TW201326805A - Non-contact measurement device with adjustable range - Google Patents

Non-contact measurement device with adjustable range Download PDF

Info

Publication number
TW201326805A
TW201326805A TW100149610A TW100149610A TW201326805A TW 201326805 A TW201326805 A TW 201326805A TW 100149610 A TW100149610 A TW 100149610A TW 100149610 A TW100149610 A TW 100149610A TW 201326805 A TW201326805 A TW 201326805A
Authority
TW
Taiwan
Prior art keywords
adjustable
amplitude
measuring device
sensing module
module
Prior art date
Application number
TW100149610A
Other languages
Chinese (zh)
Other versions
TWI472757B (en
Inventor
Chien-Wen Chen
Woo-Yang Liu
Yen-Lin Pan
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW100149610A priority Critical patent/TWI472757B/en
Publication of TW201326805A publication Critical patent/TW201326805A/en
Application granted granted Critical
Publication of TWI472757B publication Critical patent/TWI472757B/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

A non-contact measurement device with an adjustable range is provided, and includes an amplitude-controllable oscillation module, a sensing module and a current sensor. The amplitude-controllable oscillation module oscillates a driving voltage with fixed amplitude. The sensing module includes an adjustable impedance unit. Besides, the sensing module adjusts the adjustable impedance unit according to an impedance control signal, and radiates an alternating magnetic field by the driving voltage so as to sense a sample under test. The current sensor detects a driving current generated by the amplitude-controllable oscillation module and generates a detection signal related to the sample under test.

Description

具有可調範圍的非接觸式量測裝置Non-contact measuring device with adjustable range

本發明是有關於一種非接觸式量測裝置,且特別是有關於一種具有可調範圍的非接觸式量測裝置。The present invention relates to a non-contact measuring device, and more particularly to a non-contact measuring device having an adjustable range.

非接觸式量測裝置可在不破壞待測樣品的情況下,檢測出待測樣品的特性與缺陷,因此廣泛地應用在現今的工業界。非接觸式量測裝置的感應方式有許多種類型,其中一種是利用渦電流原理來進行感測。渦電流(eddy current)的作用原理是透過一交變磁場與待測樣品進行耦合,以致使待測樣品感應出漩渦式的電流,亦即渦電流。此外,待測樣品的特性會造成渦電流流向的改變,且渦電流會形成二次磁場抵抗交變磁場(一次磁場)的變化,因此可藉由待測樣品所造成之耦合特性的變化來檢測待測樣品的特性。The non-contact measuring device can detect the characteristics and defects of the sample to be tested without damaging the sample to be tested, and thus is widely used in today's industry. There are many types of sensing methods for non-contact measuring devices, one of which is to use the eddy current principle for sensing. The principle of eddy current is to couple with the sample to be tested through an alternating magnetic field, so that the sample to be tested induces a vortex current, that is, an eddy current. In addition, the characteristics of the sample to be tested will cause a change in the eddy current flow direction, and the eddy current will form a secondary magnetic field to resist the change of the alternating magnetic field (primary magnetic field), so that it can be detected by the change of the coupling characteristics caused by the sample to be tested. The characteristics of the sample to be tested.

目前已有一些習知技術相繼提出以渦電流原理為主軸的非接觸式量測裝置,例如:美國專利第6,819,120號。其中,美國專利第6,819,120號是將感測模組當作振盪電路的諧振元件,以利用自回授共振的方式振盪出驅動電壓。然而,由於感測模組亦為振盪電路的諧振元件,因此振盪電路的振盪頻寬將受到限制。為了因應上述情況,此種量測裝置必須針對不同的待測樣品,更換不同的感測模組。At present, some conventional techniques have been proposed for the non-contact measuring device with the eddy current principle as the main axis, for example, U.S. Patent No. 6,819,120. Among them, U.S. Patent No. 6,819,120 uses a sensing module as a resonant element of an oscillating circuit to oscillate a driving voltage by self-returning resonance. However, since the sensing module is also a resonant component of the oscillating circuit, the oscillating bandwidth of the oscillating circuit will be limited. In order to cope with the above situation, such a measuring device must replace different sensing modules for different samples to be tested.

本發明提供一種具有可調範圍的非接觸式量測裝置,利用一阻抗控制訊號調整感測模組的量測範圍。藉此,非接觸式量測裝置將可在不更換感測模組的情況下,針對不同的待測樣品進行檢測。The invention provides a non-contact measuring device with an adjustable range, which uses an impedance control signal to adjust the measuring range of the sensing module. Thereby, the non-contact measuring device can detect different samples to be tested without replacing the sensing module.

本發明提出一種具有可調範圍的非接觸式量測裝置,包括振幅可控式振盪模組、感測模組以及電流感測器。振幅可控式振盪模組振盪出具有固定振幅的驅動電壓。感測模組包括可調阻抗單元。此外,感測模組依據阻抗控制訊號調整可調阻抗單元,並利用驅動電壓輻射出用以感測待測樣品的交變磁場。電流感測器用以檢測振幅可控式振盪模組所產生的驅動電流,並產生與待測樣品相關的檢出訊號。The invention provides a non-contact measuring device with an adjustable range, comprising an amplitude controllable oscillation module, a sensing module and a current sensor. The amplitude controllable oscillating module oscillates a drive voltage having a fixed amplitude. The sensing module includes an adjustable impedance unit. In addition, the sensing module adjusts the adjustable impedance unit according to the impedance control signal, and radiates an alternating magnetic field for sensing the sample to be tested by using the driving voltage. The current sensor is configured to detect a driving current generated by the amplitude controllable oscillating module and generate a detection signal related to the sample to be tested.

在本發明之一實施例中,上述之具有可調範圍的非接觸式量測裝置更包括控制器。其中,控制器用以產生阻抗控制訊號。In an embodiment of the invention, the non-contact measuring device having the adjustable range further includes a controller. The controller is configured to generate an impedance control signal.

在本發明之一實施例中,上述之控制器依據阻抗控制訊號從多個預設對照表中擇一作為一特定對照表,且控制器依據檢出訊號查詢特定對照表,以取得與待測樣品相關的特性值。In an embodiment of the present invention, the controller selects one of the plurality of preset comparison tables as a specific comparison table according to the impedance control signal, and the controller queries the specific comparison table according to the detected signal to obtain and test Sample related characteristic values.

在本發明之一實施例中,上述之感測模組更包括驅動線圈,且感測模組透過驅動線圈幅射出交變磁場。其中,驅動線圈電性連接可調阻抗單元。In an embodiment of the invention, the sensing module further includes a driving coil, and the sensing module transmits the alternating magnetic field through the driving coil. Wherein, the driving coil is electrically connected to the adjustable impedance unit.

在本發明之一實施例中,上述之可調阻抗單元包括可調電容與可調電阻。其中,可調電容與驅動線圈相互並聯。可調電阻的第一端電性連接可調電容,且可調電阻的第二端接收驅動電壓。In an embodiment of the invention, the adjustable impedance unit comprises a tunable capacitor and an adjustable resistor. Wherein, the adjustable capacitor and the driving coil are connected in parallel with each other. The first end of the adjustable resistor is electrically connected to the adjustable capacitor, and the second end of the adjustable resistor receives the driving voltage.

基於上述,本發明是利用阻抗控制訊號來調整感測模組的量測範圍。藉此,非接觸式量測裝置將可以在不更換感測模組的情況下,針對不同的待測樣品進行檢測。Based on the above, the present invention utilizes an impedance control signal to adjust the measurement range of the sensing module. Thereby, the non-contact measuring device can detect different samples to be tested without replacing the sensing module.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the present invention will be more apparent from the following description.

圖1為依據本發明之一實施例之具有可調範圍的非接觸式量測裝置的示意圖。如圖1所示,具有可調範圍的非接觸式量測裝置100包括感測模組110、振幅可控式振盪模組120以及電流感測器130。更進一步來看,感測模組110包括可調阻抗單元111與驅動線圈112。1 is a schematic illustration of a non-contact measuring device having an adjustable range in accordance with an embodiment of the present invention. As shown in FIG. 1 , the non-contact measuring device 100 with an adjustable range includes a sensing module 110 , an amplitude controllable oscillation module 120 , and a current sensor 130 . Further, the sensing module 110 includes an adjustable impedance unit 111 and a driving coil 112.

在操作上,振幅可控式振盪模組120提供一驅動電壓VD給感測模組110,以致使感測模組110中的驅動線圈112產生一交變磁場。當交變磁場通過待測樣品101時,待測樣品101將感應出一渦電流,且渦電流的大小和待測樣品101的特性,例如:導電率、導磁率、厚度、缺陷及距離...等有關。此外,待測樣品101所感應出的渦電流會輻射出二次磁場,以抵抗感測模組110所產生之交變磁場(亦即一次磁場)的變化。In operation, the amplitude controllable oscillating module 120 provides a driving voltage V D to the sensing module 110 such that the driving coil 112 in the sensing module 110 generates an alternating magnetic field. When the alternating magnetic field passes through the sample 101 to be tested, the sample 101 to be tested will induce an eddy current, and the magnitude of the eddy current and the characteristics of the sample 101 to be tested, for example, conductivity, permeability, thickness, defect, and distance. And so on. In addition, the eddy current induced by the sample 101 to be tested radiates a secondary magnetic field to resist the change of the alternating magnetic field (ie, the primary magnetic field) generated by the sensing module 110.

換言之,感測模組110會接收到二次磁場的變化,亦即感測模組110與待測樣品101之間將產生一耦合效應。藉此,感測模組110將可透過磁場的耦合來達成其與待測樣品101之間的能量傳遞。此外,在耦合的過程中,待測樣品101的相關資訊也將透過非接觸的方式耦合至具有可調範圍的非接觸式量測裝置100。In other words, the sensing module 110 receives a change in the secondary magnetic field, that is, a coupling effect between the sensing module 110 and the sample 101 to be tested. Thereby, the sensing module 110 achieves energy transfer between the sample 101 and the sample 101 to be tested by coupling the magnetic field. In addition, during the coupling process, the relevant information of the sample 101 to be tested will also be coupled to the non-contact measuring device 100 having an adjustable range in a non-contact manner.

為了致使本領域具有通常知識者能更加了解本實施例,以下將先就感測模組110與待測樣品101之間的耦合效應進行說明。In order to make the present inventors have a better understanding of the present embodiment, the coupling effect between the sensing module 110 and the sample 101 to be tested will be described below.

先就感測模組110中的驅動線圈112與待測樣品101來看。圖2為依據本發明之一實施例之感測模組的耦合模型的示意圖。參照圖2,耦合效應可利用變壓器模型來做近似。在此,變壓器T2的主線圈L1相當於感測模組110中的驅動線圈111,而電流I1則相當於振幅可控式振盪模組120所產生的驅動電流。再者,待測樣品101所產生的渦電流,亦即電流I2,則是相當於由變壓器T2的次線圈L2所產生,且RL為待測樣品101的阻抗。其中,變壓器T2的中間為空氣所隔開,故存在介於0到1之間的耦合係數K。First, the driving coil 112 in the sensing module 110 is viewed from the sample 101 to be tested. 2 is a schematic diagram of a coupling model of a sensing module in accordance with an embodiment of the present invention. Referring to Figure 2, the coupling effect can be approximated using a transformer model. Here, the main coil L 1 of the transformer T 2 corresponds to the drive coil 111 in the sensing module 110 , and the current I 1 corresponds to the drive current generated by the amplitude controllable oscillation module 120 . Furthermore, the eddy current generated by the sample 101 to be tested, that is, the current I 2 , is equivalent to that generated by the secondary coil L 2 of the transformer T 2 , and R L is the impedance of the sample 101 to be tested. Wherein, the middle of the transformer T 2 is separated by air, so there is a coupling coefficient K between 0 and 1.

參照圖2的耦合模型,將可計算出感測模組110的等效阻抗Z=X+jY,並可以圖3的等效電路來表示,其中圖3為依據本發明之一實施例之感測模組的等效電路圖,且等效阻抗Z的實部X與虛部Y將如式(1)與式(2)所示:Referring to the coupling model of FIG. 2, the equivalent impedance Z=X+jY of the sensing module 110 can be calculated and can be represented by the equivalent circuit of FIG. 3, wherein FIG. 3 is a sense of an embodiment of the present invention. The equivalent circuit diagram of the test module, and the real part X and the imaginary part Y of the equivalent impedance Z will be as shown in equations (1) and (2):

依據式(1)與式(2)來看,感測模組110之等效阻抗的改變包括待測樣品101之阻抗RL的變化與耦合係數K。此外,倘若感測模組110與待測樣品101之間的距離為固定,則耦合係數K將為固定值。藉此,感測模組110的等效阻抗將隨著待測樣品101的阻抗RL產生相應變化,進而達成感測待測樣品101的目的。According to the formulas (1) and (2), the change of the equivalent impedance of the sensing module 110 includes the change of the impedance R L of the sample 101 to be tested and the coupling coefficient K. In addition, if the distance between the sensing module 110 and the sample 101 to be tested is fixed, the coupling coefficient K will be a fixed value. Thereby, the equivalent impedance of the sensing module 110 will change correspondingly with the impedance R L of the sample 101 to be tested, thereby achieving the purpose of sensing the sample 101 to be tested.

另一方面,就待測樣品101的阻抗RL而言,以電磁波在介面的反射現象來看,電磁波的傳遞阻抗會近似於傳輸線定理,並可透過介面的穿透反射來計算出。依據上述原理,倘若待測樣品101為不導磁材料的薄膜時,則待測樣品101的阻抗RL將近似於薄膜的片電阻值,且如式(3)所示:On the other hand, with respect to the impedance R L of the sample 101 to be tested, the transmission impedance of the electromagnetic wave is approximated by the transmission line theorem by the reflection phenomenon of the electromagnetic wave on the interface, and can be calculated through the penetration reflection of the interface. According to the above principle, if the sample to be tested 101 is a film of a non-magnetic material, the impedance R L of the sample 101 to be tested will approximate the sheet resistance value of the film, and as shown in the formula (3):

其中,σ為材料的電導率,t為材料厚度。換言之,當待測樣品101為不導磁材料的薄膜時,待測樣品101的片電阻值將視為電阻,並透過交變磁場耦合至感測模組110。亦即,感測模組110的阻抗特性將因應待測樣品101的片電阻值產生相應的變化。舉例來說,依據式(1)及式(2)來看,當待測樣品101的阻抗RL減少時,感測模組110的虛部阻抗Y將減少,且實部阻抗X將增加。此外,虛部阻抗Y的減少將導致感測模組110的諧振頻率上升,進而造成角頻率的增加。Where σ is the electrical conductivity of the material and t is the thickness of the material. In other words, when the sample to be tested 101 is a film of a non-magnetic material, the sheet resistance value of the sample 101 to be tested will be regarded as a resistance and coupled to the sensing module 110 through the alternating magnetic field. That is, the impedance characteristic of the sensing module 110 will be correspondingly changed according to the sheet resistance value of the sample 101 to be tested. For example, according to equations (1) and (2), when the impedance R L of the sample 101 to be tested decreases, the imaginary impedance Y of the sensing module 110 will decrease, and the real impedance X will increase. In addition, a decrease in the imaginary impedance Y will cause the resonant frequency of the sensing module 110 to rise, thereby causing an increase in the angular frequency.

在本實施利中,感測模組110更包括可調阻抗單元111,因此圖2所示的耦合模型將擴展成如圖4所示,其中圖4為依據本發明之另一實施例之感測模組的耦合模型的示意圖。參照圖4,可調阻抗單元111包括可調電容VC與可調電阻VR。其中,可調電容VC與驅動線圈112(亦即主線圈L1)相互並聯,且可調電阻VR的第一端電性連接可調電容VC,可調電阻VR的第二端接收驅動電壓VDIn this implementation, the sensing module 110 further includes an adjustable impedance unit 111, so the coupling model shown in FIG. 2 will be expanded as shown in FIG. 4, wherein FIG. 4 is a sense of another embodiment according to the present invention. Schematic diagram of the coupled model of the test module. Referring to FIG. 4, the adjustable impedance unit 111 includes a tunable capacitor VC and an adjustable resistor VR. The adjustable capacitor VC and the driving coil 112 (that is, the main coil L 1 ) are connected in parallel with each other, and the first end of the adjustable resistor VR is electrically connected to the adjustable capacitor VC, and the second end of the adjustable resistor VR receives the driving voltage V D.

再者,參照圖4的耦合模型,感測模組110的等效電路將可利用圖5來表示,其中圖5為依據本發明之另一實施例之感測模組的等效電路圖,且Zin與Zout分別為可調阻抗單元111與驅動線圈112之間的等效輸入阻抗與等效輸出阻抗。值得一提的是,在圖1實施例中,感測模組110中的可調阻抗單元111與驅動線圈112為振幅可控式振盪模組120的諧振元件,因此感測模組110會操作在諧振頻率上。Furthermore, referring to the coupling model of FIG. 4, the equivalent circuit of the sensing module 110 can be represented by FIG. 5, wherein FIG. 5 is an equivalent circuit diagram of the sensing module according to another embodiment of the present invention, and Z in and Z out are the equivalent input impedance and equivalent output impedance between the adjustable impedance unit 111 and the drive coil 112, respectively. It is to be noted that, in the embodiment of FIG. 1 , the adjustable impedance unit 111 and the driving coil 112 in the sensing module 110 are resonant elements of the amplitude controllable oscillation module 120 , so the sensing module 110 operates. At the resonant frequency.

當操作在諧振頻率時,感測模組110的複數阻抗將已達到共軛匹配。此時,圖5之感測模組110的等效電路將可簡化成如圖6所示,其中圖6為依據本發明之又一實施例之感測模組的等效電路圖,且圖6中的等效電阻Req、等效電感Leq、可調電阻Rs與可調電容Cs將如式(4)至式(7)所示。When operating at the resonant frequency, the complex impedance of the sensing module 110 will have reached a conjugate match. At this time, the equivalent circuit of the sensing module 110 of FIG. 5 can be simplified as shown in FIG. 6, wherein FIG. 6 is an equivalent circuit diagram of the sensing module according to still another embodiment of the present invention, and FIG. The equivalent resistance R eq , the equivalent inductance L eq , the adjustable resistance R s and the adjustable capacitance C s in the equation will be as shown in the equations (4) to (7).

其中,Q L =R L L 2,且感測模組110的諧振頻率ω0如式(8)所示。Wherein, Q L = R L L 2 , and the resonance frequency ω 0 of the sensing module 110 is as shown in the formula (8).

參照圖6,當感測模組110操作在諧振頻率ω0時,待測樣品101的片電阻值將近似於串連的等效電阻Req與可調電阻Rs。此外,此時傳遞至感測模組110的平均功率將如式(9)所示:Referring to FIG. 6, when the sensing module 110 operates at the resonance frequency ω 0 , the sheet resistance value of the sample 101 to be tested will approximate the series-connected equivalent resistance R eq and the adjustable resistance R s . In addition, the average power delivered to the sensing module 110 at this time will be as shown in equation (9):

其中,ILm為驅動電流的最大振幅。當ILm=VD/(2Req)時,傳遞至感測模組110的平均功率將最大化。換言之,倘若等效電阻Req相等於可調電阻Rs時,傳遞至待測樣品101之阻抗RL的功率將最大化。亦即,當感測模組110操作在諧振頻率時,且感測模組110的實部阻抗又相互匹配,則傳遞至阻抗RL的功率將最大化。Where I Lm is the maximum amplitude of the drive current. When I Lm = V D / (2R eq ), the average power delivered to the sensing module 110 will be maximized. In other words, if the equivalent resistance R eq is equal to the adjustable resistance R s , the power delivered to the impedance R L of the sample 101 to be tested will be maximized. That is, when the sensing module 110 operates at the resonant frequency and the real impedances of the sensing modules 110 match each other, the power delivered to the impedance R L will be maximized.

此外,當待測樣品101導致感測模組110的等效電阻為Req=±ΔReq時,則驅動電流的最大振幅ILm將如式(10)所示:In addition, when the sample 101 to be tested causes the equivalent resistance of the sensing module 110 to be R eq = At ±ΔR eq , the maximum amplitude I Lm of the drive current will be as shown in equation (10):

根據式(10)來看,倘若±ΔRL為非接觸式量測裝置100所欲量測之待測樣品101的阻抗範圍,且為所欲量測之阻抗範圍的中間值,ΔRL為所欲量測之阻抗範圍的帶寬時,可先依據決定感測模組110之等效電阻的中間值,並設計匹配的阻抗,以提升非接觸式量測裝置100的靈敏度。According to formula (10), if ±ΔR L is the impedance range of the sample 101 to be measured, which is to be measured by the non-contact measuring device 100, and For the intermediate value of the impedance range to be measured, ΔR L is the bandwidth of the impedance range to be measured, and may be based on Determining the intermediate value of the equivalent resistance of the sensing module 110 And matching the impedance is designed to increase the sensitivity of the non-contact measuring device 100.

值得注意的是,在實際設計上,感測模組110還包括一內部電阻R1,且此內部電阻R1與等效電阻Req、等效電感Leq相互串接。相對地,驅動電流的最大振幅ILm將可進一步地表示成如式(11)所示。It should be noted that, in actual design, the sensing module 110 further includes an internal resistor R 1 , and the internal resistor R 1 is connected in series with the equivalent resistor R eq and the equivalent inductor L eq . In contrast, the maximum amplitude I Lm of the drive current will be further expressed as shown in equation (11).

需注意的是,如果內部電阻R1遠大於ΔReq時,會導致電流變化相當不靈敏。且知,ΔReq正比於1/RL。換言之,具有高阻抗的待測樣品通常會導致電流變化變得相當不靈敏。為了解決上述情況,基於耦合的片電阻關係,亦即R eq K/n 2 R L ,可使用圈數較少的驅動線圈112來增加Req的變化量。反之,當待測樣品為低阻抗的導體時,驅動線圈112的圈數應增加。It should be noted that if the internal resistance R 1 is much larger than ΔR eq , the current change will be quite insensitive. And know that ΔR eq is proportional to 1/R L . In other words, a sample with a high impedance typically causes the current to become quite insensitive. To solve the above case, the sheet resistance relationship based on coupling, i.e. R eq K / n 2 R L , the drive coil 112 with a small number of turns can be used to increase the amount of change in Req . Conversely, when the sample to be tested is a low-impedance conductor, the number of turns of the drive coil 112 should be increased.

依據上述概念,反觀圖1實施例。感測模組110可依據一阻抗控制訊號SI調整可調阻抗單元111。藉此,如圖4-6所示,在一較佳實施例中,可調阻抗單元111中的可調電容VC的電抗值與可調電阻VR的電阻值將產生相應的改變。此時,參照式(8),隨著感測模組110中可調電容VC的改變,感測模組110的諧振頻率ω0將產生相應的變動,進而致使非接觸式量測裝置100可以針對不同量測範圍的待測樣品進行檢測。此外,隨著感測模組110中可調電阻VR的改變,將可致使感測模組110的實部阻抗相互匹配,進而致使所傳遞的能量為最大化。In accordance with the above concept, the embodiment of Fig. 1 is reversed. The sensing module 110 can adjust the adjustable impedance unit 111 according to an impedance control signal SI. Thereby, as shown in FIG. 4-6, in a preferred embodiment, the reactance value of the adjustable capacitor VC in the adjustable impedance unit 111 and the resistance value of the adjustable resistor VR will be correspondingly changed. At this time, referring to the formula (8), as the adjustable capacitance VC in the sensing module 110 changes, the resonant frequency ω 0 of the sensing module 110 will change accordingly, thereby causing the non-contact measuring device 100 to The samples to be tested are tested for different measurement ranges. In addition, as the adjustable resistor VR in the sensing module 110 changes, the real impedance of the sensing module 110 can be matched to each other, thereby maximizing the delivered energy.

換言之,感測模組110可依據阻抗控制訊號SI來調整其量測範圍。因此,儘管振幅可控式振盪模組120是以自回授共振的方式來進行振盪,非接觸式量測裝置100只需利用阻抗控制訊號SI更改感測模組110的量測範圍,即可針對不同的待測樣品進行檢測。如此一來,針對不同的待測樣品,將可免除更換感測模組110的操作,進而有助於提升非接觸式量測裝置100在使用上的便利性,並降低裝置的硬體成本與人力成本。In other words, the sensing module 110 can adjust the measurement range according to the impedance control signal SI. Therefore, although the amplitude controllable oscillating module 120 oscillates in a manner of self-returning resonance, the non-contact measuring device 100 only needs to change the measuring range of the sensing module 110 by using the impedance control signal SI. Test for different samples to be tested. In this way, for different samples to be tested, the operation of replacing the sensing module 110 can be eliminated, thereby helping to improve the convenience of the non-contact measuring device 100 and reducing the hardware cost of the device. Labor costs.

另一方面,由於感測模組110是透過振幅可控式振盪模組120來進行驅動,因此感測模組110所消耗的功率也將反應在振幅可控式振盪模組120的輸出功率上。此外,振幅可控式振盪模組120是產生具有固定振幅的驅動電壓VD,因此感測模組110的阻抗變化將反應在振幅可控式振盪模組120所產生的驅動電流上。因此,電流感測器130是用以檢測振幅可控式振盪模組120的驅動電流,並據以產生一檢出訊號SD來反應待測樣品101的特性。On the other hand, since the sensing module 110 is driven by the amplitude controllable oscillation module 120, the power consumed by the sensing module 110 will also be reflected in the output power of the amplitude controllable oscillation module 120. . In addition, the amplitude controllable oscillating module 120 generates a driving voltage V D having a fixed amplitude, so that the impedance change of the sensing module 110 will be reflected in the driving current generated by the amplitude controllable oscillating module 120. Therefore, the current sensor 130 is configured to detect the driving current of the amplitude controllable oscillation module 120, and accordingly generate a detection signal SD to reflect the characteristics of the sample 101 to be tested.

值得一提的是,在一較佳實施例中,具有可調範圍的非接觸式量測裝置100更包括一控制器140。其中,控制器140用以產生阻抗控制訊號SI,並依據檢出訊號SD來判別待測樣品101的特性。舉例來說,在一實施例中,待測樣品101為一薄膜,且所述薄膜由不導磁材料所構成。此時,控制器140將依據檢出訊號SD取得待測樣品101的一特性值,亦即所述薄膜的片電阻值。It is worth mentioning that in a preferred embodiment, the non-contact measuring device 100 having an adjustable range further includes a controller 140. The controller 140 is configured to generate the impedance control signal SI, and determine the characteristics of the sample 101 to be tested according to the detected signal SD. For example, in one embodiment, the sample 101 to be tested is a film and the film is composed of a non-magnetic material. At this time, the controller 140 will obtain a characteristic value of the sample 101 to be tested, that is, a sheet resistance value of the film, according to the detection signal SD.

在實際操作上,控制器140存有多個預設對照表,且每一個預設對照表都記錄著電流值與片電阻值的相對關係。當控制器140發出阻抗控制訊號SI來控制感測模組110時,控制器140更依據阻抗控制訊號SI從所述多個預設對照表擇一作為特定對照表。藉此,當檢出訊號SD回授至控制器140時,控制器140將依據檢出訊號SD查詢特定對照表中的電流值,以取得相應的片電阻值,亦即所檢測到之待測樣品101的片電阻值。如此一來,將有助於提升非接觸式量測裝置在使用上的便利性,並降低非接觸式量測裝置的硬體成本與人力成本。In actual operation, the controller 140 stores a plurality of preset comparison tables, and each of the preset comparison tables records the relative relationship between the current value and the sheet resistance value. When the controller 140 sends the impedance control signal SI to control the sensing module 110, the controller 140 further selects one of the plurality of preset comparison tables as the specific comparison table according to the impedance control signal SI. Therefore, when the detection signal SD is sent back to the controller 140, the controller 140 will query the current value in the specific comparison table according to the detection signal SD to obtain the corresponding chip resistance value, that is, the detected to be tested. The sheet resistance value of the sample 101. As a result, it will help to improve the convenience of the non-contact measuring device and reduce the hardware cost and labor cost of the non-contact measuring device.

更進一步來看,如圖1所示,振幅可控式振盪模組120包括振盪電路121、振幅控制電路122以及電壓產生器123。其中,振盪電路121會利用感測模組110振盪出驅動電壓VD。亦即,感測模組110中的可調阻抗單元111與驅動線圈112為振盪電路121的諧振元件,以促使感測模組110以自回授共振的方式振盪出驅動電壓VD。另一方面,振幅控制電路122會接收來自感測模組110的驅動電壓VD,並將所接收的驅動電壓VD轉換為一偵測電壓。此外,振幅控制電路122會將偵測電壓與一參考電壓VR進行比較,並依據比較結果產生一控制資訊DT。其中,參考電壓VR是由電壓產生器123所提供。藉此,振盪電路121將依據控制資訊DT調整驅動電壓VD的振幅,以致使驅動電壓VD的振幅維持固定。Furthermore, as shown in FIG. 1 , the amplitude controllable oscillation module 120 includes an oscillation circuit 121 , an amplitude control circuit 122 , and a voltage generator 123 . The oscillating circuit 121 oscillates the driving voltage V D by using the sensing module 110. That is, the adjustable impedance unit 111 and the driving coil 112 in the sensing module 110 are resonant elements of the oscillating circuit 121 to cause the sensing module 110 to oscillate the driving voltage V D in a manner of self-resonating resonance. On the other hand, the amplitude control circuit 122 receives the driving voltage V D from the sensing module 110 and converts the received driving voltage V D into a detecting voltage. In addition, the amplitude control circuit 122 compares the detected voltage with a reference voltage V R and generates a control information DT according to the comparison result. Wherein the reference voltage V R is supplied by a voltage generator 123. Thereby, the oscillation circuit 121 adjusts the amplitude of the driving voltage V D in accordance with the control information DT so that the amplitude of the driving voltage V D is maintained constant.

雖然圖1實施例列舉了振幅可控式振盪模組120的實施型態,但其並非用以限定本發明。本領域具有通常知識者,可依據設計所需更改振幅可控式振盪模組120的實施型態。舉例來說,在一較佳實施例中,振幅可控式振盪模組120中的振盪電路121可以置換成一功率放大器與一鎖相迴路。藉此,鎖相迴路將可自行振盪出一振盪電壓,並透過功率放大器的放大而形成用以驅動感測模組110的驅動電壓。此外,功率放大器將會依據來自振幅控制電路122的控制資訊,將其所產生之驅動電壓的振幅維持固定。再者,鎖相迴路所接收的輸入訊號為來自感測模組110的驅動電壓,因此感測模組110將可持續地操作在諧振頻率上。值得注意的是,由於鎖相迴路可自行振盪出振盪電壓,故此種型態的振幅可控式振盪模組120更可以配合感測模組110的量測範圍振盪出不同頻率的振盪電壓。Although the embodiment of FIG. 1 exemplifies the implementation of the amplitude controllable oscillating module 120, it is not intended to limit the invention. Those skilled in the art will be able to modify the implementation of the amplitude controllable oscillating module 120 as desired by the design. For example, in a preferred embodiment, the oscillating circuit 121 in the amplitude controllable oscillating module 120 can be replaced with a power amplifier and a phase locked loop. Thereby, the phase-locked loop can oscillate an oscillating voltage by itself and form a driving voltage for driving the sensing module 110 through amplification of the power amplifier. In addition, the power amplifier will maintain the amplitude of the drive voltage generated by the power amplifier based on the control information from the amplitude control circuit 122. Moreover, the input signal received by the phase locked loop is the driving voltage from the sensing module 110, so the sensing module 110 will continuously operate at the resonant frequency. It is worth noting that the amplitude-controlled oscillating module 120 can oscillate the oscillating voltage of different frequencies in conjunction with the measuring range of the sensing module 110 because the phase-locked loop can oscillate the oscillating voltage by itself.

綜上所述,本發明是利用阻抗控制訊號來調整感測模組的量測範圍。藉此,儘管振幅可控式振盪模組是以自回授共振的方式來進行振盪,非接觸式量測裝置依舊可以在不更換感測模組的情況下,針對不同的待測樣品進行檢測。如此一來,將有助於提升非接觸式量測裝置在使用上的便利性,並降低非接觸式量測裝置的硬體成本與人力成本。In summary, the present invention utilizes an impedance control signal to adjust the measurement range of the sensing module. Therefore, although the amplitude controllable oscillation module oscillates in a manner of self-receiving resonance, the non-contact measuring device can still detect different samples to be tested without replacing the sensing module. . As a result, it will help to improve the convenience of the non-contact measuring device and reduce the hardware cost and labor cost of the non-contact measuring device.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100...具有可調範圍的非接觸式量測裝置100. . . Non-contact measuring device with adjustable range

110...感測模組110. . . Sensing module

111...可調阻抗單元111. . . Adjustable impedance unit

112...驅動線圈112. . . Drive coil

120...振幅可控式振盪模組120. . . Amplitude controllable oscillation module

121...振盪電路121. . . Oscillation circuit

122...振幅控制電路122. . . Amplitude control circuit

123...電壓產生器123. . . Voltage generator

130...電流感測器130. . . Current sensor

101...待測樣品101. . . Sample to be tested

SI...阻抗控制訊號SI. . . Impedance control signal

SD...檢出訊號SD. . . Checkout signal

VD...驅動電壓V D . . . Driving voltage

VR...參考電壓V R . . . Reference voltage

DT...控制資訊DT. . . Control information

T2...變壓器T 2 . . . transformer

L1...主線圈L 1 . . . Main coil

L2...次線圈L 2 . . . Secondary coil

I1、I2...電流I 1 , I 2 . . . Current

RS、RL...阻抗R S , R L . . . impedance

Req...等效電阻R eq . . . Equivalent resistance

Leq...等效電感L eq . . . Equivalent inductance

VC、Cs...可調電容VC, C s . . . Adjustable capacitor

VR、Rs...可調電阻VR, R s . . . Adjustable resistance

Zin...等效輸入阻抗Z in . . . Equivalent input impedance

Zout...等效輸出阻抗Z out . . . Equivalent output impedance

圖1為依據本發明之一實施例之具有可調範圍的非接觸式量測裝置的示意圖。1 is a schematic illustration of a non-contact measuring device having an adjustable range in accordance with an embodiment of the present invention.

圖2為依據本發明之一實施例之感測模組的耦合模型的示意圖。2 is a schematic diagram of a coupling model of a sensing module in accordance with an embodiment of the present invention.

圖3為依據本發明之一實施例之感測模組的等效電路圖。3 is an equivalent circuit diagram of a sensing module in accordance with an embodiment of the present invention.

圖4為依據本發明之另一實施例之感測模組的耦合模型的示意圖。4 is a schematic diagram of a coupling model of a sensing module in accordance with another embodiment of the present invention.

圖5為依據本發明之另一實施例之感測模組的等效電路圖。FIG. 5 is an equivalent circuit diagram of a sensing module according to another embodiment of the present invention.

圖6為依據本發明之又一實施例之感測模組的等效電路圖。6 is an equivalent circuit diagram of a sensing module according to still another embodiment of the present invention.

100...具有可調範圍的非接觸式量測裝置100. . . Non-contact measuring device with adjustable range

110...感測模組110. . . Sensing module

111...可調阻抗單元111. . . Adjustable impedance unit

112...驅動線圈112. . . Drive coil

120...振幅可控式振盪模組120. . . Amplitude controllable oscillation module

121...振盪電路121. . . Oscillation circuit

122...振幅控制電路122. . . Amplitude control circuit

123...電壓產生器123. . . Voltage generator

130...電流感測器130. . . Current sensor

101...待測樣品101. . . Sample to be tested

SI...阻抗控制訊號SI. . . Impedance control signal

SD...檢出訊號SD. . . Checkout signal

VD...驅動電壓V D . . . Driving voltage

VR...參考電壓V R . . . Reference voltage

DT...控制資訊DT. . . Control information

Claims (10)

一種具有可調範圍的非接觸式量測裝置,包括:一振幅可控式振盪模組,振盪出具有固定振幅的一驅動電壓;一感測模組,包括一可調阻抗單元,其中該感測模組依據一阻抗控制訊號調整該可調阻抗單元,並利用該驅動電壓輻射出用以感測一待測樣品的一交變磁場;以及一電流感測器,檢測該振幅可控式振盪模組所產生的驅動電流,並產生與該待測樣品相關的一檢出訊號。A non-contact measuring device with an adjustable range, comprising: an amplitude controllable oscillation module oscillating a driving voltage having a fixed amplitude; and a sensing module comprising an adjustable impedance unit, wherein the sensing The measuring module adjusts the adjustable impedance unit according to an impedance control signal, and uses the driving voltage to radiate an alternating magnetic field for sensing a sample to be tested; and a current sensor to detect the amplitude controllable oscillation The driving current generated by the module generates a detection signal associated with the sample to be tested. 如申請專利範圍第1項所述之具有可調範圍的非接觸式量測裝置,更包括:一控制器,產生該阻抗控制訊號。The non-contact measuring device with adjustable range as described in claim 1 further includes: a controller for generating the impedance control signal. 如申請專利範圍第2項所述之具有可調範圍的非接觸式量測裝置,其中該控制器依據該阻抗控制訊號從多個預設對照表中擇一作為一特定對照表,且該控制器依據該檢出訊號查詢該特定對照表,以取得與該待測樣品相關的一特性值。The non-contact measuring device with adjustable range as described in claim 2, wherein the controller selects one of the plurality of preset comparison tables as a specific comparison table according to the impedance control signal, and the control The device queries the specific comparison table according to the detection signal to obtain a characteristic value associated with the sample to be tested. 如申請專利範圍第3項所述之具有可調範圍的非接觸式量測裝置,其中該待測樣品為由不導磁材料所構成的一薄膜,且該特性值為該薄膜的片電阻值。The non-contact measuring device with adjustable range as described in claim 3, wherein the sample to be tested is a film composed of a non-magnetic material, and the characteristic value is a sheet resistance value of the film. . 如申請專利範圍第1項所述之具有可調範圍的非接觸式量測裝置,其中該感測模組更包括一驅動線圈,且該感測模組透過該驅動線圈幅射出該交變磁場,其中該驅動線圈電性連接該可調阻抗單元。The non-contact measuring device with an adjustable range as described in claim 1, wherein the sensing module further comprises a driving coil, and the sensing module transmits the alternating wave through the driving coil a magnetic field, wherein the driving coil is electrically connected to the adjustable impedance unit. 如申請專利範圍第5項所述之具有可調範圍的非接觸式量測裝置,其中該可調阻抗單元包括:一可調電容,與該驅動線圈相互並聯;以及一可調電阻,其第一端電性連接該可調電容,該可調電阻的第二端接收該驅動電壓。The non-contact measuring device with adjustable range as described in claim 5, wherein the adjustable impedance unit comprises: a tunable capacitor connected in parallel with the driving coil; and an adjustable resistor, the first The adjustable capacitor is electrically connected to one end, and the second end of the adjustable resistor receives the driving voltage. 如申請專利範圍第6項所述之具有可調範圍的非接觸式量測裝置,其中該可調電容包括一變容二極體。The non-contact measuring device with adjustable range as described in claim 6 wherein the adjustable capacitor comprises a varactor. 如申請專利範圍第1項所述之具有可調範圍的非接觸式量測裝置,其中該振幅可控式振盪模組包括:一振幅控制電路,接收來自該感測模組的該驅動電壓,並將所接收的該驅動電壓轉換為一偵測電壓,且該振幅控制電路將該偵測電壓與一參考電壓進行比較,並依據比較結果產生一控制資訊;以及一振盪電路,利用該感測模組振盪出該驅動電壓,並依據該控制資訊調整該驅動電壓的振幅,以致使該驅動電壓的振幅維持不變。The non-contact measuring device with adjustable range as described in claim 1, wherein the amplitude controllable oscillating module comprises: an amplitude control circuit for receiving the driving voltage from the sensing module, And converting the received driving voltage into a detecting voltage, and the amplitude control circuit compares the detected voltage with a reference voltage, and generates a control information according to the comparison result; and an oscillating circuit, using the sensing The module oscillates the driving voltage, and adjusts the amplitude of the driving voltage according to the control information, so that the amplitude of the driving voltage remains unchanged. 如申請專利範圍第8項所述之具有可調範圍的非接觸式量測裝置,其中該振幅可控式振盪模組包括更包括:一電壓產生器,產生該參考電壓。The non-contact measuring device with adjustable range as described in claim 8 , wherein the amplitude controllable oscillation module further comprises: a voltage generator for generating the reference voltage. 如申請專利範圍第1項所述之具有可調範圍的非接觸式量測裝置,其中該待測樣品為一薄膜,且該薄膜由不導磁材料所構成。A non-contact measuring device having an adjustable range as described in claim 1, wherein the sample to be tested is a film, and the film is composed of a non-magnetic material.
TW100149610A 2011-12-29 2011-12-29 Non-contact measurement device with adjustable range TWI472757B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100149610A TWI472757B (en) 2011-12-29 2011-12-29 Non-contact measurement device with adjustable range

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100149610A TWI472757B (en) 2011-12-29 2011-12-29 Non-contact measurement device with adjustable range

Publications (2)

Publication Number Publication Date
TW201326805A true TW201326805A (en) 2013-07-01
TWI472757B TWI472757B (en) 2015-02-11

Family

ID=49224955

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100149610A TWI472757B (en) 2011-12-29 2011-12-29 Non-contact measurement device with adjustable range

Country Status (1)

Country Link
TW (1) TWI472757B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI674415B (en) * 2016-12-27 2019-10-11 財團法人工業技術研究院 Detecting device and method thereof
CN110779436A (en) * 2017-12-21 2020-02-11 陈建璋 Non-contact upper and lower layer copper thickness measuring method applied to PCB multi-layer board
US11231392B2 (en) 2016-12-27 2022-01-25 Industrial Technology Research Institute Detecting device and method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160204A (en) * 1974-11-11 1979-07-03 Kaman Sciences Corporation Non-contact distance measurement system
US6433541B1 (en) * 1999-12-23 2002-08-13 Kla-Tencor Corporation In-situ metalization monitoring using eddy current measurements during the process for removing the film
US6552667B1 (en) * 2000-11-16 2003-04-22 Hydro-Quebec Non-contact measuring method and apparatus for producing a signal representative of a distance between facing surfaces
JP3587822B2 (en) * 2001-07-23 2004-11-10 株式会社荏原製作所 Eddy current sensor
JP5495493B2 (en) * 2008-02-07 2014-05-21 株式会社東京精密 Film thickness measuring apparatus and film thickness measuring method
JP2009229337A (en) * 2008-03-25 2009-10-08 Hioki Ee Corp Electrode inspection apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI674415B (en) * 2016-12-27 2019-10-11 財團法人工業技術研究院 Detecting device and method thereof
US11231392B2 (en) 2016-12-27 2022-01-25 Industrial Technology Research Institute Detecting device and method thereof
CN110779436A (en) * 2017-12-21 2020-02-11 陈建璋 Non-contact upper and lower layer copper thickness measuring method applied to PCB multi-layer board

Also Published As

Publication number Publication date
TWI472757B (en) 2015-02-11

Similar Documents

Publication Publication Date Title
TWI549414B (en) Resonant type non-contact power supply device, electric energy transmitting end and non-contact power supply method
CN107529346B (en) Inductive power transmitter
JP6515107B2 (en) Inductive position sensing with single channel interface to multiple resonant sensors
US10170939B2 (en) Foreign object detector, power transmitting device and power receiving device for wireless power transmission, and wireless power transmission system
KR102242819B1 (en) Inductive power transmitter
JP5465640B2 (en) Resonance type wireless power transmission apparatus and resonance type wireless power transmission method
TWI555295B (en) Resonant non-contact power supply and power receiver
KR20110110525A (en) Wireless power transmission apparatus and wireless power transmission mehod
JP2008261783A (en) Voltage measuring device
TWI467167B (en) Electromagnetic coupling measurement device of self-excited oscillation type
JP6168254B2 (en) Voltage detection circuit, power transmission device and power transmission system
TWI472757B (en) Non-contact measurement device with adjustable range
CN104081170B (en) Apparatus for measuring charge level
US20120206143A1 (en) Resonant electromagnetic sensor
US20150246373A1 (en) Method and circuit arrangement for determining a working range of an ultrasonic vibrating unit
CN111504444B (en) Device and method for determining resonant frequency of giant magnetostrictive ultrasonic transducer
WO2021114813A1 (en) High-frequency wireless charging efficiency and loss testing system and method
CN209840953U (en) Leading device of taking care of eddy current sensor that low temperature floats
CN111707868A (en) Oscillation circuit detection method and device
CN110426064A (en) Wireless sourceless sensor and wireless and passive method for sensing
CN106656172B (en) Variable-frequency separate-excited radio frequency generator
CN112050727B (en) Resonant wireless power transmission system receiving coil offset angle detection method and system
RU180909U1 (en) Electromagnetic radiation sensor
RU2073232C1 (en) Eddy current defectoscope and method for it tuning
JP2016200483A (en) Wireless measuring system of resonant element