TW201313966A - Direct plating method - Google Patents

Direct plating method Download PDF

Info

Publication number
TW201313966A
TW201313966A TW101129774A TW101129774A TW201313966A TW 201313966 A TW201313966 A TW 201313966A TW 101129774 A TW101129774 A TW 101129774A TW 101129774 A TW101129774 A TW 101129774A TW 201313966 A TW201313966 A TW 201313966A
Authority
TW
Taiwan
Prior art keywords
copper
plating method
direct plating
layer
dielectric substrate
Prior art date
Application number
TW101129774A
Other languages
Chinese (zh)
Inventor
Harald Riebel
Richard Nichols
Don Jang
Tafadzwa Magaya
Original Assignee
Atotech Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atotech Deutschland Gmbh filed Critical Atotech Deutschland Gmbh
Publication of TW201313966A publication Critical patent/TW201313966A/en

Links

Abstract

The present invention relates to a method for direct plating in the manufacture of printed circuit boards, IC substrates and the like. The method utilizes a conductive layer selected from electrically conductive polymers, colloidal noble metals and electrically conductive carbon particles for BMV filling and hence avoids an intermediate layer of copper deposited by electroless plating and thereby insufficient line shape and adhesion of copper tracks formed by etching in successive manufacturing steps.

Description

直接電鍍方法 Direct plating method

本發明係關於製造印刷電路板之方法。更特殊而言,本發明係關於製造高密度互連(HDI)印刷電路板、IC基板及其類似物中之直接電鍍方法。 The present invention relates to a method of manufacturing a printed circuit board. More particularly, the present invention relates to direct plating methods for fabricating high density interconnect (HDI) printed circuit boards, IC substrates, and the like.

正在進行中之HDI印刷電路板、IC基板及其類似物之特徵之小型化需要較常規方法(例如藉由印刷及蝕刻的方法形成電路)更先進之製造方法。 The miniaturization of the features of ongoing HDI printed circuit boards, IC substrates, and the like requires more advanced manufacturing methods than conventional methods such as forming circuits by printing and etching.

此項技術中已知之方法始自盲微孔及其類似物之雷射鑽孔之後的經去鑽污製程處理之裸介電基板半加成製程(SAP),隨後沉積傳導層,在經圖案化之抗蝕材料之開口中選擇性電解沉積銅且移除該未由電鍍銅塗覆之傳導層部分。該傳導層通常包括藉由無電電鍍沉積的貴金屬晶種層及薄銅層。該SAP方法的主要缺點係介於該晶種層/傳導層與該裸介電基板之表面之間的弱黏著性。該弱黏著性可導致在後續之製造步驟或該印刷電路板之後續的使用中之銅軌之不希望之分層。 The method known in the art begins with a bare dielectric substrate semi-additive process (SAP) after laser drilling of a blind microwell and the like, followed by deposition of a conductive layer in the patterned pattern. The copper is selectively electrolytically deposited in the opening of the resist material and the portion of the conductive layer not coated with the electroplated copper is removed. The conductive layer typically comprises a precious metal seed layer and a thin copper layer deposited by electroless plating. The main disadvantage of this SAP method is the weak adhesion between the seed layer/conducting layer and the surface of the bare dielectric substrate. This weak adhesion can result in undesirable delamination of the copper tracks during subsequent fabrication steps or subsequent use of the printed circuit board.

此項技術中之另一方法係利用介電基板之頂端具有銅層之基板代替裸介電基板材料之先進修改之半加成方法(AM-SAP)。本文中此介電基板材料之頂端之銅層係指銅包覆。此銅包覆之厚度係在0.5至10 μm之範圍內。該銅包覆通常係藉由附著至該介電基板之兩側之較厚銅包覆之「薄化」製造。 Another method in the art utilizes an advanced modified semi-additive method (AM-SAP) that replaces the bare dielectric substrate material with a substrate having a copper layer on the top of the dielectric substrate. The copper layer at the top of the dielectric substrate material herein refers to copper cladding. The thickness of the copper cladding is in the range of 0.5 to 10 μm. The copper cladding is typically fabricated by "thinning" of a thicker copper coating attached to both sides of the dielectric substrate.

需要此低厚度之銅的原因係在後續的製程步驟中未經電鍍銅塗覆之銅包覆需要藉由後續之蝕刻移除。為了藉由蝕刻獲得非常細及規則的銅圖案,該銅包覆之厚度必須盡可能的小。 The reason for the need for this low-thickness copper is that the copper coating that has not been electroplated with copper during subsequent processing steps needs to be removed by subsequent etching. In order to obtain a very fine and regular copper pattern by etching, the thickness of the copper cladding must be as small as possible.

該先前技術AM-SAP方法包括以下步驟:(i)提供介電基板(1),其具有該介電基板(1)兩側上之厚度為0.5至10 μm之銅包覆(2)及盲微孔(BMV)(3),(ii)將晶種層(5a)沉積至該基板表面上,(iii)藉由無電電鍍將銅之傳導層(5)沉積至該晶種層(5a)上,(iv)將抗蝕層(4)施加至該銅包覆(2)上且圖案化該抗蝕層(4),(v)在該傳導層(5)上藉由電鍍沉積銅層(6),(vi)在該電鍍銅(6)之頂端沉積抗蝕劑(7)且移除該圖案化之抗蝕層(4),(vii)蝕刻消除未受該抗蝕劑(7)保護之銅且移除該抗蝕劑(7)。 The prior art AM-SAP method comprises the steps of: (i) providing a dielectric substrate (1) having a copper cladding (2) having a thickness of 0.5 to 10 μm on both sides of the dielectric substrate (1) and blindness Micropores (BMV) (3), (ii) depositing a seed layer (5a) onto the surface of the substrate, (iii) depositing a copper conducting layer (5) to the seed layer (5a) by electroless plating (iv) applying a resist layer (4) to the copper cladding (2) and patterning the resist layer (4), (v) depositing a copper layer on the conductive layer (5) by electroplating (6), (vi) depositing a resist (7) on the top of the electroplated copper (6) and removing the patterned resist layer (4), (vii) etching to eliminate the resist (7) Protecting the copper and removing the resist (7).

此方法繪示於圖1中。此方法之結果係銅軌(8)及填充銅之BMV(9)。 This method is illustrated in Figure 1. The result of this method is the copper rail (8) and the BMV (9) filled with copper.

需要該傳導層(5)以對由介電基板(1)材料組成之該等BMV之側壁提供導電性。 The conductive layer (5) is required to provide electrical conductivity to the sidewalls of the BMVs composed of the dielectric substrate (1) material.

藉由雷射鑽孔形成該等BMV(3)之後,需要淨化操作以移除自該等BMV之側壁之鑽污及其他殘留物。藉由濕式化學去鑽污方法或藉由電漿完成淨化。二者方法在此項技術 中已知。 After the BMVs (3) are formed by laser drilling, a decontamination operation is required to remove the smudges and other residues from the sidewalls of the BMVs. Purification is accomplished by wet chemical de-soiling methods or by plasma. Both methods in this technology Known in.

隨後將晶種層(5a)沉積至該銅包覆(2)、該等BMV(3)之介電側壁及該等BMV(3)之金屬底部上。該晶種層(5a)通常包括貴金屬,較佳係鈀。形成此晶種層(5a)之方法及材料在此項技術中已知。 A seed layer (5a) is then deposited onto the copper cladding (2), the dielectric sidewalls of the BMVs (3), and the metal bottom of the BMVs (3). The seed layer (5a) typically comprises a noble metal, preferably palladium. Methods and materials for forming this seed layer (5a) are known in the art.

其次,藉由無電電鍍銅將該傳導層(5)沉積至該晶種層(5a)上。 Next, the conductive layer (5) is deposited onto the seed layer (5a) by electroless copper plating.

將晶種層(5a)及傳導層(5)二者沉積至該全部基板表面上。該全部基板表面包括該銅包覆(2)之表面及該等BMV(3)之壁面。 Both the seed layer (5a) and the conductive layer (5) are deposited onto the entire substrate surface. The entire substrate surface includes the surface of the copper cladding (2) and the walls of the BMV (3).

藉由無電電鍍所沉積之銅之微結構(傳導層(5))係與該電鍍銅層(6)及該銅包覆(2)之微結構不同。藉由不同方法所沉積之銅之不同微結構導致不同的蝕刻狀態。 The microstructure (conducting layer (5)) of copper deposited by electroless plating is different from the microstructure of the electroplated copper layer (6) and the copper cladding (2). Different microstructures of copper deposited by different methods result in different etch states.

圖2顯示由根據圖1之方法所獲得之銅軌(8)。藉由無電電鍍銅所沉積之該傳導層(5)充當該銅軌(8)中之「定界線」:此處該蝕刻腐蝕係較藉由電鍍所沉積之銅包覆(2)及銅層(6)之情形下強。其導致具有電流之傳播方面之缺點且此外會減少該銅包覆(2)上之銅層(6)之黏著性之銅軌(8)之不規則形狀。 Figure 2 shows the copper rail (8) obtained by the method according to Figure 1. The conductive layer (5) deposited by electroless copper plating acts as a "boundary line" in the copper track (8): where the etching corrosion is compared to copper coating (2) and copper layer deposited by electroplating (6) The situation is strong. This results in an irregular shape of the copper track (8) which has the disadvantage of the propagation of the current and which further reduces the adhesion of the copper layer (6) on the copper cladding (2).

因此,本發明之目標係提供避免或最小化來自藉由無電電鍍所沉積之銅之中間層之缺點之方法。特別而言,該等目標係藉由電鍍提高介於銅包覆(2)與銅層(6)之間之黏著性,提供製造規則形狀之銅軌(8)的方法及在藉由無電電鍍 所沉積之銅之中間層(5)所引起之蝕刻期間避免銅軌(8)之下切。 Accordingly, it is an object of the present invention to provide a method of avoiding or minimizing the disadvantages of an intermediate layer of copper deposited by electroless plating. In particular, the objectives are to improve the adhesion between the copper cladding (2) and the copper layer (6) by electroplating, to provide a method of fabricating a regular shaped copper rail (8) and by electroless plating. The undercut of the copper track (8) is avoided during the etching caused by the deposited intermediate layer (5) of copper.

該等目標係藉由包括按以下順序之步驟之直接電鍍方法解決:(i)提供介電基板(1),其具有該介電基板(1)兩側上之厚度為0.5至10 μm之銅包覆(2)及至少一個盲微孔(BMV)(3),(ii)將傳導層(5)沉積在至少部分該基板表面上,其中該傳導層(5)係選自由導電聚合物、包含貴金屬之膠狀顆粒及導電碳顆粒組成之群,(iii)將抗蝕層(4)施加至該銅包覆(2)上且圖案化該抗蝕層(4),及(iv)藉由電鍍將銅層(6)沉積至該傳導層(5)上。 The objects are solved by a direct plating method comprising the steps of: (i) providing a dielectric substrate (1) having copper having a thickness of 0.5 to 10 μm on both sides of the dielectric substrate (1) Coating (2) and at least one blind microwell (BMV) (3), (ii) depositing a conductive layer (5) on at least a portion of the surface of the substrate, wherein the conductive layer (5) is selected from a conductive polymer, a group comprising colloidal particles of noble metal and conductive carbon particles, (iii) applying a resist layer (4) to the copper coating (2) and patterning the resist layer (4), and (iv) borrowing A copper layer (6) is deposited onto the conductive layer (5) by electroplating.

該介電基板(1)係由聚合材料組成,例如環氧樹脂、氰酸酯樹脂、雙馬來醯亞胺樹脂、雙馬來醯亞胺三嗪樹脂、苯并噁嗪樹脂及其混合物。該介電基板(1)可另外含有如玻璃增強材料之增強材料。該介電基板(1)兩側上包括銅包覆(2)。該銅包覆(2)之厚度係在0.5至10 μm,更佳係1至5 μm,最佳係1.5至3.5 μm之範圍內。該銅包覆(2)可例如藉由「薄化」厚銅包覆獲得。薄化通常係由不同的蝕刻方法完成。可視情況無需薄化直接製造銅包覆。 The dielectric substrate (1) is composed of a polymeric material such as an epoxy resin, a cyanate resin, a bismaleimide resin, a bismaleimide triazine resin, a benzoxazine resin, and mixtures thereof. The dielectric substrate (1) may additionally contain a reinforcing material such as a glass reinforcing material. A copper cladding (2) is included on both sides of the dielectric substrate (1). The thickness of the copper coating (2) is in the range of 0.5 to 10 μm, more preferably 1 to 5 μm, and most preferably 1.5 to 3.5 μm. The copper coating (2) can be obtained, for example, by "thinning" thick copper coating. Thinning is usually done by different etching methods. Directly manufacturing copper cladding without the need for thinning, as appropriate.

藉由雷射鑽孔穿過該銅包覆(2)及介電基板(1)之材料下至充當該等BMV(3)之金屬底部之介電基板(1)另一側之銅 包覆(2)而形成BMV(3)。可視情況,在雷射鑽孔之前將雷射輻射吸收層沉積至該銅包覆(2)之表面上。 Laser drilling through the copper cladding (2) and the material of the dielectric substrate (1) to the copper on the other side of the dielectric substrate (1) serving as the metal bottom of the BMV (3) Cover (2) to form BMV (3). Optionally, a laser radiation absorbing layer is deposited onto the surface of the copper cladding (2) prior to laser drilling.

其次,使該等BMV(3)之側壁接受淨化製程以移除來自雷射鑽孔之鑽污及其他殘留物。該淨化製程可為濕式化學去鑽污方法或電漿去鑽污方法。此等方法在此項技術中已知(例如:C.F.Coombs,Jr.,「Printed Circuits Handbook」,第5版,2001,第28.4章,第28.5頁至第28.7頁)。 Second, the sidewalls of the BMVs (3) are subjected to a purification process to remove drill and other residues from the laser drilled holes. The purification process can be a wet chemical desmear process or a plasma desmear process. Such methods are known in the art (for example: C. F. Coombs, Jr., "Printed Circuits Handbook", 5th edition, 2001, Chapter 28.4, pages 28.5 to 28.7).

濕式化學去鑽污方法包括以下步驟:a)膨脹該介電基板(1)之表面,b)用過錳酸鹽溶液蝕刻該介電基板(1)之表面及c)藉由還原自該介電基板(1)之表面移除MnO2The wet chemical desmear method comprises the steps of: a) expanding the surface of the dielectric substrate (1), b) etching the surface of the dielectric substrate (1) with a permanganate solution, and c) reducing the surface of the dielectric substrate (1) The surface of the dielectric substrate (1) removes MnO 2 .

將該等BMV(3)之側壁去鑽污之後,將由導電聚合物、膠狀貴金屬顆粒及導電碳顆粒組成之群所形成的傳導層(5)沉積至該基板表面上。該基板表面包括銅包覆(2)、之前藉由鑽孔所形成的該等BMV(3)之側壁及充當BMV(3)之金屬底部之基板之背面上之銅包覆(2)之背面。 After the sidewalls of the BMVs (3) are desmeared, a conductive layer (5) formed of a group of conductive polymers, colloidal noble metal particles, and conductive carbon particles is deposited onto the surface of the substrate. The surface of the substrate comprises a copper cladding (2), a sidewall of the BMV (3) previously formed by drilling, and a backside of the copper cladding (2) on the back side of the substrate serving as the metal bottom of the BMV (3) .

在導電聚合物之情況中,將傳導層(5)沉積在基板表面之包括之前形成的該等BMV之側壁之彼等部分上。該等BMV之側壁係由非傳導性介電材料所組成。 In the case of a conductive polymer, a conductive layer (5) is deposited on portions of the surface of the substrate including the previously formed sidewalls of the BMVs. The sidewalls of the BMVs are composed of a non-conductive dielectric material.

較佳而言,該傳導層(5)包括選自由聚噻吩、聚吡咯、聚苯胺、其衍生物及其混合物組成之群之導電聚合物。 Preferably, the conductive layer (5) comprises a conductive polymer selected from the group consisting of polythiophenes, polypyrroles, polyanilines, derivatives thereof, and mixtures thereof.

最佳之導電聚合物係選自聚噻吩、其衍生物及其混合物。 The most preferred conductive polymer is selected from the group consisting of polythiophenes, derivatives thereof, and mixtures thereof.

包括聚噻吩、其衍生物及其混合物之傳導層(5)包括按以下順序之步驟的方法形成: a)使該介電基板(1)之表面接觸水溶性聚合物之溶液,b)用過錳酸鹽溶液處理該介電基板(1)之表面,及c)用含有至少一種噻吩化合物及至少一種烷磺酸之水性基質之酸性水溶液或酸性微乳液處理該介電基板(1)之表面,此方法僅導致在由介電基板材料(1)組成之該基板表面之彼等部分(即該等BMV(3)之側壁)上形成傳導性有機聚合物。在該銅包覆(2)之表面上無導電聚合物形成。 The conductive layer (5) comprising polythiophene, derivatives thereof, and mixtures thereof is formed by the following steps: a) contacting the surface of the dielectric substrate (1) with a solution of a water-soluble polymer, b) treating the surface of the dielectric substrate (1) with a permanganate solution, and c) using at least one thiophene compound and at least Treating the surface of the dielectric substrate (1) with an acidic aqueous solution or an acidic microemulsion of an aqueous base of an alkanesulfonic acid, the method only results in a portion of the surface of the substrate composed of the dielectric substrate material (1) (ie, A conductive organic polymer is formed on the side wall of the BMV (3). No conductive polymer is formed on the surface of the copper coating (2).

於步驟a)中所使用之水溶性聚合物係選自由聚乙烯胺、聚乙烯亞胺、聚乙烯咪唑、烷基胺環氧乙烷共聚物、聚乙二醇、聚丙二醇、乙二醇及聚丙二醇之共聚物、聚乙烯醇、聚丙烯酸酯、聚丙烯醯胺、聚乙烯吡咯啶酮及其混合物組成之群。該水溶性聚合物之濃度係在20 mg/l至10 g/l之範圍內。 The water-soluble polymer used in the step a) is selected from the group consisting of polyvinylamine, polyethyleneimine, polyvinylimidazole, alkylamine ethylene oxide copolymer, polyethylene glycol, polypropylene glycol, ethylene glycol and A copolymer of polypropylene glycol, polyvinyl alcohol, polyacrylate, polypropylene decylamine, polyvinylpyrrolidone, and mixtures thereof. The concentration of the water-soluble polymer is in the range of 20 mg/l to 10 g/l.

水溶性聚合物之溶液可另外含有選自由乙醇、丙醇、乙二醇、二乙二醇、甘油、戴奧辛、丁內酯、N-甲基吡咯啶酮、二甲基甲醯胺、二甲基乙醯胺、乙二醇之半醚及半酯組成之群之水溶性有機溶劑。可以純形式或用水稀釋來使用該水溶性有機溶劑。該水溶性有機溶劑之濃度係在10 ml/l至200 ml/l之範圍內。在步驟a)期間,將該水溶性聚合物之溶液保持在25℃至85℃之範圍內之溫度下,且將該介電基板(1)浸入該溶液中達15 s至15 min。 The solution of the water-soluble polymer may additionally contain a solvent selected from the group consisting of ethanol, propanol, ethylene glycol, diethylene glycol, glycerin, dioxin, butyrolactone, N-methylpyrrolidone, dimethylformamide, and dimethyl A water-soluble organic solvent of a group consisting of acetylamine, a half ether of ethylene glycol, and a half ester. The water-soluble organic solvent can be used in pure form or diluted with water. The concentration of the water-soluble organic solvent is in the range of 10 ml/l to 200 ml/l. During step a), the solution of the water-soluble polymer is maintained at a temperature in the range of 25 ° C to 85 ° C, and the dielectric substrate (1) is immersed in the solution for 15 s to 15 min.

其次,在步驟b)中該介電基板(1)之表面經過錳酸鹽溶液處理。過錳酸鹽離子之來源可為任何水溶性過錳酸鹽化合 物。較佳之過錳酸鹽離子之來源係選自過錳酸鈉及過錳酸鉀。過錳酸鹽離子之濃度係在0.1 mol/l至1.5 mol/l之範圍內。該過錳酸鹽溶液可為酸性或鹼性。較佳而言,該過錳酸鹽溶液具有2.5至7之範圍內之pH值。藉由步驟b)在BMV(3)之側壁上形成MnO2之層。 Next, in step b), the surface of the dielectric substrate (1) is treated with a manganate solution. The source of permanganate ions can be any water soluble permanganate compound. Preferred sources of permanganate ions are selected from the group consisting of sodium permanganate and potassium permanganate. The concentration of permanganate ions is in the range of 0.1 mol/l to 1.5 mol/l. The permanganate solution can be acidic or basic. Preferably, the permanganate solution has a pH in the range of 2.5 to 7. A layer of MnO 2 is formed on the sidewall of BMV (3) by step b).

隨後在步驟c)中將該介電基板(1)之表面接觸包括噻吩化合物及烷磺酸之溶液。 The surface of the dielectric substrate (1) is then contacted with a solution comprising a thiophene compound and an alkanesulfonic acid in step c).

該噻吩化合物較佳係選自3-經雜取代之噻吩及3,4-經雜取代之噻吩。最佳而言,該噻吩化合物係選自由3,4-伸乙基二氧噻吩、3-甲氧基噻吩、3-甲基-4-甲氧基噻吩及其衍生物組成之群。該噻吩化合物之濃度係0.001 mol/l至1 mol/l,更佳係0.005 mol/l至0.05 mol/l之範圍內。 The thiophene compound is preferably selected from the group consisting of 3-heterosubstituted thiophenes and 3,4-heterosubstituted thiophenes. Most preferably, the thiophene compound is selected from the group consisting of 3,4-extended ethyldioxythiophene, 3-methoxythiophene, 3-methyl-4-methoxythiophene, and derivatives thereof. The concentration of the thiophene compound is in the range of 0.001 mol/l to 1 mol/l, more preferably in the range of 0.005 mol/l to 0.05 mol/l.

該烷磺酸係選自包括甲磺酸、乙磺酸、甲二磺酸、乙二磺酸及其混合物之群。藉由調節於步驟c)所使用之溶液之所需之pH值設定該烷磺酸之濃度。該溶液之pH值較佳係設在0至3,更佳係在1.5至2.1之範圍內。 The alkane sulfonic acid is selected from the group consisting of methanesulfonic acid, ethanesulfonic acid, methanedisulfonic acid, ethanedisulfonic acid, and mixtures thereof. The concentration of the alkane sulfonic acid is set by adjusting the desired pH of the solution used in step c). The pH of the solution is preferably set to 0 to 3, more preferably in the range of 1.5 to 2.1.

在步驟c)中,當用該酸性水溶液或含有至少一種噻吩化合物及至少一種烷磺酸之水性基質之酸性微乳液酸性接觸介電基板(1)之表面,該噻吩化合物在與步驟b)中所沉積的MnO2接觸時聚合。隨後藉由聚噻吩及藉由該等噻吩化合物獲得之其衍生物形成該傳導層(5)。 In step c), when the acidic aqueous solution or the acidic microemulsion acidic contact dielectric substrate (1) containing at least one thiophene compound and at least one aqueous substrate of an alkanesulfonic acid is used, the thiophene compound is in step b) The deposited MnO 2 is polymerized upon contact. The conductive layer (5) is then formed by polythiophene and derivatives thereof obtained by the thiophene compounds.

此方法僅導致在由該介電基板材料(1)組成之基板表面之彼等部分(即該等BMV(3)之側壁)上形成傳導性有機聚合物。該銅包覆(2)之表面不含充當傳導層(5)的該傳導性有 機聚合物。 This method only results in the formation of a conductive organic polymer on the portions of the surface of the substrate composed of the dielectric substrate material (1), i.e., the sidewalls of the BMVs (3). The surface of the copper cladding (2) does not contain the conductivity as a conductive layer (5). Machine polymer.

Electrochemicals公司已開發出涉及使用導電碳顆粒之方法且例如以商標名「Shadow」市售。在此項技術中已知之另一方法為由MacDermid公司開發出之「black hole」方法。適宜的導電碳顆粒係例如石墨及其衍生物(Printed Circuits Handbook,第5版,2001,C.F.Coombs,Jr.編,第30.4頁至第30.6頁)。首先調節該基板表面且隨後用導電碳顆粒塗覆。其次乾燥該碳塗層且移除沉積在該銅包覆(2)上之碳顆粒部分。此碳塗層充當傳導層(5)且其適宜於作為用於電鍍銅之表面。 Electrochemicals has developed a method involving the use of conductive carbon particles and is commercially available, for example, under the trade name "Shadow". Another method known in the art is the "black hole" method developed by MacDermid. Suitable conductive carbon particles are, for example, graphite and its derivatives (Printed Circuits Handbook, 5th Edition, 2001, C. F. Coombs, Jr., eds., pp. 30.4 to 30.6). The substrate surface is first adjusted and then coated with conductive carbon particles. The carbon coating is then dried and the portion of carbon particles deposited on the copper coating (2) is removed. This carbon coating acts as a conductive layer (5) and is suitable as a surface for electroplating copper.

在本發明之另一實施例中,由膠狀貴金屬形成傳導層(5)(Printed Circuits Handbook,第5版,2001,C.F.Coombs,Jr.編,第30.2頁至第30.4頁)。Shipley Ronal公司及Atotech公司開發出涉及使用膠狀鈀顆粒之方法且例如分別以商標名「Crimson」、「Conductron」及「Neopact」已知。藉由例如提供介於吸附於該基板表面之個別膠狀鈀顆粒之間之硫化「橋」可提高膠狀鈀顆粒之傳導性。隨後該經吸附之膠狀鈀顆粒之傳導性係足夠高以充當用於連續電鍍銅之傳導層(5)。 In another embodiment of the invention, the conductive layer (5) is formed from a colloidal precious metal (Printed Circuits Handbook, 5th Edition, 2001, C. F. Coombs, Jr. eds., pp. 30.2 to 30.4). Shipley Ronal and Atotech have developed methods involving the use of colloidal palladium particles and are known, for example, under the trade names "Crimson", "Conductron" and "Neopact", respectively. The conductivity of the colloidal palladium particles can be increased by, for example, providing a "bridge" of vulcanization between individual colloidal palladium particles adsorbed on the surface of the substrate. The conductivity of the adsorbed colloidal palladium particles is then sufficiently high to act as a conductive layer (5) for continuous electroplating of copper.

使用導電碳顆粒或膠狀貴金屬顆粒作為傳導層(5)之實施例係繪示於圖5。所形成之銅軌(8)係示於圖6。 An embodiment using conductive carbon particles or colloidal precious metal particles as the conductive layer (5) is shown in FIG. The formed copper rail (8) is shown in Fig. 6.

其次沖洗該介電基板(1)之表面且隨後使其適用以藉由銅之電鍍形成銅軌(8)及填充銅之BMV(9)。 Next, the surface of the dielectric substrate (1) is rinsed and then applied to form a copper track (8) and a copper-filled BMV (9) by copper plating.

適合用於步驟(iv)之銅沉積之電鍍溶液在此項技術中已 知。較佳係使用包括銅離子、酸、有機添加劑及氯離子之酸性銅電鍍浴。此銅電鍍浴組合物揭示於例如C.F.Coombs,Jr.,「Printed Circuits Handbook」,第5版,2001,第29.4章第29.4頁至第29.15頁。 Plating solutions suitable for copper deposition in step (iv) have been used in the art know. It is preferred to use an acid copper plating bath comprising copper ions, an acid, an organic additive, and chloride ions. This copper electroplating bath composition is disclosed, for example, in C. F. Coombs, Jr., "Printed Circuits Handbook", 5th edition, 2001, Chapter 29.4, pages 29.4 to 29.15.

根據關於此項技術中已知之AM-SAP方法之本發明之方法之優勢係多樣的:由於缺少包括藉由無電電鍍所沉積的銅層之傳導層(5),因此提高了介於藉由在銅包覆(2)上電鍍所沉積的銅層(6)間之黏著性。此外,蝕刻之後,銅軌(8)之形狀較自此項技術中之已知之AM-SAP方法(其包括藉由介於該銅包覆(2)與該經電鍍之銅層(6)之間之無電電鍍所沉積的銅層(圖2))所獲得之銅軌(8)更規則(圖4及6)。 The advantages of the method according to the invention in relation to the AM-SAP method known in the art are diverse: due to the lack of a conductive layer (5) comprising a copper layer deposited by electroless plating, The adhesion between the copper layers (6) deposited by electroplating on the copper cladding (2). Moreover, after etching, the shape of the copper track (8) is comparable to the AM-SAP method known in the art (which includes intervening between the copper cladding (2) and the plated copper layer (6) The copper track (8) obtained by electroless plating of the deposited copper layer (Fig. 2)) is more regular (Figs. 4 and 6).

以下該等非限制性實例進一步說明本發明。 The following non-limiting examples further illustrate the invention.

實例Instance 實例1(比較)Example 1 (comparative)

首先將附著至基板兩側及BMV(3)(具有60至130 μm之直徑及1.1之最大縱橫比)之具有厚度為2 μm之銅包覆(2)之介電基板(1)浸入30℃下之包括H2SO4之清潔劑(Securiganth® Etch Cleaner SPS,Atotech Deutschland GmbH之產品)達30 s。其次沉積包括鈀之晶種層(5a)。藉由無電電鍍(Printoganth® U Plus,Atotech Deutschland GmbH之產品,T=35℃,t=360 s)沉積充當傳導層(5)之銅之薄層。藉由電鍍(Cupracid® HL,Atotech Deutschland GmbH之產品)在該傳導層(5)上沉積銅層(6)。 First, immerse the dielectric substrate (1) with a copper coating (2) having a thickness of 2 μm attached to both sides of the substrate and BMV (3) (having a diameter of 60 to 130 μm and a maximum aspect ratio of 1.1) at 30 ° C. The following includes H 2 SO 4 cleaner (Securiganth ® Etch Cleaner SPS, product of Atotech Deutschland GmbH) for 30 s. Next, a seed layer (5a) comprising palladium is deposited. A thin layer of copper acting as a conductive layer (5) was deposited by electroless plating (Printoganth ® U Plus, product of Atotech Deutschland GmbH, T = 35 ° C, t = 360 s). A copper layer (6) is deposited on the conductive layer (5) by electroplating (Cupracid ® HL, product of Atotech Deutschland GmbH).

施加錫抗蝕劑之後,移除該抗蝕層(4),蝕刻消除未由 藉由電鍍所沉積的銅層(6)所塗覆之該傳導層(5)及薄銅包覆(2)之彼等部分。製備介電基板之橫截面且用光學顯微鏡研究。 After the tin resist is applied, the resist layer (4) is removed, and the etching is eliminated. The conductive layer (5) and the portions of the thin copper cladding (2) coated by the deposited copper layer (6) are plated. A cross section of the dielectric substrate was prepared and investigated by optical microscopy.

因此,銅軌顯示含有經無電電鍍之銅之傳導層(5)之不希望下切(圖2)。 Thus, the copper track shows an undesired undercut of the conductive layer (5) containing electrolessly plated copper (Fig. 2).

實例2Example 2

首先將附著至基板兩側及BMV(3)(具有60至130 μm之直徑及1.1之最大縱橫比)之具有厚度為2 μm之銅包覆(2)之介電基板(1)浸入30℃下之包括H2SO4之清潔劑(Securiganth® Etch Cleaner SPS,Atotech Deutschland GmbH之產品)達30 s。其次藉由在a)將介電基板(1)之表面浸入包括水溶性聚合物(Seleo® CP Conditioner Plus,Atotech Deutschland GmbH之產物,T=30℃,t=30 s)之溶液中,b)將介電基板(1)之表面浸入包括過錳酸鹽離子之溶液(Securiganth® P 500,Atotech Deutschland GmbH之產品,T=90℃,t=70 s)中,及c)將介電基板(1)之表面浸入T=20℃下之包括噻吩化合物及烷磺酸之溶液(Seleo® CP Plus,Atotech Deutschland GmbH之產物)中持續t=90 s沉積傳導層(5)。 First, immerse the dielectric substrate (1) with a copper coating (2) having a thickness of 2 μm attached to both sides of the substrate and BMV (3) (having a diameter of 60 to 130 μm and a maximum aspect ratio of 1.1) at 30 ° C. The following includes H 2 SO 4 cleaner (Securiganth ® Etch Cleaner SPS, product of Atotech Deutschland GmbH) for 30 s. Secondly, by a) immersing the surface of the dielectric substrate (1) in a solution comprising a water-soluble polymer (Seleo ® CP Conditioner Plus, product of Atotech Deutschland GmbH, T = 30 ° C, t = 30 s), b) Immersing the surface of the dielectric substrate (1) into a solution comprising permanganate ions (Securiganth ® P 500, product of Atotech Deutschland GmbH, T = 90 ° C, t = 70 s), and c) dielectric substrate ( 1) The surface was immersed in a solution comprising a thiophene compound and an alkanesulfonic acid (Seleo ® CP Plus, product of Atotech Deutschland GmbH) at T = 20 ° C for a continuous t = 90 s deposition of the conductive layer (5).

藉由電鍍(Cupracid® HL,Atotech Deutschland GmbH之產品)將銅層(6)沉積至該傳導層(5)及未由圖案化之抗蝕層(4)所涵蓋之銅包覆(2)之彼等部分上。 The copper layer (6) is deposited by electroplating (Cupracid ® HL, product of Atotech Deutschland GmbH) into the conductive layer (5) and the copper cladding (2) not covered by the patterned resist layer (4) On those parts.

施加錫抗蝕劑之後,移除該抗蝕層(4)及蝕刻未由藉由電鍍所沉積的銅層(6)所覆蓋之該傳導層(5)及該銅包覆(2)之彼等部分之後,製備該介電基板之橫截面且用光學顯微 鏡研究。 After applying the tin resist, removing the resist layer (4) and etching the conductive layer (5) not covered by the copper layer (6) deposited by electroplating and the copper cladding (2) After the equal portion, the cross section of the dielectric substrate is prepared and optical microscopy Mirror research.

因此,銅軌(8)顯示所需之規則形狀(圖4)。 Therefore, the copper rail (8) shows the desired regular shape (Fig. 4).

1‧‧‧介電基板 1‧‧‧ dielectric substrate

2‧‧‧銅包覆 2‧‧‧copper cladding

3‧‧‧BMV 3‧‧‧BMV

4‧‧‧抗蝕層 4‧‧‧Resist layer

5‧‧‧傳導層 5‧‧‧Transmission layer

5a‧‧‧晶種層 5a‧‧‧ seed layer

6‧‧‧銅層 6‧‧‧ copper layer

7‧‧‧抗蝕劑 7‧‧‧Resist

8‧‧‧銅軌 8‧‧‧Bronze track

9‧‧‧填充銅之BMV 9‧‧‧BMV filled with copper

圖1顯示用於獲得銅軌(8)及BMV(9)之先前技術之方法。 Figure 1 shows a prior art method for obtaining copper tracks (8) and BMV (9).

圖2顯示藉由根據圖1之先前技術之方法所獲得之銅軌(8)之示意性橫截面。 Figure 2 shows a schematic cross section of a copper rail (8) obtained by the method according to the prior art of Figure 1.

圖3顯示用於獲得銅軌(8)及BMV(9)之根據本發明之方法。 Figure 3 shows a method according to the invention for obtaining copper tracks (8) and BMV (9).

圖4顯示藉由根據圖3之方法所獲得之銅軌(8)之示意性橫截面。 Figure 4 shows a schematic cross section of a copper rail (8) obtained by the method according to Figure 3.

圖5顯示用於獲得銅軌(8)及BMV(9)之根據本發明之另一方法。 Figure 5 shows another method according to the invention for obtaining copper tracks (8) and BMV (9).

圖6顯示藉由根據圖5之方法所獲得之銅軌(8)之示意性橫截面。 Figure 6 shows a schematic cross section of a copper rail (8) obtained by the method according to Figure 5.

1‧‧‧介電基板 1‧‧‧ dielectric substrate

2‧‧‧銅包覆 2‧‧‧copper cladding

3‧‧‧BMV 3‧‧‧BMV

4‧‧‧抗蝕層 4‧‧‧Resist layer

5‧‧‧傳導層 5‧‧‧Transmission layer

6‧‧‧銅層 6‧‧‧ copper layer

Claims (15)

一種直接電鍍方法,其包括按以下順序之步驟:(i)提供介電基板(1),其具有在該介電基板(1)兩側上之厚度為0.5至10 μm之銅包覆(2)及至少一個盲微孔(BMV)(3),(ii)將傳導層(5)沉積在該基板表面之至少一部分上,其中該傳導層(5)係選自由導電聚合物、包含貴金屬之膠狀顆粒及導電碳顆粒組成之群,(iii)將抗蝕層(4)施加至該銅包覆(2)上且圖案化該抗蝕層(4),及(iv)藉由電鍍將銅層(6)沉積至該傳導層(5)上。 A direct plating method comprising the steps of: (i) providing a dielectric substrate (1) having a copper cladding having a thickness of 0.5 to 10 μm on both sides of the dielectric substrate (1) (2) And at least one blind microwell (BMV) (3), (ii) depositing a conductive layer (5) on at least a portion of the surface of the substrate, wherein the conductive layer (5) is selected from the group consisting of a conductive polymer, comprising a noble metal a group of colloidal particles and conductive carbon particles, (iii) applying a resist layer (4) to the copper coating (2) and patterning the resist layer (4), and (iv) by electroplating A copper layer (6) is deposited onto the conductive layer (5). 如請求項1之直接電鍍方法,其中該基板表面之該部分包括該至少一個盲微孔之側壁。 The direct plating method of claim 1, wherein the portion of the substrate surface includes sidewalls of the at least one blind microwell. 如請求項1之直接電鍍方法,其中該包含貴金屬之膠狀顆粒係膠狀鈀顆粒。 The direct plating method of claim 1, wherein the colloidal particles comprising a noble metal are colloidal palladium particles. 如請求項1之直接電鍍方法,其中該導電碳顆粒包含石墨或其衍生物。 The direct plating method of claim 1, wherein the conductive carbon particles comprise graphite or a derivative thereof. 如請求項1之直接電鍍方法,其中該傳導層(5)包括選自由聚噻吩、聚吡咯、聚苯胺、其衍生物及其混合物組成之群之導電聚合物。 The direct plating method of claim 1, wherein the conductive layer (5) comprises a conductive polymer selected from the group consisting of polythiophene, polypyrrole, polyaniline, derivatives thereof, and mixtures thereof. 一種直接電鍍方法,其包括按以下順序之步驟:(i)提供介電基板(1),其具有在該介電基板(1)兩側上之厚度為0.5至10 μm之銅包覆(2)及至少一個盲微孔(BMV)(3), (ii)將傳導層(5)沉積在該基板表面之至少一部分上,其中該傳導層(5)係選自由導電聚合物、包含貴金屬之膠狀顆粒及導電碳顆粒組成之群,其中藉由以下步驟形成步驟(ii)中之該傳導層(5):(ii)a)使該介電基板(1)之表面接觸水溶性聚合物之溶液,(ii)b)用過錳酸鹽溶液處理該介電基板(1)之表面,及(ii)c)用含有至少一種噻吩化合物及至少一種烷磺酸之水性基質之酸性水溶液或酸性微乳液處理該介電基板(1)之表面,(iii)將抗蝕層(4)施加至該銅包覆(2)上且圖案化該抗蝕層(4),及(iv)藉由電鍍將銅層(6)沉積至該傳導層(5)上。 A direct plating method comprising the steps of: (i) providing a dielectric substrate (1) having a copper cladding having a thickness of 0.5 to 10 μm on both sides of the dielectric substrate (1) (2) ) and at least one blind microwell (BMV) (3), (ii) depositing a conductive layer (5) on at least a portion of the surface of the substrate, wherein the conductive layer (5) is selected from the group consisting of conductive polymers, colloidal particles comprising noble metals, and conductive carbon particles, wherein The following steps form the conductive layer (5) in step (ii): (ii) a) contacting the surface of the dielectric substrate (1) with a solution of a water-soluble polymer, (ii) b) using a permanganate solution Treating the surface of the dielectric substrate (1), and (ii) c) treating the surface of the dielectric substrate (1) with an acidic aqueous solution or acidic microemulsion containing at least one thiophene compound and at least one aqueous substrate of an alkanesulfonic acid, (iii) applying a resist layer (4) to the copper cladding (2) and patterning the resist layer (4), and (iv) depositing a copper layer (6) onto the conductive layer by electroplating ( 5) Up. 如請求項6之直接電鍍方法,其中該水溶性聚合物係選自由聚乙烯胺、聚乙烯亞胺、聚乙烯咪唑、烷基胺環氧乙烷共聚物、聚乙二醇、聚丙二醇、乙二醇及聚丙二醇之共聚物、聚乙烯醇、聚丙烯酸酯、聚丙烯醯胺、聚乙烯吡咯啶酮及其混合物組成之群。 The direct plating method of claim 6, wherein the water-soluble polymer is selected from the group consisting of polyvinylamine, polyethyleneimine, polyvinylimidazole, alkylamine ethylene oxide copolymer, polyethylene glycol, polypropylene glycol, and B. a copolymer of a copolymer of a diol and a polypropylene glycol, a polyvinyl alcohol, a polyacrylate, a polypropylene decylamine, a polyvinylpyrrolidone, and a mixture thereof. 如請求項6之直接電鍍方法,其中該水溶性聚合物之濃度係在20 mg/l至10 g/l之範圍內。 The direct plating method of claim 6, wherein the concentration of the water-soluble polymer is in the range of 20 mg/l to 10 g/l. 如請求項1或6之直接電鍍方法,其中該過錳酸根離子之濃度係在0.1 mol/l至1.5 mol/l之範圍內。 The direct plating method of claim 1 or 6, wherein the permanganate ion concentration is in the range of 0.1 mol/l to 1.5 mol/l. 如請求項1或6之直接電鍍方法,其中該至少一種噻吩化合物係選自由3-經雜取代之噻吩及3,4-經雜取代之噻吩 組成之群。 The direct plating method of claim 1 or 6, wherein the at least one thiophene compound is selected from the group consisting of 3-substituted hetero-substituted thiophenes and 3,4-substituted hetero-substituted thiophenes a group of people. 如請求項1或6之直接電鍍方法,其中該至少一種噻吩化合物之濃度係在0.001 mol/l至1 mol/l之範圍內。 The direct plating method of claim 1 or 6, wherein the concentration of the at least one thiophene compound is in the range of 0.001 mol/l to 1 mol/l. 如請求項1或6之直接電鍍方法,其中該至少一種烷磺酸係選自包括甲磺酸、乙磺酸、甲二磺酸、乙二磺酸及其混合物之群。 The direct plating method of claim 1 or 6, wherein the at least one alkane sulfonic acid is selected from the group consisting of methanesulfonic acid, ethanesulfonic acid, methanedisulfonic acid, ethanedisulfonic acid, and mixtures thereof. 如請求項1或6之直接電鍍方法,其中該包含至少一種噻吩化合物及至少一種烷磺酸之溶液之pH值係在0至3之範圍內。 The direct plating method of claim 1 or 6, wherein the pH of the solution comprising the at least one thiophene compound and the at least one alkanesulfonic acid is in the range of 0 to 3. 如請求項1或6之直接電鍍方法,其中該銅包覆(2)之厚度係在1至5 μm之範圍內。 The direct plating method of claim 1 or 6, wherein the thickness of the copper coating (2) is in the range of 1 to 5 μm. 如請求項1或6之直接電鍍方法,其中該銅包覆(2)之厚度係在2至3 μm之範圍內。 The direct plating method of claim 1 or 6, wherein the thickness of the copper coating (2) is in the range of 2 to 3 μm.
TW101129774A 2011-09-02 2012-08-16 Direct plating method TW201313966A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11017993 2011-09-02

Publications (1)

Publication Number Publication Date
TW201313966A true TW201313966A (en) 2013-04-01

Family

ID=48802370

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101129774A TW201313966A (en) 2011-09-02 2012-08-16 Direct plating method

Country Status (1)

Country Link
TW (1) TW201313966A (en)

Similar Documents

Publication Publication Date Title
EP2796019B1 (en) Method for combined through-hole plating and via filling
KR100863161B1 (en) Direct electrolytic metallization of non-conducting substrates
TWI565379B (en) Method for manufacture of fine line circuitry
EP2566311A1 (en) Direct plating method
JP2657423B2 (en) Novel through-hole plated printed circuit board and manufacturing method thereof
TWI410530B (en) Deposition of conductive polymer and metallization of non-conductive substrates
US6839219B2 (en) Laminate for forming capacitor layer and method for manufacturing the same
US8828554B2 (en) Electroconductive layer, laminate using the same, and producing processes thereof
KR100541893B1 (en) Method for metal coating of substrates
BR0007639A (en) Process for galvanic formation of conductive structures of high purity copper in the production of integrated circuits
EP1897973A1 (en) Deposition of conductive polymer and metallization of non-conductive substrates
JP2005019577A (en) Method for manufacturing tape carrier for semiconductor device
CN108977862B (en) Method for electroplating metal on surface of insulating substrate
Yin et al. Effect of PEG molecular weight on bottom-up filling of copper electrodeposition for PCB interconnects
EP1897974B1 (en) Deposition of conductive polymer and metallization of non-conductive substrates
KR20140091689A (en) Aqueous composition for etching of copper and copper alloys
JPS6257120B2 (en)
TW201313966A (en) Direct plating method
TWI517772B (en) Method of depositing conducting polymer layer into through-holes and via-holes of printed circuit board
RU2323555C1 (en) Method for manufacture of printed circuit board
KR20020032348A (en) Seed layer deposition
US11729917B2 (en) Method for optimized filling hole and manufacturing fine line on printed circuit board
EP4063533A1 (en) A process for electrochemical deposition of copper with different current densities
JP2011060969A (en) Manufacturing method for wiring substrate
RU93009968A (en) SEMI-ADDITIONAL METHOD OF MANUFACTURING BILATERAL CIRCUIT BOARDS