TW201320071A - Self-refresh control circuit and memory including the same - Google Patents

Self-refresh control circuit and memory including the same Download PDF

Info

Publication number
TW201320071A
TW201320071A TW101123609A TW101123609A TW201320071A TW 201320071 A TW201320071 A TW 201320071A TW 101123609 A TW101123609 A TW 101123609A TW 101123609 A TW101123609 A TW 101123609A TW 201320071 A TW201320071 A TW 201320071A
Authority
TW
Taiwan
Prior art keywords
self
renew
signal
memory device
reset
Prior art date
Application number
TW101123609A
Other languages
Chinese (zh)
Other versions
TWI590244B (en
Inventor
Jeong-Tae Hwang
Original Assignee
Sk Hynix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sk Hynix Inc filed Critical Sk Hynix Inc
Publication of TW201320071A publication Critical patent/TW201320071A/en
Application granted granted Critical
Publication of TWI590244B publication Critical patent/TWI590244B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/402Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells with charge regeneration individual to each memory cell, i.e. internal refresh
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40615Internal triggering or timing of refresh, e.g. hidden refresh, self refresh, pseudo-SRAMs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/406Management or control of the refreshing or charge-regeneration cycles
    • G11C11/40611External triggering or timing of internal or partially internal refresh operations, e.g. auto-refresh or CAS-before-RAS triggered refresh
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/4076Timing circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/401Indexing scheme relating to cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C2211/406Refreshing of dynamic cells
    • G11C2211/4067Refresh in standby or low power modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)
  • Static Random-Access Memory (AREA)

Abstract

An self-refresh control circuit for controlling a self-refresh operation of a memory device includes a self-refresh control logic block configured to control the memory device to perform the self-refresh operation and an initial refresh control block configured to activate the self-refresh control logic block in an initialization period of the memory device.

Description

自我再新控制電路及包括其之記憶體 Self-renew control circuit and memory including the same

本發明之例示性實施例係關於一種記憶體,且更特定而言,係關於記憶體之自我再新操作。 Illustrative embodiments of the present invention relate to a memory and, more particularly, to a self-renew operation of a memory.

本申請案主張2011年6月29日申請之韓國專利申請案第10-2011-0063563號之優先權,該申請案之全部內容以引用的方式併入本文中。 The present application claims priority to Korean Patent Application No. 10-2011-0063, filed on Jun. 29, 2011, the entire disclosure of which is hereby incorporated by reference.

記憶體裝置接收不同設定值且設定操作時序,以便在被供應電力後開始其操作,且接著某一段時間過去,直至電源供應器穩定。 The memory device receives different set values and sets the operational timing to begin its operation after being powered, and then a certain period of time elapses until the power supply is stable.

圖1說明雙資料速率3(DDR3)同步動態隨機存取記憶體(SDRAM)裝置之初始化處理程序。 Figure 1 illustrates an initialization process for a dual data rate 3 (DDR3) synchronous dynamic random access memory (SDRAM) device.

參看圖1,供應電源供應電壓VDD及VDDQ,且將重設信號RESETB(其為用於重設晶片中之不同電路的信號)啟用至邏輯低位準,以初始化記憶體裝置之各種內部電路(諸如,鎖存器電路)之值。在完成此初始化處理程序後,亦即,在「101」時刻,將時鐘啟用信號CKE啟用至邏輯高位準,以開始記憶體裝置之同步操作,且基於作為命令COMMAND及記憶庫位址BA施加之值而設定各種值MRS及MR。 Referring to Figure 1, the power supply voltages VDD and VDDQ are supplied, and the reset signal RESETB, which is a signal for resetting different circuits in the wafer, is enabled to a logic low level to initialize various internal circuits of the memory device (such as , the value of the latch circuit). After the initialization process is completed, that is, at time "101", the clock enable signal CKE is enabled to a logic high level to start the synchronous operation of the memory device, and based on the command COMMAND and the memory address BA. Various values MRS and MR are set for the value.

在圖1中,「CK」表示時鐘,「CK#」表示反相時鐘,且「CKE」表示時鐘啟用信號,該時鐘啟用信號為指示記憶體裝置將與時鐘同步操作之週期的信號。另外,「MRS」 及「MR#」指示在記憶體裝置中設定之不同設定值。用斜線標記之部分表示「隨意」週期。在圖1中,「tXPR」表示重設CLE退出時間;「tMRD」表示模式暫存器集(MRS)命令之循環時間;「tMOD」表示自MRS命令至非MRS命令之延遲時間;且「tZQinit」表示初始ZQ校準時間。tXPR、tMRD、tMOD及tZQinit可為在標準記憶體規範(亦即,電子裝置工程聯合委員會(JEDEC)規範)中定義之參數。 In FIG. 1, "CK" represents a clock, "CK#" represents an inverted clock, and "CKE" represents a clock enable signal, which is a signal indicating a period in which the memory device will operate in synchronization with the clock. In addition, "MRS" And "MR#" indicates different set values set in the memory device. The portion marked with a slash indicates the "arbitrary" period. In Figure 1, "tXPR" indicates the reset CLE exit time; "tMRD" indicates the cycle time of the mode register set (MRS) command; "tMOD" indicates the delay time from the MRS command to the non-MRS command; and "tZQinit "Indicates the initial ZQ calibration time. tXPR, tMRD, tMOD, and tZQinit may be parameters defined in the standard memory specification (ie, the Joint Electron Devices Engineering Council (JEDEC) specification).

因為在初始化操作期間記憶體裝置不在其中執行任何其他操作,所以記憶體裝置中的內部電路之操作可能不穩定。亦即,當使用記憶體裝置之系統的供電相對快或電源供應電壓不合需要地不穩定時,記憶體裝置之內部電路可能在開機時不穩定,其可使記憶體裝置之操作出故障。 Since the memory device does not perform any other operations therein during the initialization operation, the operation of the internal circuitry in the memory device may be unstable. That is, when the power supply of the system using the memory device is relatively fast or the power supply voltage is undesirably unstable, the internal circuit of the memory device may be unstable at the time of power-on, which may cause the operation of the memory device to malfunction.

本發明之例示性實施例係針對在初始化記憶體裝置之處理程序中使記憶體裝置之內部電路的操作穩定。 An exemplary embodiment of the present invention is directed to stabilizing the operation of internal circuitry of a memory device in a process of initializing a memory device.

根據本發明之一例示性實施例,一種用於控制一記憶體裝置之一自我再新操作之自我再新控制電路包括:一自我再新控制邏輯區塊,其經組態以控制該記憶體裝置執行該自我再新操作;及一初始再新控制區塊,其經組態以在該記憶體裝置之一初始化週期中啟動該自我再新控制邏輯區塊。 According to an exemplary embodiment of the present invention, a self-renew control circuit for controlling a self-renew operation of a memory device includes: a self-renew control logic block configured to control the memory The device performs the self-renew operation; and an initial renew control block configured to initiate the self renew control logic block during an initialization cycle of the memory device.

根據本發明之另一例示性實施例,一種用於控制一記憶體裝置之一自我再新操作之方法包括:回應於用於該記憶體裝置之一初始化操作的一重設信號開始一自我再新操 作;及回應於用於該記憶體裝置之一同步化操作的一時鐘啟用信號結束該自我再新操作。 In accordance with another exemplary embodiment of the present invention, a method for controlling a self-renew operation of a memory device includes initiating a self-renew in response to a reset signal for an initialization operation of the memory device Fuck And ending the self-renew operation in response to a clock enable signal for one of the memory devices being synchronized.

根據本發明之又一例示性實施例,一種記憶體裝置包括:一記憶體胞陣列,其包括複數個記憶體胞;一列電路,其經組態以控制該記憶體胞陣列之一列操作;一命令解碼區塊,其經組態以藉由解碼一命令來產生一自我再新起始信號及一自我再新終止信號;一初始再新控制區塊,其經組態以產生在該記憶體裝置之一初始化週期中啟動的一自我再新週期信號;及一自我再新控制邏輯區塊,其經組態以控制該列電路在該自我再新週期信號的一啟動週期及自啟動該自我再新起始信號之一時刻至啟動該自我再新終止信號之一時刻的一週期中執行一自我再新操作。 According to still another exemplary embodiment of the present invention, a memory device includes: a memory cell array including a plurality of memory cells; and a column of circuits configured to control a column operation of the memory cell array; a command decode block configured to generate a self-renew start signal and a self-renew stop signal by decoding a command; an initial renew control block configured to be generated in the memory a self-renewing cycle signal initiated during one of the initialization cycles of the device; and a self-renew control logic block configured to control the column circuit during a start cycle of the self-renew cycle signal and self-starting the self A self-renew operation is performed in one cycle from the moment of the new start signal to the moment when one of the self-renewal signals is started.

以下將參看隨附圖式更詳細地描述本發明之例示性實施例。然而,本發明可按不同形式體現,且不應被解釋為受限於本文中所闡明之實施例。實情為,提供此等實施例,使得本發明將詳盡且完整,且將充分地將本發明之範疇傳達給熟習此項技術者。遍及本發明,相同的參考數字遍及本發明之各種圖及實施例指相同部分。 Exemplary embodiments of the present invention are described in more detail below with reference to the accompanying drawings. However, the invention may be embodied in different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and the scope of the invention will be fully conveyed to those skilled in the art. Throughout the invention, the same reference numerals refer to the same parts throughout the various figures and embodiments of the invention.

根據本發明之一例示性實施例,記憶體在記憶體裝置之初始化操作期間執行自我再新操作。下文,將詳細描述自我再新操作。 According to an exemplary embodiment of the invention, the memory performs a self-renew operation during an initialization operation of the memory device. Hereinafter, the self-renew operation will be described in detail.

一種記憶體裝置包括:一電容器,其作為用於儲存資料之一單元裝置;及一存取電晶體。此處,電容器被稱作記 憶體胞。當將資料「1」儲存於記憶體胞中時,將高電壓位準施加至該記憶體胞。當將資料「0」儲存於記憶體胞中時,將低電壓位準施加至該記憶體胞。理想地,電容器始終維持先前累積於其中之電荷,只要電容器的耦合端子之電壓位準不改變。然而,實際上,電容器隨著時間過去按漏電流之形式失去先前儲存於其中之電荷,且儲存於電容器中之資料未在資料「1」與「0」之間進行區分。因此,將執行感測儲存於記憶體胞中之資料及再次週期性地儲存資料之處理程序,以便連續地維持資料。一系列此等處理程序被稱作再新操作。再新處理程序包括自動再新操作及自我再新操作。自動再新操作為回應於自記憶體控制器施加之命令執行的再新操作(針對一個命令將記憶體裝置之作用操作執行一次)。自我再新操作為當記憶體控制器向記憶體通知自我再新週期時由記憶體裝置對自身執行之再新操作(記憶體裝置在自我再新模式下對自身若干次地執行作用操作)。 A memory device includes: a capacitor as a unit device for storing data; and an access transistor. Here, the capacitor is called a note Recall the body cell. When the data "1" is stored in the memory cell, a high voltage level is applied to the memory cell. When the data "0" is stored in the memory cell, a low voltage level is applied to the memory cell. Ideally, the capacitor always maintains the charge previously accumulated therein as long as the voltage level of the coupling terminal of the capacitor does not change. However, in practice, the capacitor loses the charge previously stored therein in the form of leakage current over time, and the data stored in the capacitor is not distinguished between the data "1" and "0". Therefore, the processing of sensing the data stored in the memory cell and the processing of storing the data again periodically will be performed to continuously maintain the data. A series of such handlers is referred to as a new operation. The new processing program includes automatic re-operation and self-renew operation. The automatic re-operation is a re-operation that is performed in response to a command applied from the memory controller (the operation of the memory device is performed once for one command). The self-renew operation is a re-execution operation performed by the memory device on itself when the memory controller notifies the memory of the self-renew cycle (the memory device performs an action operation on itself several times in the self-renew mode).

圖2為說明根據本發明之一例示性實施例的記憶體裝置之自我再新控制電路之方塊圖。 2 is a block diagram illustrating a self-renew control circuit of a memory device in accordance with an exemplary embodiment of the present invention.

參看圖2,自我再新控制電路包括一初始再新控制區塊210及一自我再新控制邏輯區塊220。 Referring to FIG. 2, the self-renew control circuit includes an initial re-control block 210 and a self-renew control logic block 220.

自我再新控制邏輯區塊220控制記憶體裝置在自我再新週期中執行自我再新操作。自我再新週期包括1)自啟用自我再新起始信號SREF_ENTRY之時刻至啟用自我再新終止信號SREF_EXIT之時刻的週期(其實質上類似於習知技 術),及2)啟用自我再新週期信號SELF的週期(其被描述為本發明之一例示性實施例)。控制記憶體裝置執行自我再新操作意謂藉由內部改變列位址來控制記憶體裝置執行作用操作。藉由改變列位址執行作用操作意謂依序啟用記憶體裝置中之複數個字線及經由位元線感測放大器放大由啟用之字線控制的記憶體胞之資料。因為自我再新控制邏輯區塊220之此自我再新操作控制為一般熟習本發明所屬技術者熟知,所以本文中省略關於其之進一步描述。 The self-renew control logic block 220 controls the memory device to perform a self-renew operation in the self-renew cycle. The self-renew cycle includes 1) a period from the moment when the self-renew start signal SREF_ENTRY is enabled to the moment when the self-renew termination signal SREF_EXIT is enabled (which is substantially similar to the conventional technique) And 2) enabling the period of the self-renewing periodic signal SELF (which is described as an exemplary embodiment of the invention). Controlling the memory device to perform a self-renew operation means controlling the memory device to perform an action operation by internally changing the column address. Performing the operation by changing the column address means sequentially enabling a plurality of word lines in the memory device and amplifying the data of the memory cells controlled by the enabled word line via the bit line sense amplifier. Since this self-renew operation control of the self-re-control logic block 220 is well known to those skilled in the art, further description thereof is omitted herein.

初始再新控制區塊210控制自我再新控制邏輯區塊220在記憶體裝置之初始化週期期間啟用,使得自我再新控制邏輯區塊220可控制記憶體裝置安全地執行自我再新操作。此處,記憶體裝置之初始化週期可包括於自對記憶體裝置供電之時刻至記憶體開始與時鐘同步化之時刻的週期內。具體言之,初始再新控制區塊210在記憶體裝置之初始化操作期間自停用重設信號RESETB之時刻至啟用時鐘啟用信號CKE之時刻啟用自我再新週期信號SELF,使得記憶體裝置執行自我再新操作。 The initial renew control block 210 controls the self renew control logic block 220 to be enabled during the initialization cycle of the memory device such that the self renew control logic block 220 can control the memory device to safely perform the self renew operation. Here, the initialization period of the memory device may be included in a period from the time when the memory device is powered to the time when the memory starts to synchronize with the clock. Specifically, the initial renew control block 210 enables the self-renew cycle signal SELF from the time when the reset signal RESETB is deactivated during the initialization operation of the memory device to the time when the clock enable signal CKE is enabled, so that the memory device executes the self. New operation.

當在初始化操作期間執行自我再新操作時,記憶體裝置中之各種電路亦操作,因此使電路之操作及由記憶體裝置之內部電路使用的電壓穩定。因此,可防止記憶體裝置在初始化操作後出故障。 When self-renewing operations are performed during the initialization operation, the various circuits in the memory device also operate, thereby stabilizing the operation of the circuit and the voltage used by the internal circuitry of the memory device. Therefore, it is possible to prevent the memory device from malfunctioning after the initialization operation.

此處,重設信號RESETB為用於初始化記憶體裝置之內部電路(諸如,鎖存器電路)之初始值的信號,且時鐘啟用信號CKE表示記憶體裝置與時鐘同步操作之週期。 Here, the reset signal RESETB is a signal for initializing an initial value of an internal circuit (such as a latch circuit) of the memory device, and the clock enable signal CKE represents a period in which the memory device operates in synchronization with the clock.

圖3為圖2中展示的初始再新控制區塊210之方塊圖。 3 is a block diagram of the initial renew control block 210 shown in FIG.

參看圖3,初始再新控制區塊210包括一脈衝產生單元310及一自我再新週期信號產生單元320。 Referring to FIG. 3, the initial re-control block 210 includes a pulse generating unit 310 and a self-renewing period signal generating unit 320.

脈衝產生單元310產生一重設脈衝RSTP,當重設信號RESETB自啟用狀態轉變至停用狀態時,重設脈衝RSTP被啟用。由於重設信號RESETB為啟用至邏輯低位準之信號,所以當重設信號RESETB自邏輯低位準轉變至邏輯高位準時,脈衝產生單元310將重設脈衝RSTP啟用至邏輯高位準。 The pulse generating unit 310 generates a reset pulse RSTP, and when the reset signal RESETB transitions from the enabled state to the deactivated state, the reset pulse RSTP is enabled. Since the reset signal RESETB is a signal enabled to a logic low level, when the reset signal RESETB transitions from a logic low level to a logic high level, the pulse generation unit 310 enables the reset pulse RSTP to a logic high level.

自我再新週期信號產生單元320回應於重設脈衝RSTP之啟用來啟用/啟動自我再新週期信號SELF,且回應於時鐘啟用信號CKE之啟用來停用/撤銷啟動自我再新週期信號SELF。 The self-renew cycle signal generation unit 320 activates/initiates the self-renew cycle signal SELF in response to the enable of the reset pulse RSTP, and deactivates/deactivates the self-renew cycle signal SELF in response to the enable of the clock enable signal CKE.

圖4為圖3中展示的脈衝產生單元310之方塊圖。 4 is a block diagram of the pulse generation unit 310 shown in FIG.

參看圖4,脈衝產生單元310包括:一反相延遲線410,其用於使重設信號RESETB反相且延遲;及重設脈衝產生單元420,其用於藉由邏輯組合反相延遲線410之輸出信號與重設信號RESETB來產生重設脈衝RSTP。 Referring to FIG. 4, the pulse generating unit 310 includes an inverted delay line 410 for inverting and delaying the reset signal RESETB, and a reset pulse generating unit 420 for logically combining the inverted delay line 410. The output signal and the reset signal RESETB generate a reset pulse RSTP.

反相延遲線410藉由延遲線411延遲重設信號RESETB,且藉由反相器412使經延遲之重設信號反相。 The inverted delay line 410 delays the reset signal RESETB by the delay line 411, and inverts the delayed reset signal by the inverter 412.

重設脈衝產生單元420包括一「反及」(NAND)閘421及一反相器422。當反相延遲線410之輸出信號及重設信號RESETB皆在邏輯高位準下時,重設脈衝產生單元420將重設脈衝RSTP啟用至邏輯高位準,且輸出經啟用之重設脈 衝RSTP。總之,重設脈衝RSTP變為當重設信號RESETB自邏輯低位準轉變至邏輯高位準時啟用之脈衝信號。 The reset pulse generating unit 420 includes a "NAND" gate 421 and an inverter 422. When the output signal of the inverted delay line 410 and the reset signal RESETB are both at the logic high level, the reset pulse generating unit 420 enables the reset pulse RSTP to the logic high level, and outputs the enabled reset pulse. Rush RSTP. In summary, the reset pulse RSTP becomes a pulse signal that is enabled when the reset signal RESETB transitions from a logic low level to a logic high level.

圖5為圖3中展示的自我再新週期信號產生單元320之方塊圖。 FIG. 5 is a block diagram of the self-renew cycle signal generating unit 320 shown in FIG.

參看圖5,自我再新週期信號產生單元320包括第一信號產生器510、第二信號產生器520及設定-重設(SR)鎖存器530。 Referring to FIG. 5, the self-renewing period signal generating unit 320 includes a first signal generator 510, a second signal generator 520, and a set-reset (SR) latch 530.

第一信號產生器510包括一反相器511及一「反及」閘512。第一信號產生器510在將重設脈衝RSTP啟用至邏輯高位準且將時鐘啟用信號CKE停用至邏輯低位準之週期中將第一信號A啟用至邏輯低位準。 The first signal generator 510 includes an inverter 511 and a "reverse" gate 512. The first signal generator 510 enables the first signal A to a logic low level during a period in which the reset pulse RSTP is enabled to a logic high level and the clock enable signal CKE is deactivated to a logic low level.

第二信號產生器520包括一反相器521及一「反或」(NOR)閘522。當將重設信號RESETB啟用至邏輯低位準或將時鐘啟用信號CKE啟用至邏輯高位準時,第二信號產生器520將第二信號B啟用至邏輯低位準。 The second signal generator 520 includes an inverter 521 and an "NOR" gate 522. When the reset signal RESETB is enabled to a logic low level or the clock enable signal CKE is enabled to a logic high level, the second signal generator 520 enables the second signal B to a logic low level.

當將第一信號A啟用至邏輯低位準時,SR鎖存器530將自我再新週期信號SELF啟用至邏輯高位準,且當將第二信號B啟用至邏輯低位準時,SR鎖存器530將自我再新週期信號SELF停用至邏輯低位準。 When the first signal A is enabled to a logic low level, the SR latch 530 enables the self-renew cycle signal SELF to a logic high level, and when the second signal B is enabled to a logic low level, the SR latch 530 will self The new cycle signal SELF is deactivated to a logic low level.

圖6為說明圖2至圖5中展示的電路之操作之時序圖。 Figure 6 is a timing diagram illustrating the operation of the circuits shown in Figures 2 through 5.

參看圖6,記憶體裝置之重設信號RESETB啟用至邏輯低位準,且因此,設定記憶體裝置之內部電路之初始值。當將啟用至邏輯低位準之重設信號RESETB停用至邏輯高位準時,回應於重設信號RESETB之停用,將重設脈衝RSTP 啟用至邏輯高位準。回應於啟用至邏輯高位準之重設脈衝RSTP,將自我再新週期信號SELF啟用至邏輯高位準,且當啟用自我再新週期信號SELF時,記憶體裝置之自我再新操作由自我再新控制邏輯區塊220執行。 Referring to Figure 6, the reset signal RESETB of the memory device is enabled to a logic low level and, therefore, the initial value of the internal circuitry of the memory device is set. When the reset signal RESETB enabled to the logic low level is deactivated to the logic high level, the pulse RSTP will be reset in response to the deactivation of the reset signal RESETB. Enable to logic high level. In response to the reset pulse RSTP enabled to logic high level, the self-renew cycle signal SELF is enabled to a logic high level, and when the self-renew cycle signal SELF is enabled, the self-renew operation of the memory device is re-newed by the self. Logic block 220 is executed.

隨後,當將時鐘啟用信號CKE啟用至邏輯高位準時,回應於時鐘啟用信號CKE之啟用,將自我再新週期信號SELF停用至邏輯低位準。結果,結束自我再新操作。在將時鐘啟用信號CKE啟用至邏輯高位準後,記憶體裝置與時鐘同步操作,接收命令,且執行對應於該命令之操作。 Subsequently, when the clock enable signal CKE is enabled to the logic high level, the self-renew cycle signal SELF is deactivated to a logic low level in response to the enable of the clock enable signal CKE. As a result, the self-renew operation is ended. After the clock enable signal CKE is enabled to the logic high level, the memory device operates in synchronization with the clock, receives the command, and performs an operation corresponding to the command.

圖7為說明根據本發明之一實施例的包括圖2中展示之一自我再新控制電路的記憶體裝置之方塊圖。圖式展示與記憶體裝置之列操作(其包括作用操作及再新操作)有關的結構。 7 is a block diagram illustrating a memory device including one of the self-renew control circuits shown in FIG. 2, in accordance with an embodiment of the present invention. The figure shows the structure associated with the operation of the memory device, which includes the operation and the re-operation.

參看圖7,該記憶體裝置包括一記憶體胞陣列710、一列電路720、一命令解碼區塊730、一初始再新控制區塊210及一自我再新控制邏輯區塊220。記憶體胞陣列710包括複數個記憶體胞,列電路720控制記憶體胞陣列710之列操作。命令解碼區塊730藉由解碼命令COMMAND產生自我再新起始信號SREF_ENTRY及自我再新終止信號SREF_EXIT。初始再新控制區塊210產生在記憶體裝置之初始化操作期間啟用的自我再新週期信號SELF。自我再新控制邏輯區塊220控制列電路720在自我再新週期信號SELF之啟用週期及自啟用自我再新起始信號SREF_ENTRY之時刻至啟用自我再新終止信號SREF_EXIT之時刻的週期 中執行自我再新操作。 Referring to FIG. 7, the memory device includes a memory cell array 710, a column of circuits 720, a command decode block 730, an initial renew control block 210, and a self-renew control logic block 220. The memory cell array 710 includes a plurality of memory cells, and the column circuit 720 controls the column operations of the memory cell array 710. The command decode block 730 generates a self-renew start signal SREF_ENTRY and a self-renew stop signal SREF_EXIT by the decode command COMMAND. The initial regeneration control block 210 generates a self-renew cycle signal SELF that is enabled during the initialization operation of the memory device. The self-renew control logic block 220 controls the period of the column circuit 720 during the enable period of the self-renew cycle signal SELF and the time from the activation of the self-restart signal SREF_ENTRY to the time when the self-renew termination signal SREF_EXIT is enabled. Perform self-renewing operations.

命令解碼區塊730藉由解碼經由命令緩衝器701施加至記憶體裝置之命令COMMAND來控制列電路720之操作。當將用於開始自我再新操作之命令施加至記憶體裝置時,命令解碼區塊730解碼該命令且啟用自我再新起始信號SREF_ENTRY。當將用於結束自我再新操作之命令施加至記憶體裝置時,命令解碼區塊730解碼該命令且啟用自我再新終止信號SREF_EXIT。除此之外,如眾所周知,命令解碼區塊730解碼施加至記憶體裝置之不同命令(諸如,讀取命令、寫入命令及作用命令),且控制記憶體裝置之內部電路。 The command decode block 730 controls the operation of the column circuit 720 by decoding the command COMMAND applied to the memory device via the command buffer 701. When a command to initiate a self-renew operation is applied to the memory device, the command decode block 730 decodes the command and enables the self-renew start signal SREF_ENTRY. When a command for ending the self-renew operation is applied to the memory device, the command decode block 730 decodes the command and enables the self-renew termination signal SREF_EXIT. In addition to this, as is well known, the command decode block 730 decodes different commands (such as read commands, write commands, and action commands) applied to the memory device and controls the internal circuitry of the memory device.

如參看圖2至圖6描述之初始再新控制區塊210基於自記憶體裝置之外部經由緩衝器703及704施加的重設信號RESETB及時鐘啟用信號CKE產生自我再新週期信號SELF。 The initial renew control block 210, as described with reference to FIGS. 2 through 6, generates a self-renew cycle signal SELF based on the reset signal RESETB and the clock enable signal CKE applied from the outside of the memory device via the buffers 703 and 704.

自我再新控制邏輯區塊220在自我再新週期信號SELF之啟用週期及自啟用自我再新起始信號SREF_ENTRY之時刻至啟用自我再新終止信號SREF_EXIT之時刻的週期中控制列電路720,以便再新儲存於記憶體胞陣列710中之資料。 The self-renew control logic block 220 controls the column circuit 720 during the period of the self-renew cycle signal SELF enable period and the time from the activation of the self-restart signal SREF_ENTRY to the time when the self-renew termination signal SREF_EXIT is enabled, so as to The new data stored in the memory cell array 710.

在再新週期外,列電路720在命令解碼區塊730之控制下基於經由位址緩衝器702輸入之位址ADD對記憶體胞陣列710之記憶體胞中的選定記憶體胞執行列操作(例如,作用操作)。在自我再新週期中,列電路720在自我再新控制邏輯區塊220之控制下依序再新儲存於記憶體胞陣列710中之 資料。 Outside the renew cycle, column circuit 720 performs column operations on selected memory cells in the memory cells of memory cell array 710 based on address ADD input via address buffer 702 under control of command decode block 730 ( For example, action operation). In the self-renew cycle, the column circuit 720 is sequentially stored in the memory cell array 710 under the control of the self-re-control logic block 220. data.

根據本發明之技術,在記憶體裝置之初始操作週期中執行自我再新操作。因此,記憶體裝置之各種內部電路在初始化週期中操作,且結果,內部電路穩定。 In accordance with the teachings of the present invention, a self-renew operation is performed during an initial operational cycle of the memory device. Therefore, various internal circuits of the memory device operate in the initialization period, and as a result, the internal circuit is stable.

雖然已關於特定實施例描述了本發明,但對於熟習此項技術者將顯而易見,可在不脫離如隨附申請專利範圍中界定的本發明之精神及範疇之情況下進行各種改變及修改。 While the invention has been described with respect to the specific embodiments of the present invention, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention as defined in the appended claims.

101‧‧‧時刻 101‧‧‧ moments

210‧‧‧初始再新控制區塊 210‧‧‧Initial re-control block

220‧‧‧自我再新控制邏輯區塊 220‧‧‧ Self-renew control logic block

310‧‧‧脈衝產生單元 310‧‧‧pulse generating unit

320‧‧‧自我再新週期信號產生單元 320‧‧‧ Self-renew cycle signal generation unit

410‧‧‧反相延遲線 410‧‧‧Inverted delay line

411‧‧‧延遲線 411‧‧‧delay line

412‧‧‧反相器 412‧‧‧Inverter

420‧‧‧重設脈衝產生單元 420‧‧‧Reset pulse generation unit

421‧‧‧「反及」閘 421‧‧‧"Reverse" brake

422‧‧‧反相器 422‧‧‧Inverter

510‧‧‧第一信號產生器 510‧‧‧First signal generator

511‧‧‧反相器 511‧‧‧Inverter

512‧‧‧「反及」閘 512‧‧‧"Reverse" gate

520‧‧‧第二信號產生器 520‧‧‧Second signal generator

521‧‧‧反相器 521‧‧‧Inverter

522‧‧‧「反或」閘 522‧‧‧"Anti-or" gate

530‧‧‧設定-重設(SR)鎖存器 530‧‧‧Set-Reset (SR) Latch

701‧‧‧命令緩衝器 701‧‧‧Command buffer

702‧‧‧位址緩衝器 702‧‧‧ address buffer

703‧‧‧緩衝器 703‧‧‧buffer

704‧‧‧緩衝器 704‧‧‧buffer

710‧‧‧記憶體胞陣列 710‧‧‧ memory cell array

720‧‧‧列電路 720‧‧‧ column circuit

730‧‧‧命令解碼區塊 730‧‧‧Command decoding block

圖1為展示雙資料速率3(DDR3)同步動態隨機存取記憶體(SDRAM)裝置之初始化處理程序之時序圖。 1 is a timing diagram showing an initialization process of a dual data rate 3 (DDR3) synchronous dynamic random access memory (SDRAM) device.

圖2為說明根據本發明之一例示性實施例的記憶體裝置之自我再新控制電路之方塊圖。 2 is a block diagram illustrating a self-renew control circuit of a memory device in accordance with an exemplary embodiment of the present invention.

圖3為圖2中展示的初始再新控制區塊之方塊圖。 3 is a block diagram of the initial renew control block shown in FIG. 2.

圖4為圖3中展示的脈衝產生單元之方塊圖。 4 is a block diagram of the pulse generation unit shown in FIG.

圖5為圖3中展示的自我再新週期信號產生單元之方塊圖。 FIG. 5 is a block diagram of the self-renew cycle signal generating unit shown in FIG.

圖6為說明圖2至圖5中展示的電路之操作之時序圖。 Figure 6 is a timing diagram illustrating the operation of the circuits shown in Figures 2 through 5.

圖7為說明根據本發明之一例示性實施例的包括圖2中展示之一自我再新控制電路的記憶體裝置之方塊圖。 FIG. 7 is a block diagram illustrating a memory device including one of the self-renew control circuits shown in FIG. 2, in accordance with an exemplary embodiment of the present invention.

210‧‧‧初始再新控制區塊 210‧‧‧Initial re-control block

220‧‧‧自我再新控制邏輯區塊 220‧‧‧ Self-renew control logic block

Claims (14)

一種用於控制一記憶體裝置之一自我再新操作之自我再新控制電路,包含:一自我再新控制邏輯區塊,其經組態以控制該記憶體裝置執行該自我再新操作;及一初始再新控制區塊,其經組態以在該記憶體裝置之一初始化週期中啟動該自我再新控制邏輯區塊。 A self-renew control circuit for controlling a self-renew operation of a memory device, comprising: a self-renew control logic block configured to control the memory device to perform the self-renew operation; An initial re-control block configured to initiate the self-renew control logic block during an initialization cycle of the memory device. 如請求項1之自我再新控制電路,其中該初始再新控制區塊經組態以回應於一重設信號之一撤銷啟動來啟動該自我再新控制邏輯區塊,且回應於一時鐘啟用信號之一啟動來撤銷啟動該自我再新控制邏輯區塊。 The self-renew control circuit of claim 1, wherein the initial renew control block is configured to initiate the self renew control logic block in response to one of the reset signals being deactivated, and responsive to a clock enable signal One of them starts to undo the startup of the self-re-control logic block. 如請求項2之自我再新控制電路,其中該初始再新控制區塊包含:一脈衝產生單元,其經組態以產生一重設脈衝,其中在撤銷啟動該重設信號時啟動該重設脈衝;及一自我再新週期信號產生單元,其經組態以回應於該重設脈衝之一啟動來啟動一自我再新週期信號,且回應於該時鐘啟用信號之該啟動來撤銷啟動該自我再新週期信號,其中在啟動該自我再新週期信號之一週期中啟動該自我再新控制邏輯區塊。 The self-renew control circuit of claim 2, wherein the initial re-control block comprises: a pulse generating unit configured to generate a reset pulse, wherein the reset pulse is initiated when the reset signal is deactivated And a self-renewing cycle signal generating unit configured to activate a self-renewing cycle signal in response to activation of one of the reset pulses, and to initiate activation of the self in response to the activation of the clock enable signal A new periodic signal in which the self-renew control logic block is initiated during one of the cycles of initiating the self-renew cycle signal. 如請求項3之自我再新控制電路,其中該自我再新週期信號產生單元包含:一第一信號產生器,其經組態以當啟動該重設脈衝且 撤銷啟動該時鐘啟用信號時啟動一第一信號;一第二信號產生器,其經組態以當啟動該重設信號或撤銷啟動該時鐘啟用信號時啟動一第二信號;及一設定-重設(SR)鎖存器,其經組態以回應於該第一信號啟動該自我再新週期信號,且回應於該第二信號撤銷啟動該自我再新週期信號。 The self-renewing control circuit of claim 3, wherein the self-renewing period signal generating unit comprises: a first signal generator configured to activate the reset pulse and Activating a first signal when the clock enable signal is deactivated; and a second signal generator configured to activate a second signal when the reset signal is activated or the clock enable signal is deactivated; and a set-weight A (SR) latch is provided that is configured to initiate the self-renew cycle signal in response to the first signal and to initiate activation of the self-renew cycle signal in response to the second signal. 如請求項3之自我再新控制電路,其中該脈衝產生單元包含:一反相延遲線,其經組態以將該重設信號反相且延遲以產生一經反相且延遲之重設信號;及一重設脈衝產生單元,其經組態以藉由邏輯組合該經反相且延遲之重設信號與該重設信號來產生且輸出該重設信號。 The self-renew control circuit of claim 3, wherein the pulse generating unit comprises: an inverted delay line configured to invert and delay the reset signal to generate an inverted and delayed reset signal; And a reset pulse generating unit configured to generate and output the reset signal by logically combining the inverted and delayed reset signal with the reset signal. 如請求項1之自我再新控制電路,其中該記憶體裝置之該初始化週期包括自該記憶體裝置之一供電時刻至該記憶體裝置開始執行一同步化操作之一時刻的一週期。 The self-renew control circuit of claim 1, wherein the initialization period of the memory device comprises a period from a power supply time of the memory device to a time when the memory device begins to perform a synchronization operation. 如請求項1之自我再新控制電路,其中在將一電力供應至該記憶體裝置且設定該記憶體裝置之初始值後,該自我再新控制邏輯區塊經組態以控制該記憶體裝置在該記憶體裝置與一參考時鐘同步操作前執行該自我再新操作。 The self-renew control circuit of claim 1, wherein the self-renew control logic block is configured to control the memory device after supplying a power to the memory device and setting an initial value of the memory device. The self-renew operation is performed before the memory device operates in synchronization with a reference clock. 一種用於控制一記憶體裝置之一自我再新操作之方法,包含:回應於用於該記憶體裝置之一初始化操作的一重設信 號開始一自我再新操作;及回應於用於該記憶體裝置之一同步化操作的一時鐘啟用信號結束該自我再新操作。 A method for controlling a self-renew operation of a memory device, comprising: responding to a reset signal for an initialization operation of the memory device The number begins with a self-renew operation; and ends the self-renew operation in response to a clock enable signal for one of the memory devices' synchronization operations. 如請求項8之方法,其中該重設信號包括經啟動以設定該記憶體裝置之初始值且經撤銷啟動以用於該初始化操作的一信號,且該時鐘啟用信號包括供應至該記憶體裝置以用於該同步化操作的一信號。 The method of claim 8, wherein the reset signal includes a signal that is activated to set an initial value of the memory device and is deactivated for use in the initialization operation, and the clock enable signal includes a supply to the memory device A signal for the synchronization operation. 一種記憶體裝置,其包含:一記憶體胞陣列,其包含複數個記憶體胞;一列電路,其經組態以控制該記憶體胞陣列之一列操作;一命令解碼區塊,其經組態以藉由解碼一命令來產生一自我再新起始信號及一自我再新終止信號;一初始再新控制區塊,其經組態以產生在該記憶體裝置之一初始化週期中啟動的一自我再新週期信號;及一自我再新控制邏輯區塊,其經組態以控制該列電路在該自我再新週期信號的一啟動週期及自啟動該自我再新起始信號之一時刻至啟動該自我再新終止信號之一時刻的一週期中執行一自我再新操作。 A memory device comprising: a memory cell array comprising a plurality of memory cells; a column of circuits configured to control a column operation of the memory cell array; a command decoding block configured Generating a self-renew start signal and a self-renew stop signal by decoding a command; an initial re-control block configured to generate a start-up in an initialization cycle of the memory device a self-renewing cycle signal; and a self-renew control logic block configured to control the column circuit during a start-up period of the self-renew cycle signal and a time from the initiation of the self-restart signal A self-renew operation is performed in a cycle at which one of the self-renewal signals is initiated. 如請求項10之記憶體裝置,其中該初始再新控制區塊經組態以回應於一重設信號之一撤銷啟動來啟動該自我再新週期信號,且回應於一時鐘啟用信號之一啟動來撤銷啟動該自我再新週期信號。 The memory device of claim 10, wherein the initial renew control block is configured to initiate the self renew cycle signal in response to one of the reset signals being deactivated, and in response to activation of one of the clock enable signals Undo the self-renew cycle signal. 如請求項11之記憶體裝置,其中該初始再新控制區塊包 含:一脈衝產生單元,其經組態以產生一重設脈衝,其中在撤銷啟動該重設信號時啟動該重設脈衝;及一自我再新週期信號產生單元,其經組態以回應於該重設脈衝之一啟動來啟動該自我再新週期信號,且回應於該時鐘啟用信號之該啟動來撤銷啟動該自我再新週期信號。 The memory device of claim 11, wherein the initial re-control block package And a pulse generating unit configured to generate a reset pulse, wherein the reset pulse is activated when the reset signal is deactivated; and a self-renew cycle signal generating unit configured to respond to the One of the reset pulses is activated to activate the self-renew cycle signal and to initiate the self-renew cycle signal in response to the activation of the clock enable signal. 如請求項10之記憶體裝置,其中該記憶體裝置之該初始化週期包括自該記憶體裝置之一供電時刻至該記憶體裝置開始執行一同步化操作之一時刻的一週期。 The memory device of claim 10, wherein the initialization period of the memory device comprises a period from a time when the memory device is powered to a time when the memory device begins to perform a synchronization operation. 如請求項10之記憶體裝置,其中在將一電力供應至該記憶體裝置且設定該記憶體裝置之初始值後,該自我再新控制邏輯區塊經組態以回應於來自該初始再新控制區塊之一輸出在與一參考時鐘的一同步前執行該自我再新操作。 The memory device of claim 10, wherein after a power is supplied to the memory device and an initial value of the memory device is set, the self-renew control logic block is configured to respond to the initial regeneration One of the control blocks outputs the self-renew operation prior to synchronization with a reference clock.
TW101123609A 2011-06-29 2012-06-29 Self-refresh control circuit and memory including the same TWI590244B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110063563A KR101921248B1 (en) 2011-06-29 2011-06-29 Self refresh control circuit and memory including the same

Publications (2)

Publication Number Publication Date
TW201320071A true TW201320071A (en) 2013-05-16
TWI590244B TWI590244B (en) 2017-07-01

Family

ID=47402436

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101123609A TWI590244B (en) 2011-06-29 2012-06-29 Self-refresh control circuit and memory including the same

Country Status (4)

Country Link
US (1) US8988961B2 (en)
KR (1) KR101921248B1 (en)
CN (1) CN102855925B (en)
TW (1) TWI590244B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10390705B2 (en) * 2013-10-30 2019-08-27 National Chiao Tung University Portable noninvasive inspection device
CN105304117B (en) * 2014-06-03 2018-09-07 华邦电子股份有限公司 Memory self-refreshing device and method
KR20170030305A (en) 2015-09-09 2017-03-17 삼성전자주식회사 Refresh method of memory device
KR102432701B1 (en) * 2015-11-18 2022-08-16 에스케이하이닉스 주식회사 Circuit for controlling refresh active and memory device including same
CN106373601B (en) * 2016-10-19 2019-02-19 成都益睿信科技有限公司 A kind of impulse generator of self-refresh
CN110364220B (en) * 2018-04-09 2022-04-29 展讯通信(上海)有限公司 Circuit system and chip for measuring data reading time of embedded memory
KR102546652B1 (en) * 2018-09-07 2023-06-22 삼성전자주식회사 Semiconductor memory device, and memory system having the same
CN113823340B (en) * 2021-09-18 2023-08-25 长鑫存储技术有限公司 Method and circuit for protecting refresh command, memory refresh method and circuit and equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10228768A (en) * 1997-02-14 1998-08-25 Mitsubishi Electric Corp Semiconductor memory
US5999481A (en) * 1997-08-22 1999-12-07 Micron Technology, Inc. Method and apparatus for controlling the operation of an integrated circuit responsive to out-of-synchronism control signals
KR100529033B1 (en) * 2003-05-23 2005-11-17 주식회사 하이닉스반도체 Synchronous semiconductor memory device
JP4478974B2 (en) * 2004-01-30 2010-06-09 エルピーダメモリ株式会社 Semiconductor memory device and refresh control method thereof
CN100511470C (en) * 2004-11-29 2009-07-08 中兴通讯股份有限公司 Reading and writing method of double speed dynamic random access memory

Also Published As

Publication number Publication date
KR20130002551A (en) 2013-01-08
KR101921248B1 (en) 2018-11-22
TWI590244B (en) 2017-07-01
US20130003482A1 (en) 2013-01-03
US8988961B2 (en) 2015-03-24
CN102855925B (en) 2016-09-21
CN102855925A (en) 2013-01-02

Similar Documents

Publication Publication Date Title
TWI590244B (en) Self-refresh control circuit and memory including the same
US20190066766A1 (en) Systems and methods for refreshing a memory bank while accessing another memory bank using a shared address path
JP4847532B2 (en) Semiconductor memory having reset function
TWI559316B (en) Semiconductor device
JP2006309913A (en) Semiconductor memory device
JP6429260B1 (en) Pseudo static random access memory and refresh method thereof
US6990032B2 (en) Semiconductor memory device capable of stably performing entry and exit operations of self refresh mode and the self refresh method thereof
TW201730882A (en) Semiconductor device
TWI588840B (en) Memory device and method for operating the same
TWI745578B (en) Semiconductor devices
TWI736710B (en) Memory device, memory system including the same, operation method of the memory system
KR20120020319A (en) Shift circuit
US10957378B1 (en) Control circuit and control method thereof for pseudo static random access memory
JP6999791B1 (en) Semiconductor storage device
TWI709964B (en) Control circuit and control method thereof for pseudo static random access memory
US11169562B1 (en) Electronic devices for controlling clock generation
JP4276112B2 (en) Semiconductor device including delay locked loop circuit, delay locked loop control circuit, and method for controlling delay locked loop circuit
CN112992222B (en) Control circuit applied to pseudo-static random access memory and control method thereof
KR100924017B1 (en) Auto precharge circuit and method for auto precharge
KR101907071B1 (en) Clock delivery circuit and semiconductor device including the same
WO2002099811A1 (en) Semiconductor storage device
KR20120076406A (en) Internal clock generating circuit
JP2013161495A (en) Semiconductor device and control method of the same