LDD 110d and the second LDD 112d can obtain an ultra-shallow junction. profile.

接下來請參閱第7圖至第12圖,第7圖至12圖係為本發明所提供之一半導體元件之製作方法之一第三較佳實施例之示意圖。值得注意的是,第三較佳實施例中,與第一較佳實施例相同之元件係具有相同之符號說明。本較佳實施例與前述第一以及第二較佳實施例不同之處在於:本較佳實施例係於提供具有第一閘極結構110與第二閘極結構112之基底100後,即於第一閘極結構110之側壁與第二閘極結構112之側壁分別形成一第一側壁子122。如前所述,第一側壁子122之寬度係不大於65埃,但不限於此。而在形成第一側壁子122之後,係於基底100上形成一圖案化遮罩130,例如一圖案化光阻,且圖案化遮罩130係覆蓋第二區域104,而暴露出第一區域102。隨後如第7圖所示,係進行一第一離子摻雜製程132,例如一斜向離子佈植製程。第一離子佈植製程132係將p型摻雜質,在本較佳實施例中較佳為硼氫離子簇(boron hydride cluster)等摻雜質,佈植入第一閘極結構110兩側之基底100內,而於第一閘極結構110兩側之基底100內分別形成一第一LDD 110d。Referring to FIG. 7 to FIG. 12, FIG. 7 to FIG. 12 are schematic diagrams showing a third preferred embodiment of a method for fabricating a semiconductor device according to the present invention. It is to be noted that in the third preferred embodiment, the same components as those of the first preferred embodiment have the same reference numerals. The preferred embodiment differs from the foregoing first and second preferred embodiments in that the preferred embodiment is provided after the substrate 100 having the first gate structure 110 and the second gate structure 112 is provided. The sidewalls of the first gate structure 110 and the sidewalls of the second gate structure 112 respectively form a first sidewall spacer 122. As described above, the width of the first side wall sub-122 is not more than 65 angstroms, but is not limited thereto. After the first sidewalls 122 are formed, a patterned mask 130 is formed on the substrate 100, such as a patterned photoresist, and the patterned mask 130 covers the second region 104 to expose the first region 102. . Subsequently, as shown in FIG. 7, a first ion doping process 132 is performed, such as an oblique ion implantation process. The first ion implantation process 132 is a p-type dopant. In the preferred embodiment, a dopant such as a boron hydride cluster is preferably implanted on both sides of the first gate structure 110. A first LDD 110d is formed in the substrate 100 on both sides of the first gate structure 110.

請參閱第8圖。而在進行第一離子佈植製程132形成第一LDD 110d之後,係於基底100上全面性地形成一遮蓋層120,遮蓋層120之厚度及其材料選擇係與第一較佳實施例相同,故於此係不再贅述。在形成遮蓋層120之後,係於基底100上形成另一圖案化遮罩140,且圖案化遮罩140係覆蓋第一區域102,而暴露出第二區域104。隨後如第8圖所示,係進行一第二離子摻雜製程142,例如一斜向離子佈植製程,以將n型摻雜質穿透遮蓋層120佈植入第二閘極結構112兩側之基底100內,而分別形成一第二LDD 112d。Please refer to Figure 8. After the first ion implantation process 132 is performed to form the first LDD 110d, a cover layer 120 is formed on the substrate 100 in a comprehensive manner. The thickness of the cover layer 120 and the material selection thereof are the same as those of the first preferred embodiment. Therefore, this is not repeated here. After the mask layer 120 is formed, another patterned mask 140 is formed on the substrate 100, and the patterned mask 140 covers the first region 102 to expose the second region 104. Then, as shown in FIG. 8, a second ion doping process 142, such as an oblique ion implantation process, is performed to implant the n-type doping through-mask 120 into the second gate structure 112. Inside the substrate 100, a second LDD 112d is formed.

根據本第三較佳實施例所提供之半導體元件之製作方法,當p型摻雜質包含較大的氫化氟離子簇時,p型LDD之超淺接面係自動獲得改善,因此遮蓋層120係可形成於第一離子佈植製程132之後。而由於第二離子佈植製程142係進行於遮蓋層120形成之後,因此第二離子佈植製程必需穿透遮蓋層120,即n型摻雜質必需穿透遮蓋層120方能進入基底100,是以第一LDD 110d與第二LDD 112d皆可獲得具有超淺接面的輪廓。According to the method of fabricating the semiconductor device provided by the third preferred embodiment, when the p-type dopant contains a large hydrogen fluoride cluster, the ultra-shallow junction of the p-type LDD is automatically improved, and thus the mask layer 120 is improved. The system can be formed after the first ion implantation process 132. Since the second ion implantation process 142 is performed after the mask layer 120 is formed, the second ion implantation process must penetrate the mask layer 120, that is, the n-type dopant must penetrate the mask layer 120 to enter the substrate 100. The profile of the ultra-shallow junction can be obtained by both the first LDD 110d and the second LDD 112d.

接下來請參閱第9圖至第13圖。值得注意的是,第9圖至第13圖所揭露之各步驟係可實施於第一較佳實施例至第三較佳實施例中形成第一LDD 110d與第二LDD 112d之後。如第一較佳實施例至第三較佳實施例所述,在形成第一LDD 110d與第二LDD 112d之後,以及移除圖案化遮罩140之後,係於第一閘極結構110之側壁與第二閘極結構112之側壁依序形成一犧牲側壁子(disposal spacer) 124。或如第11圖所示,僅於第一閘極結構之側壁110形成犧牲側壁子124。Next, please refer to Figure 9 to Figure 13. It should be noted that the steps disclosed in FIG. 9 to FIG. 13 may be implemented after forming the first LDD 110d and the second LDD 112d in the first preferred embodiment to the third preferred embodiment. As shown in the first preferred embodiment to the third preferred embodiment, after forming the first LDD 110d and the second LDD 112d, and after removing the patterned mask 140, the sidewalls of the first gate structure 110 are attached. A sacrificial spacer 124 is sequentially formed on the sidewall of the second gate structure 112. Or as shown in FIG. 11, the sacrificial sidewalls 124 are formed only on the sidewalls 110 of the first gate structure.

請參閱第10圖與第11圖。在形成犧牲側壁子124之後,於第一閘極結構110之犧牲側壁子124兩側之基底100內分別蝕刻一凹槽(圖未示)。隨後進行一選擇性磊晶成長(selective epitaxial growth,SEG)製程,使一磊晶層126,例如一磊晶矽鍺(silicon-germanium,SiGe)層,沿著凹槽底部及側邊內之基底100表面形成。換句話說,本較佳實施例可與應變矽(strained silicon)技術整合,利用矽鍺的晶格常數(lattice constant)比矽大此一特性,形成磊晶層126以帶動通道區部分之單晶矽之晶格與帶結構(band structure)發生改變,藉以提升p型MOS元件的運作速度。Please refer to Figure 10 and Figure 11. After the sacrificial sidewalls 124 are formed, a recess (not shown) is etched into the substrate 100 on both sides of the sacrificial sidewalls 124 of the first gate structure 110. Subsequently, a selective epitaxial growth (SEG) process is performed to form an epitaxial layer 126, such as a silicon-germanium (SiGe) layer, along the substrate in the bottom and sides of the groove. 100 surface formation. In other words, the preferred embodiment can be integrated with strained silicon technology, using the lattice constant of germanium to be larger than this, forming the epitaxial layer 126 to drive the portion of the channel region. The lattice and the band structure of the wafer are changed to improve the operation speed of the p-type MOS device.

請仍然參閱第10圖與第11圖。在完成磊晶層126之製作後,係同時移除犧牲側壁子124與暴露出來的遮蓋層120,而如第12圖所示,暴露出第一側壁子122。而在移除遮蓋層120與犧牲側壁子124之後,係如第13圖所示,於第一閘極結構110與第二閘極結構112之第一側壁子122上另分別形成一第二側壁子128;隨後更於第一區域102與第二區域104內的第二側壁子128兩側之基底100內分別形成一包含p型摻雜質第一源極/汲極110s與包含n型摻雜質的第二源極/汲極112s。由於第二側壁子128與第一源極/汲極110s、第二源極/汲極112s之製作步驟係為熟習該技藝之人士所知,故於此係不再贅述。值得注意的是,第一源極/汲極110s係如第12圖所示,形成於磊晶層126之內。至此,係完成一具有p型導電類型的第一MOS電晶體元件150與一具有n型導電類型的第二MOS電晶體元件152。Please still refer to Figure 10 and Figure 11. After the fabrication of the epitaxial layer 126 is completed, the sacrificial sidewalls 124 and the exposed capping layer 120 are simultaneously removed, and as shown in FIG. 12, the first sidewalls 122 are exposed. After the mask layer 120 and the sacrificial sidewalls 124 are removed, a second sidewall is formed on the first sidewalls 122 of the first gate structure 110 and the second gate structure 112, as shown in FIG. Sub-128; subsequently forming a p-type doped first source/drain 110s and including n-type doping in the substrate 100 on both sides of the second sidewall 128 in the first region 102 and the second region 104, respectively. Second source/drain 112s of impurities. Since the steps of fabricating the second sidewalls 128 and the first source/drain 110s and the second source/drain 112s are known to those skilled in the art, they are not described herein. It should be noted that the first source/drain 110s are formed within the epitaxial layer 126 as shown in FIG. So far, a first MOS transistor element 150 having a p-type conductivity type and a second MOS transistor element 152 having an n-type conductivity type are completed.

根據上述第一至第三較佳實施例所提供之半導體元件之製作方法,係可於形成第一側壁子122之剪或之後形成遮蓋層120,且當遮蓋層120係形成於第一側壁子122之後時,亦可根據選擇的摻雜質使形成p型LDD的離子佈植製程進行於形成遮蓋層120之前或之後。此外由於遮蓋層120係可與犧牲側壁子124同時移除,故第一至第三較佳實施例所提供之半導體元件之製作方法並不影響後續元件如第一源極/汲極110s與第二源極/汲極112s之製作。換句話說,第一至第三較佳實施例所提供之半導體元件之製作方法係可在不過度增加製程複雜度的前提下,有效地改善第一LDD 110d與第二LDD 112d的超淺接合面,並藉以避免短通道效應對第一MOS電晶體元件150與第二MOS電晶體元件152產生影響。According to the method for fabricating the semiconductor device provided in the first to third preferred embodiments, the mask layer 120 may be formed after the first sidewall spacer 122 is formed or after the mask layer 120 is formed on the first sidewall. After 122, the ion implantation process for forming the p-type LDD may also be performed before or after the formation of the mask layer 120 according to the selected dopant. In addition, since the mask layer 120 can be removed simultaneously with the sacrificial sidewalls 124, the fabrication methods of the semiconductor components provided by the first to third preferred embodiments do not affect subsequent components such as the first source/drain 110s and the Production of two source/bungee 112s. In other words, the fabrication method of the semiconductor device provided by the first to third preferred embodiments can effectively improve the ultra-shallow bonding of the first LDD 110d and the second LDD 112d without excessively increasing the process complexity. The first MOS transistor element 150 and the second MOS transistor element 152 are affected by the short channel effect.

請參閱第14圖至第18圖,第14圖至第18圖係為本發明所提供之一半導體元件之製作方法之一第四較佳實施例之示意圖。如第14圖所示,本較佳實施例首先提供一基底200,基底200上定義有一第一區域202與一第二區域204,第一區域202內與第二區域204內則分別形成有一第一閘極結構210與一第二閘極結構212,基底200內更形成有複數個用以提供電性隔離的STI 206。在本較佳實施例中,第一閘極結構210係為一p-MOS元件之閘極結構;而第二閘極結構212係為一n-MOS元件之閘極結構。如第14圖所示,第一閘極結構210與第二閘極結構212由下而上分別依序包含一閘極介電層210a與212a、一閘極導電層210b與212b,以及用以定義閘極結構210b/212b的圖案化硬遮罩210c與212c。Referring to FIGS. 14 to 18, FIGS. 14 to 18 are schematic views showing a fourth preferred embodiment of a method for fabricating a semiconductor device according to the present invention. As shown in FIG. 14, the preferred embodiment first provides a substrate 200 having a first region 202 and a second region 204 defined therein, and a first region 202 and a second region 204 are respectively formed with a first region. A gate structure 210 and a second gate structure 212 are formed in the substrate 200 with a plurality of STIs 206 for providing electrical isolation. In the preferred embodiment, the first gate structure 210 is a gate structure of a p-MOS device; and the second gate structure 212 is a gate structure of an n-MOS device. As shown in FIG. 14, the first gate structure 210 and the second gate structure 212 sequentially include a gate dielectric layer 210a and 212a, a gate conductive layer 210b and 212b, respectively, from bottom to top, and Patterned hard masks 210c and 212c defining gate structures 210b/212b.

請繼續參閱第14圖。隨後,係於第一閘極結構210之側壁與第二閘極結構212之側壁分別形成一第一側壁子222。並且在形成第一側壁子222之後,於基底200上形成一圖案化遮罩230,例如一圖案化光阻,且圖案化遮罩230係覆蓋第二區域204,而暴露出第一區域202。隨後如第14圖所示,係進行一第一離子摻雜製程232,例如一斜向離子佈植製程。第一離子佈植製程232係將p型摻雜質,在本較佳實施例中較佳為硼氫離子簇等摻雜質,佈植入第一閘極結構210兩側之基底200內,而於第一閘極結構210兩側之基底200內分別形成一第一LDD 210d。Please continue to see Figure 14. Subsequently, a first sidewall 222 is formed on the sidewall of the first gate structure 210 and the sidewall of the second gate structure 212, respectively. And after the first sidewall 222 is formed, a patterned mask 230, such as a patterned photoresist, is formed on the substrate 200, and the patterned mask 230 covers the second region 204 to expose the first region 202. Subsequently, as shown in Fig. 14, a first ion doping process 232 is performed, such as an oblique ion implantation process. The first ion implantation process 232 is a p-type doping material. In the preferred embodiment, a dopant such as a boron-hydrogen ion cluster is preferably implanted into the substrate 200 on both sides of the first gate structure 210. A first LDD 210d is formed in the substrate 200 on both sides of the first gate structure 210.

請參閱第15圖與第16圖。在進行第一離子佈植製程320與形成第一LDD 210d之後,係移除圖案化遮罩230,隨後係於第一閘極結構210之側壁與第二閘極結構212之側壁依序形成一犧牲側壁子224;或如第16圖所示,僅於第一閘極結構210之側壁形成一犧牲側壁子224。而在形成犧牲側壁子224之後,係於第一閘極結構210之犧牲側壁子224兩側之基底200內分別蝕刻一凹槽(圖未示)。隨後進行一SEG製程,使一磊晶層226,例如一磊晶矽鍺層,沿著凹槽底部及側邊內之基底200表面形成。Please refer to Figure 15 and Figure 16. After the first ion implantation process 320 is performed and the first LDD 210d is formed, the patterned mask 230 is removed, and then the sidewalls of the first gate structure 210 and the sidewalls of the second gate structure 212 are sequentially formed. Sacrificial sidewall 224; or as shown in FIG. 16, a sacrificial sidewall 224 is formed only on the sidewall of the first gate structure 210. After the sacrificial sidewalls 224 are formed, a recess (not shown) is etched into the substrate 200 on both sides of the sacrificial sidewalls 224 of the first gate structure 210. A SEG process is then performed to form an epitaxial layer 226, such as an epitaxial layer, along the surface of the substrate 200 in the bottom and sides of the recess.

請參閱第17圖。接下來,係移除犧牲側壁子224,隨後於基底200上全面性地形成一遮蓋層220。並且在形成遮蓋層220之後,於基底200上形成另一圖案化遮罩240,且圖案化遮罩240係覆蓋第一區域202,而暴露出第二區域204。隨後如第17圖所示,進行一第二離子摻雜製程242,例如一斜向離子佈植製程,以將n型摻雜質穿透遮蓋層220佈植入第二閘極結構212兩側之基底200內,而分別形成一第二LDD 212d。Please refer to Figure 17. Next, the sacrificial sidewall 224 is removed, and then a masking layer 220 is formed over the substrate 200 in its entirety. And after the mask layer 220 is formed, another patterned mask 240 is formed on the substrate 200, and the patterned mask 240 covers the first region 202 to expose the second region 204. Then, as shown in FIG. 17, a second ion doping process 242, such as an oblique ion implantation process, is performed to implant the n-type doping through-mask 220 into both sides of the second gate structure 212. Within the substrate 200, a second LDD 212d is formed, respectively.

請參閱第18圖。在進行第二離子佈植製程242以形成第二LDD 212d之後,係移除圖案化遮罩240與遮蓋層220。隨後如第18圖所示,於第一閘極結構210之側壁與第二閘極結構212之側壁另分別形成一第二側壁子228;隨後更於第一區域202與第二區域204內的第二側壁子228兩側之基底200內分別形成一包含p型摻雜質的第一源極/汲極210s與包含n型摻雜質的第二源極/汲極212s。由於第二側壁子228與第一源極/汲極210s、第二源極/汲極212s之製作步驟係為熟習該技藝之人士所知,故於此係不再贅述。值得注意的是,第一源極/汲極210s係如第18圖所示,形成於磊晶層226之內。至此,係完成一具有p型導電類型的第一MOS電晶體元件250與一具有n型導電類型的第二MOS電晶體元件252。Please refer to Figure 18. After the second ion implantation process 242 is performed to form the second LDD 212d, the patterned mask 240 and the mask layer 220 are removed. Then, as shown in FIG. 18, a second sidewall 228 is formed on the sidewall of the first gate structure 210 and the sidewall of the second gate structure 212, respectively; and then further in the first region 202 and the second region 204. A first source/drain 210s including a p-type dopant and a second source/drain 212s including an n-type dopant are respectively formed in the substrate 200 on both sides of the second sidewall 228. Since the steps of fabricating the second sidewall 228 and the first source/drain 210s and the second source/drain 212s are known to those skilled in the art, no further details are provided herein. It should be noted that the first source/drain 210s are formed within the epitaxial layer 226 as shown in FIG. So far, a first MOS transistor element 250 having a p-type conductivity type and a second MOS transistor element 252 having an n-type conductivity type are completed.

根據本第四較佳實施例所提供之半導體元件之製作方法,係於進行SEG製程形成磊晶層226以及移除犧牲側壁子224之後方形成遮蓋層220,並且在形成遮蓋層220之後才進行第二離子佈植製程242。因此第二離子佈植製程242必需穿透遮蓋層220,即n型摻雜質必需穿透遮蓋層220方能進入基底200,是以第二LDD 212d係可獲得具有超淺接面的輪廓。此外,由於本較佳實施例中遮蓋層220係於SEG相關製程(如移除犧牲側壁子224)結束後才形成,因此遮蓋層220之形成並不會對該等製程造成影響。此外,本較佳實施例更可選用較大的氫化氟離子簇作為p型摻雜質,因此p型LDD之超淺接面係自動獲得改善。換句話說,本較佳實施例所提供之半導體元件之製作方法係可在不過度增加製程複雜度的前提下,有效地改善第一LDD 210d與第二LDD 212d的超淺接合面,並藉以避免短通道效應對第一MOS電晶體元件250與第二MOS電晶體元件252產生影響。The method for fabricating the semiconductor device according to the fourth preferred embodiment is to form the mask layer 220 after the SEG process is performed to form the epitaxial layer 226 and the sacrificial sidewall spacer 224 is removed, and after the mask layer 220 is formed. The second ion implantation process 242. Therefore, the second ion implantation process 242 must penetrate the cover layer 220, that is, the n-type dopant must penetrate the cover layer 220 to enter the substrate 200, and the second LDD 212d can obtain a profile having an ultra-shallow junction. In addition, since the mask layer 220 is formed after the SEG related process (such as removing the sacrificial sidewall spacers 224) in the preferred embodiment, the formation of the mask layer 220 does not affect the processes. In addition, the preferred embodiment further selects a larger hydrogenated fluoride ion cluster as the p-type dopant, so that the ultra-shallow junction of the p-type LDD is automatically improved. In other words, the manufacturing method of the semiconductor device provided by the preferred embodiment can effectively improve the ultra-shallow joint surface of the first LDD 210d and the second LDD 212d without excessively increasing the process complexity. The short channel effect is prevented from affecting the first MOS transistor element 250 and the second MOS transistor element 252.

根據本發明所提供之半導體元件之製作方法,係於進行第一離子佈植製程或/和第二離子佈植製程之前於基底上全面性地形成該遮蓋層,因此該第一輕摻雜汲極製程與該第二輕摻雜汲極製程至少其中之一係穿透該遮蓋層而形成該第一LDD或/和該第二LDD。由於該遮蓋層的設置,可使得第一LDD或/和該第二LDD獲得所需的超淺接面輪廓。因此,本發明所提供之半導體元件之製作方法係可在半導體元件持續微縮的趨勢下,改善LDD的超淺接面,故可有效抑制短通道效應,改善半導體元件之效能。According to the method for fabricating a semiconductor device provided by the present invention, the mask layer is formed on the substrate in a comprehensive manner before the first ion implantation process or/and the second ion implantation process, and thus the first lightly doped germanium At least one of the pole process and the second lightly doped drain process penetrates the mask layer to form the first LDD or/and the second LDD. Due to the arrangement of the cover layer, the first LDD or/and the second LDD can be made to obtain the desired ultra-shallow junction profile. Therefore, the method for fabricating the semiconductor device provided by the present invention can improve the ultra-shallow junction of the LDD under the tendency of the semiconductor device to continuously shrink, so that the short channel effect can be effectively suppressed and the performance of the semiconductor device can be improved.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

100、200...基底100, 200. . . Base

102、202...第一區域102, 202. . . First area

104、204...第二區域104, 204. . . Second area

106、206...淺溝隔離106, 206. . . Shallow trench isolation

110、210...第一閘極結構110, 210. . . First gate structure

112、212...第二閘極結構112, 212. . . Second gate structure

110a、112a、210a、212a...閘極介電層110a, 112a, 210a, 212a. . . Gate dielectric layer

110b、112b、210b、212b...閘極導電層110b, 112b, 210b, 212b. . . Gate conductive layer

110c、112c、210c、212c...圖案化硬遮罩110c, 112c, 210c, 212c. . . Patterned hard mask

110d、210d...第一輕摻雜汲極110d, 210d. . . First lightly doped bungee

110s、210s...第一源極/汲極110s, 210s. . . First source/dip

112d、212d...第二輕摻雜汲極112d, 212d. . . Second lightly doped bungee

112s、212s...第二源極/汲極112s, 212s. . . Second source/dip

120、220...遮蓋層120, 220. . . Cover layer

122、222...第一側壁子122, 222. . . First side wall

124、224...犧牲側壁子124, 224. . . Sacrifice the side wall

126、226...磊晶層126, 226. . . Epitaxial layer

128、228...第二側壁子128, 228. . . Second side wall

130、140、230、240...圖案化遮罩130, 140, 230, 240. . . Patterned mask

132、232...第一離子佈植製程132, 232. . . First ion implantation process

142、242...第二離子佈植製程142, 242. . . Second ion implantation process

150、250...第一金氧半導體元件150, 250. . . First MOS semiconductor component

152、252...第二金氧半導體元件152, 252. . . Second MOS semiconductor component

第1圖至第3圖與第9圖至第13圖係為本發明所提供之一半導體元件之製作方法之一第一較佳實施例之示意圖。1 to 3 and 9 to 13 are schematic views showing a first preferred embodiment of a method of fabricating a semiconductor device according to the present invention.

第4圖至第6圖與第9圖至第13圖係為本發明所提供之一半導體元件之製作方法之一第二較佳實施例之示意圖。4 to 6 and 9 to 13 are schematic views showing a second preferred embodiment of a method of fabricating a semiconductor device according to the present invention.

第7圖至13圖係為本發明所提供之一半導體元件之製作方法之一第三較佳實施例之示意圖。7 to 13 are schematic views showing a third preferred embodiment of a method of fabricating a semiconductor device provided by the present invention.

第14圖至第18圖係為本發明所提供之一半導體元件之製作方法之一第四較佳實施例之示意圖。14 to 18 are schematic views showing a fourth preferred embodiment of a method of fabricating a semiconductor device according to the present invention.

100...基底100. . . Base

102...第一區域102. . . First area

104...第二區域104. . . Second area

106...淺溝隔離106. . . Shallow trench isolation

110...第一閘極結構110. . . First gate structure

112...第二閘極結構112. . . Second gate structure

110a、112s...閘極介電層110a, 112s. . . Gate dielectric layer

110b、112b...閘極導電層110b, 112b. . . Gate conductive layer

110c、112c...圖案化硬遮罩110c, 112c. . . Patterned hard mask

110d...第一輕摻雜汲極110d. . . First lightly doped bungee

120...遮蓋層120. . . Cover layer

122...第一側壁子122. . . First side wall

140...圖案化遮罩140. . . Patterned mask

142...第二離子佈植製程142. . . Second ion implantation process

Claims (20)

一種半導體元件製作方法,包含有:提供一基底,該基底上形成有一第一閘極結構與一第二閘極結構;於該基底上全面性地形成一遮蓋層(seal layer),且該遮蓋層係覆蓋該第一閘極結構與該第二閘極結構;進行一第一離子佈植製程,以於該第一閘極結構兩側之基底內分別形成一第一輕摻雜汲極(lightly-doped drain,LDD);以及進行一第二離子佈植製程,以於該第二閘極結構兩側之基底內分別形成一第二輕摻雜汲極;其中該第一離子佈植製程與該第二離子佈植製程至少其中之一係穿透該遮蓋層。A semiconductor device manufacturing method includes: providing a substrate on which a first gate structure and a second gate structure are formed; a cover layer is formed on the substrate in a comprehensive manner, and the cover is covered a layer covering the first gate structure and the second gate structure; performing a first ion implantation process to form a first lightly doped drain in the substrate on both sides of the first gate structure Lightly-doped drain (LDD); and performing a second ion implantation process to form a second lightly doped drain in the substrate on both sides of the second gate structure; wherein the first ion implantation process At least one of the second ion implantation processes penetrates the cover layer. 如申請專利範圍第1項所述之製作方法,其中該遮蓋層係具有一厚度,且該厚度介於25埃至50埃。The manufacturing method of claim 1, wherein the covering layer has a thickness and the thickness is between 25 angstroms and 50 angstroms. 如申請專利範圍第1項所述之製作方法,其中該遮蓋層包含氧化矽或氮化矽。The manufacturing method of claim 1, wherein the covering layer comprises cerium oxide or cerium nitride. 如申請專利範圍第1項所述之製作方法,更包含一於該第一閘極結構之側壁與該第二閘極結構之側壁分別形成一第一側壁子之步驟。The manufacturing method of claim 1, further comprising the step of forming a first sidewall on the sidewall of the first gate structure and the sidewall of the second gate structure. 如申請專利範圍第4項所述之製作方法,其中該遮蓋層係形成於該第一側壁子形成之後。The manufacturing method of claim 4, wherein the covering layer is formed after the first side wall is formed. 如申請專利範圍第5項所述之製作方法,其中該第一離子佈植製程與該第二離子佈植製程係進行於形成該遮蓋層之後。The manufacturing method of claim 5, wherein the first ion implantation process and the second ion implantation process are performed after forming the cover layer. 如申請專利範圍第6項所述之製作方法,其中該第一離子佈植製程與該第二離子佈植製程皆穿透該遮蓋層。The manufacturing method of claim 6, wherein the first ion implantation process and the second ion implantation process penetrate the cover layer. 如申請專利範圍第5項所述之製作方法,其中該遮蓋層係形成於進行該第一離子佈植製程之後,與進行該第二離子佈植製程之前。The manufacturing method of claim 5, wherein the covering layer is formed after the performing the first ion implantation process and before performing the second ion implantation process. 如申請專利範圍第4項所述之製作方法,其中該遮蓋層係形成於該第一側壁子形成之前,且部分該覆蓋層係作為部分該第一側壁子。The manufacturing method of claim 4, wherein the covering layer is formed before the first side wall is formed, and a part of the covering layer is a part of the first side wall. 如申請專利範圍第9項所述之製作方法,其中該第一離子佈植製程與該第二離子佈植製程係進行於形成該第一側壁子之後。The manufacturing method of claim 9, wherein the first ion implantation process and the second ion implantation process are performed after forming the first sidewall. 如申請專利範圍第10項所述之製作方法,其中該第一離子佈植製程與該第二離子佈植製程皆穿透該遮蓋層。The manufacturing method of claim 10, wherein the first ion implantation process and the second ion implantation process penetrate the cover layer. 如申請專利範圍第1項所述之製作方法,更包含:於該第一閘極結構之側壁形成一第一犧牲側壁子(disposal spacer);於該第一閘極結構兩側之基底內分別形成一磊晶層;以及移除該第一犧牲側壁子。The manufacturing method of claim 1, further comprising: forming a first sacrificial spacer on a sidewall of the first gate structure; respectively, in a substrate on both sides of the first gate structure Forming an epitaxial layer; and removing the first sacrificial sidewall. 如申請專利範圍第12項所述之製作方法,更包含於該第二閘極結構之側壁形成一第二犧牲側壁子之步驟,且第二犧牲側壁子係於形成第一犧牲側壁子之前或之後形成。The manufacturing method of claim 12, further comprising the step of forming a second sacrificial sidewall on the sidewall of the second gate structure, and the second sacrificial sidewall is before the first sacrificial sidewall is formed or Formed afterwards. 如申請專利範圍第13項所述之製作方法,其中該遮蓋層、該第一犧牲側壁子、該第二犧牲側壁子係同時移除。The manufacturing method of claim 13, wherein the covering layer, the first sacrificial sidewall, and the second sacrificial sidewall are simultaneously removed. 如申請專利範圍第12項所述之製作方法,其中該遮蓋層係與該第一犧牲側壁子同時移除。The manufacturing method of claim 12, wherein the covering layer is removed simultaneously with the first sacrificial sidewall. 如申請專利範圍第15項所述之製作方法,更包含以下步驟,進行於移除該遮蓋層與該第一犧牲側壁子之後:於該第一閘極結構之側壁與該第二閘極結構之側壁分別形成一第二側壁子;以及於該第一閘極結構與該第二閘極結構兩側之基底內分別形成一第一源極/汲極與一第二源極/汲極。The manufacturing method of claim 15, further comprising the step of removing the cover layer and the first sacrificial sidewall: a sidewall of the first gate structure and the second gate structure Forming a second sidewall in each of the sidewalls; and forming a first source/drain and a second source/drain in the substrate on both sides of the first gate structure and the second gate structure. 如申請專利範圍第12項所述之製作方法,其中該遮蓋層係形成於移除該第一犧牲側壁子之後。The manufacturing method of claim 12, wherein the covering layer is formed after removing the first sacrificial sidewall. 如申請專利範圍第17項所述之製作方法,其中該第一離子佈植製程係進行於形成該第一犧牲側壁子之前,該第二離子佈植製程係進行於形成遮蓋層之後。The manufacturing method of claim 17, wherein the first ion implantation process is performed before forming the first sacrificial sidewall, and the second ion implantation process is performed after forming the mask layer. 如申請專利範圍第18項所述之製作方法,更包含於進行該第二離子佈植製程之後,移除該遮蓋層。The manufacturing method of claim 18, further comprising removing the covering layer after performing the second ion implantation process. 如申請專利範圍第19項所述之製作方法,更包含以下步驟,進行於移除該遮蓋層與該第一犧牲側壁子之後:於該第一閘極結構之側壁與該第二閘極結構之側壁分別形成一第二側壁子;以及於該第一閘極結構與該第二閘極結構兩側之基底內分別形成一第一源極/汲極與一第二源極/汲極。The manufacturing method of claim 19, further comprising the following steps, after removing the covering layer and the first sacrificial sidewall: the sidewall of the first gate structure and the second gate structure Forming a second sidewall in each of the sidewalls; and forming a first source/drain and a second source/drain in the substrate on both sides of the first gate structure and the second gate structure.
TW101100025A 2012-01-02 2012-01-02 Method for manufacturing semiconductor device TW201330178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101100025A TW201330178A (en) 2012-01-02 2012-01-02 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101100025A TW201330178A (en) 2012-01-02 2012-01-02 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
TW201330178A true TW201330178A (en) 2013-07-16

Family

ID=49225834

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101100025A TW201330178A (en) 2012-01-02 2012-01-02 Method for manufacturing semiconductor device

Country Status (1)

Country Link
TW (1) TW201330178A (en)

Similar Documents

Publication Publication Date Title
US8785286B2 (en) Techniques for FinFET doping
US8658507B2 (en) MOSFET structure and method of fabricating the same using replacement channel layer
US8716090B2 (en) Semiconductor device manufacturing method
US20200027970A1 (en) FinFETs having Epitaxial Capping Layer on Fin and Methods for Forming the Same
US8409947B2 (en) Method of manufacturing semiconductor device having stress creating layer
US20140217519A1 (en) Semiconductor device and method of manufacturing the same
US8183640B2 (en) Method of fabricating transistors and a transistor structure for improving short channel effect and drain induced barrier lowering
US8735237B2 (en) Method for increasing penetration depth of drain and source implantation species for a given gate height
JP5772068B2 (en) Semiconductor device and manufacturing method thereof
JP5559639B2 (en) Semiconductor device and manufacturing method thereof
KR20120035699A (en) Semiconductor devices including source/drain regions with abrupt junction profiles and methods of fabricating the same
US9865505B2 (en) Method for reducing N-type FinFET source and drain resistance
US20110027954A1 (en) Method to improve transistor tox using si recessing with no additional masking steps
JP3821707B2 (en) Manufacturing method of semiconductor device
US8273633B2 (en) Method of enhancing dopant activation without suffering additional dopant diffusion
CN102054695B (en) Method for improving performance of semiconductor components
JP2008218725A (en) Semiconductor device and manufacturing method thereof
JP2006319326A (en) E-SiGe AMALGAMATING SOI BOTTOM PREDOPING FOR DECREASING HEIGHT OF POLYSILICON
CN108122850B (en) Semiconductor structure and forming method thereof
CN109273360B (en) Method for manufacturing semiconductor device
CN109087859B (en) Method for manufacturing semiconductor device
CN107039277B (en) Stress memorization techniques for transistor devices
US8642435B2 (en) Performing treatment on stressors
CN109904231B (en) Semiconductor device and method for manufacturing the same
TW201330178A (en) Method for manufacturing semiconductor device