TW201318068A - Semiconductor device having metal gate and manufacturing method thereof - Google Patents

Semiconductor device having metal gate and manufacturing method thereof Download PDF

Info

Publication number
TW201318068A
TW201318068A TW100138149A TW100138149A TW201318068A TW 201318068 A TW201318068 A TW 201318068A TW 100138149 A TW100138149 A TW 100138149A TW 100138149 A TW100138149 A TW 100138149A TW 201318068 A TW201318068 A TW 201318068A
Authority
TW
Taiwan
Prior art keywords
metal layer
gate trench
layer
work function
gate
Prior art date
Application number
TW100138149A
Other languages
Chinese (zh)
Inventor
Chi-Sheng Tseng
Jie-Ning Yang
Kuang-Hung Huang
Yao-Chang Wang
Po-Jui Liao
Shih-Chieh Hsu
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW100138149A priority Critical patent/TW201318068A/en
Publication of TW201318068A publication Critical patent/TW201318068A/en

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A manufacturing method of a semiconductor device having metal gate includes providing a substrate having a first semiconductor device and a second semiconductor device formed thereon, the first semiconductor device having a first gate trench and the second semiconductor device having a second gate trench, forming a first work function metal layer in the first gate trench, forming a second work function metal layer in the first gate trench and the second gate trench, forming a first patterned mask layer exposing portions of the second work function metal layer in the first gate trench and the second gate trench, and performing an etching process to remove the exposed second work function metal layer.

Description

具有金屬閘極之半導體元件及其製作方法Semiconductor component with metal gate and manufacturing method thereof

本發明係有關於一種具有金屬閘極(metal gate)之半導體元件及其製作方法,尤指一種實施後閘極(gate last)製程之具有金屬閘極之半導體元件及其製作方法。The present invention relates to a semiconductor device having a metal gate and a method of fabricating the same, and more particularly to a semiconductor device having a metal gate in a gate last process and a method of fabricating the same.

隨著半導體元件持續地微縮,功函數金屬(work function metal)係用以取代傳統多晶矽作為匹配高介電常數(high-K)介電層的控制電極。而雙功能函數金屬閘極之製作方法係可概分為前閘極(gate first)與後閘極(gate last)製程兩大類,其中後閘極製程又因可避免源極/汲極超淺接面活化回火以及金屬矽化物等高熱預算製程,而具有較寬的材料選擇,故漸漸地取代前閘極製程。As semiconductor components continue to shrink, work function metals are used to replace conventional polysilicon as control electrodes for matching high-k dielectric layers. The bi-function function metal gate can be divided into two types: front gate (gate first) and back gate (gate last). The latter gate process can avoid the source/bungee ultra-shallow. The joint activation tempering and high-heat budget process such as metal telluride, and a wider material selection, gradually replaced the front gate process.

而習知後閘極製程中,係先形成一虛置閘極(dummy gate)或取代閘極(replacement gate),並在完成一般MOS電晶體的製作後,將虛置/取代閘極移除而形成一閘極溝渠(gate trench),再依電性需求於閘極溝渠內填入不同的金屬。然而,隨著電晶體元件線寬持續微縮的趨勢,閘極溝渠的深寬比(aspect ratio)成為金屬膜層是否能順利填入閘極溝渠的一大挑戰。簡單地說,隨著電晶體元件線寬縮小,閘極溝渠的開口寬度也隨之縮小,造成金屬膜層不易填入閘極溝渠的問題,甚至發生無法填入閘極溝渠形成空隙、影響電晶體元件的電性表現等問題。此外,由於不同導電型態所需的功函數金屬的不同,在移除多餘的金屬時也可能造成其他膜層例如介電層的傷害,並使得後續填入的金屬殘留於介電層內形成金屬殘餘物缺陷。In the conventional gate process, a dummy gate or a replacement gate is formed first, and after the fabrication of the general MOS transistor is completed, the dummy/replacement gate is removed. A gate trench is formed, and different metals are filled in the gate trench according to electrical requirements. However, as the line width of the transistor component continues to shrink, the aspect ratio of the gate trench becomes a major challenge for the metal film layer to be successfully filled into the gate trench. Simply put, as the line width of the transistor component shrinks, the opening width of the gate trench also shrinks, causing the metal film layer to be difficult to fill the gate trench, and even the gate trench can not be filled into the gap to affect the electricity. Problems such as electrical performance of crystal components. In addition, due to the different work function metals required for different conductivity types, the removal of excess metal may also cause damage to other layers such as the dielectric layer, and cause subsequent filling of the metal to remain in the dielectric layer. Defects in metal residues.

由此可知,後閘極製程雖可避免源極/汲極超淺接面活化回火以及形成金屬矽化物等高熱預算製程,而具有較寬廣的材料選擇,但仍面臨複雜製程的整合性以及閘極溝渠填補能力以及金屬殘餘物缺陷等可靠度問題。It can be seen that the post-gate process can avoid the high-heat budget process such as source/drain ultra-shallow junction activation and tempering, and has a wide material selection, but still faces the integration of complex processes. Reliability issues such as gate trench filling capacity and metal residue defects.

因此,本發明之一目的係在於提供一種具有金屬閘極之半導體元件及其製作方法,可改善閘極溝渠填補能力,並避免金屬殘餘物缺陷等問題。Accordingly, it is an object of the present invention to provide a semiconductor device having a metal gate and a method of fabricating the same, which can improve the gate trench filling capability and avoid defects such as metal residue.

本發明係提供一種具有金屬閘極之半導體元件之製作方法,該製作方法首先提供一基底,該基底表面形成有一第一半導體元件與一第二半導體元件,且該第一半導體元件與該第二半導體元件內分別形成有一第一閘極溝渠(gate trench)與一第二閘極溝渠。接下來,於該第一閘極溝渠內形成一第一功函數金屬層,隨後於該第一閘極溝渠與該第二閘極溝渠內形成一第二功函數金屬層。待形成該第二功函數金屬層之後,即於該第一閘極溝渠與該第二閘極溝渠內形成一第一圖案化遮罩層,且該第一圖案化遮罩層暴露出部分該第二功函數金屬層。之後進行一蝕刻製程,用以移除暴露之部分該第二功函數金屬層。The present invention provides a method of fabricating a semiconductor device having a metal gate. The fabrication method first provides a substrate having a first semiconductor component and a second semiconductor component formed on a surface thereof, and the first semiconductor component and the second A first gate trench and a second gate trench are formed in the semiconductor component. Next, a first work function metal layer is formed in the first gate trench, and then a second work function metal layer is formed in the first gate trench and the second gate trench. After the second work function metal layer is formed, a first patterned mask layer is formed in the first gate trench and the second gate trench, and the first patterned mask layer exposes the portion. The second work function metal layer. An etching process is then performed to remove the exposed portion of the second work function metal layer.

本發明更提供一種具有金屬閘極之半導體元件,該半導體元件包含有一基底,該基底表面形成有一第一半導體元件與一第二半導體元件,且該第一半導體元件與該第二半導體元件內分別形成有一第一閘極溝渠與一第二閘極溝渠。該半導體元件更包含有一分別設置於該第一閘極溝渠與該第二閘極溝渠內之閘極介電層、一設置於該第一閘極溝渠內之第一U形金屬層、一設置於該第二閘極溝渠內之第二U形金屬層、以及一設置於該第一U形金屬層與該第二U形金屬層上之填充金屬層。第一U形金屬層之最高部低於第一閘極溝渠之開口;而第二U形金屬層之最高部亦低於第二閘極溝渠之開口。The invention further provides a semiconductor device having a metal gate, the semiconductor device comprising a substrate, a surface of the substrate is formed with a first semiconductor component and a second semiconductor component, and the first semiconductor component and the second semiconductor component are respectively A first gate trench and a second gate trench are formed. The semiconductor device further includes a gate dielectric layer respectively disposed in the first gate trench and the second gate trench, a first U-shaped metal layer disposed in the first gate trench, and a setting a second U-shaped metal layer in the second gate trench, and a filling metal layer disposed on the first U-shaped metal layer and the second U-shaped metal layer. The highest portion of the first U-shaped metal layer is lower than the opening of the first gate trench; and the highest portion of the second U-shaped metal layer is also lower than the opening of the second gate trench.

根據本發明所提供之具有金屬閘極之半導體元件之製作方法,係於形成第二功函數金屬層之後更移除所有閘極溝渠內的部分功函數金屬層,使第一功函數金屬層與第二功函數金屬層之最高點皆低於閘極溝渠之開口,並分別具有U形的形狀特徵。因此,後續欲填入的膜層如填充金屬層係可順利地填入閘極溝渠內,而可避免空隙的形成,並避免空隙對半導體元件電性的負面影響。The method for fabricating a semiconductor device having a metal gate according to the present invention is to remove a part of the work function metal layer in all the gate trenches after forming the second work function metal layer, so that the first work function metal layer and The highest point of the second work function metal layer is lower than the opening of the gate trench and has a U-shaped shape feature. Therefore, the subsequently filled film layer such as the filling metal layer can be smoothly filled into the gate trench, and the formation of the void can be avoided, and the negative influence of the void on the electrical properties of the semiconductor element can be avoided.

請參閱第1圖至第6圖,第1圖至第6圖係為本發明所提供之具有金屬閘極之半導體元件之製作方法之一第一較佳實施例之示意圖。如第1圖所示,本較佳實施例首先提供一基底100,例如一矽基底、含矽基底、或矽覆絕緣(silicon-on-insulator,SOI)基底。基底100上形成有一第一半導體元件110與一第二半導體元件112,而第一半導體元件110與第二半導體元件112之間的基底100內係形成有提供電性隔離的淺溝隔離(shallow trench isolation,STI) 102。第一半導體元件110具有一第一導電型式,而第二半導體元件112具有一第二導電型式,且第一導電型式與第二導電型式互補(complementary)。在本較佳實施例中,第一半導體元件110係為一p型半導體元件;而第二半導體元件112係為一n型半導體元件。Please refer to FIG. 1 to FIG. 6 . FIG. 1 to FIG. 6 are schematic diagrams showing a first preferred embodiment of a method for fabricating a semiconductor device having a metal gate according to the present invention. As shown in FIG. 1, the preferred embodiment first provides a substrate 100, such as a germanium substrate, a germanium-containing substrate, or a silicon-on-insulator (SOI) substrate. A first semiconductor component 110 and a second semiconductor component 112 are formed on the substrate 100, and a shallow trench isolation (shallow trench) for providing electrical isolation is formed in the substrate 100 between the first semiconductor component 110 and the second semiconductor component 112. Isolation, STI) 102. The first semiconductor component 110 has a first conductivity type, and the second semiconductor component 112 has a second conductivity pattern, and the first conductivity pattern is complementary to the second conductivity pattern. In the preferred embodiment, the first semiconductor component 110 is a p-type semiconductor component; and the second semiconductor component 112 is an n-type semiconductor component.

請繼續參閱第1圖。第一半導體元件110與第二半導體元件112各包含一閘極介電層104、一底部阻障層(bottom barrier layer) 106與一虛置閘極(圖未示)如一多晶矽層。閘極介電層104可為一傳統二氧化矽層或一高介電常數閘極介電層或其組合;而底部阻障層106則包含氮化鈦(titanium nitride,TiN),但不限於此。此外第一半導體元件110與第二半導體元件112分別包含一第一輕摻雜汲極(light doped drain,LDD) 120與一第二LDD 122、一側壁子124、與一第一源極/汲極130與一第二源極/汲極132。另外,第一源極/汲極130與第二源極/汲極132之表面係分別包含有一金屬矽化物134。而在第一半導體元件110與第二半導體元件112上,係依序形成一接觸洞蝕刻停止層(contact etch stop layer,CESL) 140與一內層介電(inter-layer dielectric,ILD)層142。上述元件之製作步驟以及材料選擇,甚至是半導體業界中為提供應力作用更改善電性表現而實施選擇性磊晶成長(selective epitaxial growth,SEG)方法形成源極/汲極130、132等,皆為該領域之人士所熟知,故於此皆不再贅述。Please continue to see Figure 1. The first semiconductor device 110 and the second semiconductor device 112 each include a gate dielectric layer 104, a bottom barrier layer 106 and a dummy gate (not shown) such as a polysilicon layer. The gate dielectric layer 104 can be a conventional germanium dioxide layer or a high dielectric constant gate dielectric layer or a combination thereof; and the bottom barrier layer 106 comprises titanium nitride (TiN), but is not limited thereto. this. In addition, the first semiconductor component 110 and the second semiconductor component 112 respectively include a first light doped drain (LDD) 120 and a second LDD 122, a sidewall 124, and a first source/汲The pole 130 and a second source/drain 132. In addition, the surface of the first source/drain 130 and the second source/drain 132 respectively comprise a metal halide 134. On the first semiconductor element 110 and the second semiconductor element 112, a contact etch stop layer (CESL) 140 and an inter-layer dielectric (ILD) layer 142 are sequentially formed. . The fabrication steps and material selection of the above components, and even the selective epitaxial growth (SEG) method for forming the source/drain electrodes 130, 132, etc. in the semiconductor industry to provide stress and improve electrical performance. It is well known to those skilled in the art and will not be described here.

請仍然參閱第1圖。在形成CESL 140與ILD層142後,係藉由一平坦化製程移除部分的CESL 140與ILD層142,直至暴露出第一半導體元件110與第二半導體元件112之虛置閘極。隨後利用一適合之蝕刻製程移除第一半導體元件110與第二半導體元件112之虛置閘極,而同時於第一半導體元件110與第二半導體元件112內分別形成一第一閘極溝渠150與一第二閘極溝渠152。值得注意的是,本較佳實施例係可與先閘極介電層(high-k first)製程整合,此時閘極介電層104包含一高介電常數(high dielectric constant,high-k)閘極介電層,其可以是一金屬氧化物層,例如一稀土金屬氧化物層。High-k閘極介電層104係可選自氧化鉿(hafnium oxide,HfO2)、矽酸鉿氧化合物(hafnium silicon oxide,HfSiO4)、矽酸鉿氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化鋁(aluminum oxide,Al2O3)、氧化鑭(lanthanum oxide,La2O3)、氧化鉭(tantalum oxide,Ta2O5)、氧化釔(yttrium oxide,Y2O3)、氧化鋯(zirconium oxide,ZrO2)、鈦酸鍶(strontium titanate oxide,SrTiO3)、矽酸鋯氧化合物(zirconium silicon oxide,ZrSiO4)、鋯酸鉿(hafnium zirconium oxide,HfZrO4)、鍶鉍鉭氧化物(strontium bismuth tantalate,SrBi2Ta2O9,SBT)、鋯鈦酸鉛(lead zirconate titanate,PbZrxTi1-xO3,PZT)與鈦酸鋇鍶(barium strontium titanate,BaxSr1-xTiO3,BST)所組成之群組。另外,在high-k閘極介電層104與基底100之間,係可設置於一介面層(interfacial layer)(圖未示)。而在形成第一閘極溝渠150與第二閘極溝渠152後,係可於第一閘極溝渠150與第二閘極溝渠152內的底部阻障層106上形成一蝕刻停止層(etch stop layer)108,蝕刻停止層108可包含氮化鉭(tantalum nitride,TaN),但不限於此。Please still refer to Figure 1. After forming the CESL 140 and ILD layer 142, portions of the CESL 140 and ILD layer 142 are removed by a planarization process until the dummy gates of the first semiconductor component 110 and the second semiconductor component 112 are exposed. Then, the dummy gates of the first semiconductor component 110 and the second semiconductor component 112 are removed by a suitable etching process, and a first gate trench 150 is formed in the first semiconductor component 110 and the second semiconductor component 112, respectively. And a second gate trench 152. It should be noted that the preferred embodiment can be integrated with a high-k first process, in which case the gate dielectric layer 104 contains a high dielectric constant (high-k constant). A gate dielectric layer, which may be a metal oxide layer, such as a rare earth metal oxide layer. The high-k gate dielectric layer 104 can be selected from the group consisting of hafnium oxide (HfO 2 ), hafnium silicon oxide (HfSiO 4 ), and hafnium silicon oxynitride (HfSiON). , aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), yttrium oxide (Y 2 O 3 ), oxidation Zirconium oxide (ZrO 2 ), strontium titanate oxide (SrTiO 3 ), zirconium silicon oxide (ZrSiO 4 ), hafnium zirconium oxide (HfZrO 4 ), yttrium Oxide (strontium bismuth tantalate, SrBi 2 Ta 2 O 9 , SBT), lead zirconate titanate (PbZr x Ti 1-x O 3 , PZT) and barium strontium titanate (Ba x Sr) a group consisting of 1-x TiO 3 , BST). In addition, between the high-k gate dielectric layer 104 and the substrate 100, an interfacial layer (not shown) may be disposed. After forming the first gate trench 150 and the second gate trench 152, an etch stop layer may be formed on the bottom barrier layer 106 in the first gate trench 150 and the second gate trench 152 (etch stop) The etch stop layer 108 may include tantalum nitride (TaN), but is not limited thereto.

另外值得注意的是,本較佳實施例係可與後閘極介電層(high-k last)製程整合,此時閘極介電層可先為一傳統的二氧化矽層。而在移除多晶矽層形成第一閘極溝渠150與第二閘極溝渠152之後,暴露於第一閘極溝渠150與第二閘極溝渠152底部的閘極介電層可作為一介面層(圖未示)。隨後於基底100上形成一high-k閘極介電層104,其可包含上述材料。並且在形成high-k閘極介電層104後,亦可再於其上形成前述之蝕刻停止層108。It is also worth noting that the preferred embodiment can be integrated with a high-k last process, in which case the gate dielectric layer can be a conventional germanium dioxide layer. After the polysilicon layer is removed to form the first gate trench 150 and the second gate trench 152, the gate dielectric layer exposed to the bottom of the first gate trench 150 and the second gate trench 152 can serve as an interface layer ( The figure is not shown). A high-k gate dielectric layer 104 is then formed over the substrate 100, which may comprise the materials described above. After the high-k gate dielectric layer 104 is formed, the foregoing etch stop layer 108 may be formed thereon.

請再次參閱第1圖。在形成蝕刻停止層108後,係進行一化學氣相沈積(chemical vapor deposition,CVD)製程、一物理氣相沈積(physical vapor deposition,PVD)製程、或一原子層沉積(atomic layer deposition,ALD),於第一閘極溝渠150與第二閘極溝渠152內形成一第一功函數金屬層160。第一功函數金屬層160可為一具有p型導電型式的p型功函數金屬層,例如氮化鈦(titanium nitride,TiN)、碳化鈦(titanium carbide,TiC)、氮化鉭(tantalum nitride,TaN)、碳化鉭(tantalum carbide,TaC)、碳化鎢(tungsten carbide,WC)、或氮化鋁鈦(aluminum titanium nitride,TiAlN),但不限於此。此外,第一功函數金屬層160可為一單層結構或一複合層結構。Please refer to Figure 1 again. After the etch stop layer 108 is formed, a chemical vapor deposition (CVD) process, a physical vapor deposition (PVD) process, or an atomic layer deposition (ALD) process is performed. A first work function metal layer 160 is formed in the first gate trench 150 and the second gate trench 152. The first work function metal layer 160 may be a p-type work function metal layer having a p-type conductivity type, such as titanium nitride (TiN), titanium carbide (TiC), tantalum nitride (tantalum nitride, TaN), tantalum carbide (TaC), tungsten carbide (WC), or aluminum titanium nitride (TiAlN), but is not limited thereto. In addition, the first work function metal layer 160 may be a single layer structure or a composite layer structure.

請參閱第2圖。接下來於基底100上形成一圖案化遮罩層170,例如一圖案化光阻層,但不限於此。圖案化遮罩層170係用以遮蓋第一半導體元件110,並暴露出第二半導體元件112處之第一功函數金屬層160。隨後利用一合適之蝕刻劑移除未被圖案化遮罩層170保護的第一功函數金屬層160,使得蝕刻停止層108重新暴露於第二閘極溝渠152之內。在移除第一功函數金屬層160時,蝕刻停止層108係可保護其下方的底部阻障層106、high-k閘極介電層104、與ILD層142。在蝕刻暴露之第一功函數金屬層160之後,第一功函數金屬層160係如第2圖所示,僅存留於第一閘極溝渠150以及第一半導體元件110處。Please refer to Figure 2. Next, a patterned mask layer 170, such as a patterned photoresist layer, is formed on the substrate 100, but is not limited thereto. The patterned mask layer 170 is used to cover the first semiconductor component 110 and expose the first work function metal layer 160 at the second semiconductor component 112. The first work function metal layer 160 that is not protected by the patterned mask layer 170 is then removed using a suitable etchant such that the etch stop layer 108 is re-exposed within the second gate trench 152. Upon removal of the first work function metal layer 160, the etch stop layer 108 protects the underlying barrier layer 106, the high-k gate dielectric layer 104, and the ILD layer 142. After etching the exposed first work function metal layer 160, the first work function metal layer 160 remains in the first gate trench 150 and the first semiconductor device 110 as shown in FIG.

請參閱第3圖。在移除第二閘極溝渠152內的第一功函數金屬層160與圖案化遮罩層170後,係進行另一CVD製程或PVD製程,於基底100上形成一第二功函數金屬層162。第二功函數金屬層162可為一具有n型導電型式之n型功函數金屬層,例如鋁化鈦(titanium aluminide,TiAl)層、鋁化鋯(zirconium aluminide,ZrAl)層、鋁化鎢(tungsten aluminide,WAl)層、鋁化鉭(tantalum aluminide,TaAl)層或鋁化鉿(hafnium aluminide,HfAl)層,但不限於此。此外,第二功函數金屬層162可為一單層結構或一複合層結構。隨後,係於第二功函數金屬層162上形成一遮罩層172a,例如一光阻層,但不限於此。此外值得注意的是,遮罩層172a係如第3圖所示,填滿第一閘極溝渠150與第二閘極溝渠152。遮罩層172a之材質較佳可為一填洞能力良好的膜層,例如可用旋轉塗佈方式形成的一光阻材料、一介電抗反射底層(dielectric anti-reflection coating,DARC)、一光吸收氧化層(light absorbing oxide,DUO)、一底部抗反射(bottom anti-reflective coating,BARC)層、一犧牲吸光材料(sacrificial light absorbing material,SLAM)層等,但不限於此。Please refer to Figure 3. After the first work function metal layer 160 and the patterned mask layer 170 in the second gate trench 152 are removed, another CVD process or PVD process is performed to form a second work function metal layer 162 on the substrate 100. . The second work function metal layer 162 may be an n-type work function metal layer having an n-type conductivity type, such as a titanium aluminide (TiAl) layer, a zirconium aluminide (ZrAl) layer, and a tungsten aluminide ( A tungsten aluminide, WAl) layer, a tantalum aluminide (TaAl) layer or a hafnium aluminide (HfAl) layer, but is not limited thereto. In addition, the second work function metal layer 162 may be a single layer structure or a composite layer structure. Subsequently, a mask layer 172a, such as a photoresist layer, is formed on the second work function metal layer 162, but is not limited thereto. It is also worth noting that the mask layer 172a fills the first gate trench 150 and the second gate trench 152 as shown in FIG. The material of the mask layer 172a is preferably a film layer with good hole filling ability, for example, a photoresist material formed by spin coating, a dielectric anti-reflection coating (DARC), and a light. A light absorbing oxide (DUO), a bottom anti-reflective coating (BARC) layer, a sacrificial light absorbing material (SLAM) layer, or the like, but is not limited thereto.

請參閱第4圖。接下來,回蝕刻遮罩層172a,而同時於第一閘極溝渠150與第二閘極溝渠152內分別形成一圖案化遮罩層172b,且圖案化遮罩層172b之表面低於第一閘極溝渠150與第二閘極溝渠152之開口,並暴露出部分第二功函數金屬層162。Please refer to Figure 4. Next, the mask layer 172a is etched back, and a patterned mask layer 172b is formed in the first gate trench 150 and the second gate trench 152, respectively, and the surface of the patterned mask layer 172b is lower than the first surface. The openings of the gate trench 150 and the second gate trench 152 expose a portion of the second work function metal layer 162.

請參閱第5圖。在形成圖案化遮罩層172b之後,係進行一蝕刻製程,用以移除暴露之部分第二功函數金屬層162與第一功函數金屬層160,直至蝕刻停止層108表面。如第5圖所示,蝕刻製程之後,第一閘極溝渠150內係形成一第一U形金屬層160a與一第三U形金屬層162a,第一U形金屬層160a包含第一功函數金屬層160;而第三U形金屬層162a則包含第二功函數金屬層162。而在第二閘極溝渠152內,則形成一第二U形金屬層162b,第二U形金屬層162b包含了第二功函數金屬層162。最後移除圖案化遮罩層172b。Please refer to Figure 5. After forming the patterned mask layer 172b, an etching process is performed to remove portions of the exposed second work function metal layer 162 and the first work function metal layer 160 until the surface of the etch stop layer 108 is etched. As shown in FIG. 5, after the etching process, a first U-shaped metal layer 160a and a third U-shaped metal layer 162a are formed in the first gate trench 150, and the first U-shaped metal layer 160a includes a first work function. The metal layer 160; and the third U-shaped metal layer 162a includes a second work function metal layer 162. In the second gate trench 152, a second U-shaped metal layer 162b is formed, and the second U-shaped metal layer 162b includes a second work function metal layer 162. Finally, the patterned mask layer 172b is removed.

請參閱第6圖。接下來,係於第一閘極溝渠150與第二閘極溝渠152內形成一填充金屬層168。此外第二功函數金屬層162與填充金屬層168之間較佳可設置一頂部阻障層(圖未示),頂部阻障層可包含TiN,但不限於此。填充金屬層168係用以填滿第一閘極溝渠150與第二閘極溝渠152,並可選擇具有優良填充能力與較低阻值的金屬或金屬氧化物,例如鋁(aluminum,Al)、鋁化鈦(titanium aluminide,TiAl)或氧化鋁鈦(titanium aluminum oxide,TiAlO),但不限於此。Please refer to Figure 6. Next, a fill metal layer 168 is formed in the first gate trench 150 and the second gate trench 152. In addition, a top barrier layer (not shown) may be disposed between the second work function metal layer 162 and the filler metal layer 168. The top barrier layer may include TiN, but is not limited thereto. The filling metal layer 168 is used to fill the first gate trench 150 and the second gate trench 152, and may select a metal or metal oxide having excellent filling ability and lower resistance, such as aluminum (Al). Titanium aluminide (TiAl) or titanium aluminum oxide (TiAlO), but is not limited thereto.

請仍然參閱第6圖。最後,進行一平坦化製程,例如一CMP製程,用以移除多餘的填充金屬層168以及蝕刻停止層108,而完成一第一金屬閘極180與一第二金屬閘極182之製作。此外,本實施例亦可再選擇性去除ILD層142與CESL 140等,然後重新形成CESL與介電層,以有效提升半導體元件的電性表現。由於上述CMP製程等步驟係為該技術領域中具通常知識者所知,故於此係不再贅述。Please still refer to Figure 6. Finally, a planarization process, such as a CMP process, is performed to remove the excess fill metal layer 168 and the etch stop layer 108 to complete the fabrication of a first metal gate 180 and a second metal gate 182. In addition, the present embodiment can also selectively remove the ILD layer 142 and the CESL 140 and the like, and then reform the CESL and the dielectric layer to effectively improve the electrical performance of the semiconductor device. Since the above CMP process and the like are known to those of ordinary skill in the art, they are not described herein.

值得注意的是,在形成第一功函數金屬層160與第二功函數金屬層162時,可發現第一功函數金屬層160與第二功函數金屬層162係於第一閘極溝渠150與第二閘極溝渠152開口處形成懸突部(overhang),造成第一閘極溝渠150與第二閘極溝渠152開口的縮小,且此影響在同時具有第一功函數金屬層160與第二功函數金屬層162的第一閘極溝渠150開口更為明顯。因此,本較佳實施例係可藉由蝕刻製程同時移除第一閘極溝渠150與第二閘極溝渠152開口處的懸突部,並且於第一閘極溝渠150與第二閘極溝渠152內分別形成具有特殊輪廓的U形金屬層160a、162a、與162b。由於第一U形金屬層160a、第三U形金屬層162a與第二U形金屬層162b的最高點皆低於第一閘極溝渠150與第二閘極溝渠152的開口,此形狀特徵可維持第一閘極溝渠150與第二閘極溝渠152開口原來的大小,並有效降低第一閘極溝渠150與第二閘極溝渠152的深寬比(aspect ratio),故填充金屬層168可順利填入,得以避免填補第一閘極溝渠150與第二閘極溝渠152時發生縫隙(seam),確保第一半導體元件110與第二半導體元件112的可靠度。It should be noted that when the first work function metal layer 160 and the second work function metal layer 162 are formed, it can be found that the first work function metal layer 160 and the second work function metal layer 162 are tied to the first gate trench 150 and An overhang is formed at the opening of the second gate trench 152, causing the opening of the first gate trench 150 and the second gate trench 152 to be reduced, and the effect has the first work function metal layer 160 and the second The opening of the first gate trench 150 of the work function metal layer 162 is more pronounced. Therefore, in the preferred embodiment, the overhangs at the openings of the first gate trench 150 and the second gate trench 152 can be simultaneously removed by the etching process, and the first gate trench 150 and the second gate trench are removed. U-shaped metal layers 160a, 162a, and 162b having a special profile are formed in 152, respectively. Since the highest points of the first U-shaped metal layer 160a, the third U-shaped metal layer 162a and the second U-shaped metal layer 162b are lower than the openings of the first gate trench 150 and the second gate trench 152, the shape feature may be Maintaining the original size of the first gate trench 150 and the second gate trench 152, and effectively reducing the aspect ratio of the first gate trench 150 and the second gate trench 152, so the filling metal layer 168 can The smooth filling is performed to avoid a gap when the first gate trench 150 and the second gate trench 152 are filled, and the reliability of the first semiconductor element 110 and the second semiconductor element 112 is ensured.

更重要的是,若是第一閘極溝渠150與第二閘極溝渠152開口處的懸突部係分別藉由不同的蝕刻製程移除,可發現第一功函數金屬層160與第二功函數金屬層162交界處下方的介電層材料如ILD層142與CESL 140會因多次的蝕刻製程(移除第二半導體元件112處的第一功函數金屬層、移除第一閘極溝渠150開口處的懸突部、與移除第二閘極溝渠152開口處的懸突部)受損,並造成填充金屬層168填入以及CMP後金屬殘餘物的問題。因此,本較佳實施例更在減少二道蝕刻製程的條件下,同時移除第一閘極溝渠150與第二閘極溝渠152開口處的懸突部,並利用蝕刻停止層108作為保護層,以避免第一功函數金屬層160與第二功函數金屬層162交界處下方的ILD層142與CESL 140受到多次蝕刻製程的影響,故可避免上述CMP後金屬殘餘物的問題,更改善產品的可靠度。More importantly, if the overhangs at the openings of the first gate trench 150 and the second gate trench 152 are respectively removed by different etching processes, the first work function metal layer 160 and the second work function can be found. The dielectric layer material under the interface of the metal layer 162, such as the ILD layer 142 and the CESL 140, may be subjected to multiple etching processes (removing the first work function metal layer at the second semiconductor component 112, removing the first gate trench 150) The overhang at the opening, and the overhang at the opening of the second gate trench 152 are damaged, and cause problems with the filling of the metal layer 168 and the metal residue after CMP. Therefore, the preferred embodiment further removes the overhangs at the openings of the first gate trench 150 and the second gate trench 152 under the condition of reducing the two etching processes, and uses the etch stop layer 108 as a protective layer. In order to avoid the influence of multiple etching processes on the ILD layer 142 and the CESL 140 under the interface between the first work function metal layer 160 and the second work function metal layer 162, the problem of the metal residue after the above CMP can be avoided, and the improvement is further improved. Product reliability.

請參閱第7圖至第13圖,第7圖至第13圖係為本發明所提供之具有金屬閘極之半導體元件之製作方法之一第二較佳實施例之示意圖。首先注意的是,在第二較佳實施例中,與第一較佳實施例相同之元件的材料選擇係於此不再贅述。如第7圖所示,本較佳實施例首先提供一基底200,基底200上形成有一第一半導體元件210與一第二半導體元件212,而第一半導體元件210與第二半導體元件212之間的基底200內係形成有提供電性隔離的STI 202。在本較佳實施例中,第一半導體元件210係為一p型半導體元件;第二半導體元件212係為一n型半導體元件。Please refer to FIG. 7 to FIG. 13 . FIG. 7 to FIG. 13 are schematic diagrams showing a second preferred embodiment of a method for fabricating a semiconductor device having a metal gate according to the present invention. It is to be noted that, in the second preferred embodiment, the material selection of the same elements as the first preferred embodiment will not be described herein. As shown in FIG. 7, the preferred embodiment first provides a substrate 200 having a first semiconductor component 210 and a second semiconductor component 212 formed thereon, and between the first semiconductor component 210 and the second semiconductor component 212. The substrate 200 is formed with an STI 202 that provides electrical isolation. In the preferred embodiment, the first semiconductor component 210 is a p-type semiconductor component; the second semiconductor component 212 is an n-type semiconductor component.

請繼續參閱第7圖。第一半導體元件210與第二半導體元件212各包含一閘極介電層204、一底部阻障層206與一虛置閘極(圖未示)。此外第一半導體元件210與第二半導體元件212分別包含一第一LDD 220與一第二LDD 222、一側壁子224、與一第一源極/汲極230與一第二源極/汲極232。另外,第一源極/汲極230與第二源極/汲極232之表面係分別包含有一金屬矽化物234。而在第一半導體元件210與第二半導體元件212上,係依序形成一CESL 240與一ILD層242。Please continue to see Figure 7. The first semiconductor device 210 and the second semiconductor device 212 each include a gate dielectric layer 204, a bottom barrier layer 206 and a dummy gate (not shown). In addition, the first semiconductor device 210 and the second semiconductor device 212 respectively include a first LDD 220 and a second LDD 222, a sidewall 224, a first source/drain 230, and a second source/drain 232. In addition, the surface of the first source/drain 230 and the second source/drain 232 respectively comprise a metal halide 234. On the first semiconductor element 210 and the second semiconductor element 212, a CESL 240 and an ILD layer 242 are sequentially formed.

請仍然參閱第7圖。之後藉由一平坦化製程移除部分的CESL 240與ILD層242,並利用一適合之蝕刻製程移除第一半導體元件210與第二半導體元件212之虛置閘極,而同時於第一半導體元件210與第二半導體元件212內分別形成一第一閘極溝渠250與一第二閘極溝渠252。值得注意的是,本較佳實施例係可與先閘極介電層(high-k first)製程整合,此時閘極介電層204包含一high-k閘極介電層。另外,在high-k閘極介電層204與基底200之間,係可設置於一介面層(圖未示)。本較佳實施例亦可與後閘極介電層製程整合,此時閘極介電層可先為一傳統的二氧化矽層,並作為一介面層(圖未示),隨後於基底200上形成一high-k閘極介電層204。在形成第一閘極溝渠250與第二閘極溝渠252後,或者在第一閘極溝渠250與第二閘極溝渠252內形成high-k閘極介電層204後,係可於第一閘極溝渠250與第二閘極溝渠252內的底部阻障層206上形成一蝕刻停止層208。Please still refer to Figure 7. Then, a portion of the CESL 240 and the ILD layer 242 are removed by a planarization process, and the dummy gates of the first semiconductor device 210 and the second semiconductor device 212 are removed by a suitable etching process while simultaneously being used in the first semiconductor. A first gate trench 250 and a second gate trench 252 are formed in the component 210 and the second semiconductor component 212, respectively. It should be noted that the preferred embodiment can be integrated with a high-k first process, in which case the gate dielectric layer 204 includes a high-k gate dielectric layer. In addition, between the high-k gate dielectric layer 204 and the substrate 200, an interface layer (not shown) may be disposed. The preferred embodiment can also be integrated with the post gate dielectric layer process. The gate dielectric layer can be a conventional germanium dioxide layer and serve as an interface layer (not shown), followed by the substrate 200. A high-k gate dielectric layer 204 is formed thereon. After forming the first gate trench 250 and the second gate trench 252, or forming the high-k gate dielectric layer 204 in the first gate trench 250 and the second gate trench 252, the first An etch stop layer 208 is formed on the bottom barrier layer 250 in the gate trench 250 and the second gate trench 252.

如第7圖所示,在形成蝕刻停止層208後,係於第一閘極溝渠250與第二閘極溝渠252內形成一第一功函數金屬層260。第一功函數金屬層260可為一具有p型導電型式的p型功函數金屬層。此外,第一功函數金屬層260可為一單層結構或一複合層結構。As shown in FIG. 7, after the etch stop layer 208 is formed, a first work function metal layer 260 is formed in the first gate trench 250 and the second gate trench 252. The first work function metal layer 260 can be a p-type work function metal layer having a p-type conductivity. In addition, the first work function metal layer 260 can be a single layer structure or a composite layer structure.

請參閱第8圖。接下來於基底200上形成一圖案化遮罩270,例如一圖案化光阻層,但不限於此。值得注意的是,本較佳實施例中圖案化遮罩層270係如第8圖所示,為一僅形成在第一閘極溝渠250內,且表面低於第一閘極溝渠250開口之膜層。Please refer to Figure 8. Next, a patterned mask 270, such as a patterned photoresist layer, is formed on the substrate 200, but is not limited thereto. It should be noted that the patterned mask layer 270 in the preferred embodiment is as shown in FIG. 8 and is formed only in the first gate trench 250 and has a lower surface than the first gate trench 250. Membrane layer.

請參閱第9圖。隨後利用一合適之蝕刻劑移除未被圖案化遮罩層270保護的第一功函數金屬層260。在移除第一功函數金屬層260時,蝕刻停止層208係可保護其下方的底部阻障層206、high-k閘極介電層204、ILD層242、以及CESL 240。在蝕刻暴露之第一功函數金屬層260之後,第一功函數金屬層260係如第9圖所示,僅存留於第一閘極溝渠250內。更重要的是,本較佳實施例係移除第一功函數金屬層260在第一閘極溝渠250開口處形成的懸突部,且於第一閘極溝渠250內形成一第一U形金屬層260a,且第一U形金屬層260a的最高點仍低於第一閘極溝渠250之開口。換句話說,在本較佳實施例中,覆蓋第一閘極溝渠250側壁之第一U形金屬層260a的高度係小於第一閘極溝渠250的深度,因此可增加後續金屬膜層的填入能力。Please refer to Figure 9. The first work function metal layer 260 that is not protected by the patterned mask layer 270 is then removed using a suitable etchant. Upon removal of the first work function metal layer 260, the etch stop layer 208 can protect the bottom barrier layer 206, the high-k gate dielectric layer 204, the ILD layer 242, and the CESL 240 underneath. After etching the exposed first work function metal layer 260, the first work function metal layer 260 remains in the first gate trench 250 as shown in FIG. More importantly, the preferred embodiment removes the overhang formed by the first work function metal layer 260 at the opening of the first gate trench 250, and forms a first U shape in the first gate trench 250. The metal layer 260a and the highest point of the first U-shaped metal layer 260a are still lower than the opening of the first gate trench 250. In other words, in the preferred embodiment, the height of the first U-shaped metal layer 260a covering the sidewall of the first gate trench 250 is smaller than the depth of the first gate trench 250, thereby increasing the filling of the subsequent metal film layer. Ability to enter.

請參閱第10圖。於第一閘極溝渠250內形成第一U形金屬層260a之後,係進行一CVD製程或PVD製程,於基底200上形成一第二功函數金屬層262。第二功函數金屬層262可為一具有n型導電型式之n型功函數金屬層。此外,第二功函數金屬層262可為一單層結構或一複合層結構。隨後,係於第二功函數金屬層262上形成一遮罩層272a,遮罩層272a可包含前述之具有良好填洞能力的膜層,但不限於此。此外值得注意的是,遮罩層272a係如第10圖所示,填滿第一閘極溝渠250與第二閘極溝渠252。Please refer to Figure 10. After the first U-shaped metal layer 260a is formed in the first gate trench 250, a CVD process or a PVD process is performed to form a second work function metal layer 262 on the substrate 200. The second work function metal layer 262 can be an n-type work function metal layer having an n-type conductivity. In addition, the second work function metal layer 262 can be a single layer structure or a composite layer structure. Subsequently, a mask layer 272a is formed on the second work function metal layer 262, and the mask layer 272a may include the foregoing film layer having good hole filling ability, but is not limited thereto. It is also worth noting that the mask layer 272a fills the first gate trench 250 and the second gate trench 252 as shown in FIG.

請參閱第11圖。接下來,回蝕刻該遮罩層272a,而同時於第一閘極溝渠250與第二閘極溝渠252內分別形成一圖案化遮罩層272b,且圖案化遮罩層272b之表面低於第一閘極溝渠250與第二閘極溝渠252之開口,並暴露出部分第二功函數金屬層262。Please refer to Figure 11. Next, the mask layer 272a is etched back, and a patterned mask layer 272b is formed in the first gate trench 250 and the second gate trench 252, respectively, and the surface of the patterned mask layer 272b is lower than the first layer. An opening of the gate trench 250 and the second gate trench 252 exposes a portion of the second work function metal layer 262.

請參閱第12圖。在形成圖案化遮罩層272b之後,係進行一蝕刻製程,用以移除暴露之部分第二功函數金屬層262,直至蝕刻停止層208表面。如第12圖所示,在蝕刻製程之後係於第一閘極溝渠250內形成一第三U形金屬層262a,第三U形金屬層262a包含了第二功函數金屬層262,且覆蓋第一U形金屬層260a。而在第二閘極溝渠252內,則形成一第二U形金屬層262b,第二U形金屬層262b包含了第二功函數金屬層262。最後移除圖案化遮罩層272b。Please refer to Figure 12. After forming the patterned mask layer 272b, an etching process is performed to remove portions of the exposed second work function metal layer 262 until the surface of the etch stop layer 208 is etched. As shown in FIG. 12, a third U-shaped metal layer 262a is formed in the first gate trench 250 after the etching process, and the third U-shaped metal layer 262a includes a second work function metal layer 262. A U-shaped metal layer 260a. In the second gate trench 252, a second U-shaped metal layer 262b is formed, and the second U-shaped metal layer 262b includes a second work function metal layer 262. Finally, the patterned mask layer 272b is removed.

另外請參閱第14圖,第14圖係為本發明所提供之具有金屬閘極之半導體元件之製作方法之一變化型之示意圖。值得注意的是,圖案化遮罩層272b之表面除可以與第一U形金屬層260a之最高點共平面之外,亦可高於或低於第一U形金屬層260a之最高點。舉例來說,當圖案化遮罩層272b的表面高於第一U形金屬層260a的最高點時,第二功函數金屬層262係如第14圖所示,形成一倒Ω形金屬層;而當圖案化遮罩層272b的表面低於第一U形金屬層260a的最高點時,第二功函數金屬層262係形成一最高點低於第一U形金屬層260a最高點的U形金屬層。Please refer to FIG. 14, which is a schematic diagram showing a variation of a method for fabricating a semiconductor device having a metal gate according to the present invention. It should be noted that the surface of the patterned mask layer 272b may be higher or lower than the highest point of the first U-shaped metal layer 260a, in addition to being coplanar with the highest point of the first U-shaped metal layer 260a. For example, when the surface of the patterned mask layer 272b is higher than the highest point of the first U-shaped metal layer 260a, the second work function metal layer 262 is formed as shown in FIG. 14 to form an inverted Ω-shaped metal layer; When the surface of the patterned mask layer 272b is lower than the highest point of the first U-shaped metal layer 260a, the second work function metal layer 262 forms a U shape having a highest point lower than the highest point of the first U-shaped metal layer 260a. Metal layer.

請參閱第13圖。接下來,係於第一閘極溝渠250與第二閘極溝渠252內形成一填充金屬層268。此外第二功函數金屬層262與填充金屬層268之間較佳可設置一頂部阻障層(圖未示)。填充金屬層268係用以填滿第一閘極溝渠250與第二閘極溝渠252,並可選擇具有優良填充能力與較低阻值的金屬或金屬氧化物。最後進行一平坦化製程,例如一CMP製程,用以移除多餘的填充金屬層268以及蝕刻停止層208,而完成一第一金屬閘極280與一第二金屬閘極282之製作。此外,本實施例亦可再選擇性去除ILD層242與CESL 240等,然後重新形成CESL與介電層,以有效提升半導體元件的電性表現。由於上述CMP製程等步驟係為該技術領域中具通常知識者所知,故於此係不再贅述。Please refer to Figure 13. Next, a fill metal layer 268 is formed in the first gate trench 250 and the second gate trench 252. In addition, a top barrier layer (not shown) may be disposed between the second work function metal layer 262 and the fill metal layer 268. The fill metal layer 268 is used to fill the first gate trench 250 and the second gate trench 252, and may select a metal or metal oxide having excellent filling ability and lower resistance. Finally, a planarization process, such as a CMP process, is performed to remove the excess fill metal layer 268 and the etch stop layer 208 to complete the fabrication of a first metal gate 280 and a second metal gate 282. In addition, the present embodiment can also selectively remove the ILD layer 242 and the CESL 240 and the like, and then reform the CESL and the dielectric layer to effectively improve the electrical performance of the semiconductor device. Since the above CMP process and the like are known to those of ordinary skill in the art, they are not described herein.

如前所述,由於在形成第一功函數金屬層260與第二功函數金屬層262時,可發現第一功函數金屬層260與第二功函數金屬層262係分別於第一閘極溝渠250與第二閘極溝渠252開口處形成懸突部(overhang),造成第一閘極溝渠250與第二閘極溝渠252開口的縮小。因此,本較佳實施例係可藉由蝕刻製程移除第一閘極溝渠250與第二閘極溝渠252開口處的懸突部,而於第一閘極溝渠250內形成具有特殊輪廓的第一U形金屬層260a與第三U形金屬層262a,並於第二閘極溝渠252內形成第二U形金屬層262b。由於第一U形金屬層260a、第三U形金屬層262a與第二U形金屬層262b的形狀特徵,第一閘極溝渠250與第二閘極溝渠252的開口可維持原來大小,並有效降低第一閘極溝渠250與第二閘極溝渠252的深寬比,故填充金屬層268可順利填入,得以避免填補第一閘極溝渠250與第二閘極溝渠252時發生縫隙,確保第一導電型半導體元件210與第二導電型半導體元件212的可靠度。As described above, since the first work function metal layer 260 and the second work function metal layer 262 are formed in the first gate trench, respectively, when the first work function metal layer 260 and the second work function metal layer 262 are formed. 250 forms an overhang at the opening of the second gate trench 252, causing the opening of the first gate trench 250 and the second gate trench 252 to be reduced. Therefore, in the preferred embodiment, the overhangs at the openings of the first gate trench 250 and the second gate trench 252 can be removed by an etching process, and a special profile is formed in the first gate trench 250. A U-shaped metal layer 260a and a third U-shaped metal layer 262a form a second U-shaped metal layer 262b in the second gate trench 252. Due to the shape characteristics of the first U-shaped metal layer 260a, the third U-shaped metal layer 262a and the second U-shaped metal layer 262b, the openings of the first gate trench 250 and the second gate trench 252 can maintain the original size and are effective The aspect ratio of the first gate trench 250 and the second gate trench 252 is reduced, so that the filling metal layer 268 can be smoothly filled to avoid gaps between the first gate trench 250 and the second gate trench 252, thereby ensuring a gap. The reliability of the first conductive type semiconductor element 210 and the second conductive type semiconductor element 212.

此外,在本較佳實施例終於第一閘極溝渠250內填入第二功函數金屬層262之前,第一功函數金屬層260於第一閘極溝渠250開口處形成的懸突部即已被移除,因此可更加改善第一閘極溝渠250中第二功函數金屬層262的成膜結果。此外由於第一功函數金屬層260於第一閘極溝渠250開口處形成的懸突部係與第二半導體元件212處欲移除的第一功函數金屬層260同時移除,換句話說,可減少一次的蝕刻製程。而第二功函數金屬層262形成於第一閘極溝渠250與第二閘極溝渠252開口處形成的懸突部又同時被移除,因此可利用蝕刻停止層208作為保護層,以避免第一功函數金屬層260與第二功函數金屬層262交界處下方的ILD層242與CESL 240受到多次蝕刻製程的影響,故可避免上述CMP後金屬殘餘物的問題,更改善產品的可靠度。In addition, before the second working function metal layer 262 is filled in the first gate trench 250 in the preferred embodiment, the overhang portion formed by the first work function metal layer 260 at the opening of the first gate trench 250 is It is removed, so that the film formation result of the second work function metal layer 262 in the first gate trench 250 can be further improved. In addition, the overhang portion formed by the first work function metal layer 260 at the opening of the first gate trench 250 is simultaneously removed from the first work function metal layer 260 to be removed at the second semiconductor element 212, in other words, The etching process can be reduced once. The overhanging portion formed by the second work function metal layer 262 formed at the opening of the first gate trench 250 and the second gate trench 252 is simultaneously removed, so that the etch stop layer 208 can be used as a protective layer to avoid The ILD layer 242 and the CESL 240 under the interface between the first work function metal layer 260 and the second work function metal layer 262 are affected by multiple etching processes, so that the above metal residue after CMP can be avoided, and the reliability of the product can be improved. .

根據本發明所提供之具有金屬閘極之半導體元件之製作方法,係於形成第二功函數金屬層之後在可減少一至二道蝕刻製程的前提下,更移除所有閘極溝渠內的部分第二功函數金屬層,使第一功函數金屬層與第二功函數金屬層之最高點皆低於閘極溝渠之開口,並分別具有U形形狀特徵。因此,後續欲填入的膜層如填充金屬層係可順利地填入閘極溝渠內,避免空隙的形成,並避免空隙對半導體元件電性的負面影響。The method for fabricating a semiconductor device having a metal gate according to the present invention is to remove a portion of all gate trenches after reducing the one to two etching processes after forming the second work function metal layer. The two-function metal layer has a highest point of the first work function metal layer and the second work function metal layer lower than the opening of the gate trench, and has a U-shaped shape feature, respectively. Therefore, the subsequently filled film layer such as the filling metal layer can be smoothly filled into the gate trench, avoiding the formation of voids, and avoiding the negative influence of the void on the electrical properties of the semiconductor element.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

100、200...基底100, 200. . . Base

102、202...淺溝隔離102, 202. . . Shallow trench isolation

104、204...閘極介電層104, 204. . . Gate dielectric layer

106、206...底部阻障層106, 206. . . Bottom barrier layer

108、208...蝕刻停止層108, 208. . . Etch stop layer

110、210...第一半導體元件110, 210. . . First semiconductor component

112、212...第二半導體元件112, 212. . . Second semiconductor component

120、220...第一輕摻雜汲極120, 220. . . First lightly doped bungee

122、222...第二輕摻雜汲極122, 222. . . Second lightly doped bungee

124、224...側壁子124, 224. . . Side wall

130、230...第一源極/汲極130, 230. . . First source/dip

132、232...第二源極/汲極132, 232. . . Second source/dip

134、234...金屬矽化物134, 234. . . Metal telluride

140、240...接觸洞蝕刻停止層140, 240. . . Contact hole etch stop layer

142、242...內層介電層142, 242. . . Inner dielectric layer

150、250...第一閘極溝渠150, 250. . . First gate ditches

152、252...第二閘極溝渠152, 252. . . Second gate ditches

160、260...第一功函數金屬層160, 260. . . First work function metal layer

160a、260a...第一U形金屬層160a, 260a. . . First U-shaped metal layer

162、262...第二功函數金屬層162, 262. . . Second work function metal layer

162a、262a...第三U形金屬層162a, 262a. . . Third U-shaped metal layer

162b、262b...第二U形金屬層162b, 262b. . . Second U-shaped metal layer

168、268...填充金屬層168, 268. . . Filled metal layer

170、270...圖案化遮罩層170, 270. . . Patterned mask layer

172a、272a...遮罩層172a, 272a. . . Mask layer

172b、272b...圖案化遮罩層172b, 272b. . . Patterned mask layer

180、280...第一金屬閘極180, 280. . . First metal gate

182、282...第二金屬閘極182, 282. . . Second metal gate

第1圖至第6圖係為本發明所提供之具有金屬閘極之半導體元件之製作方法之一第一較佳實施例之示意圖。1 to 6 are schematic views showing a first preferred embodiment of a method for fabricating a semiconductor device having a metal gate according to the present invention.

第7圖至第13圖係為本發明所提供之具有金屬閘極之半導體元件之製作方法之一第二較佳實施例之示意圖。7 to 13 are schematic views showing a second preferred embodiment of a method for fabricating a semiconductor device having a metal gate according to the present invention.

第14圖係為本發明所提供之具有金屬閘極之半導體元件之製作方法之一變化型之示意圖。Fig. 14 is a schematic view showing a variation of a method for fabricating a semiconductor device having a metal gate provided by the present invention.

100...基底100. . . Base

102...淺溝隔離102. . . Shallow trench isolation

104...閘極介電層104. . . Gate dielectric layer

106...底部阻障層106. . . Bottom barrier layer

108...蝕刻停止層108. . . Etch stop layer

110...第一半導體元件110. . . First semiconductor component

112...第二半導體元件112. . . Second semiconductor component

120...第一輕摻雜汲極120. . . First lightly doped bungee

122...第二輕摻雜汲極122. . . Second lightly doped bungee

124...側壁子124. . . Side wall

130...第一源極/汲極130. . . First source/dip

132...第二源極/汲極132. . . Second source/dip

134...金屬矽化物134. . . Metal telluride

140...接觸洞蝕刻停止層140. . . Contact hole etch stop layer

142...內層介電層142. . . Inner dielectric layer

150...第一閘極溝渠150. . . First gate ditches

152...第二閘極溝渠152. . . Second gate ditches

160...第一功函數金屬層160. . . First work function metal layer

162...第二功函數金屬層162. . . Second work function metal layer

172b...圖案化遮罩層172b. . . Patterned mask layer

Claims (20)

一種具有金屬閘極之半導體元件之製作方法,包含有:提供一基底,該基底表面形成有一第一半導體元件與一第二半導體元件,且該第一半導體元件與該第二半導體元件內分別形成有一第一閘極溝渠(gate trench)與一第二閘極溝渠;於該第一閘極溝渠內形成一第一功函數金屬(work function metal)層;於該第一閘極溝渠與該第二閘極溝渠內形成一第二功函數金屬層;於該第一閘極溝渠與該第二閘極溝渠內分別形成一第一圖案化遮罩層(mask layer),且該等第一圖案化遮罩層暴露出部分該第二功函數金屬層;以及進行一蝕刻製程,用以移除暴露之部分該第二功函數金屬層。A method for fabricating a semiconductor device having a metal gate includes: providing a substrate, a surface of the substrate is formed with a first semiconductor component and a second semiconductor component, and the first semiconductor component and the second semiconductor component are respectively formed a first gate trench and a second gate trench; a first work function metal layer is formed in the first gate trench; and the first gate trench and the first gate Forming a second work function metal layer in the second gate trench; forming a first patterned mask layer in the first gate trench and the second gate trench, and the first pattern The mask layer exposes a portion of the second work function metal layer; and an etching process is performed to remove the exposed portion of the second work function metal layer. 如申請專利範圍第1項所述之製作方法,其中該第一半導體元件具有一第一導電型式,該第二半導體元件具有一第二導電型式,且該第一導電型式與該第二導電型式互補(complementary)。The manufacturing method of claim 1, wherein the first semiconductor component has a first conductivity type, the second semiconductor component has a second conductivity pattern, and the first conductivity pattern and the second conductivity pattern Complementary. 如申請專利範圍第1項所述之製作方法,其中於該第一閘極溝渠內形成該第一功函數金屬層之步驟更包含:於該基底上形成該第一功函數金屬層;於該基底上形成一第二圖案化遮罩層,且該第二圖案化遮罩層至少暴露該第二閘極溝渠內之該第一功函數金屬層;以及移除暴露之該第一功函數金屬層。The manufacturing method of claim 1, wherein the step of forming the first work function metal layer in the first gate trench further comprises: forming the first work function metal layer on the substrate; Forming a second patterned mask layer on the substrate, and the second patterned mask layer exposes at least the first work function metal layer in the second gate trench; and removing the exposed first work function metal Floor. 如申請專利範圍第3項所述之製作方法,其中該第二圖案化遮罩層之表面係低於該第一閘極溝渠之開口。The manufacturing method of claim 3, wherein the surface of the second patterned mask layer is lower than the opening of the first gate trench. 如申請專利範圍第4項所述之製作方法,其中移除暴露出之該第一功函數金屬層後係於該第一閘極溝渠內形成一第一U形金屬層。The manufacturing method of claim 4, wherein removing the exposed first work function metal layer is followed by forming a first U-shaped metal layer in the first gate trench. 如申請專利範圍第4項所述之製作方法,其中進行該蝕刻製程以移除暴露出之該第二功函數金屬層後,係於該第二閘極溝渠內形成一第二U形金屬層,同時於該第一閘極溝渠內形成一第三U形金屬層。The manufacturing method of claim 4, wherein the etching process is performed to remove the exposed second work function metal layer, and a second U-shaped metal layer is formed in the second gate trench. And forming a third U-shaped metal layer in the first gate trench. 如申請專利範圍第6項所述之製作方法,其中該第三U形金屬層係覆蓋該第一U形金屬層。The manufacturing method of claim 6, wherein the third U-shaped metal layer covers the first U-shaped metal layer. 如申請專利範圍第7項所述之製作方法,其中該第三U形金屬層之最高點與該第一U形金屬層之最高點為共平面或不共平面。The manufacturing method of claim 7, wherein a highest point of the third U-shaped metal layer and a highest point of the first U-shaped metal layer are coplanar or non-coplanar. 如申請專利範圍第1項所述之製作方法,其中於該第一閘極溝渠與該第二閘極溝渠內形成該等第一圖案化遮罩層之步驟更包含:於該基底上形成一第一遮罩層,且該第一遮罩層係填滿該第一閘極溝渠與該第二閘極溝渠;以及回蝕刻該第一遮罩層,形成該第一圖案化遮罩層,且各該第一遮罩層之表面低於該第一閘極溝渠與該第二閘極溝渠之開口,並暴露出部分該第二功函數金屬層。The manufacturing method of claim 1, wherein the forming the first patterned mask layer in the first gate trench and the second gate trench further comprises: forming a a first mask layer, and the first mask layer fills the first gate trench and the second gate trench; and etch back the first mask layer to form the first patterned mask layer, And the surface of each of the first mask layers is lower than the openings of the first gate trench and the second gate trench, and a portion of the second work function metal layer is exposed. 如申請專利範圍第1項所述之製作方法,其中該蝕刻製程係移除暴露出之該第二功函數金屬層與該第一功函數金屬層。The manufacturing method of claim 1, wherein the etching process removes the exposed second work function metal layer and the first work function metal layer. 如申請專利範圍第10項所述之製作方法,其中該蝕刻製程係於該第一閘極溝渠形成一第一U形金屬層與一第三U形金屬層,同時於該第二閘極溝渠內形成一第二U形金屬層。The manufacturing method of claim 10, wherein the etching process is performed by forming a first U-shaped metal layer and a third U-shaped metal layer in the first gate trench, and simultaneously forming the second gate trench A second U-shaped metal layer is formed therein. 如申請專利範圍第11項所述之製作方法,其中該第一U形金屬層包含該第一功函數金屬層、該第三U形金屬層包含該第二功函數金屬層,而該第二U形金屬層包含該第二功函數金屬層。The manufacturing method of claim 11, wherein the first U-shaped metal layer comprises the first work function metal layer, the third U-shaped metal layer comprises the second work function metal layer, and the second The U-shaped metal layer includes the second work function metal layer. 如申請專利範圍第1項所述之製作方法,其中該第二閘極溝渠係與該第一閘極溝渠同時形成。The manufacturing method of claim 1, wherein the second gate trench is formed simultaneously with the first gate trench. 申請專利範圍第1項所述之製作方法,更包含於該第一閘極溝渠與該第二閘極溝渠內分別形成一填充金屬(filling metal)層之步驟,進行於該蝕刻製程之後。The manufacturing method of claim 1, further comprising the step of forming a filling metal layer in the first gate trench and the second gate trench respectively, after the etching process. 一種具有金屬閘極之半導體元件,包含有:一基底,該基底表面形成有一第一半導體元件與一第二半導體元件,且該第一半導體元件與該第二半導體元件內分別形成有一第一閘極溝渠與一第二閘極溝渠;一閘極介電層,分別設置於該第一閘極溝渠與該第二閘極溝渠內;一第一U形金屬層,設置於該第一閘極溝渠內,且該第一U形金屬層之最高點低於該第一閘極溝渠之開口;一第二U形金屬層,設置於該第二閘極溝渠內,且該第二U形金屬層之最高點低於該第二閘極溝渠之開口;以及一填充金屬層,設置於該第一U形金屬層與該第二U形金屬層上。A semiconductor device having a metal gate, comprising: a substrate; a surface of the substrate is formed with a first semiconductor component and a second semiconductor component, and a first gate is formed in the first semiconductor component and the second semiconductor component a gate trench and a second gate trench; a gate dielectric layer respectively disposed in the first gate trench and the second gate trench; a first U-shaped metal layer disposed on the first gate In the trench, the highest point of the first U-shaped metal layer is lower than the opening of the first gate trench; a second U-shaped metal layer is disposed in the second gate trench, and the second U-shaped metal The highest point of the layer is lower than the opening of the second gate trench; and a filling metal layer is disposed on the first U-shaped metal layer and the second U-shaped metal layer. 如申請專利範圍第15項所述之半導體元件,其中該閘極介電層係一高介電常數(high-K)閘極介電層。The semiconductor device of claim 15, wherein the gate dielectric layer is a high-k gate dielectric layer. 如申請專利範圍第15項所述之半導體元件,其中該第一U形金屬層至少包含一第一功函數金屬層。The semiconductor device of claim 15, wherein the first U-shaped metal layer comprises at least a first work function metal layer. 如申請專利範圍第17項所述之半導體元件,其中該第二U形金屬層包含一第二功函數金屬層。The semiconductor device of claim 17, wherein the second U-shaped metal layer comprises a second work function metal layer. 如申請專利範圍第18項所述之半導體元件,更包含一第三U形金屬層,形成於該第一U形金屬層與該填充金屬層之間,覆蓋該第一U形金屬層,且該第三U形金屬層包含該第二功函數金屬層。The semiconductor device of claim 18, further comprising a third U-shaped metal layer formed between the first U-shaped metal layer and the filling metal layer to cover the first U-shaped metal layer, and The third U-shaped metal layer includes the second work function metal layer. 如申請專利範圍第19項所述之半導體元件,其中該第三U形金屬層之最高點與該第一U形金屬層之最高點為共平面或不共平面。The semiconductor device of claim 19, wherein a highest point of the third U-shaped metal layer is coplanar or non-coplanar with a highest point of the first U-shaped metal layer.
TW100138149A 2011-10-20 2011-10-20 Semiconductor device having metal gate and manufacturing method thereof TW201318068A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100138149A TW201318068A (en) 2011-10-20 2011-10-20 Semiconductor device having metal gate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100138149A TW201318068A (en) 2011-10-20 2011-10-20 Semiconductor device having metal gate and manufacturing method thereof

Publications (1)

Publication Number Publication Date
TW201318068A true TW201318068A (en) 2013-05-01

Family

ID=48872032

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100138149A TW201318068A (en) 2011-10-20 2011-10-20 Semiconductor device having metal gate and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TW201318068A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115995382A (en) * 2023-03-24 2023-04-21 合肥新晶集成电路有限公司 Method for preparing semiconductor structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115995382A (en) * 2023-03-24 2023-04-21 合肥新晶集成电路有限公司 Method for preparing semiconductor structure

Similar Documents

Publication Publication Date Title
US9024393B2 (en) Manufacturing method for semiconductor device having metal gate
US8951855B2 (en) Manufacturing method for semiconductor device having metal gate
TWI393218B (en) Method of integrating high-k/metal gate in cmos process flow
US8802524B2 (en) Method of manufacturing semiconductor device having metal gates
US8673755B2 (en) Semiconductor device having metal gate and manufacturing method thereof
TWI653762B (en) Semiconductor device having metal gate and method for manufacturing the same
US20130099307A1 (en) Semiconductor device having metal gate and manufacturing method thereof
US8765588B2 (en) Semiconductor process
US10068797B2 (en) Semiconductor process for forming plug
TWI663656B (en) Semiconductor device having metal gate and fabrication method thereof
US9230864B1 (en) Method of forming a semiconductor device having a metal gate
CN105826174B (en) Semiconductor device and method for fabricating the same
TW201618191A (en) Semiconductor device and method for fabricating the same
TW201904063A (en) Semiconductor device having metal gate and method for manufacturing the same
US9748144B1 (en) Method of fabricating semiconductor device
TWI533360B (en) Semiconductor device having metal gate and manufacturing method thereof
TWI518795B (en) Manufacturing method for semiconductor device having metal gate
TWI625792B (en) Semiconductor device and method for fabricating the same
TWI524394B (en) Manufacturing method for semiconductor device having metal gate
TW201318068A (en) Semiconductor device having metal gate and manufacturing method thereof
TWI609430B (en) Semiconductor device having metal gate and manufacturing method thereof
TWI593053B (en) Semiconductor device and fabrication method thereof
TWI509667B (en) Structure of metal gate and fabrication method thereof
TWI530991B (en) Semiconductor device having metal gate and manufacturing method thereof
TWI527125B (en) Menufacturing method for semiconductor device having metal gate