TW201317544A - Ground target geolocation system and method - Google Patents

Ground target geolocation system and method Download PDF

Info

Publication number
TW201317544A
TW201317544A TW100138374A TW100138374A TW201317544A TW 201317544 A TW201317544 A TW 201317544A TW 100138374 A TW100138374 A TW 100138374A TW 100138374 A TW100138374 A TW 100138374A TW 201317544 A TW201317544 A TW 201317544A
Authority
TW
Taiwan
Prior art keywords
ground target
aircraft
ground
image
target
Prior art date
Application number
TW100138374A
Other languages
Chinese (zh)
Other versions
TWI444593B (en
Inventor
Cheng-Chuan Chou
tai-hui Huang
Chung-Hsien Huang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW100138374A priority Critical patent/TWI444593B/en
Publication of TW201317544A publication Critical patent/TW201317544A/en
Application granted granted Critical
Publication of TWI444593B publication Critical patent/TWI444593B/en

Links

Abstract

A ground target geolocation system operates with an aerial vehicle. When a user selects a ground target from aerial image streams transmitted by the aerial vehicle via a user selection device, the user transmits a selected region containing the ground target to a selected-target image tracking module for tracking the selected region. After having obtained each piece of information of the aerial vehicle's location and attitude per time interval, the system eliminates time difference for the aerial vehicle's attitude information through an image and sensor data sequence synchronization module. A ground target coordinate estimation module computes a real-time geolocation for the ground target, according to the moving trajectory in the tracked aerial images for the ground target and the modified aerial vehicle's attitude information.

Description

地面目標定位系統與方法Ground target positioning system and method

本揭露係關於一種地面目標定位(ground target geolocation)系統與方法。The disclosure relates to a ground target geolocation system and method.

智慧型監控系統逐漸崛起,近年來興起的研究探討之一為如何藉由高空載具(例如熱氣球、無人駕駛飛機等)架設攝影機俯視地面攝影並分析影像偵測事件,輔助地面監控系統進行大範圍區域的偵測,達到無死角的全面性監控。無人機空拍影像串流的應用例如是僅限於對空拍影像串流不做定位的影像處理,或是將無人機影像與地面座標進行整合來達到對地面目標點更精確的定位。以目前飛行器可搭載的感測儀器精度不足,加上飛行器太小容易受到風力影響而產生搖晃,因此採用數值處理方法來加強估算結果。常見的相關技術例如是基於空載感測器資訊的地理位置估算法、或是基於影像追蹤以提高飛行姿態參數精確度的地理位置估算法、或是基於影像樣板比對之地理位置估算法等。The intelligent monitoring system has gradually emerged. One of the research and developments that have arisen in recent years is how to set up cameras to view ground photography and analyze image detection events by high-altitude vehicles (such as hot air balloons, drones, etc.) to assist the ground monitoring system. Detection of a wide range of areas, to achieve comprehensive monitoring without dead ends. The application of the aerial video streaming of the drone is, for example, limited to image processing that does not locate the aerial image stream, or integrates the drone image with the ground coordinates to achieve more accurate positioning of the ground target point. The accuracy of the sensing instruments that can be carried on the current aircraft is insufficient, and the aircraft is too small to be affected by the wind, so numerical methods are used to enhance the estimation results. Common related technologies are, for example, a geographic location estimation method based on no-load sensor information, or a geographic location estimation method based on image tracking to improve the accuracy of flight attitude parameters, or a geographic location estimation method based on image template comparison. .

基於空載感測器資訊的地理位置估算法利用飛行器的全球定位系統(Global Positioning System,GPS)座標和氣壓式高度計、陀螺儀、羅盤等所提供的飛行高度與姿態資訊,根據三角函數關係推算地面目標的位置座標。此技術可採用視角可調的攝影機為來使觀測的範圍更寬廣。也可採用遞迴最小平方(Recursive Least Squares,RLS)演算法來處理原始估測值以得到較為精確的結果。此技術可提高飛行姿態參數的精確度。The geolocation estimation method based on the information of the airborne sensor uses the altitude and attitude information provided by the Global Positioning System (GPS) coordinates of the aircraft and the barometer, gyroscope, compass, etc., and calculates the relationship based on the trigonometric function. The position coordinates of the ground target. This technology can be used to make the scope of observation wider. The Recursive Least Squares (RLS) algorithm can also be used to process the raw estimates to obtain more accurate results. This technique improves the accuracy of flight attitude parameters.

基於影像追蹤以提高飛行姿態參數精確度之地理位置估算法使用高精度的感測器,並利用地面影像特徵點追蹤結果和GPS座標資訊,根據慣性導航系統(Inertial Navigation System,INS)運作方程式迴授修正飛行姿態參數。基於影像樣板比對之地理位置估算法採用垂直拍攝的飛行器取得空拍影像串流,並且以龐大的計算量來將目標區域的空拍影像串流與已標定座標之地面圖資進行比對。最近似之圖資影像所屬的座標即為目標區域的地面座標,例如,以較高飛行高度的地面空照圖為比對圖資。The geolocation estimation method based on image tracking to improve the accuracy of flight attitude parameters uses a high-precision sensor, and uses the ground image feature point tracking results and GPS coordinate information to operate the equation according to the Inertial Navigation System (INS). Revise the flight attitude parameters. The geographic location estimation method based on the image template comparison uses the vertically photographed aircraft to obtain the aerial image stream, and compares the aerial image stream of the target area with the ground map of the marked coordinates with a large calculation amount. Recently, the coordinate to which the image of the image belongs belongs to the ground coordinate of the target area. For example, the ground aerial picture with a higher flying height is used as the comparison map.

與上述技術相關的文獻中,例如,其中一篇文獻的技術使用兩台無人飛行器,在較高空的無人飛行器作為較低空飛行器的參考點,較低空的飛行器可利用觀測此參考點進而提高對地面目標的定位精度。其中一篇文獻的技術藉由投射結構光至地面,作為空拍攝影機校正變形的參考,從而提高空中定位的精度。其中一篇文獻的技術加快由空中定位的速度,對所有可用來定位的地面目標點分別計算其定位所需時間,再透過權重分配的方式訂出最終一組地面定位目標點。其中一篇文獻的技術利用空照圖中所帶的座標將特定區域辨識為道路區域且對應至道路名稱,分析空照圖中的道路區域之影像以取得交通資訊。In the literature related to the above technology, for example, one of the techniques of the literature uses two unmanned aerial vehicles, and the higher-altitude unmanned aerial vehicle is used as a reference point for the lower-altitude aircraft, and the lower-altitude aircraft can use this reference point to improve Positioning accuracy for ground targets. One of the techniques of the literature improves the accuracy of aerial positioning by projecting structured light to the ground as a reference for correcting distortion of an aerial camera. One of the techniques of the literature speeds up the speed of positioning by air, calculates the time required for positioning of all ground target points that can be used for positioning, and then sets the final set of ground positioning targets by means of weight distribution. The technique of one of the documents uses the coordinates carried in the aerial photograph to identify a specific area as a road area and corresponds to the road name, and analyzes the image of the road area in the aerial photograph to obtain traffic information.

在空拍影像串流的應用技術中,如何能夠不需使用任何地面圖資、不需精確量測飛行器距離地面的高度、受地表紋理區域影響程度低、以及受外在通訊條件影響程度低,而能在多種不同的搜索監視的場景中,可即時估算地面目標的地理位置,且能明顯提升地面座標精確度,是非常值得研究與發展的。In the application technology of aerial video streaming, how can it not need to use any ground map, do not need to accurately measure the height of the aircraft from the ground, the degree of influence by the surface texture area is low, and the degree of influence by external communication conditions is low, In a variety of different search and monitoring scenarios, it is possible to estimate the geographical location of the ground target in real time, and can significantly improve the accuracy of the ground coordinates, which is worthy of research and development.

本揭露實施例可提供一種地面目標定位系統與方法。The disclosed embodiments may provide a ground target positioning system and method.

所揭露的一實施例是關於一種地面目標定位系統,搭配一飛行器來運作。此飛行器擷取並傳回所擷取的空拍影像串流及其位置與姿態資料。此系統包含一使用者點選裝置、一影像暫存區、一點選目標影像追蹤模組、一影像與感測器資料序列同步化模組、以及一地面目標座標估測模組。此影像暫存區儲存此空拍影像串流。透過此使用者點選裝置,地面使用者從空拍影像串流中選定一地面目標(ground target),並傳送含有此地面目標的一點選區域給此點選目標影像追蹤模組來追蹤此點選區域,以得到此地面目標在空拍影像串流中的移動軌跡。此系統在獲得每一時間區間一筆飛行器的姿態資料後,此影像與感測器資料序列同步化模組利用此地面目標的移動軌跡來消除飛行器姿態資訊時間差。此地面目標座標估測模組利用此地面目標的移動軌跡,從包含此地面目標的影像中,選出多組飛行器姿態值差距在一誤差範圍內的影像並估算出此地面目標的一地理位置。One disclosed embodiment relates to a ground target positioning system that operates in conjunction with an aircraft. The aircraft captures and returns the captured aerial image stream and its position and attitude data. The system comprises a user pointing device, an image temporary storage area, a point selection target image tracking module, an image and sensor data sequence synchronization module, and a ground target coordinate estimation module. This image temporary storage area stores the aerial image stream. Through the user clicking device, the ground user selects a ground target from the aerial image stream, and transmits a selected area containing the ground target to the selected target image tracking module to track the point. Select the area to get the trajectory of the ground target in the aerial video stream. After obtaining the attitude data of one aircraft in each time interval, the image and sensor data sequence synchronization module uses the movement trajectory of the ground target to eliminate the time difference of the aircraft attitude information. The ground target coordinate estimation module uses the movement trajectory of the ground target to select images of a plurality of sets of aircraft attitude values within an error range from the image containing the ground target and estimate a geographical location of the ground target.

所揭露的一實施例是關於一種地面目標定位方法,搭配一飛行器來運作。此方法包含:此飛行器以無線傳輸傳回空拍影像串流及飛行器的飛行資訊;由使用者透過一使用者點選裝置,從傳回的空拍影像串流中選定一地面目標;追蹤此點選區域,以得到此地面目標在該空拍影像串流中的移動軌跡;在獲得每一時間區間的一筆飛行器的飛行資訊後,將此飛行資訊平滑化內插至空拍影像的影格,並且利用此地面目標的移動軌跡,將空拍影像與飛行器的飛行資訊序列同步化;以及利用此地面目標的移動軌跡,從包含此地面目標的影像中,選出多組飛行器姿態值差距在一誤差範圍內的影像並估算出此地面目標的一地理位置。One disclosed embodiment relates to a ground target positioning method that operates in conjunction with an aircraft. The method comprises: the aircraft transmitting the aerial image stream and the flight information of the aircraft by wireless transmission; the user selects a ground target from the returned aerial image stream through a user clicking device; tracking the Clicking on the area to obtain the movement trajectory of the ground target in the aerial image stream; after obtaining the flight information of one aircraft in each time interval, the flight information is smoothly interpolated to the frame of the aerial image, And using the moving trajectory of the ground target to synchronize the aerial image with the flight information sequence of the aircraft; and using the moving trajectory of the ground target, selecting a plurality of sets of aircraft attitude values from an error in the image containing the ground target A range of images and an estimate of the geographic location of the ground target.

茲配合下列圖示、實施例之詳細說明及申請專利範圍,將上述及本發明之其他優點詳述於後。The above and other advantages of the present invention will be described in detail below with reference to the following drawings, detailed description of the embodiments, and claims.

在本揭露之地面目標定位系統與方法的實施例中,係基於感測器資訊與結合影像特徵點追蹤,來進行即時地理位置估算。此實施例沒有使用任何地面圖資、不需要精確量測飛行器距離地面的高度、受地表紋理區域影響程度低、以及受外在通訊條件影響程度低,可應用在多種不同的搜索監視的場景中,例如空中搜救、災情調查、農漁牧觀測、資源研究、水土保持、邊境巡邏等。第一圖是一示意圖,說明本揭露實施例的一應用場景範例。In an embodiment of the ground target positioning system and method of the present disclosure, real-time geographic location estimation is performed based on sensor information and combined image feature point tracking. This embodiment does not use any ground map, does not need to accurately measure the height of the aircraft from the ground, is less affected by the surface texture area, and is less affected by external communication conditions, and can be applied in many different search and monitoring scenarios. For example, air search and rescue, disaster investigation, agricultural and fishery observation, resource research, soil and water conservation, border patrol, etc. The first figure is a schematic diagram illustrating an application scenario example of the disclosed embodiment.

在第一圖的應用場景範例中,在一飛行器110上架設一攝影機負責監控一範圍區域115,並將其所取得的影像串流與一空載感測器(airborne sensor),例如GPS、陀螺儀、加速儀、磁羅盤、氣壓計等,所感測的飛行資訊同時傳回一地面導控站120。地面導控站120由傳回的串流影像中選取一地面目標後,即時估算出此地面目標的座標位置,以進行後續動作的參考,也可送出如一飛控指令,來讓飛行器110對該地面目標自動進行定點盤旋監控,以獲得更為精細的即時資訊。In the application scenario example of the first figure, a camera is mounted on an aircraft 110 to monitor a range of areas 115, and the captured image stream is streamed with an airborne sensor, such as a GPS or a gyroscope. The instrument, accelerometer, magnetic compass, barometer, etc., the sensed flight information is simultaneously transmitted back to a ground control station 120. The ground guiding station 120 selects a ground target from the returned streaming image, and immediately estimates the coordinate position of the ground target for reference of subsequent actions, and may also send a flight control command to let the aircraft 110 The ground target automatically performs fixed-point hover monitoring to get more detailed instant information.

依此,第二圖是搭配一飛行器,根據本揭露一實施例,說明一地面目標定位系統之資料傳輸流程。參考第二圖之資料傳輸流程,在飛行器端,例如一空中飛行器210,一即時影像擷取裝置如攝影機等即時影像擷取並將所擷取的影像串流回傳至地面導控站端,例如一地表伺服器220。空中飛行器210上的一空載感測器215同時將所感測的飛行器210的飛行資訊傳回地表伺服器220端。地表伺服器220端的使用者可進行地面目標點選225。有了地面目標與飛行資訊後,地表伺服器220端再追蹤目標區域並與飛行資訊整合運算230,然後估算出地面目標座標240。在地表伺服器220端,地面目標點選225例如可透過一使用者點選裝置來點選由影像串流形成的一即時空拍影像串流上的地面目標;所擷取的影像串流例如可儲存在一影像暫存區(image buffer)。Accordingly, the second figure is a data transmission process of a ground target positioning system according to an embodiment of the present disclosure. Referring to the data transmission process of the second figure, at the aircraft end, for example, an air vehicle 210, an instant image capturing device such as a camera captures the image and streams the captured image back to the ground guiding station. For example, a surface server 220. A no-load sensor 215 on the air vehicle 210 simultaneously transmits the sensed flight information of the aircraft 210 back to the surface server 220 end. The user of the surface server 220 can perform a ground target selection 225. With the ground target and flight information, the surface server 220 then tracks the target area and integrates with the flight information operation 230, and then estimates the ground target coordinates 240. At the surface server 220 end, the ground target point selection 225 can click, for example, a user pointing device to select a ground target on a real-time aerial image stream formed by the video stream; the captured video stream is, for example, Can be stored in an image buffer.

雖然整合飛行器的飛行姿態、飛行器的距地高度、空拍影像中目標點的座標等資訊,可推估出空拍影像相對應的大地座標,即地面目標點的相對位置。然而,各項量測值的誤差會造成估算的誤差過大,特別是飛行器距離地端的高度是影響估測精度最大的。並且,空載感測器,例如慣性感測器等,的機械特性也會影響飛行器之飛行姿態參數的精確度。在本揭露之地面目標定位系統的實施例中,採用目標影像追蹤來修正飛行姿態參數的時間延遲效應。並且,採用目標追蹤點移動距離來取代飛行器距地高度作為估測地面座標的基礎。換句話說,消除飛行器的姿態資訊時間差之後,採用追蹤此地面目標的移動距離來做為估測此地面目標之地面座標的基礎。Although integrating the flight attitude of the aircraft, the height of the aircraft from the ground, and the coordinates of the target point in the aerial image, the earth coordinates corresponding to the aerial image, that is, the relative positions of the ground target points, can be estimated. However, the error of each measurement value will cause the estimation error to be too large, especially the height of the aircraft from the ground end is the most accurate estimation accuracy. Moreover, the mechanical characteristics of the no-load sensor, such as an inertial sensor, etc., also affect the accuracy of the flight attitude parameters of the aircraft. In an embodiment of the ground target positioning system of the present disclosure, target image tracking is employed to correct the time delay effect of the flight attitude parameters. Moreover, the target tracking point moving distance is used to replace the height of the aircraft from the ground as the basis for estimating the ground coordinates. In other words, after eliminating the time difference of the attitude information of the aircraft, the moving distance of the ground target is used as the basis for estimating the ground coordinates of the ground target.

例如,根據本揭露的一實施例,可採用如GPS資訊中較準確的水平方向座標,來取代無法精確量測的距地高度,其中,以多張在不同時間點且飛行器俯仰角角度接近的地面目標影像來估算出地面目標與飛行器的水平相對距離,再根據飛行器的位置記錄資訊,估算出地面目標的實際座標。在實際的應用中,由於受限於所採用的感測器規格及無線傳輸,無法在每秒傳輸的30個影格(image frame)中都得到相對應的飛行資訊,因此在後續估測地面目標座標時無法選擇適當的影像做計算。For example, according to an embodiment of the present disclosure, a relatively accurate horizontal direction coordinate such as GPS information may be used instead of the ground height that cannot be accurately measured, wherein the plurality of points at different time points and the aircraft pitch angle are close to each other. The ground target image is used to estimate the relative distance between the ground target and the aircraft, and then the information is recorded according to the position of the aircraft to estimate the actual coordinates of the ground target. In practical applications, due to the sensor specifications and wireless transmissions that are used, it is impossible to obtain corresponding flight information in 30 image frames transmitted per second, so the ground target is estimated in the subsequent stage. The appropriate image cannot be selected for calculation at coordinates.

通常在地表伺服器220端只能收到每一時間區間(例如一秒)一筆資訊。因此,根據本揭露的一實施例,在獲取到每秒的飛行器資訊後,透過平滑內插法,估計出每一影格中飛行器的狀態。在本揭露的一實施例中,採用卡曼濾波器的預測,估計的狀態為慣性感測器(如陀螺儀)的資訊如俯仰角(pitch)與側傾角(bank)。可先將飛行姿態平滑化內插至目標區域的每一影格,再調整平滑內插後的每一影格中的姿態數值,使空拍影像與感測器資料序列得以同步化。Usually only one message per time interval (for example, one second) is received at the surface server 220 end. Therefore, according to an embodiment of the present disclosure, after acquiring the aircraft information per second, the state of the aircraft in each frame is estimated by smooth interpolation. In an embodiment of the present disclosure, the prediction of the Karman filter is used, and the estimated state is information of an inertial sensor (such as a gyroscope) such as a pitch and a bank. The flight attitude can be smoothly interpolated to each frame of the target area, and then the posture values in each frame after the smooth interpolation are adjusted, so that the aerial image and the sensor data sequence can be synchronized.

依此,第三圖是根據本揭露的一實施例,說明一地面目標定位系統的各模組與各模組之間的運作。參考第三圖,地面目標定位系統300搭配一飛行器310來運作。其中飛行器310可即時影像擷取並傳回所擷取的空拍影像串流312、以及回傳其即時的位置資料314與姿態資料316。地面目標定位系統300可包含一使用者點選裝置321、一影像暫存區323、一點選目標影像追蹤模組325、一影像與感測器資料序列同步化模組327、以及一地面目標座標估測模組329。影像暫存區323儲存空拍影像串流312。Accordingly, the third figure illustrates the operation of each module and each module of a ground target positioning system according to an embodiment of the present disclosure. Referring to the third diagram, the ground target positioning system 300 operates in conjunction with an aircraft 310. The aircraft 310 can capture and return the captured aerial image stream 312 and return its instantaneous location data 314 and posture data 316. The ground target positioning system 300 can include a user pointing device 321, an image temporary storage area 323, a point target image tracking module 325, an image and sensor data sequence synchronization module 327, and a ground target coordinate. Estimate module 329. The image temporary storage area 323 stores the aerial image stream 312.

透過使用者點選裝置321,地面使用者可從空拍影像串流312中選定一地面目標(ground target),並傳送含有此地面目標的一點選區域321a給點選目標影像追蹤模組325來追蹤此點選區域321a。在本發明的實施例中,可採用特徵點偵測及光流法追蹤點選區域,配合單應性轉換矩陣估測、卡曼濾波器追蹤以及粗差點去除技術,可穩定且平滑的鎖定追蹤地面目標。得到此地面目標在空拍影像串流中的移動軌跡325a。Through the user pointing device 321, the ground user can select a ground target from the aerial image stream 312, and transmit a point selection area 321a containing the ground target to the click target image tracking module 325. This click area 321a is tracked. In the embodiment of the present invention, feature point detection and optical flow method can be used to track the selected area, and the homography conversion matrix estimation, the Kalman filter tracking and the rough point removal technology can be used for stable and smooth locking tracking. Ground target. A movement trajectory 325a of the ground target in the aerial image stream is obtained.

另一方面,地面目標定位系統300在獲得每一短暫時間區間的一筆飛行器資訊後,透過影像與感測器資料序列同步化模組327,來消除飛行器姿態資訊時間差並且將修正後的飛行器姿態資訊327a傳送給地面目標座標估測模組329。此筆飛行器資訊包括飛行器的位置資料314(例如GPS資料)與姿態資料316(例如飛行器的兩個姿態資訊,即俯仰角與側傾角。地面目標定位系統300在獲得每一時間區間(例如一秒)的一筆飛行器資訊後,也可以先採用一誤差縮減濾波器333來提升飛行姿態參數(飛行器姿態資訊)的精確度,例如可採用低通濾波器或卡曼濾波器來縮減慣性感測器的輸出值誤差。再將飛行器的位置資料314與已提升精確度的飛行姿態參數傳送給影像與感測器資料序列同步化模組327。在本揭露實施例中,地面目標定位系統300採用此誤差縮減濾波器與否只是隨意的(optional),當不能依此限定本揭露實施之範圍。On the other hand, the ground target positioning system 300, after obtaining a piece of aircraft information for each short time interval, passes through the image and sensor data sequence synchronization module 327 to eliminate the aircraft attitude information time difference and the corrected aircraft attitude information. 327a is transmitted to the ground target coordinate estimation module 329. The aircraft information includes aircraft position data 314 (eg, GPS data) and attitude data 316 (eg, two attitude information of the aircraft, ie, pitch angle and roll angle. The ground target positioning system 300 obtains each time interval (eg, one second) After a piece of aircraft information, an error reduction filter 333 can also be used first to improve the accuracy of the flight attitude parameter (aircraft attitude information), for example, a low-pass filter or a Karman filter can be used to reduce the inertial sensor. Output value error. The aircraft position data 314 and the increased accuracy flight attitude parameters are transmitted to the image and sensor data sequence synchronization module 327. In the disclosed embodiment, the ground target positioning system 300 uses the error. Whether the filter is reduced or not is only optional, and the scope of the disclosure is not limited thereto.

影像與感測器資料序列同步化模組327進行的運作包含飛行器姿態資料平滑內插、以及感測器資料修正。地面目標座標估測模組329利用此地面目標的移動軌跡325a,從包含此地面目標的影像中,選出多組飛行器姿態值差距在一誤差範圍內的影像並估算出此地面目標的一地理位置329a。地理位置329a是地表上的一地理位置,可以使用大地基準(Datum)+座標格式(Format/Grid)兩個參數來標示。此標示簡稱為大地座標。大地基準例如常聽到的TWD67、TWD97、WGS84等。座標格式例如經緯度、UTM(六度分帶)、TM2(二度分帶)、電力座標等。The operations performed by the image and sensor data sequence synchronization module 327 include aircraft pose data smooth interpolation and sensor data correction. The ground target coordinate estimation module 329 uses the movement target 325a of the ground target to select images of a plurality of sets of aircraft attitude values within an error range from the image containing the ground target and estimate a geographical location of the ground target. 329a. The geographic location 329a is a geographic location on the surface that can be labeled using the Datum + Format/Grid parameters. This symbol is referred to as the earth coordinates. The earth reference is, for example, TWD67, TWD97, WGS84, etc., which are often heard. Coordinate formats such as latitude and longitude, UTM (six-degree banding), TM2 (two-degree banding), power coordinates, and the like.

依此,第四圖是根據本揭露的一實施例,說明一地面目標定位方法的運作流程。此地面目標定位方法搭配一飛行器來運作。參考第四圖,此飛行器以無線傳輸傳回空拍影像串流及飛行器的飛行資訊,如步驟410所示。由使用者透過一使用者點選裝置,從傳回的空拍影像串流中選定一地面目標後並點選包含該地面目標的一點選區域,如步驟420所示。然後,追蹤此點選區域,以得到此地面目標在該空拍影像串流中的移動軌跡,如步驟430所示。在獲得每一時間區間的一筆飛行器的飛行資訊後,將此飛行資訊平滑化內插至空拍影像的影格,並且利用此地面目標的移動軌跡,將空拍影像與飛行器的飛行資訊序列同步化,如步驟440所示。之後,可透過一地面目標座標估測模組,利用此地面目標的移動軌跡,從包含此地面目標的影像中,選出多組飛行器姿態值差距在一誤差範圍內的影像並估算出此地面目標的一地理位置,如步驟450所示。Accordingly, the fourth figure is an operational flow of a ground target positioning method according to an embodiment of the present disclosure. This ground target positioning method works with an aircraft. Referring to the fourth figure, the aircraft transmits the aerial image stream and the flight information of the aircraft by wireless transmission, as shown in step 410. The user selects a ground target from the returned aerial image stream through a user pointing device and selects a point selection region including the ground target, as shown in step 420. Then, the selected area is tracked to obtain the movement trajectory of the ground target in the aerial image stream, as shown in step 430. After obtaining the flight information of one aircraft in each time interval, the flight information is smoothly interpolated to the frame of the aerial image, and the flight information of the ground target is used to synchronize the aerial image with the flight information sequence of the aircraft. , as shown in step 440. Then, through a ground target coordinate estimation module, using the moving trajectory of the ground target, selecting images of a plurality of sets of aircraft attitude values within an error range from the image containing the ground target and estimating the ground target A geographic location, as shown in step 450.

承上述,在地面使用者點選空拍影像中的地面目標之後,本揭露的實施例可採用特徵點追蹤方法,先向前逐影格的追蹤,再向後逐影格追蹤點選的地面目標,可得到地面目標在空拍影片中的完整移動軌跡。利用此移動軌跡,可消除先前平滑飛行器姿態時所造成的時間差。在本揭露實施例中,先將飛行器側傾角值經由平滑內插至每一空照影格,再以地面目標的移動軌跡進行時間修正後,來消除姿態資訊時間差,進而得到較為精確的姿態資訊(如側傾角)的估計值。According to the above, after the ground user selects the ground target in the aerial image, the embodiment of the disclosure may adopt the feature point tracking method, first tracking the frame by frame, and then tracking the ground target by the frame backward. Get the complete movement of the ground target in the aerial movie. With this movement trajectory, the time difference caused by the previous smoothing of the aircraft attitude can be eliminated. In the disclosed embodiment, the aircraft roll angle value is first smoothly interpolated to each of the aerial photo frames, and then the time correction is performed on the movement target of the ground target to eliminate the time difference of the posture information, thereby obtaining more accurate posture information (eg, Estimated value of the roll angle).

第五圖是根據本揭露一實施例的示意圖,說明將飛行姿態平滑化內插至每一空照影格。在第五圖中,飛行器傳回空照影格1至空照影格32,在實際環境中,由於受限感測器規格及無線傳輸,地面伺服器端例如只能收到每秒一筆資訊,如圖中實際姿態510所示,地面伺服器端於時間t收到的實際姿態對應到空照影格1,於下一時間t+1收到的實際姿態對應到空照影格31。因此將飛行姿態平滑化內插至每一影格,如圖中平滑後姿態520所示。The fifth figure is a schematic diagram illustrating the smoothing of flight attitude to each aerial photo frame in accordance with an embodiment of the present disclosure. In the fifth figure, the aircraft returns the aerial photo frame 1 to the aerial photo frame 32. In the actual environment, due to the limited sensor specifications and wireless transmission, the ground server end can only receive one piece of information per second, such as As shown in the actual posture 510 in the figure, the actual posture received by the ground server at time t corresponds to the aerial photo frame 1, and the actual posture received at the next time t+1 corresponds to the aerial photo frame 31. Therefore, the flight attitude is smoothly interpolated to each frame as shown by the smoothed posture 520 in the figure.

由於慣性感測器(如陀螺儀)量測值會有時間延遲,同時量測資料經平滑內插處理,因此必然會產生姿態資訊與影格的時間差,內插至某一影格的姿態數值並不會是該時間點的飛行器姿態。在本揭露的實施例中,可利用先前追蹤地面目標的移動軌跡與平滑後的側傾角值變化,來進行匹配,如此可消除姿態資訊時間差,因而有效提升感測器對於飛行器姿態的估測精確度。Since the measurement value of the inertial sensor (such as the gyroscope) has a time delay, and the measurement data is smoothed and interpolated, the time difference between the attitude information and the frame is inevitably generated, and the posture value interpolated to a certain frame is not It will be the attitude of the aircraft at that point in time. In the embodiment of the present disclosure, the trajectory of the previous tracking ground target and the smoothed roll angle value change can be used for matching, so that the time difference of the attitude information can be eliminated, thereby effectively improving the accuracy of the sensor for estimating the attitude of the aircraft. degree.

在空拍影片中,地面目標點的橫向(水平方向)移動,主要是由飛行器的側傾角所造成。第六圖是根據本揭露一實施例的示意圖,說明以特徵點追蹤地面目標的移動軌跡與平滑內插後側傾角數值變化進行匹配。其中,利用地面目標移動軌跡中的x方向移動(△x)與卡曼濾波器平滑後的側傾角姿態數值變化(△bank)作匹配。此移動軌跡包含8個空照影格,符號“→”代表地面目標朝x方向右移,符號“←”代表地面目標朝x方向左移。符號“+”代表飛行器的飛行側傾角姿態數值增加,也就是等於地面目標朝水平方向右移;反之,符號“-”代表飛行器的飛行側傾角姿態數值減少,也就是等於地面目標朝水平方向左移。從第六圖的地面目標點移動△x與修正後側傾角姿態數值可以看出,利用地面目標的移動軌跡與平滑內插後的側傾角數值變化進行匹配後,將空拍影像與飛行器的飛行資訊序列同步化,如此,消除了姿態資訊時間差。In the aerial film, the lateral (horizontal) movement of the ground target point is mainly caused by the roll angle of the aircraft. The sixth figure is a schematic diagram illustrating the matching of the movement trajectory of the ground target with the feature point and the change of the value of the smoothed post-tilt angle according to an embodiment of the present disclosure. Wherein, the x-direction movement (Δx) in the ground target movement trajectory is matched with the roll angle attitude value change (Δbank) after the Kalman filter is smoothed. This movement track contains 8 aerial photo frames, the symbol "→" represents the ground target moving to the right in the x direction, and the symbol "←" represents the ground target moving to the left in the x direction. The symbol "+" represents the increase in the value of the flight roll attitude of the aircraft, that is, the ground target is shifted to the right in the horizontal direction; otherwise, the symbol "-" represents the decrease in the value of the flight roll attitude of the aircraft, that is, the ground target is horizontally left. shift. It can be seen from the ground target point movement Δx and the corrected roll angle attitude value in the sixth figure that the flight image of the ground target is matched with the numerical value of the roll angle after smooth interpolation, and the aerial image and the flight of the aircraft are obtained. The information sequence is synchronized, thus eliminating the time difference of the gesture information.

如前所述,地面目標定位系統與方法的實施例是搭配一飛行器來運作,並且採用目標追蹤點移動距離來取代飛行器距地高度作為估測地面座標的基礎。在本揭露實施例中,此飛行器備有一空照影像擷取裝置以即時影像擷取、一GPS感測器以即時獲取飛行器的位置資料、以及一慣性感測器(如陀螺儀)以獲取飛行器的姿態資訊。而估測地面座標的設計以第七圖與第八圖來說明。As previously mentioned, an embodiment of the ground target positioning system and method operates with an aircraft and uses the target tracking point moving distance to replace the aircraft ground height as the basis for estimating the ground coordinates. In the disclosed embodiment, the aircraft is provided with an aerial image capturing device for real-time image capturing, a GPS sensor for instantaneous acquisition of the position data of the aircraft, and an inertial sensor (such as a gyroscope) to acquire the aircraft. Gesture information. The design of the estimated ground coordinates is illustrated in the seventh and eighth figures.

將空照影像擷取裝置(如攝影機)固定在一定俯仰角的情況下,透過一透視轉換方法,可以將攝影機視角中的每一點的影像座標值,轉換為相對應於攝影機的距地高度h的比例值。所以,為了轉換實際影像座標,根據本揭露實施例的設計是,將攝影機位置設定為大地座標原點上,並拍攝一水平棋盤格。透過透視轉換方法,得到一轉換矩陣,即可將原本斜視的影像投射到地面。投射完成後,根據實際量測的結果,即可得到原始影像中的的各個影像點座標相對應的大地座標。When the aerial image capturing device (such as a camera) is fixed at a certain pitch angle, the image coordinate value of each point in the camera angle of view can be converted into a height h corresponding to the camera by a perspective conversion method. The ratio value. Therefore, in order to convert the actual image coordinates, according to the embodiment of the present disclosure, the camera position is set to the origin of the earth coordinates, and a horizontal checkerboard is captured. Through the perspective transformation method, a transformation matrix is obtained, and the original squint image can be projected onto the ground. After the projection is completed, according to the actual measurement result, the geodetic coordinates corresponding to the coordinates of each image point in the original image can be obtained.

依此,第七圖是根據本揭露一實施例的示意圖,說明(如攝影機)的座標轉換。先將空照影像擷取裝置(如攝影機)固定在一定俯仰角,透過棋盤格將斜視影像710轉換為上視影像720並記錄此俯仰角的轉換矩陣。然後,變化不同的俯仰角並記錄各俯仰角的轉換矩陣。從第七圖可以看出,斜視影像710中的x軸與y軸座標可投影至上視影像720中的x軸與y軸座標。也就是說,空照影像中的x軸與y軸座標可投影至地面的x軸與y軸座標。Accordingly, the seventh figure is a schematic diagram illustrating coordinate conversion (e.g., a camera) in accordance with an embodiment of the present disclosure. The aerial image capturing device (such as a camera) is first fixed at a certain pitch angle, and the squint image 710 is converted into a top view image 720 through the checkerboard and the conversion matrix of the pitch angle is recorded. Then, different pitch angles are changed and the conversion matrix of each pitch angle is recorded. As can be seen from the seventh diagram, the x-axis and y-axis coordinates in the squint image 710 can be projected onto the x-axis and y-axis coordinates in the upper view image 720. That is, the x-axis and y-axis coordinates in the aerial image can be projected to the x-axis and y-axis coordinates of the ground.

當攝影機維持固定俯仰角,並前進一段距離時,在影像中會發現地面的目標物向畫面下方移動。利用此移動量等於攝影機前進距離的特性,即可用飛行器的水平位置記錄資訊來取代飛行器距地高度h,並作為本揭露之地面目標估測的依據。第八A圖與第八B圖是根據本揭露一實施例的示意圖,說明地面目標相對距離估測。以第八A圖與第八B圖為例,其中第八A圖是飛行器上的攝影機的初始狀態,第八B圖是飛行器上的攝影機前進後的狀態。When the camera maintains a fixed pitch angle and advances for a distance, the target on the ground is found moving below the screen. By utilizing the characteristic that the amount of movement is equal to the forward distance of the camera, the positional information of the aircraft can be used to replace the height h of the aircraft from the ground, and is used as a basis for estimating the ground target of the present disclosure. 8A and 8B are schematic views illustrating ground target relative distance estimation according to an embodiment of the present disclosure. Taking the eighth A diagram and the eighth B diagram as an example, the eighth diagram A is the initial state of the camera on the aircraft, and the eighth diagram B is the state after the camera on the aircraft advances.

攝影機(以菱形表示)由第八A圖的位置前進0.4h到達第八B圖的位置,飛行器前進方向即為攝影機前進方向。而空照影像投影為上視影像後,地面目標(以三角形表示)由1.2h的初始狀態(如箭頭810所指)移動到0.8h(如箭頭820所指)。攝影機的移動量0.4h可由飛行器的位置記錄中得到,因此可得出飛行器距地高度h。以下以影像y軸的數值為例,說明如何得出飛行器距地高度h。The camera (indicated by a diamond) advances from the position of Figure 8A by 0.4h to the position of Figure 8B, and the direction of advancement of the aircraft is the direction in which the camera travels. After the aerial image is projected as a top view image, the ground target (indicated by a triangle) is moved from the initial state of 1.2 h (as indicated by arrow 810) to 0.8 h (as indicated by arrow 820). The movement of the camera by 0.4 h can be obtained from the position record of the aircraft, so that the height h of the aircraft from the ground can be obtained. The following takes the value of the image y-axis as an example to show how to get the height h of the aircraft from the ground.

當攝影機高度在h時,影像中的y軸座標值可用透過下式轉換為投影至地平面的y軸座標projected_y:When the camera height is h, the y-axis coordinate value in the image can be converted to the y-axis coordinate projected_y projected to the ground plane by:

Projected_y=(a*y+b)*hProjected_y=(a*y+b)*h

其中a,b為轉換的參數,並且已針對不同俯仰角度的攝影機預先量測。Where a, b are the parameters of the conversion and have been pre-measured for cameras of different pitch angles.

若攝影機往前水平移動一段距離,空照影像中的地面目標會朝向影像畫面的下方移動。假設在移動前地面目標的y軸座標為project_y1,移動後地面目標的y軸座標為project_y2,則可由地面目標的移動量得到攝影機的實際高度h。在此例中地面目標的移動等於攝影機的移動,因此If the camera moves horizontally a distance, the ground target in the aerial image will move toward the bottom of the image. Assuming that the y-axis coordinate of the ground target before moving is project_y 1 and the y-axis coordinate of the ground target after moving is project_y 2 , the actual height h of the camera can be obtained from the amount of movement of the ground target. In this case the movement of the ground target is equal to the movement of the camera, so

Δ(UAV_loc1,UAV_loc2)=Δ(Projected_y1,Projected_y2)=(a-b)*hΔ(UAV_loc 1 , UAV_loc 2 )=Δ(Projected_y 1 ,Projected_y 2 )=(ab)*h

其中UAV_loc1為初始狀態時攝影機的y軸位置,UAV_loc2為移動後攝影機的y軸位置。The UAV_loc 1 is the y-axis position of the camera in the initial state, and the UAV_loc 2 is the y-axis position of the camera after the movement.

得到攝影機高度h後,可推算出地面目標與攝影機在水平方向的相對距離Target_distance如下:After obtaining the camera height h, the relative distance Target_distance between the ground target and the camera in the horizontal direction can be derived as follows:

Target_distance=Projected_y1=a*hTarget_distance=Projected_y 1 =a*h

再將此相對距離與初始狀態時攝影機的y軸位置相加即可得到地面目標實際的y軸座標Target_location如下:Then add the relative distance to the y-axis position of the camera in the initial state to obtain the actual y-axis coordinate Target_location of the ground target as follows:

Target_location=UAV_loc1+Target_distanceTarget_location=UAV_loc 1 +Target_distance

x軸座標也可以使用相同的方式來計算。不再重述。The x-axis coordinates can also be calculated in the same way. No longer repeat.

以第八A圖的位置前進0.4h到達第八B圖的位置為例,Taking the position of FIG. 8A forward 0.4h to the position of the eighth B diagram as an example,

特徵點的移動量(1.2h-0.8h)The amount of movement of feature points (1.2h-0.8h)

=0.4h=攝影機水平移動量=0.4h=Camera horizontal movement

=飛行器移動距特徵點的移動量(1.2h-0.8h)= The amount of movement of the feature point of the aircraft moving distance (1.2h-0.8h)

=0.4h=攝影機水平移動量=0.4h=Camera horizontal movement

=飛行器移動距離= aircraft moving distance

而飛行器移動距離可從飛行器的水平位置記錄資訊得知,因此可以得出h,得到h後,就可以計算出地面目標的座標。The moving distance of the aircraft can be obtained from the horizontal position of the aircraft, so that h can be obtained. After obtaining h, the coordinates of the ground target can be calculated.

換句話說,選取兩張側傾角值近似相同,且包含地面目標的影像,即可計算出地面目標與飛行器(兩張影像之首張影像被擷取時)的相對距離。再將此相對距離加上擷取首張影像時飛行器的一地理位置座標(如GPS座標),即可估算出地面目標的座標。在包含地面目標的影像中,也可以選出多組側傾角值的差距在一誤差範圍內的影像並估算地面目標的座標。再整合此多組影像所估算出的座標結果。In other words, by selecting two images with the same roll angle value and including the ground target, the relative distance between the ground target and the aircraft (when the first image of the two images is captured) can be calculated. The relative distance is then added to the coordinates of the aircraft (such as the GPS coordinates) when the first image is captured, and the coordinates of the ground target can be estimated. In an image containing a ground target, it is also possible to select images of a plurality of sets of roll angle values within an error range and estimate the coordinates of the ground target. The coordinate results estimated by the multiple sets of images are then integrated.

根據上述實施範例,本揭露搭配一飛行器如無人機水平飛行,並於地面導控站錄製影片並同步紀錄飛行資訊進行實驗。以程式驗證上述地面目標定位方法,同步顯示空拍畫面及飛行軌跡,點選播放畫面中地面目標,可快速得到座標估算結果。在地面目標的影像中,也選出多組側傾角值差距在一預定之誤差範圍內的影像並計算地面目標座標,以及整合此多組影像所計算出的座標結果,實驗結果顯示整合後的座標結果更加穩定。本揭露也重複播放空拍影片並點選同一地面目標,來驗證此地面目標座標估測的重現性,實驗結果顯示此地面目標座標估測也具有重現性。本揭露地面目標座標估測的準確度也與使用GPS及陀螺儀資訊並透過三角函數估測地面點座標的結果進行比較,從第九圖的範例表可看出,本揭露之地面目標座標估測的結果,其平均誤差為2.86公尺,相較於三角函數估測結果的41.54公尺,本揭露之地面點座標的估測結果明顯更要精準。According to the above embodiment, the present disclosure is equipped with an aircraft such as a drone to fly horizontally, and records the film at the ground guiding station and simultaneously records the flight information for experiment. The above-mentioned ground target positioning method is verified by the program, the aerial picture and the flight path are simultaneously displayed, and the ground target in the play picture is clicked, and the coordinate estimation result can be quickly obtained. In the image of the ground target, images of a plurality of sets of roll angle values within a predetermined error range are also selected and the ground target coordinates are calculated, and coordinate results calculated by integrating the plurality of sets of images are integrated, and the experimental results show the integrated coordinates. The result is more stable. The disclosure also repeats the aerial film and clicks on the same ground target to verify the reproducibility of the ground target coordinate estimation. The experimental results show that the ground target coordinate estimation is also reproducible. The accuracy of the ground target coordinate estimation is also compared with the results of using GPS and gyroscope information and estimating the ground point coordinates through a trigonometric function. As can be seen from the example table of the ninth figure, the ground target coordinate estimation of the present disclosure As a result of the measurement, the average error is 2.86 meters, which is significantly more accurate than the estimated 41.54 meters of the trigonometric function.

綜上所述,本揭露實施例的地面目標定位技術係於使用者點選空拍影像中的地面目標後,會由點選的影格向前及向後進行特徵點追蹤,以得到完整的目標軌跡。目標軌跡包含的各個影格,其側傾角值先經由平滑內插,再以地面目標的移動軌跡進行時間修正,得到較為精確的側傾角估計值。由目標軌跡起始影格開始,尋找側傾角值近似相同的兩張影格組合。若有多組影格有近似相同的側傾角值,則任意兩張影格的組合皆可列入計算。側傾角值近似相同的兩張影格組合即可估測出一個地面目標的座標數值,最後將所有估測出的結果以統計方法整合,即可得到更為精確的地面目標的座標。本揭露實施例採用平均方式整合所有影格估測的座標。In summary, the ground target positioning technology of the embodiment of the present disclosure is that after the user selects the ground target in the aerial image, the feature point is tracked forward and backward by the selected frame to obtain a complete target track. . Each of the frames included in the target trajectory is firstly smoothed by smooth interpolation, and then corrected by the movement trajectory of the ground target to obtain a more accurate estimation of the roll angle. Start with the target track start frame and look for two frame combinations with similar roll values. If there are multiple sets of frames with approximately the same roll angle value, any combination of two frames can be included in the calculation. A combination of two frames with similar roll values can estimate the coordinate value of a ground target. Finally, all the estimated results are statistically integrated to obtain a more accurate coordinate of the ground target. Embodiments of the present disclosure integrate all of the frame estimates of the coordinates in an averaging manner.

所以,本揭露實施例是基於感測器資訊與影像特徵點追蹤之即時地理位置估算技術,並且其特點至少包含不需以任何地面圖資來進行比對、不受限於地表是否有明顯紋理的區域、低精密度的量測儀器即可提供足夠資訊、不受限於飛行器姿態更新頻率的高或低、受外在通訊條件影響程度低、以及不受限於飛行器所搜索監控之區域範圍的大小,飛行器之機載的影像擷取裝置可以斜前方的方向來擷取影像等。Therefore, the disclosed embodiment is an instant geographic location estimation technology based on sensor information and image feature point tracking, and the feature includes at least no comparison with any ground map, and is not limited to whether the surface has obvious texture. Area, low-precision measuring instruments can provide sufficient information, not limited to the high or low frequency of aircraft attitude update, low degree of influence by external communication conditions, and not limited to the area of the aircraft to be monitored by the aircraft. The size of the aircraft's on-board image capture device can be used to capture images and the like in a diagonally forward direction.

以上所述者僅為本揭露實施例,當不能依此限定本揭露實施之範圍。即大凡本發明申請專利範圍所作之均等變化與修飾,皆應仍屬本發明專利涵蓋之範圍。The above is only the embodiment of the disclosure, and the scope of the disclosure is not limited thereto. That is, the equivalent changes and modifications made by the scope of the present invention should remain within the scope of the present invention.

110...飛行器110. . . Aircraft

115...範圍區域115. . . Range area

120...地面導控站120. . . Ground control station

210...空中飛行器210. . . Air vehicle

215...空載感測器215. . . No load sensor

220...地表伺服器220. . . Surface server

225...地面目標點選225. . . Ground target selection

230...追蹤目標區域與飛行資訊整合運算230. . . Track target area and flight information integration operations

240...地面目標座標240. . . Ground target coordinates

300...地面目標定位系統300. . . Ground target positioning system

310...飛行器310. . . Aircraft

312...影像串流312. . . Video stream

314...位置資料314. . . Location data

316...姿態資料316. . . Attitude data

321...使用者點選裝置321. . . User selection device

321a...點選區域321a. . . Click area

323...影像暫存區323. . . Image temporary storage area

325...點選目標影像追蹤模組325. . . Click on the target image tracking module

325a...移動軌跡325a. . . Moving track

327...影像與感測器資料序列同步化模組327. . . Image and sensor data sequence synchronization module

327a...修正後的飛行器姿態資訊327a. . . Modified aircraft attitude information

329...地面目標座標估測模組329. . . Ground target coordinate estimation module

329a...即時地理位置329a. . . Instant location

333...誤差縮減濾波器333. . . Error reduction filter

410...飛行器以無線傳輸傳回空拍影像串流及飛行器的飛行資訊410. . . The aircraft transmits the aerial video stream and the flight information of the aircraft by wireless transmission.

420...由使用者透過一使用者點選裝置,從傳回的空拍影像串流中選定一地面目標後並點選包含該地面目標的一點選區域420. . . The user selects a ground target from the returned aerial image stream through a user pointing device and selects a selected area containing the ground target.

430...追蹤此點選區域,以得到此地面目標在該空拍影像串流中的移動軌跡430. . . Tracking the selected area to obtain the movement track of the ground target in the aerial image stream

440...在獲得每一時間區間的一筆飛行器的飛行資訊後,將此飛行資訊平滑化內插至空拍影像的影格,並且利用此地面目標的移動軌跡,將空拍影像與飛行器的飛行資訊序列同步化440. . . After obtaining the flight information of one aircraft in each time interval, the flight information is smoothly interpolated to the frame of the aerial image, and the flight information of the ground target is used to synchronize the aerial image with the flight information sequence of the aircraft.

450...利用此地面目標的移動軌跡,從包含此地面目標的影像中,選出多組飛行器姿態值差距在一誤差範圍內的影像並估算出此地面目標的一地理位置450. . . Using the moving trajectory of the ground target, from the image containing the ground target, select images of a plurality of sets of aircraft attitude values within an error range and estimate a geographical location of the ground target

510...實際姿態510. . . Actual posture

520...平滑後姿態520. . . Smoothed posture

710...斜視影像710. . . Squint image

720...上視影像720. . . Top view image

h...飛行器距地高度h. . . Aircraft height from ground

810...地面目標的初始狀態810. . . Initial state of the ground target

820...地面目標的移動狀態820. . . Ground target movement status

第一圖是一示意圖,說明本揭露實施例的一應用場景範例。The first figure is a schematic diagram illustrating an application scenario example of the disclosed embodiment.

第二圖是根據本揭露一實施例,說明一地面目標定位系統之資料傳輸流程。The second figure illustrates a data transmission process of a ground target positioning system according to an embodiment of the present disclosure.

第三圖是根據本揭露的一實施例,說明一地面目標定位系統的各模組與各模組之間的運作。The third figure illustrates the operation between modules and modules of a ground target positioning system according to an embodiment of the present disclosure.

第四圖是根據本揭露的一實施例,說明一地面目標定位方法的運作流程。The fourth figure is an operational flow of a ground target positioning method according to an embodiment of the present disclosure.

第五圖是根據本揭露一實施例的示意圖,說明將飛行姿態平滑化內插至地面目標的移動軌跡包含的每一影格。The fifth figure is a schematic diagram illustrating each of the frames included in the movement trajectory that smoothes the flight attitude to the ground target in accordance with an embodiment of the present disclosure.

第六圖是根據本揭露一實施例的示意圖,說明以特徵點追蹤地面目標的移動軌跡與平滑內插後側傾角數值變化進行匹配。The sixth figure is a schematic diagram illustrating the matching of the movement trajectory of the ground target with the feature point and the change of the value of the smoothed post-tilt angle according to an embodiment of the present disclosure.

第七圖是根據本揭露一實施例的示意圖,說明攝影機座標轉換。The seventh figure is a schematic diagram illustrating camera coordinate conversion in accordance with an embodiment of the present disclosure.

第八A圖與第八B圖是根據本揭露一實施例的示意圖,說明地面目標相對距離估測。8A and 8B are schematic views illustrating ground target relative distance estimation according to an embodiment of the present disclosure.

第九圖是本揭露的地面目標座標估測與習知的三角函數估測地面點座標,兩者的估測結果的一比較圖。The ninth figure is a comparison diagram of the ground target coordinate estimation and the conventional trigonometric function estimation ground point coordinates of the present disclosure.

300...地面目標定位系統300. . . Ground target positioning system

310...飛行器310. . . Aircraft

312...影像串流312. . . Video stream

314...位置資料314. . . Location data

316...姿態資料316. . . Attitude data

321...使用者點選裝置321. . . User selection device

321a...點選區域321a. . . Click area

323...影像暫存區323. . . Image temporary storage area

325...點選目標影像追蹤模組325. . . Click on the target image tracking module

325a...移動軌跡325a. . . Moving track

327...影像與感測器資料序列同步化模組327. . . Image and sensor data sequence synchronization module

327a...修正後的飛行器姿態資訊327a. . . Modified aircraft attitude information

329...地面目標座標估測模組329. . . Ground target coordinate estimation module

329a...即時地理位置329a. . . Instant location

333...誤差縮減濾波器333. . . Error reduction filter

Claims (16)

一種地面目標定位系統,搭配一飛行器來運作,該飛行器擷取並傳回空拍影像串流及其本身的位置與姿態資料,該系統包含:一影像暫存區,用來儲存該空拍影像串流;一使用者點選裝置,透過該使用者點選裝置,從該空拍影像串流中選定一地面目標後,傳送出包含該地面目標的一點選區域;一點選目標影像追蹤模組,追蹤該點選區域以得到該地面目標在該空拍影像串流中的移動軌跡;一影像與感測器資料序列同步化模組,在獲得每一時間區間的一筆飛行器的姿態資料後,利用該地面目標的移動軌跡來消除飛行器姿態資訊時間差;以及一地面目標座標估測模組,利用該地面目標的移動軌跡,從包含該地面目標的影像中,選出多組飛行器姿態值差距在一誤差範圍內的影像並估算出該地面目標的一地理位置。A ground target positioning system is operated with an aircraft that captures and returns an aerial image stream and its own position and attitude data. The system includes: an image temporary storage area for storing the aerial image Streaming; a user clicking device, through the user clicking device, selecting a ground target from the aerial image stream, transmitting a selected area including the ground target; and selecting a target image tracking module Tracking the selected area to obtain a moving trajectory of the ground target in the aerial image stream; an image and sensor data sequence synchronization module, after obtaining the attitude data of an aircraft in each time interval, Using the movement trajectory of the ground target to eliminate the time difference of the aircraft attitude information; and a ground target coordinate estimation module, using the movement trajectory of the ground target, selecting a plurality of sets of aircraft attitude value gaps from the image containing the ground target An image within the error range and an estimate of the geographic location of the ground target. 如申請專利範圍第1項所述之地面目標定位系統,該系統採用一誤差縮減濾波器來提升飛行器姿態資訊的精確度,再將飛行器的位置資料與已提升精確度的飛行器姿態資訊傳送給該影像與感測器資料序列同步化模組。For example, in the ground target positioning system described in claim 1, the system adopts an error reduction filter to improve the accuracy of the aircraft attitude information, and then transmits the position information of the aircraft and the attitude information of the aircraft with improved accuracy to the aircraft. Image and sensor data sequence synchronization module. 如申請專利範圍第1項所述之地面目標定位系統,其中該影像與感測器資料序列同步化模組執行飛行器姿態資料平滑內插以及感測器資料修正。The ground target positioning system of claim 1, wherein the image and sensor data sequence synchronization module performs aircraft pose data smooth interpolation and sensor data correction. 如申請專利範圍第1項所述之地面目標定位系統,其中該點選目標影像追蹤模組採用特徵點偵測及光流法追蹤該點選區域,並配合單應性轉換矩陣估測、卡曼濾波器追蹤以及粗差點去除技術,來穩定且平滑的鎖定追蹤該地面目標。For example, the ground target positioning system described in claim 1 is characterized in that the target image tracking module uses feature point detection and optical flow method to track the selected area, and cooperates with the homography conversion matrix to estimate and card. Man filter tracking and rough point removal techniques for stable and smooth locking to track the ground target. 如申請專利範圍第1項所述之地面目標定位系統,其中該飛行器的姿態資料包含該飛行器的俯仰角與翻轉的姿態資訊。The ground target positioning system of claim 1, wherein the attitude information of the aircraft includes the pitch angle and the inverted attitude information of the aircraft. 如申請專利範圍第1項所述之地面目標定位系統,其中該飛行器裝有一空照影像擷取裝置以即時影像擷取、一全球定位系統感測器以即時獲取該飛行器的位置資料、以及一慣性感測器以獲取該飛行器的姿態資料。The ground target positioning system according to claim 1, wherein the aircraft is equipped with an aerial image capturing device for real-time image capturing, a global positioning system sensor for instantaneously acquiring the position information of the aircraft, and a An inertial sensor to obtain the attitude data of the aircraft. 如申請專利範圍第1項所述之地面目標定位系統,其中該地理位置是地表上的一地理位置,係使用大地基準及座標格式兩個參數來標示。The ground target positioning system according to claim 1, wherein the geographical position is a geographical location on the earth surface, and is marked by two parameters: a geodetic reference and a coordinate format. 如申請專利範圍第6項所述之地面目標定位系統,其中該空照影像擷取裝置以斜前方的方向來擷取影像。The ground target positioning system of claim 6, wherein the aerial image capturing device captures an image in a diagonally forward direction. 一種地面目標定位方法,搭配一飛行器來運作,該方法包含:該飛行器以無線傳輸傳回空拍影像串流及該飛行器的飛行資訊;由使用者透過一使用者點選裝置,從傳回的空拍影像串流中選定一地面目標後並點選包含該地面目標的一點選區域;追蹤該點選區域,以得到該地面目標在該空拍影像串流中的移動軌跡;在獲得每一時間區間的一筆飛行器的飛行資訊後,將該飛行資訊平滑化內插至空拍影像的影格,並且利用該地面目標的移動軌跡,將空拍影像與飛行器的飛行資訊序列同步化;以及利用該地面目標的移動軌跡,從包含該地面目標的影像中,選出多組飛行器姿態值差距在一誤差範圍內的影像並估算出該地面目標的一地理位置。A method for positioning a ground target, which is operated by an aircraft, the method comprising: transmitting, by the aircraft, the aerial image stream and the flight information of the aircraft by wireless transmission; and transmitting the information from the user through a user clicking device Selecting a ground target in the aerial image stream and selecting a selected area containing the ground target; tracking the selected area to obtain a moving track of the ground target in the aerial image stream; After the flight information of the aircraft in the time interval, the flight information is smoothly interpolated to the frame of the aerial image, and the aerial image is synchronized with the flight information sequence of the aircraft by using the movement trajectory of the ground target; The moving trajectory of the ground target selects images of a plurality of sets of aircraft attitude values within an error range from the image containing the ground target and estimates a geographic location of the ground target. 如申請專利範圍第9項所述之地面目標定位方法,其中該飛行器的飛行資訊包含該飛行器的姿態資料與位置資料。The ground target positioning method according to claim 9, wherein the flight information of the aircraft includes posture information and position data of the aircraft. 如申請專利範圍第10項所述之地面目標定位方法,其中該空拍影像與飛行器的飛行資訊序列同步化包含:利用先前追蹤地面目標的移動軌跡與平滑後的側傾角值變化,來進行匹配,以消除飛行器的姿態資訊時間差。The method for positioning a ground target according to claim 10, wherein the synchronization of the aerial image with the flight information sequence of the aircraft comprises: matching the moving trajectory of the previously tracked ground target with the smoothed roll value change. In order to eliminate the time difference of the attitude of the aircraft. 如申請專利範圍第9項所述之地面目標定位方法,其中該估算出該地面目標的一地理位置包含:選取兩張側傾角值近似相同,且包含該地面目標的影像,以計算出兩張影像之首張影像被擷取時,該地面目標與飛行器的相對距離;以及將該相對距離加上該首張影像被擷取時,該飛行器的一地理位置座標,以估算出該地面目標的該地理位置。The ground target positioning method according to claim 9, wherein the estimating a geographical location of the ground target comprises: selecting two images having the same roll angle value and including the ground target to calculate two The relative distance between the ground target and the aircraft when the first image of the image is captured; and the geographic location coordinates of the aircraft when the relative image is captured, to estimate the ground target The geographic location. 如申請專利範圍第10項所述之地面目標定位方法,其中該飛行器裝有一空照影像擷取裝置以即時影像擷取、一全球定位系統感測器以即時獲取該飛行器的位置資料、以及一慣性感測器以獲取該飛行器的姿態資料。The ground target positioning method according to claim 10, wherein the aircraft is equipped with an aerial image capturing device for real-time image capturing, a global positioning system sensor for instantaneously acquiring the position information of the aircraft, and a An inertial sensor to obtain the attitude data of the aircraft. 如申請專利範圍第13項所述之地面目標定位方法,其中該估算出該地面目標的一地理位置包含:將該空照影像擷取裝置固定在一定俯仰角的情況下,透過一透視轉換方法,將該空照影像擷取裝置視角中的每一點的影像座標值,轉換為相對應於該空照影像擷取裝置之距地高度的比例值;以及由該地面目標的移動量得到該空照影像擷取裝置之距地高度。The ground target positioning method according to claim 13 , wherein the estimating a geographical location of the ground target comprises: fixing the aerial image capturing device at a certain pitch angle, and transmitting a perspective conversion method Converting the image coordinate value of each point in the angle of view of the aerial image capturing device to a ratio corresponding to the height of the space image capturing device; and obtaining the space by the amount of movement of the ground object The distance from the image capture device to the ground. 如申請專利範圍第11項所述之地面目標定位方法,其中消除飛行器的姿態資訊時間差之後,該方法採用追蹤該地面目標的移動距離來做為估測該地面目標之地面座標的基礎。The ground target positioning method according to claim 11, wherein after eliminating the time difference of the attitude information of the aircraft, the method uses the moving distance of the ground target as a basis for estimating the ground coordinates of the ground target. 如申請專利範圍第9項所述之地面目標定位方法,該方法使用大地座標來表示該地理位置是地表上的一地理位置,該大地座標以大地基準及座標格式兩個參數來標示。The ground target positioning method according to claim 9, wherein the method uses a geodetic coordinate to indicate that the geographical location is a geographical location on the earth surface, and the earth coordinates are indicated by two parameters: a ground reference and a coordinate format.
TW100138374A 2011-10-21 2011-10-21 Ground target geolocation system and method TWI444593B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100138374A TWI444593B (en) 2011-10-21 2011-10-21 Ground target geolocation system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100138374A TWI444593B (en) 2011-10-21 2011-10-21 Ground target geolocation system and method

Publications (2)

Publication Number Publication Date
TW201317544A true TW201317544A (en) 2013-05-01
TWI444593B TWI444593B (en) 2014-07-11

Family

ID=48871841

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100138374A TWI444593B (en) 2011-10-21 2011-10-21 Ground target geolocation system and method

Country Status (1)

Country Link
TW (1) TWI444593B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI561946B (en) * 2015-08-26 2016-12-11 Nat Univ Chin Yi Technology
TWI571717B (en) * 2015-08-26 2017-02-21 國立勤益科技大學 Method and system for building monitoring and management by unmanned aerial vehicle
TWI579671B (en) * 2015-08-27 2017-04-21 國立虎尾科技大學 Mobile tracking record system combined with unmanned aerial vehicle
TWI626425B (en) * 2016-05-10 2018-06-11 國立高雄大學 Night motorized topographic scanning apparatus with high mobility and method thereof
US10009518B2 (en) 2015-10-30 2018-06-26 Industrial Technology Research Institute Detachable aerial photographic apparatus
TWI640931B (en) * 2017-11-23 2018-11-11 財團法人資訊工業策進會 Image object tracking method and apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632814B (en) 2016-11-11 2018-08-11 財團法人工業技術研究院 A video frame generating method and system thereof
TWI657011B (en) 2017-11-30 2019-04-21 財團法人工業技術研究院 Unmanned aerial vehicle, control system for unmanned aerial vehicle and control method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI561946B (en) * 2015-08-26 2016-12-11 Nat Univ Chin Yi Technology
TWI571717B (en) * 2015-08-26 2017-02-21 國立勤益科技大學 Method and system for building monitoring and management by unmanned aerial vehicle
TWI579671B (en) * 2015-08-27 2017-04-21 國立虎尾科技大學 Mobile tracking record system combined with unmanned aerial vehicle
US10009518B2 (en) 2015-10-30 2018-06-26 Industrial Technology Research Institute Detachable aerial photographic apparatus
TWI626425B (en) * 2016-05-10 2018-06-11 國立高雄大學 Night motorized topographic scanning apparatus with high mobility and method thereof
TWI640931B (en) * 2017-11-23 2018-11-11 財團法人資訊工業策進會 Image object tracking method and apparatus

Also Published As

Publication number Publication date
TWI444593B (en) 2014-07-11

Similar Documents

Publication Publication Date Title
TWI444593B (en) Ground target geolocation system and method
US20210012520A1 (en) Distance measuring method and device
US10605601B2 (en) Surveying system
CN110675450B (en) Method and system for generating orthoimage in real time based on SLAM technology
CN105579811B (en) Method for the drawing of external mix photo
US9001203B2 (en) System and program for generating integrated database of imaged map
CN108335337B (en) method and device for generating orthoimage picture
JP2020528994A (en) Vehicle navigation system using attitude estimation based on point cloud
CN108810473B (en) Method and system for realizing GPS mapping camera picture coordinate on mobile platform
US10789673B2 (en) Post capture imagery processing and deployment systems
CN105627991A (en) Real-time panoramic stitching method and system for unmanned aerial vehicle images
CN101241011A (en) High precision positioning and posture-fixing device on laser radar platform and method
CN112634370A (en) Unmanned aerial vehicle dotting method, device, equipment and storage medium
CN113345028B (en) Method and equipment for determining target coordinate transformation information
CN113029128B (en) Visual navigation method and related device, mobile terminal and storage medium
WO2022077296A1 (en) Three-dimensional reconstruction method, gimbal load, removable platform and computer-readable storage medium
CN107607091A (en) A kind of method for measuring unmanned plane during flying flight path
US20140286537A1 (en) Measurement device, measurement method, and computer program product
CN111899276A (en) SLAM method and system based on binocular event camera
CN110986888A (en) Aerial photography integrated method
CN109146936A (en) A kind of image matching method, device, localization method and system
CN114429515A (en) Point cloud map construction method, device and equipment
KR101323099B1 (en) Device of generating Mosaic images
KR20200122967A (en) System and method for building road space information through linkage between image information and position information acquired from a plurality of image sensors
JP2004177362A (en) Method and apparatus for locating, program of locating method, and recording medium where the program is recorded