TW201310101A - Monolithic optical coupling module based on total internal reflection surfaces - Google Patents

Monolithic optical coupling module based on total internal reflection surfaces Download PDF

Info

Publication number
TW201310101A
TW201310101A TW101129123A TW101129123A TW201310101A TW 201310101 A TW201310101 A TW 201310101A TW 101129123 A TW101129123 A TW 101129123A TW 101129123 A TW101129123 A TW 101129123A TW 201310101 A TW201310101 A TW 201310101A
Authority
TW
Taiwan
Prior art keywords
internal reflection
total internal
reflection surface
optical module
beams
Prior art date
Application number
TW101129123A
Other languages
Chinese (zh)
Other versions
TWI465785B (en
Inventor
shi-peng Yan
yan-wu Zhang
Dong Pan
Jack Yuan
Original Assignee
Sifotonics Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/527,234 external-priority patent/US8933391B2/en
Application filed by Sifotonics Technologies Co Ltd filed Critical Sifotonics Technologies Co Ltd
Publication of TW201310101A publication Critical patent/TW201310101A/en
Application granted granted Critical
Publication of TWI465785B publication Critical patent/TWI465785B/en

Links

Abstract

A low-cost monolithic optical module for splitting one or more input optical beams to two or more output optical beams is provided. The one or more input optical beams are reflected by two or more total internal reflection (TIR) surfaces of the monolithic optical module. A light splitting ratio between the two or more output optical beams is predetermined by one or more physical features of the two or more TIR surfaces.

Description

基於全內反射表面之單體光耦合模組 Monolithic optical coupling module based on total internal reflection surface

本發明係有關於一種光學裝置及其組件,更詳而言之,係有關於一種具有光分歧路徑之光學裝置。 This invention relates to an optical device and components thereof, and more particularly to an optical device having a divergent path of light.

當封裝垂直腔面射型雷射(vertical-cavity surface-emitting lasers,VCSEL)時,傾斜的玻璃反射鏡典型的被用以將發射出的光部分反射至設於VCSEL旁的檢光器(monitor photodetector,MPD)。請參閱第1圖,其顯示習用的VCSEL組件,其中包括晶體管外(transistor outline)座、具有光分歧玻璃之晶體管外蓋、管身、及鏡頭等,所述的該些元件使得組件複雜且昂貴。 When packaged with vertical-cavity surface-emitting lasers (VCSELs), tilted glass mirrors are typically used to partially reflect the emitted light to a detector located next to the VCSEL (monitor) Photodetector, MPD). Please refer to FIG. 1 , which shows a conventional VCSEL assembly including a transistor outline holder, a transistor cover having a light diverging glass, a tube body, and a lens, etc., which make the assembly complicated and expensive. .

美國專利公告第6,888,988號提出一種如第2圖所示之單體全聚合物模組,以簡化封裝製程並降低成本。光分歧之功能則係基於聚合物中的空氣間隙。然而,因當光透過傾斜的表面反射時,對於橫向電波與橫向磁波光的反射率不同,故分歧率無法簡單的調整。 U.S. Patent No. 6,888,988 proposes a monomeric all-polymer module as shown in Figure 2 to simplify the packaging process and reduce cost. The function of light divergence is based on the air gap in the polymer. However, since the reflectance of the transverse electric wave and the transverse magnetic wave light is different when the light is reflected through the inclined surface, the divergence rate cannot be easily adjusted.

因此,需要一種可以提供輕易實現分歧率調整、簡化組裝程序、減少組件數量以及節省組裝成本的光學裝置。 Therefore, there is a need for an optical device that can easily achieve divergence rate adjustment, simplify assembly procedures, reduce component count, and save assembly costs.

本申請案係為申請中之美國專利申請第13/211,028號,申請日為2011年8月16日,發明名稱為「基於全內反射表面之單體光耦合模組」之申請案的部分連續案。該第13/211,028號專利申請案主張美國專利申請第61/462,334號,申請日為2011年2月1 日,發明名稱為「基於二相鄰之全內反射表面之單體光耦合模組」之申請案的優先權。上述兩件專利申請案將併於本案中參照。 This application is a continuation of the application of US Patent Application No. 13/211,028, filed on August 16, 2011, the disclosure of which is incorporated herein by case. Patent Application No. 13/211,028 claims U.S. Patent Application Serial No. 61/462,334, filed on February 1, 2011 The title of the invention is the priority of the application of "single optical coupling module based on two adjacent total internal reflection surfaces". The above two patent applications will be referred to in this case.

本發明之所揭露的實施型態可讓光分歧率調整輕易的被實現。 The disclosed embodiment of the present invention allows light divergence rate adjustment to be easily achieved.

依據本發明之一種實施型態,提供一種光學裝置,可包含單體光學模組,該單體光學模組包括第一主表面、第二主表面、第一全內反射表面、以及相鄰於該第一全內反射表面之第二全內反射表面,該第一全內反射表面之外表面(exterior surface)與該第二全內反射表面之外表面於該單體光學模組上形成大致上呈V型的凹部,當一或更多的第一輸入光束從對準該V型的凹部之位置通過該第一主表面進入該單體光學模組時,該一或更多的第一輸入光束之第一部分透過該第一全內反射表面反射,做為一或更多的第一光束以第一方向行進,並可做為一或更多的第一輸出光束,通過該第二主表面離開該單體光學模組,此外,該一或更多的第一輸入光束之第二部分透過該第二全內反射表面反射,做為一或更多的第二光束以第二方向行進。 According to an embodiment of the present invention, an optical device is provided, which may include a single optical module including a first major surface, a second major surface, a first total internal reflection surface, and adjacent to a second total internal reflection surface of the first total internal reflection surface, the outer surface of the first total internal reflection surface and the outer surface of the second total internal reflection surface are formed on the single optical module a V-shaped recess, the one or more first when one or more first input beams enter the single optical module through the first major surface from a position aligned with the V-shaped recess a first portion of the input beam is reflected by the first total internal reflection surface, and the first beam travels in a first direction as one or more first beams, and may serve as one or more first output beams through the second main The surface leaves the single optical module, and further, the second portion of the one or more first input beams is reflected by the second total internal reflection surface, and the second light beam travels in the second direction as one or more second light beams .

於一實施例中,該單體光學模組之光束分歧率是依據該第一全內反射表面及該第二全內反射表面中至少一者的至少一個物理特性預先設定。 In one embodiment, the beam divergence rate of the single optical module is preset according to at least one physical characteristic of at least one of the first total internal reflection surface and the second total internal reflection surface.

於一實施例中,該至少一個物理特性包含該第一全內反射表面或該第二全內反射表面之外形及方向。 In one embodiment, the at least one physical property comprises an outer shape and a direction of the first total internal reflection surface or the second total internal reflection surface.

於一實施例中,該單體光學模組係由聚合物所組成。 In one embodiment, the unitary optical module is comprised of a polymer.

於一實施例中,所述之光學裝置復可包含對準該V型的凹部之一或更多的光源,每一該光源發射各該第一輸入光束,並通過該第一主表面進入該單體光學模組。所述之光學裝置復可包含一或更多的第一光纖,每一個該第一光纖可組構成,當該一或更多的第一輸出光束,通過該第二主表面離開該單體光學模組時,光耦合至各該第一輸出光束。所述之光學裝置復可包含複數個第一準直透鏡,每一個該第一準直透鏡可組構成,當該一或更多的第一輸入光束進入該單體光學模組,準直各該第一輸入光束。所述之光學裝置復可包含複數個第二準直透鏡,每一個該第二準直透鏡組構成,當該一或更多的第一輸出光束離開該單體光學模組,準直各個第一輸出光束。 In one embodiment, the optical device may include one or more light sources aligned with the V-shaped recesses, each of the light sources emitting each of the first input beams and entering the first main surface through the first main surface Single optical module. The optical device may include one or more first optical fibers, each of the first optical fibers being configurable, and the one or more first output beams exit the single optical through the second main surface In the module, light is coupled to each of the first output beams. The optical device may include a plurality of first collimating lenses, each of the first collimating lenses being combinable, and when the one or more first input beams enter the single optical module, collimating each The first input beam. The optical device may include a plurality of second collimating lenses, each of the second collimating lens groups, and when the one or more first output beams leave the single optical module, collimating each An output beam.

於一實施例中,所述之光學裝置復可包含鄰接於該第二全內反射表面之第三全內反射表面,該第二全內反射表面介於該第一全內反射表面與該第三全內反射表面之間,該第三全內反射表面可組構成,反射該一或更多的第二光束,做為一或更多的第二輸出光束以第三方向行進,通過該第一主表面離開該單體光學模組。所述之光學裝置復可包含一或更多的第一檢光器,每一個該第一檢光器可組構成,當該一或更多的第二輸出光束通過該第一主表面離開該單體光學模組時,檢測各該第二輸出光束。所述之光學裝置復可包含複數個第三準直透鏡,每一個該第三準直透鏡可組構成,當該一或更多的第二輸出光束離開該單體光學模組時,準直各該第二輸出光束。 In one embodiment, the optical device may include a third total internal reflection surface adjacent to the second total internal reflection surface, the second total internal reflection surface being interposed between the first total internal reflection surface and the first Between the three total internal reflection surfaces, the third total internal reflection surface may be configured to reflect the one or more second light beams as one or more second output beams to travel in a third direction. A major surface exits the unitary optical module. The optical device may include one or more first photodetectors, each of the first photodetectors may be configured to exit when the one or more second output beams pass through the first major surface In the case of a single optical module, each of the second output beams is detected. The optical device may further comprise a plurality of third collimating lenses, each of the third collimating lenses being configurable, and collimating when the one or more second output beams exit the single optical module Each of the second output beams.

於一實施例中,所述之光學裝置復可包含介於該第二全內反射表面與該第三全內反射表面之間的第四全內反射表面,該第四全內反射表面可組構成,反射一或更多的第二光束之第一部分,據此,該一或更多的第二光束之第一部分,做為一或更多的第三輸出光束以第四方向行進,通過該第一主表面離開該單體光學模組。所述之光學裝置復可包含一或更多的第二檢光器,每一個該第二檢光器可組構成,當該一或更多的第三輸出光束通過該第一主表面離開該單體光學模組時,檢測各該第三輸出光束。所述之光學裝置復可包含複數個第四準直透鏡,每一個該第四準直透鏡可組構成,當該一或更多的第三輸出光束離開該單體光學模組時,準直各該第三輸出光束。 In an embodiment, the optical device may include a fourth total internal reflection surface between the second total internal reflection surface and the third total internal reflection surface, and the fourth total internal reflection surface may be assembled. Constructing, reflecting a first portion of the one or more second light beams, whereby the first portion of the one or more second light beams travels as a fourth or more third output beam in a fourth direction The first major surface exits the unitary optical module. The optical device may include one or more second optical detectors, each of the second optical detectors being configurable when the one or more third output beams exit the first major surface In the single optical module, each of the third output beams is detected. The optical device may further comprise a plurality of fourth collimating lenses, each of the fourth collimating lenses being configurable, and collimating when the one or more third output beams exit the single optical module Each of the third output beams.

於一實施例中,所述之光學裝置復可包含一或更多的第二光纖,其耦合至該單體光學模組,用以將一或更多的第二輸入光束輸入至該單體光學模組,據此,該一或更多的第二輸入光束通過該第二主表面進入該單體光學模組,並透過該第一全內反射表面反射,做為一或更多的第四輸出光束以第五方向行進。所述之光學裝置復可包含一或更多的檢光器,每一個該檢光器可組構成,當該一或更多的第四輸出光束通過該第一主表面離開該單體光學模組時,檢測各該第四輸出光束。所述之光學裝置復可包含複數個第五準直透鏡,每一個該第五準直透鏡可組構成,當該一或更多的第二輸入光束進入該單體光學模組時,準直各該第二輸入光束。所述之光學裝置復可包含複數個第六準直透鏡,每一個該第 六準直透鏡組構成,當該一或更多的第四輸出光束離開該單體光學模組時,準直各該第四輸出光束。 In one embodiment, the optical device may include one or more second optical fibers coupled to the single optical module for inputting one or more second input beams to the single optical component. An optical module, according to which the one or more second input beams enter the single optical module through the second main surface and are reflected by the first total internal reflection surface as one or more The four output beams travel in a fifth direction. The optical device may include one or more photodetectors, each of the photodetectors being configurable, and the one or more fourth output beams exit the single optical mode through the first main surface In the group, each of the fourth output beams is detected. The optical device may further comprise a plurality of fifth collimating lenses, each of the fifth collimating lenses being configurable, and collimating when the one or more second input beams enter the single optical module Each of the second input beams. The optical device may comprise a plurality of sixth collimating lenses, each of the The six collimating lens group is configured to collimate each of the fourth output beams when the one or more fourth output beams exit the single optical module.

依據本發明之另一種型態,提供一種光學裝置,可包含單體光學模組,該單體光學模組包含第一主表面;第二主表面;第一全內反射表面;相鄰於該第一全內反射表面第二全內反射表面;以及相鄰於該第二全內反射表面之第三全內反射表面,據此,該第二全內反射表面介於該第一全內反射表面與該第三全內反射表面之間。該第一全內反射表面之外表面與該第二全內反射表面之外表面於該單體光學模組上形成大致上呈V型的凹部。當一或更多的第一輸入光束從對準該V型的凹部之位置通過該第一主表面進入該單體光學模組時,該一或更多的第一輸入光束之第一部分透過該第一全內反射表面反射,做為一或更多的第一光束以第一方向行進,並做為一或更多的第一輸出光束,通過該第二主表面離開該單體光學模組。該一或更多的第一輸入光束之第二部分透過該第二全內反射表面反射,做為一或更多的第二光束以第二方向行進。以第二方向行進之該一或更多的第二光束,透過該第三全內反射表面反射並以第三方向行進,且做為一或更多的第二輸出光束,通過該第一主表面離開該單體光學模組。 According to another aspect of the present invention, an optical device is provided, which can include a single optical module including a first major surface; a second major surface; a first total internal reflection surface; adjacent to the a first total internal reflection surface; a second total internal reflection surface; and a third total internal reflection surface adjacent to the second total internal reflection surface, whereby the second total internal reflection surface is between the first total internal reflection Between the surface and the third total internal reflection surface. The outer surface of the first total internal reflection surface and the outer surface of the second total internal reflection surface form a substantially V-shaped recess on the single optical module. The first portion of the one or more first input beams passes through the one or more first input beams entering the single optical module through the first major surface from a position aligned with the recess of the V-shaped portion Reflecting the first total internal reflection surface as one or more first beams traveling in a first direction and as one or more first output beams, exiting the single optical module through the second major surface . A second portion of the one or more first input beams is reflected through the second total internal reflection surface and travels in a second direction as one or more second beams. The one or more second light beams traveling in the second direction are reflected by the third total internal reflection surface and travel in a third direction, and serve as one or more second output beams through the first main The surface leaves the unitary optical module.

於一實施例中,該單體光學模組之光束分歧率是依據該第一全內反射表面及該第二全內反射表面中至少一者的至少一個物理特性預先設定。該至少一個物理特性包含該第一全內反射表面或該第二全內反射表面之外形及方向。 In one embodiment, the beam divergence rate of the single optical module is preset according to at least one physical characteristic of at least one of the first total internal reflection surface and the second total internal reflection surface. The at least one physical property comprises an outer shape and a direction of the first total internal reflection surface or the second total internal reflection surface.

於一實施例中,該單體光學模組係由聚合物所組成。 In one embodiment, the unitary optical module is comprised of a polymer.

於一實施例中,所述之光學裝置復可包含對準該V型的凹部之一或更多的光源,每一該光源發射各該第一輸入光束,並通過該第一主表面進入該單體光學模組。所述之光學裝置復可包含一或更多的第一光纖,每一個該第一光纖可組構成,當該一或更多的第一輸出光束,通過該第二主表面離開該單體光學模組時,光耦合至各該第一輸出光束。所述之光學裝置復可包含一或更多的第一檢光器,每一個該第一檢光器可組構成,當該一或更多的第二輸出光束通過該第一主表面離開該單體光學模組時,檢測各該第二輸出光束。所述之光學裝置復可包含複數個第一準直透鏡,每一個該第一準直透鏡可組構成,當該一或更多的第一輸入光束進入該單體光學模組,準直各該第一輸入光束。所述之光學裝置復可包含複數個第二準直透鏡,每一個該第二準直透鏡可組構成,當該一或更多的第一輸出光束離開該單體光學模組,準直各個第一輸出光束。所述之光學裝置復可包含複數個第三準直透鏡,每一個該第三準直透鏡可組構成,當該一或更多的第二輸出光束離開該單體光學模組時,準直各該第二輸出光束。 In one embodiment, the optical device may include one or more light sources aligned with the V-shaped recesses, each of the light sources emitting each of the first input beams and entering the first main surface through the first main surface Single optical module. The optical device may include one or more first optical fibers, each of the first optical fibers being configurable, and the one or more first output beams exit the single optical through the second main surface In the module, light is coupled to each of the first output beams. The optical device may include one or more first photodetectors, each of the first photodetectors may be configured to exit when the one or more second output beams pass through the first major surface In the case of a single optical module, each of the second output beams is detected. The optical device may include a plurality of first collimating lenses, each of the first collimating lenses being combinable, and when the one or more first input beams enter the single optical module, collimating each The first input beam. The optical device may further comprise a plurality of second collimating lenses, each of the second collimating lenses being combinable, and when the one or more first output beams leave the single optical module, collimating each The first output beam. The optical device may further comprise a plurality of third collimating lenses, each of the third collimating lenses being configurable, and collimating when the one or more second output beams exit the single optical module Each of the second output beams.

於一實施例中,所述之光學裝置復可包含介於該第二全內反射表面與該第三全內反射表面之間的第四全內反射表面,該第四全內反射表面可組構成,反射一或更多的第二光束之第一部分,據此,該一或更多的第二光束之第一部分,做為一或更多的第三輸出光束以第四方向行進,通過該第一主表面離開該單體光學模 組。所述之光學裝置復可包含一或更多的第二檢光器,每一個該第二檢光器可組構成,當該一或更多的第三輸出光束通過該第一主表面離開該單體光學模組時,檢測各該第三輸出光束。所述之光學裝置復可包含複數個第四準直透鏡,每一個該第四準直透鏡可組構成,當該一或更多的第三輸出光束離開該單體光學模組時,準直各該第三輸出光束。 In an embodiment, the optical device may include a fourth total internal reflection surface between the second total internal reflection surface and the third total internal reflection surface, and the fourth total internal reflection surface may be assembled. Constructing, reflecting a first portion of the one or more second light beams, whereby the first portion of the one or more second light beams travels as a fourth or more third output beam in a fourth direction The first major surface leaves the single optical mode group. The optical device may include one or more second optical detectors, each of the second optical detectors being configurable when the one or more third output beams exit the first major surface In the single optical module, each of the third output beams is detected. The optical device may further comprise a plurality of fourth collimating lenses, each of the fourth collimating lenses being configurable, and collimating when the one or more third output beams exit the single optical module Each of the third output beams.

於一實施例中,所述之光學裝置復可包含一或更多的第二光纖,其耦合至該單體光學模組,用以將一或更多的第二輸入光束輸入至該單體光學模組,據此,該一或更多的第二輸入光束通過該第二主表面進入該單體光學模組,並透過該第一全內反射表面反射,做為一或更多的第四輸出光束以第五方向行進。所述之光學裝置復可包含一或更多的檢光器,每一個該檢光器可組構成,當該一或更多的第四輸出光束通過該第一主表面離開該單體光學模組時,檢測各該第四輸出光束。所述之光學裝置復可包含複數個第五準直透鏡,每一個該第五準直透鏡可組構成,當該一或更多的第二輸入光束進入該單體光學模組時,準直各該第二輸入光束。所述之光學裝置復可包含複數個第六準直透鏡,每一個該第六準直透鏡可組構成,當該一或更多的第四輸出光束離開該單體光學模組時,準直各該第四輸出光束。 In one embodiment, the optical device may include one or more second optical fibers coupled to the single optical module for inputting one or more second input beams to the single optical component. An optical module, according to which the one or more second input beams enter the single optical module through the second main surface and are reflected by the first total internal reflection surface as one or more The four output beams travel in a fifth direction. The optical device may include one or more photodetectors, each of the photodetectors being configurable, and the one or more fourth output beams exit the single optical mode through the first main surface In the group, each of the fourth output beams is detected. The optical device may further comprise a plurality of fifth collimating lenses, each of the fifth collimating lenses being configurable, and collimating when the one or more second input beams enter the single optical module Each of the second input beams. The optical device may further comprise a plurality of sixth collimating lenses, each of the sixth collimating lenses being configurable, and collimating when the one or more fourth output beams exit the single optical module Each of the fourth output beams.

依據本發明之另一種型態,提供一種光學裝置,包含單體光學模組,該單體光學模組包含第一主表面;第二主表面;第一全內反射表面;以及第二全內反射表面。當一或更多的第一輸入光 束從對準該第一全內反射表面之位置通過該第一主表面進入該單體光學模組時,該一或更多的第一輸入光束透過該第一全內反射表面反射,做為一或更多的第一光束以第一方向行進。該一或更多的第一光束之第一部分透過該第二全內反射表面反射,並以第二方向行進,且做為一或更多的第一輸出光束,通過該第一主表面離開該單體光學模組。該一或更多的第一光束之第二部分未透過該第二全內反射表面反射,並維持以第一方向行進,且做為一或更多的第二輸出光束,通過該第二主表面離開該單體光學模組。 According to another aspect of the present invention, there is provided an optical device comprising a single optical module comprising a first major surface; a second major surface; a first total internal reflection surface; and a second internal Reflective surface. When one or more first input lights When the beam enters the single optical module through the first main surface from a position aligned with the first total internal reflection surface, the one or more first input beams are reflected through the first total internal reflection surface as One or more first beams travel in a first direction. A first portion of the one or more first beams is reflected by the second total internal reflection surface and travels in a second direction and acts as one or more first output beams exiting the first major surface Single optical module. The second portion of the one or more first beams is not reflected by the second total internal reflection surface and remains in a first direction and acts as one or more second output beams through the second main The surface leaves the unitary optical module.

於一實施例中,該單體光學模組之光束分歧率是依據該第二全內反射表面的至少一個物理特性預先設定。 In one embodiment, the beam divergence rate of the single optical module is preset according to at least one physical characteristic of the second total internal reflection surface.

於一實施例中,該至少一個物理特性包含該第二全內反射表面之外形及方向。 In one embodiment, the at least one physical property comprises an outer shape and a direction of the second total internal reflection surface.

於一實施例中,該單體光學模組係由聚合物所組成。 In one embodiment, the unitary optical module is comprised of a polymer.

於一實施例中,所述之光學裝置復可包含對準該第一全內反射表面之一或更多的光源,每一該光源發射各該第一輸入光束,並通過該第一主表面進入該單體光學模組。所述之光學裝置復可包含一或更多的第一檢光器,每一個該第一檢光器可組構成,當該一或更多的第一輸出光束通過該第一主表面離開該單體光學模組時,檢測各該第一輸出光束。所述之光學裝置復可包含一或更多的第一光纖,每一個該第一光纖可組構成,當該一或更多的第二輸出光束,通過該第二主表面離開該單體光學模組時,光耦合至各該第二輸出光束。所述之光學裝置復可包含複數個第一準直 透鏡,每一個該第一準直透鏡可組構成,當該一或更多的第一輸入光束進入該單體光學模組,準直各該第一輸入光束。所述之光學裝置復可包含複數個第二準直透鏡,每一個該第二準直透鏡可組構成,當該一或更多的第一輸出光束離開該單體光學模組,準直各個第一輸出光束。所述之光學裝置復可包含複數個第三準直透鏡,每一個該第三準直透鏡可組構成,當該一或更多的第二輸出光束離開該單體光學模組時,準直各該第二輸出光束。 In one embodiment, the optical device may include one or more light sources aligned to the first total internal reflection surface, each of the light sources emitting each of the first input beams and passing through the first major surface Enter the single optical module. The optical device may further comprise one or more first photodetectors, each of the first photodetectors being configurable, when the one or more first output beams exit the first main surface In the single optical module, each of the first output beams is detected. The optical device may include one or more first optical fibers, each of the first optical fibers being configurable, and the one or more second output beams exit the single optical through the second main surface In the module, light is coupled to each of the second output beams. The optical device may include a plurality of first collimations The lens, each of the first collimating lenses may be configured to collimate the first input beam when the one or more first input beams enter the single optical module. The optical device may further comprise a plurality of second collimating lenses, each of the second collimating lenses being combinable, and when the one or more first output beams leave the single optical module, collimating each The first output beam. The optical device may further comprise a plurality of third collimating lenses, each of the third collimating lenses being configurable, and collimating when the one or more second output beams exit the single optical module Each of the second output beams.

於一實施例中,所述之光學裝置復可包含第三全內反射表面,其相鄰於該第二全內反射表面。所述之光學裝置復可包含一或更多的第二光纖,其耦合至該單體光學模組,用以將一或更多的第二輸入光束輸入至該單體光學模組,據此,該一或更多的第二輸入光束通過該第二主表面進入該單體光學模組,並透過該第三全內反射表面反射,做為一或更多的第三輸出光束以第三方向行進。所述之光學裝置復可包含一或更多的檢光器,每一個該檢光器可組構成,當該一或更多的第三輸出光束通過該第一主表面離開該單體光學模組時,檢測各該第三輸出光束。所述之光學裝置復可包含複數個第四準直透鏡,每一個該第四準直透鏡可組構成,當該一或更多的第二輸入光束進入該單體光學模組時,準直各該第二輸入光束。所述之光學裝置復可包含複數個第五準直透鏡,每一個該第五準直透鏡可組構成,當該一或更多的第三輸出光束離開該單體光學模組時,準直各該第三輸出光束。 In one embodiment, the optical device may include a third total internal reflection surface adjacent to the second total internal reflection surface. The optical device may include one or more second optical fibers coupled to the single optical module for inputting one or more second input beams to the single optical module. The one or more second input beams enter the single optical module through the second major surface and are reflected by the third total internal reflection surface as one or more third output beams to be third Directions. The optical device may include one or more photodetectors, each of the photodetectors being configurable, and the one or more third output beams exit the single optical mode through the first main surface In the group, each of the third output beams is detected. The optical device may further comprise a plurality of fourth collimating lenses, each of the fourth collimating lenses being configurable, and collimating when the one or more second input beams enter the single optical module Each of the second input beams. The optical device may further comprise a plurality of fifth collimating lenses, each of the fifth collimating lenses being configurable, and collimating when the one or more third output beams exit the single optical module Each of the third output beams.

以上所述或其他之本發明之特徵、實施型態及優點,將於以 下配合圖式予以說明。應了解到,前述較廣泛的說明或以下較具體的說明僅為例示,用以對申請專利範圍所請求保護之內容作更詳細的說明。 The features, implementations and advantages of the invention described above or elsewhere will be The following is a description of the figure. It is to be understood that the foregoing general description of the claims

概述: Overview:

本發明提供一種包括單體光學模組之光學裝置。部分的光自可例如為VCSEL的光源發射出來,透過二個或更多的全內反射表面反射後,再與光纖耦合。自該光源發射出來的光之至少另一部分被反射至檢光器。介於導通至光纖與導通至檢光器間的光分歧率是依據物理特性被預設為符合特定的需求,所述的物理特性可例如為二個或更多之全內反射表面的形狀及/或方向。由於在該二個或更多的全反射表面上的光反射率可為100%,故介於兩個或更多的全內反射表面的光分歧率對於光偏振不敏感。藉由此設計,自光源發射出的光能被分歧至二個或更多的檢光器。 The present invention provides an optical device comprising a single optical module. Part of the light is emitted from a source such as a VCSEL, reflected through two or more total internal reflection surfaces, and coupled to the fiber. At least another portion of the light emitted from the source is reflected to the photodetector. The divergence rate of light between the conduction to the optical fiber and the conduction to the optical detector is preset to meet a specific requirement according to physical characteristics, which may be, for example, the shape of two or more total internal reflection surfaces and / or direction. Since the light reflectance on the two or more total reflection surfaces can be 100%, the light divergence ratio between the two or more total internal reflection surfaces is insensitive to light polarization. With this design, the light energy emitted from the light source is diverged to two or more photodetectors.

本發明所提供之單體光學模組可為射出成型且可為全聚合物。依據前述二個或更多的全內反射表面的結合,不需要額外的構件即可實現所述設計之光轉向與光分歧。據此,本設計有助於減少組件數量、簡化封裝複雜度、以及節省製造成本。 The single optical module provided by the present invention can be injection molded and can be a full polymer. Depending on the combination of the two or more total internal reflection surfaces described above, light steering and light divergence of the design can be achieved without the need for additional components. Accordingly, this design helps reduce component count, simplify package complexity, and save manufacturing costs.

此外,依據本發明,可於單體模組中設計並實現任意調整的光分歧率。習用利用空氣間隙分歧光之方法在光分歧率大於20%時,會面臨極化相依損耗(Polarization Dependent Loss,PDL)的問題。為了在大於20%光分歧率之情況下使用該光學模組,必須利 用粗糙的輸出表面或其他方法將輸出光衰減(dropped)。相對的,本發明之實施例可實現任意調整的光分歧率,且該光分歧率對偏振不敏感。 Moreover, in accordance with the present invention, any adjusted light divergence rate can be designed and implemented in a single module. The method of using the air gap divergence light to face the problem of Polarization Dependent Loss (PDL) when the light divergence rate is greater than 20%. In order to use the optical module at a light divergence ratio greater than 20%, it must be advantageous The output light is dropped with a rough output surface or other means. In contrast, embodiments of the present invention can achieve an arbitrarily adjusted optical divergence rate that is insensitive to polarization.

實施例: Example:

第3圖顯示本發明之一實施例之光學裝置10的剖面圖。 Figure 3 is a cross-sectional view showing an optical device 10 in accordance with one embodiment of the present invention.

光學裝置10包含單體光學模組100、第一全內反射表面110、相鄰第一全內反射表面110之第二全內反射表面120、以及相鄰或接次於第二全內反射表面120之第三全內反射表面130。第二全內反射表面120係設置於第一全內反射表面110與第三全內反射表面130之間。其他的表面或結構只要不會阻擋到光束,即可設置於第一全內反射表面110與第三全內反射表面130之間。介於第一全內反射表面110與第二全內反射表面120之介面形成第一內光束分歧介面125。如第3圖所示,第一全內反射表面110之外表面與第二全內反射表面120之外表面於單體光學模組100上形成大致上呈V型的凹部。 The optical device 10 includes a single optical module 100, a first total internal reflection surface 110, a second total internal reflection surface 120 adjacent to the first total internal reflection surface 110, and adjacent or second to the second total internal reflection surface. The third total internal reflection surface 130 of 120. The second total internal reflection surface 120 is disposed between the first total internal reflection surface 110 and the third total internal reflection surface 130. Other surfaces or structures may be disposed between the first total internal reflection surface 110 and the third total internal reflection surface 130 as long as they do not block the light beam. A first inner beam divergence interface 125 is formed between the interface of the first total internal reflection surface 110 and the second total internal reflection surface 120. As shown in FIG. 3, the outer surface of the first total internal reflection surface 110 and the outer surface of the second total internal reflection surface 120 form a substantially V-shaped recess on the single optical module 100.

單體光學模組100復包含第一光埠140、第二光埠150及第三光埠160。 The single optical module 100 further includes a first aperture 140, a second aperture 150, and a third aperture 160.

第一光埠140對準第一內光束分歧介面125。第一光束182通過第一光埠140進入單體光學模組100並入射至第一內光束分歧介面125上,其中,部分光束透過第一全內反射表面110反射,作為第二光束184朝第一方向行進,而部分光束透過第二全內反射表面120反射,作為第三光束186朝第二方向行進。第二方向 大致上與第一方向相反對。 The first aperture 140 is aligned with the first inner beam divergence interface 125. The first light beam 182 enters the single optical module 100 through the first aperture 140 and is incident on the first inner beam divergence interface 125. The partial light beam is reflected by the first total internal reflection surface 110 as the second light beam 184. A direction travels while a portion of the beam is reflected through the second total internal reflection surface 120 as a third beam 186 traveling in a second direction. Second direction It is roughly opposite to the first direction.

第二光埠150對準第一全內反射表面110,據此第二光束184通過第二光埠150離開單體光學模組100。 The second aperture 150 is aligned with the first total internal reflection surface 110, whereby the second beam 184 exits the single optical module 100 through the second aperture 150.

第三光埠160對準第三全內反射表面130,第三光束186之至少部分光束透過第三全內反射表面130反射,作為第四光束188朝第三方向行進。第四光束188通過第三光埠160離開單體光學模組100。 The third aperture 160 is aligned with the third total internal reflection surface 130, and at least a portion of the third beam 186 is reflected by the third total internal reflection surface 130 as a fourth beam 188 traveling in a third direction. The fourth beam 188 exits the single optical module 100 through the third aperture 160.

於一實施例中,光學模組10復可包含對準第一光埠140之光源180。光源180可發射通過第一光埠140進入單體光學模組100之第一光束182。光源180可例如為VCSEL、發光二極體(LED)、雷射二極體或其他類似者。 In an embodiment, the optical module 10 can include a light source 180 aligned with the first aperture 140. The light source 180 can emit a first light beam 182 that enters the single optical module 100 through the first aperture 140. Light source 180 can be, for example, a VCSEL, a light emitting diode (LED), a laser diode, or the like.

於另一實施例中,光學裝置10復可包含耦合至第二光埠150之光纖190,據此,通過第二光埠150離開單體光學模組100之第二光束184可耦合至光纖190。 In another embodiment, the optical device 10 can include an optical fiber 190 coupled to the second aperture 150, whereby the second light beam 184 exiting the single optical module 100 through the second aperture 150 can be coupled to the optical fiber 190. .

於又一實施例中,光學裝置10復包含對準第三光埠160之第一檢光器170。第一檢光器170當第四光束188通過第三光埠160進入單體光學模組100時,可偵測第四光束188。 In yet another embodiment, the optical device 10 further includes a first photodetector 170 that is aligned with the third aperture 160. The first photodetector 170 detects the fourth beam 188 when the fourth beam 188 enters the single optical module 100 through the third aperture 160.

單體光學模組100的光束分歧率可依據至少一種物理特性預先設定,所述之物理特性可例如為第一全內反射表面110及第二全內反射表面120中至少一者之形狀及/或方向。 The beam divergence rate of the monolithic optical module 100 may be preset according to at least one physical property, which may be, for example, the shape of at least one of the first total internal reflection surface 110 and the second total internal reflection surface 120 and/or Or direction.

於一實施例中,單體光學模組100可由聚合物所組成。換言之,單體光學模組100可為全聚合物單體光學模組。 In one embodiment, the unitary optical module 100 can be composed of a polymer. In other words, the single optical module 100 can be an all-polymer monolithic optical module.

於一實施例中,光學裝置10復可包含第一準直透鏡(collimating lens)145,其耦合於第一光埠140,以準直通過第一光埠140進入或離開單體光學模組100之光束;第二準直透鏡155,其耦合於第二光埠150,以準直通過第二光埠150進入或離開單體光學模組100之光束;第三準直透鏡165,其耦合於第三光埠160,以準直通過第三光埠160進入或離開單體光學模組100之光束。 In an embodiment, the optical device 10 further includes a first collimating lens 145 coupled to the first aperture 140 for collimating through the first aperture 140 into or out of the single optical module 100. a second collimating lens 155 coupled to the second aperture 150 for collimating the light beam entering or exiting the single optical module 100 through the second aperture 150; a third collimating lens 165 coupled to The third aperture 160 is configured to collimate through the third aperture 160 into or out of the beam of the single optical module 100.

於第3圖中所示之實施型態,光源180發射第一光束182。第一光束182通過第一光埠140進入單體光學模組100,在透過第一準直透鏡145準直後,入射至第一內光束分歧介面125上。據此,第一光束182分歧為以第一方向行進之第二光束184以及以第二方向行進之第三光束186,第二方向大致與第一方向相反對。第三光束186入射至第三全內反射表面130,藉以將第三光束186轉折一角度後以第三方向行進,再透過第三光埠160離開單體光學模組100,利用準直透鏡165準直離開單體光學模組100之第三光束186,並利用檢光器170偵測。通過第二光埠150離開單體光學模組100之第二光束184透過第二準直透鏡155準直並耦合至光纖190。 In the embodiment shown in FIG. 3, light source 180 emits a first beam 182. The first light beam 182 enters the single optical module 100 through the first aperture 140, is collimated by the first collimating lens 145, and is incident on the first inner beam divergent interface 125. Accordingly, the first beam 182 diverges into a second beam 184 traveling in a first direction and a third beam 186 traveling in a second direction, the second direction being substantially opposite the first direction. The third light beam 186 is incident on the third total internal reflection surface 130, whereby the third light beam 186 is turned by an angle and then travels in a third direction, and then exits the single optical module 100 through the third aperture 160, and the collimating lens 165 is utilized. The third beam 186 of the single optical module 100 is collimated and detected by the photodetector 170. The second beam 184 exiting the single optical module 100 through the second aperture 150 is collimated through the second collimating lens 155 and coupled to the optical fiber 190.

第4圖為顯示本發明之另一實施例之光學裝置20的剖面圖。 Figure 4 is a cross-sectional view showing an optical device 20 in accordance with another embodiment of the present invention.

光學模組20包含單體光學模組200,單體光學模組200包含第一全內反射表面210及第二全內反射表面220。第一光束272入射至第一全內反射表面210,作為第二光束274以第一方向行進,據此,第二光束274之第一部分透過第二全內反射表面220 反射,作為第三光束276以第二方向行進,而第二光束274之第二部分未透過第二全內反射表面220反射,作為第四光束278維持第一方向行進。 The optical module 20 includes a single optical module 200 that includes a first total internal reflection surface 210 and a second total internal reflection surface 220. The first beam 272 is incident on the first total internal reflection surface 210 and travels as a second beam 274 in a first direction, whereby a first portion of the second beam 274 passes through the second total internal reflection surface 220 The reflection, as the third beam 276, travels in a second direction, while the second portion of the second beam 274 is not reflected through the second total internal reflection surface 220, maintaining the first direction as the fourth beam 278.

於一實施例中,單體光學模組200復包含接次於第二全內反射表面220之表面230,第二全內反射表面220位於第一全內反射表面210與表面230之間。於某些實施例中,表面230可為全內反射表面,而於其他實施例中,表面230亦可為非全內反射表面。其他的表面或結構可設置第一全內反射表面及第二全內反射表面間,只要該表面或結構不會阻擋光束。 In one embodiment, the unitary optical module 200 includes a surface 230 next to the second total internal reflection surface 220, and the second total internal reflection surface 220 is located between the first total internal reflection surface 210 and the surface 230. In some embodiments, surface 230 can be a total internal reflection surface, while in other embodiments, surface 230 can also be a non-total internal reflection surface. Other surfaces or structures may be disposed between the first total internal reflection surface and the second total internal reflection surface as long as the surface or structure does not block the beam.

單體光學模組200之光束分歧率可依據至少第二全內反射表面220與表面230中至少一者的至少一物理特性預先設定。 The beam divergence rate of the unitary optical module 200 can be preset according to at least one physical characteristic of at least one of the at least second total internal reflection surface 220 and the surface 230.

於一實施例中,單體光學模組200復包含第一光埠240、第二光埠250及第三光埠260。當第一光束272通過第一光埠240進入單體光學模組200時,入射至第一全內反射表面210上。第三光束276通過第二光埠250離開單體光學模組200。第四光束278通過第三光埠260離開單體光學模組200。 In one embodiment, the single optical module 200 further includes a first aperture 240, a second aperture 250, and a third aperture 260. When the first light beam 272 enters the single optical module 200 through the first aperture 240, it is incident on the first total internal reflection surface 210. The third beam 276 exits the single optical module 200 through the second aperture 250. The fourth beam 278 exits the single optical module 200 through the third aperture 260.

於一實施例中,光學裝置20復可包含對準第一光埠240之光源270。光源270可發射出第一光束272,第一光束272通過第一光埠240進入單體光學模組200。光源270可例如為VCSEL、發光二極體、雷射二極體或其他類似者。 In an embodiment, the optical device 20 may include a light source 270 that is aligned with the first aperture 240. The light source 270 can emit a first light beam 272 that enters the single optical module 200 through the first aperture 240. Light source 270 can be, for example, a VCSEL, a light emitting diode, a laser diode, or the like.

於另一實施例中,光學裝置20復可包含對準第二光埠250之檢光器280。當第三光束276通過第二光埠250離開單體光學模組 200時,檢光器280可偵測第三光束276。 In another embodiment, the optical device 20 can include a photodetector 280 that is aligned with the second aperture 250. When the third light beam 276 leaves the single optical module through the second aperture 250 At 200 o'clock, the photodetector 280 can detect the third beam 276.

於又一實施例中,光學裝置20復可包含耦合至第三光埠260之光纖290,據此,通過第三光埠260離開單體光學模組200之第四光束278耦合至光纖290。 In yet another embodiment, the optical device 20 can include an optical fiber 290 coupled to the third aperture 260, whereby the fourth beam 278 exiting the single optical module 200 through the third aperture 260 is coupled to the optical fiber 290.

於一實施例中,光學裝置20復可包含第一準直透鏡245、第二準直透鏡255及第三準直透鏡265。在第一光束272通過第一光埠240進入單體光學模組200之前,第一準直透鏡245準直第一光束272。在第三光束276通過第二光埠250離開單體光學模組200之後,第二準直透鏡255準直第三光束276。在第四光束278離開單體光學模組200後,與光纖290耦合之前,第三準直透鏡265準直第四光束278。 In one embodiment, the optical device 20 may include a first collimating lens 245, a second collimating lens 255, and a third collimating lens 265. The first collimating lens 245 collimates the first beam 272 before the first beam 272 enters the unitary optical module 200 through the first aperture 240. After the third beam 276 exits the single optical module 200 through the second aperture 250, the second collimating lens 255 collimates the third beam 276. After the fourth beam 278 exits the single optical module 200, the third collimating lens 265 collimates the fourth beam 278 before coupling with the fiber 290.

於一實施例中,單體光學模組200可由聚合物所組成。換言之,單體光學模組200可為全聚合物單體光學模組。 In one embodiment, the unitary optical module 200 can be composed of a polymer. In other words, the single optical module 200 can be an all-polymer monolithic optical module.

第5圖顯示本發明之又一實施例之光學裝置30的剖面圖。 Fig. 5 is a cross-sectional view showing an optical device 30 according to still another embodiment of the present invention.

光學裝置30包含單體光學模組300,單體光學模組300包含第一全內反射表面310、相鄰第一全內反射表面310之第二全內反射表面320、以及相鄰或接次於第二全內反射表面320之第三全內反射表面330。第二全內反射表面320係設置於第一全內反射表面310與第三全內反射表面330之間。介於第一全內反射表面310之第二全內反射表面320之介面形成第一內光束分歧介面325。如第5圖所示,第一全內反射表面310之外表面與第二全內反射表面320之外表面於單體光學模組300上形成大致上呈V型的凹部。 The optical device 30 includes a single optical module 300 including a first total internal reflection surface 310, a second total internal reflection surface 320 adjacent to the first total internal reflection surface 310, and adjacent or successive The third total internal reflection surface 330 of the second total internal reflection surface 320. The second total internal reflection surface 320 is disposed between the first total internal reflection surface 310 and the third total internal reflection surface 330. The interface between the second total internal reflection surface 320 of the first total internal reflection surface 310 forms a first inner beam divergence interface 325. As shown in FIG. 5, the outer surface of the first total internal reflection surface 310 and the outer surface of the second total internal reflection surface 320 form a substantially V-shaped recess on the single optical module 300.

單體光學模組300復包含第一光埠356、第二光埠358及第三光埠354。 The single optical module 300 further includes a first aperture 356, a second aperture 358, and a third aperture 354.

第一光埠356對準第一內光束分歧介面325。第一光束380通過第一光埠356進入單體光學模組300並入射至第一內光束分歧介面325上,其中,部分光束透過第一全內反射表面310反射,作為第二光束382朝第一方向行進,而部分光束透過第二全內反射表面320反射,作為第三光束384朝第二方向行進。第二方向大致上與第一方向相反對。 The first aperture 356 is aligned with the first inner beam divergence interface 325. The first light beam 380 enters the single optical module 300 through the first aperture 356 and is incident on the first inner beam divergence interface 325. The partial light beam is reflected by the first total internal reflection surface 310 as the second light beam 382. A direction travels while a portion of the beam is reflected through the second total internal reflection surface 320 as a third beam 384 traveling in a second direction. The second direction is substantially opposite the first direction.

第二光埠358對準第一全內反射表面310,據此,第二光束382通過第二光埠358離開單體光學模組300。 The second aperture 358 is aligned with the first total internal reflection surface 310, whereby the second beam 382 exits the single optical module 300 through the second aperture 358.

第三光埠354對準第三全內反射表面330。第三光束384可至少部分地透過第三全內反射表面330反射,以作為第四光束386於第三方向行進。第四光束386可通過第三光埠354離開單體光學模組300。 The third aperture 354 is aligned with the third total internal reflection surface 330. The third beam 384 can be at least partially reflected through the third total internal reflection surface 330 to travel as a fourth beam 386 in a third direction. The fourth beam 386 can exit the single optical module 300 through the third stop 354.

如第5圖所示,單體光學模組300復可包含第四全內反射表面340以及對準第四全內反射表面340之第四光埠352。第三光束384之部分以第二方向行進且不透過第三全內反射表面330反射,而作為第五光束388維持第二方向行進。第五光束388可透過第四全內反射表面340反射,而作為第六光束389以第四方向行進。第六光束389可通過第四光埠352離開單體光學模組300。 As shown in FIG. 5, the single optical module 300 may include a fourth total internal reflection surface 340 and a fourth aperture 352 aligned with the fourth total internal reflection surface 340. Portions of the third beam 384 travel in a second direction and are not reflected by the third total internal reflection surface 330, while maintaining a second direction as the fifth beam 388. The fifth beam 388 is reflective through the fourth total internal reflection surface 340 and travels as a sixth beam 389 in a fourth direction. The sixth beam 389 can exit the single optical module 300 through the fourth aperture 352.

於一實施例中,光學裝置30復可包含對準第一光埠356之光源376。光源376可發射第一光束380,第一光束380通過第一光 埠356進入單體光學模組300。光源376可例如為VCSEL、發光二極體、雷射二極體或其他類似者。 In one embodiment, the optical device 30 can include a light source 376 that is aligned with the first aperture 356. Light source 376 can emit a first light beam 380, and first light beam 380 passes through the first light The crucible 356 enters the unitary optical module 300. Light source 376 can be, for example, a VCSEL, a light emitting diode, a laser diode, or the like.

於另一實施例中,光學裝置30復可包含耦合至第二光埠358之光纖390,據此,第二光束382通過第二光埠358離開單體光學模組300,並可耦合至光纖390。 In another embodiment, the optical device 30 can include an optical fiber 390 coupled to the second aperture 358, whereby the second beam 382 exits the single optical module 300 through the second aperture 358 and can be coupled to the optical fiber. 390.

於又一實施例中,光學裝置30復可包含對準第三光埠354之第一檢光器374。當第四光束386通過第三光埠354離開單體光學模組300時,第一檢光器374可偵測第四光束386。 In yet another embodiment, the optical device 30 can include a first photodetector 374 that is aligned with the third aperture 354. When the fourth beam 386 exits the single optical module 300 through the third aperture 354, the first detector 374 can detect the fourth beam 386.

於再一實施例中,光學裝置30復可包含對準第四光埠352之第二檢光器372。當第六光束389通過第四光埠352離開單體光學模組300時,第二檢光器372可偵測第六光束389。 In still another embodiment, the optical device 30 can include a second photodetector 372 that is aligned with the fourth aperture 352. When the sixth light beam 389 exits the single optical module 300 through the fourth aperture 352, the second light detector 372 can detect the sixth light beam 389.

單體光學模組300之光束分歧率可依據至少一種物理特性預先設定,所述之物理特性可例如為第一全內反射表面310、第二全內反射表面320及第三全內反射表面330中至少一者之形狀及/或方向。 The beam divergence rate of the monolithic optical module 300 can be preset according to at least one physical property, such as the first total internal reflection surface 310, the second total internal reflection surface 320, and the third total internal reflection surface 330. The shape and/or orientation of at least one of them.

於一實施例中,單體光學模組300可由聚合物所組成。換言之,單體光學模組300可為全聚合物單體光學模組。 In one embodiment, the unitary optical module 300 can be composed of a polymer. In other words, the single optical module 300 can be an all-polymer monolithic optical module.

於一實施例中,光學裝置30復可包含復可包含第一準直透鏡366,其耦合於第一光埠356,以準直通過第一光埠356進入或離開單體光學模組300之光束;第二準直透鏡368,其耦合於第二光埠358,以準直通過第二光埠358進入或離開單體光學模組300之光束;第三準直透鏡364,其耦合於第三光埠354,以準直通過 第三光埠354進入或離開單體光學模組300之光束;第四準直透鏡362,其耦合於第四光埠352,以準直通過第四光埠352進入或離開單體光學模組300之光束。 In one embodiment, the optical device 30 can include a first collimating lens 366 coupled to the first aperture 356 for collimating through the first aperture 356 into or out of the single optical module 300. a second collimating lens 368 coupled to the second aperture 358 for collimating through the second aperture 358 into or out of the beam of the unitary optical module 300; a third collimating lens 364 coupled to the Three light 354, through the collimation The third aperture 354 enters or leaves the light beam of the single optical module 300; the fourth collimating lens 362 is coupled to the fourth aperture 352 to collimate through the fourth aperture 352 into or out of the single optical module. 300 beam.

於第5圖所示之實施例中,光源376發射第一光束380。第一光束380在經過第一準直透鏡366準直後,通過第一光埠356進入單體光學模組300,並入射至入射至第一內光束分歧介面325上。接著,第一光束380分歧為以第一方向行進之第二光束382以及以第二方向行進之第三光束384,第二方向大致上與第一方向相反對。第三光束384之第一部分入射至第三全內反射表面330,藉以將第三光束384轉折一角度後做為第四光束386以第三方向行進,再透過第三光埠354離開單體光學模組300,並利用第三準直透鏡364準直離開單體光學模組300之第四光束386,並利用第一檢光器374偵測。第三光束384之第二部分未透過第三全內反射表面330反射,做為第五光束388維持第二方向行進,直到入射至第四全內反射表面340。透過第四全內反射表面340之反射,經過反射之第五光束388做為第六光束389以第四方向行進,再透過第四光埠352離開單體光學模組300,並利用第四準直透鏡362準直離開單體光學模組300之第六光束389,並利用第二檢光器372偵測。第二光束382透過第二光埠358離開單體光學模組300,再利用第二準直透鏡368準直離開單體光學模組300之第二光束382並耦合至光纖190。 In the embodiment illustrated in FIG. 5, light source 376 emits a first beam 380. After collimating through the first collimating lens 366, the first beam 380 enters the single optical module 300 through the first aperture 356 and is incident on the first inner beam diverging interface 325. Next, the first beam 380 diverges into a second beam 382 traveling in a first direction and a third beam 384 traveling in a second direction, the second direction being substantially opposite the first direction. The first portion of the third beam 384 is incident on the third total internal reflection surface 330, whereby the third beam 384 is turned at an angle and then travels as a fourth beam 386 in a third direction, and then exits the single lens through the third aperture 354. The module 300 is collimated from the fourth beam 386 of the single optical module 300 by the third collimating lens 364 and detected by the first photodetector 374. The second portion of the third beam 384 is not reflected through the third total internal reflection surface 330, and continues to travel in the second direction as the fifth beam 388 until it is incident on the fourth total internal reflection surface 340. Through the reflection of the fourth total internal reflection surface 340, the reflected fifth beam 388 travels as the sixth beam 389 in the fourth direction, and then exits the single optical module 300 through the fourth aperture 352, and utilizes the fourth standard. The straight lens 362 is collimated away from the sixth beam 389 of the single optical module 300 and detected by the second photodetector 372. The second beam 382 exits the single optical module 300 through the second aperture 358 and is then collimated away from the second beam 382 of the single optical module 300 by the second collimating lens 368 and coupled to the optical fiber 190.

第6圖顯示本發明之一實施例之光學裝置10的立體視圖。第 7圖顯示本發明之另一實施例之光學裝置15的立體視圖,第7圖之光學裝置15可為第6圖之光學裝置10的變化實施例,其可具有一個不同外形之全內反射表面的外表面以及介於二相鄰全內反射表面間包含複數個光束路徑(line)之內光束分歧介面,以取代第6圖所示之直線路徑。第6圖與第7圖顯示二個用以形成單體光學模組之立體結構的典型結構,並可於此二光分歧架構中實現光分歧率的調整。 Figure 6 shows a perspective view of an optical device 10 in accordance with one embodiment of the present invention. First 7 is a perspective view showing an optical device 15 according to another embodiment of the present invention, and the optical device 15 of FIG. 7 may be a modified embodiment of the optical device 10 of FIG. 6, which may have a total internal reflection surface of a different shape. The outer surface and the beam divergence interface between the two adjacent total internal reflection surfaces including a plurality of beam paths replace the linear path shown in FIG. Figures 6 and 7 show two typical structures for forming a three-dimensional structure of a single optical module, and the adjustment of the light divergence rate can be realized in the two-light divergence architecture.

如先前配合第3至5圖之說明,光束透過單體光學模組中之一個或多個全內反射表面反射,且最終分歧至光纖以及一個或多個檢光器。介於光纖以及一個或多個檢光器間之方分歧率可依據物理特性予以設計,所述之物理特性可例如為全內反射表面之形狀及/或方向。由於在全內反射表面的光反射率為100%,介於全內反射表面間光分歧率對於光偏振完全不敏感。藉由此種設計,自光源所發射出之光可分歧至一個或多個檢光器。於第5圖中,來自光源的光分歧的進入二個檢光器。若頻帶濾波器增加至一準直透鏡及相對應之檢光器間,則波長偏移可被監測。 As previously described in conjunction with Figures 3 through 5, the beam is reflected through one or more total internal reflection surfaces in the unitary optical module and eventually diverges to the fiber and one or more of the detectors. The square divergence between the fiber and the one or more detectors can be designed based on physical characteristics, such as the shape and/or orientation of the total internal reflection surface. Since the light reflectance at the total internal reflection surface is 100%, the light divergence ratio between the total internal reflection surfaces is completely insensitive to light polarization. With this design, the light emitted from the light source can be diverged to one or more of the detectors. In Figure 5, the light from the source diverges into the two detectors. If the band filter is added between a collimating lens and a corresponding photodetector, the wavelength shift can be monitored.

具有多光通道且提供超過一個以上光訊號傳送之單體光學模組可依據第3至5圖所示之架構予以組裝。舉例言之,第8圖顯示本發明之一實施例之多通道光學模組的立體視圖。多通道光學模組係以第6圖所示之單通道光學模組100之光分歧架構為基礎。多通道光學模組包含以下所述之優點以簡單的將複數個單通道光學模組置放在一起。第一,透過減少光學模組的類型及數量 可大幅降低製造成本。第二,藉由簡化的封裝流程可降低封裝成本。於多通道光學模組中,不需要對每一個組件進行校準、樹脂添加(add-resin)、紫外線固化(UV-curing)或熱固化。最後,可將多通道光學模組封裝成較小的規格。 A single optical module having multiple optical channels and providing more than one optical signal transmission can be assembled in accordance with the architecture shown in Figures 3 through 5. For example, Figure 8 shows a perspective view of a multi-channel optical module in accordance with one embodiment of the present invention. The multi-channel optical module is based on the optical divergence architecture of the single-channel optical module 100 shown in FIG. The multi-channel optical module includes the advantages described below to simply place a plurality of single-channel optical modules together. First, by reducing the type and number of optical modules Can significantly reduce manufacturing costs. Second, packaging costs can be reduced by a simplified packaging process. In multi-channel optical modules, there is no need to calibrate, add-resin, UV-curing or thermally cure each component. Finally, multi-channel optical modules can be packaged in smaller sizes.

第9圖顯示本發明之一實施例之單體光學模組的立體視圖,其可傳送光訊號至具有光功率監測功能之第一光纖,並同時藉由第二光纖接收光訊號。第3至5圖所示光分歧架構可用於傳送光訊號至第一光纖。舉例言之,於第9圖中,第7圖所示之光學模組100可用於將光訊號傳送至第一光纖。如第9圖所示,如VCSEL、費布力-佩若(Fabry-Perot,FP)雷射、或LED之光源發射光至光學模組底部透鏡,部分的光透過第一全內反射表面反射再耦合至第一光纖,另一部分的光透過第二全內反射表面反射並行進至第三全內反射表面,再透過第三全內反射表面反射至位於光學模組下方之低速檢光器。為接收光訊號,來自第二光纖之輸入光訊號耦合至光學模組,光訊號接著透過第一全內反射表面反射至位於光學模組下方之高速檢光器。高速檢光器可將光訊號轉換成高速電訊號據以接收訊息。藉由第9圖所示光學模組,僅需要一個光學模組以接收光訊號並同時傳送另一個具有光功率檢測功能之光訊號。此光學模組之封裝更為簡單、容易地被製造且體積較二個相分離的單通道光學模組為小。據此,可大幅降低成本。 FIG. 9 is a perspective view of a single optical module according to an embodiment of the present invention, which can transmit optical signals to a first optical fiber having an optical power monitoring function, and simultaneously receive optical signals through a second optical fiber. The optical divergence architecture shown in Figures 3 through 5 can be used to transmit optical signals to the first optical fiber. For example, in FIG. 9, the optical module 100 shown in FIG. 7 can be used to transmit optical signals to the first optical fiber. As shown in Figure 9, a light source such as a VCSEL, a Fabry-Perot (FP) laser, or an LED emits light to the bottom lens of the optical module, and part of the light is reflected through the first total internal reflection surface. Re-coupling to the first fiber, the other portion of the light is reflected by the second total internal reflection surface and travels to the third total internal reflection surface, and then reflected through the third total internal reflection surface to the low speed detector located below the optical module. To receive the optical signal, the input optical signal from the second optical fiber is coupled to the optical module, and the optical signal is then reflected through the first total internal reflection surface to the high speed optical detector located below the optical module. High-speed photodetectors convert optical signals into high-speed electrical signals to receive messages. With the optical module shown in FIG. 9, only one optical module is needed to receive the optical signal and simultaneously transmit another optical signal having the optical power detecting function. The package of the optical module is simpler and easier to manufacture and is smaller than the two-phase single-channel optical module. According to this, the cost can be greatly reduced.

第9圖顯示之光耦合架構可擴展為單體光學模組,藉以提供傳送超過一個的光訊號並同時接收超過一個的光訊號。第10圖係 用以顯示所述單體光學模組之立體視圖。 The optical coupling architecture shown in Figure 9 can be extended to a single optical module to provide more than one optical signal and simultaneously receive more than one optical signal. Figure 10 A stereoscopic view for displaying the single optical module.

儘管以上揭露了部分的實施例,但並非用以限制本發明之範圍。本發明技術領域中具有通常知識者均可在不違背本創作之精神及範疇下,對上述實施例進行修飾與變化。因此,本創作之權利保護範圍,應如後述之申請專利範圍所列。 Although some of the embodiments are disclosed above, they are not intended to limit the scope of the invention. Modifications and variations of the above-described embodiments can be made without departing from the spirit and scope of the invention. Therefore, the scope of protection of this creation should be as listed in the scope of the patent application described later.

10‧‧‧光學裝置 10‧‧‧Optical device

15‧‧‧光學裝置 15‧‧‧Optical device

100‧‧‧單體光學模組 100‧‧‧Single optical module

110‧‧‧第一全內反射表面 110‧‧‧First total internal reflection surface

120‧‧‧第二全內反射表面 120‧‧‧Second total internal reflection surface

125‧‧‧第一內光束分歧介面 125‧‧‧First inner beam divergence interface

130‧‧‧第三全內反射表面 130‧‧‧ Third total internal reflection surface

140‧‧‧第一光埠 140‧‧‧First light

145‧‧‧第一準直透鏡 145‧‧‧First collimating lens

150‧‧‧第二光埠 150‧‧‧Second light

155‧‧‧第二準直透鏡 155‧‧‧Second collimating lens

160‧‧‧第三光埠 160‧‧‧third light

165‧‧‧第三準直透鏡 165‧‧‧3rd collimating lens

170‧‧‧第一檢光器 170‧‧‧First Detector

180‧‧‧光源 180‧‧‧Light source

182‧‧‧第一光束 182‧‧‧First beam

184‧‧‧第二光束 184‧‧‧second beam

186‧‧‧第三光束 186‧‧‧ Third beam

188‧‧‧第四光束 188‧‧‧fourth beam

190‧‧‧光纖 190‧‧‧ fiber

20‧‧‧光學模組 20‧‧‧Optical module

200‧‧‧單體光學模組 200‧‧‧Single optical module

210‧‧‧第一全內反射表面 210‧‧‧First total internal reflection surface

220‧‧‧第二全內反射表面 220‧‧‧Second total internal reflection surface

225‧‧‧第一內光束分歧介面 225‧‧‧First inner beam divergence interface

230‧‧‧表面 230‧‧‧ surface

240‧‧‧第一光埠 240‧‧‧First light

245‧‧‧第一準直透鏡 245‧‧‧First collimating lens

250‧‧‧第二光埠 250‧‧‧Second light

255‧‧‧第二準直透鏡 255‧‧‧Second collimating lens

260‧‧‧第三光埠 260‧‧‧third light

265‧‧‧第三準直透鏡 265‧‧‧ third collimating lens

270‧‧‧光源 270‧‧‧Light source

272‧‧‧第一光束 272‧‧‧First beam

274‧‧‧第二光束 274‧‧‧second beam

276‧‧‧第三光束 276‧‧‧ Third beam

278‧‧‧第四光束 278‧‧‧fourth beam

280‧‧‧檢光器 280‧‧ ‧ Detector

290‧‧‧光纖 290‧‧‧ fiber optic

30‧‧‧光學裝置 30‧‧‧Optical device

300‧‧‧單體光學模組 300‧‧‧Single optical module

310‧‧‧第一全內反射表面 310‧‧‧First total internal reflection surface

320‧‧‧第二全內反射表面 320‧‧‧Second total internal reflection surface

325‧‧‧第一內光束分歧介面 325‧‧‧First inner beam divergence interface

330‧‧‧第三全內反射表面 330‧‧‧ Third total internal reflection surface

340‧‧‧第四全內反射表面 340‧‧‧fourth total internal reflection surface

352‧‧‧第四光埠 352‧‧‧Fourth light

354‧‧‧第三光埠 354‧‧‧third light

356‧‧‧第一光埠 356‧‧‧First light

358‧‧‧第二光埠 358‧‧‧Second light

362‧‧‧第四準直透鏡 362‧‧‧4th collimating lens

364‧‧‧第三準直透鏡 364‧‧‧3rd collimating lens

366‧‧‧第一準直透鏡 366‧‧‧First collimating lens

368‧‧‧第二準直透鏡 368‧‧‧Second collimating lens

372‧‧‧第二檢光器 372‧‧‧Second Detector

374‧‧‧第一檢光器 374‧‧‧First Detector

376‧‧‧光源 376‧‧‧Light source

380‧‧‧第一光束 380‧‧‧First beam

382‧‧‧第二光束 382‧‧‧second beam

384‧‧‧第三光束 384‧‧‧ Third beam

386‧‧‧第四光束 386‧‧‧fourth beam

388‧‧‧第五光束 388‧‧‧ fifth beam

390‧‧‧光纖 390‧‧‧ fiber optic

申請書所附的圖式說明用以讓本發明更易理解,並成為本說明書的一部分。圖式說明結合說明書用以例示本發明之實施例,並解釋本發明之創作原理。 The drawings, which are incorporated in the specification, are intended to provide a The drawings are intended to illustrate embodiments of the invention and to explain the principles of the invention.

第1圖顯示習知VCSEL組件的剖面圖;第2圖顯示另一種習知VCSEL組件的剖面圖;第3圖顯示本發明之一實施例之光學裝置的剖面圖;第4圖顯示本發明之另一實施例之光學裝置的剖面圖;第5圖顯示本發明之又一實施例之光學裝置的剖面圖;第6圖顯示本發明之一實施例之光學裝置的立體視圖;第7圖顯示本發明之另一實施例之光學裝置的立體視圖;第8圖顯示本發明之一實施例之多通道光學裝置的立體視圖;第9圖顯示本發明之另一實施例之雙通道光學裝置的立體視圖;以及第10圖顯示本發明之另一實施例之多通道光學裝置的立體視圖。 1 is a cross-sectional view showing a conventional VCSEL assembly; FIG. 2 is a cross-sectional view showing another conventional VCSEL assembly; FIG. 3 is a cross-sectional view showing an optical device according to an embodiment of the present invention; FIG. 5 is a cross-sectional view showing an optical device according to still another embodiment of the present invention; FIG. 6 is a perspective view showing an optical device according to an embodiment of the present invention; A perspective view of an optical device according to another embodiment of the present invention; FIG. 8 is a perspective view showing a multi-channel optical device according to an embodiment of the present invention; and FIG. 9 is a view showing a two-channel optical device according to another embodiment of the present invention. A perspective view; and a tenth view showing a perspective view of a multi-channel optical device in accordance with another embodiment of the present invention.

10‧‧‧光學裝置 10‧‧‧Optical device

100‧‧‧單體光學模組 100‧‧‧Single optical module

110‧‧‧第一全內反射表面 110‧‧‧First total internal reflection surface

120‧‧‧第二全內反射表面 120‧‧‧Second total internal reflection surface

125‧‧‧第一內光束分歧介面 125‧‧‧First inner beam divergence interface

130‧‧‧第三全內反射表面 130‧‧‧ Third total internal reflection surface

140‧‧‧第一光埠 140‧‧‧First light

145‧‧‧第一準直透鏡 145‧‧‧First collimating lens

150‧‧‧第二光埠 150‧‧‧Second light

155‧‧‧第二準直透鏡 155‧‧‧Second collimating lens

160‧‧‧第三光埠 160‧‧‧third light

165‧‧‧第三準直透鏡 165‧‧‧3rd collimating lens

170‧‧‧第一檢光器 170‧‧‧First Detector

180‧‧‧光源 180‧‧‧Light source

182‧‧‧第一光束 182‧‧‧First beam

184‧‧‧第二光束 184‧‧‧second beam

186‧‧‧第三光束 186‧‧‧ Third beam

188‧‧‧第四光束 188‧‧‧fourth beam

190‧‧‧光纖 190‧‧‧ fiber

Claims (20)

一種光學裝置,包含:單體光學模組,包含:第一主表面;第二主表面;第一全內反射表面;以及第二全內反射表面,其相鄰於該第一全內反射表面,該第一全內反射表面之外表面與該第二全內反射表面之外表面於該單體光學模組上形成大致上呈V型的凹部,其中,該第一全內反射表面與該第二全內反射表面,以及該第一主表面與該第二主表面組構成,當一或更多的第一輸入光束從對準該V型的凹部之位置通過該第一主表面進入該單體光學模組時,該一或更多的第一輸入光束之第一部分透過該第一全內反射表面反射,做為一或更多的第一光束以第一方向行進,並做為一或更多的第一輸出光束,通過該第二主表面離開該單體光學模組,該一或更多的第一輸入光束之第二部分透過該第二全內反射表面反射,做為一或更多的第二光束以第二方向行進。 An optical device comprising: a single optical module comprising: a first major surface; a second major surface; a first total internal reflection surface; and a second total internal reflection surface adjacent to the first total internal reflection surface The outer surface of the first total internal reflection surface and the outer surface of the second total internal reflection surface form a substantially V-shaped recess on the single optical module, wherein the first total internal reflection surface and the a second total internal reflection surface, and the first major surface and the second major surface group are configured to pass through the first major surface when one or more first input beams pass from a position aligned with the V-shaped recess In the single optical module, the first portion of the one or more first input beams is reflected by the first total internal reflection surface, and the first light beam travels in the first direction as one or more first beams. Or more first output beams exit the single optical module through the second main surface, and the second portion of the one or more first input beams are reflected through the second total internal reflection surface as a Or more of the second beam travels in the second direction. 如申請專利範圍第1項所述之光學裝置,其中,該單體光學模組之光束分歧率是依據該第一全內反射表面及該第二全內反射表面中至少一者的至少一個物理特性預先設定。 The optical device of claim 1, wherein the beam divergence rate of the single optical module is based on at least one physical of at least one of the first total internal reflection surface and the second total internal reflection surface. Features are preset. 如申請專利範圍第2項所述之光學裝置,其中,該至少一個物理特性包含該第一全內反射表面或該第二全內反射表面之外形及方向。 The optical device of claim 2, wherein the at least one physical property comprises an outer shape and a direction of the first total internal reflection surface or the second total internal reflection surface. 如申請專利範圍第1項所述之光學裝置,其中,該單體光學模組係由聚合物所組成。 The optical device of claim 1, wherein the single optical module is composed of a polymer. 如申請專利範圍第1項所述之光學裝置,復包含:對準該V型的凹部之一或更多的光源,每一該光源發射各該第一輸入光束,並通過該第一主表面進入該單體光學模組;一或更多的第一光纖,每一個該第一光纖組構成,當該一或更多的第一輸出光束,通過該第二主表面離開該單體光學模組時,光耦合至各該第一輸出光束;複數個第一準直透鏡,每一個該第一準直透鏡組構成,當該一或更多的第一輸入光束進入該單體光學模組,準直各該第一輸入光束;以及複數個第二準直透鏡,每一個該第二準直透鏡組構成,當該一或更多的第一輸出光束離開該單體光學模組,準直各個第一輸出光束。 The optical device of claim 1, further comprising: aligning one or more light sources of the V-shaped recess, each of the light sources emitting each of the first input beams and passing through the first major surface Entering the single optical module; one or more first optical fibers, each of the first optical fiber groups, when the one or more first output beams exit the single optical mode through the second main surface And a plurality of first collimating lenses, each of the first collimating lens groups, when the one or more first input beams enter the single optical module Aligning each of the first input beams; and a plurality of second collimating lenses, each of the second collimating lens groups, when the one or more first output beams exit the single optical module Straight to each of the first output beams. 如申請專利範圍第1項所述之光學裝置,復包含:鄰接於該第二全內反射表面之第三全內反射表面,該第二全內反射表面介於該第一全內反射表面與該第三全內反射表面之間,該第三全內反射表面組構成,反射該一或更多 的第二光束,做為一或更多的第二輸出光束以第三方向行進,通過該第一主表面離開該單體光學模組;一或更多的第一檢光器,每一個該第一檢光器組構成,當該一或更多的第二輸出光束通過該第一主表面離開該單體光學模組時,檢測各該第二輸出光束;以及複數個第三準直透鏡,每一個該第三準直透鏡組構成,當該一或更多的第二輸出光束離開該單體光學模組時,準直各該第二輸出光束。 The optical device of claim 1, further comprising: a third total internal reflection surface adjacent to the second total internal reflection surface, the second total internal reflection surface being interposed between the first total internal reflection surface and Between the third total internal reflection surfaces, the third total internal reflection surface group is formed to reflect the one or more a second beam that travels in a third direction as one or more second output beams, exiting the single optical module through the first major surface; one or more first optical detectors, each of the a first detector group configured to detect each of the second output beams when the one or more second output beams exit the single optical module through the first major surface; and a plurality of third collimating lenses Each of the third collimating lens groups is configured to collimate each of the second output beams when the one or more second output beams exit the single optical module. 如申請專利範圍第6項所述之光學裝置,復包含:介於該第二全內反射表面與該第三全內反射表面之間的第四全內反射表面,該第四全內反射表面組構成,反射該一或更多的第二光束之第一部分,據此,該一或更多的第二光束之第一部分,做為一或更多的第三輸出光束以第四方向行進,通過該第一主表面離開該單體光學模組;一或更多的第二檢光器,每一個該第二檢光器組構成,當該一或更多的第三輸出光束通過該第一主表面離開該單體光學模組時,檢測各該第三輸出光束;以及複數個第四準直透鏡,每一個該第四準直透鏡組構成,當該一或更多的第三輸出光束離開該單體光學模組時,準直各該第三輸出光束。 The optical device of claim 6, comprising: a fourth total internal reflection surface between the second total internal reflection surface and the third total internal reflection surface, the fourth total internal reflection surface Composed to reflect a first portion of the one or more second beams, whereby the first portion of the one or more second beams travels in a fourth direction as one or more third output beams, Leaving the single optical module through the first major surface; one or more second optical detectors, each of the second optical detector groups, when the one or more third output beams pass the first Detecting each of the third output beams when a main surface leaves the single optical module; and a plurality of fourth collimating lenses, each of the fourth collimating lens groups, when the one or more third outputs Each of the third output beams is collimated as the beam exits the single optical module. 如申請專利範圍第1項所述之光學裝置,復包含:一或更多的第二光纖,其耦合至該單體光學模組,用以 將一或更多的第二輸入光束輸入至該單體光學模組,據此,該一或更多的第二輸入光束通過該第二主表面進入該單體光學模組,並透過該第一全內反射表面反射,做為一或更多的第四輸出光束以第五方向行進;一或更多的檢光器,每一個該檢光器組構成,當該一或更多的第四輸出光束通過該第一主表面離開該單體光學模組時,檢測各該第四輸出光束;複數個第五準直透鏡,每一個該第五準直透鏡組構成,當該一或更多的第二輸入光束進入該單體光學模組時,準直各該第二輸入光束;以及複數個第六準直透鏡,每一個該第六準直透鏡組構成,當該一或更多的第四輸出光束離開該單體光學模組時,準直各該第四輸出光束。 The optical device of claim 1, further comprising: one or more second optical fibers coupled to the single optical module for Inputting one or more second input beams to the single optical module, wherein the one or more second input beams enter the single optical module through the second major surface and pass through the first a total internal reflection surface reflection as one or more fourth output beams traveling in a fifth direction; one or more photodetectors, each of the photodetector groups, when the one or more Detecting each of the fourth output beams when the four output beams exit the single optical module through the first major surface; and forming a plurality of fifth collimating lenses, each of the fifth collimating lens groups, when the one or more When the second input beam enters the single optical module, collimating each of the second input beams; and a plurality of sixth collimating lenses, each of the sixth collimating lens groups, when the one or more When the fourth output beam leaves the single optical module, the fourth output beam is collimated. 一種光學裝置,包含:單體光學模組,包含:第一主表面;第二主表面;第一全內反射表面;第二全內反射表面,其相鄰於該第一全內反射表面,該第一全內反射表面之外表面與該第二全內反射表面之外表面於該單體光學模組上形成大致上呈V型的凹部;以及 第三全內反射表面,其相鄰於該第二全內反射表面,據此,該第二全內反射表面介於該第一全內反射表面與該第三全內反射表面之間,其中,該第一全內反射表面、該第二全內反射表面、該第三全內反射表面,以及該第一主表面與該第二主表面組構成,當一或更多的第一輸入光束從對準該V型的凹部之位置通過該第一主表面進入該單體光學模組時,該一或更多的第一輸入光束之第一部分透過該第一全內反射表面反射,做為一或更多的第一光束以第一方向行進,並做為一或更多的第一輸出光束,通過該第二主表面離開該單體光學模組,該一或更多的第一輸入光束之第二部分透過該第二全內反射表面反射,做為一或更多的第二光束以第二方向行進,以及其中以第二方向行進之該一或更多的第二光束,透過該第三全內反射表面反射並以第三方向行進,且做為一或更多的第二輸出光束,通過該第一主表面離開該單體光學模組。 An optical device comprising: a single optical module comprising: a first major surface; a second major surface; a first total internal reflection surface; and a second total internal reflection surface adjacent to the first total internal reflection surface, The outer surface of the first total internal reflection surface and the outer surface of the second total internal reflection surface form a substantially V-shaped recess on the single optical module; a third total internal reflection surface adjacent to the second total internal reflection surface, whereby the second total internal reflection surface is interposed between the first total internal reflection surface and the third total internal reflection surface, wherein The first total internal reflection surface, the second total internal reflection surface, the third total internal reflection surface, and the first main surface and the second main surface group, when one or more first input beams When entering the single optical module through the first main surface from a position aligned with the concave portion of the V-shaped portion, the first portion of the one or more first input light beams is reflected through the first total internal reflection surface as One or more first beams travel in a first direction and serve as one or more first output beams, exiting the single optical module through the second major surface, the one or more first inputs A second portion of the beam is reflected by the second total internal reflection surface, traveling as one or more second beams in a second direction, and wherein the one or more second beams traveling in the second direction are transmitted The third total internal reflection surface reflects and travels in the third direction, and One or more second output beams exit the unitary optical module through the first major surface. 如申請專利範圍第9項之光學裝置,其中,該單體光學模組之光束分歧率是依據該第一全內反射表面及該第二全內反射表面中至少一者的至少一個物理特性預先設定,該至少一個物理特性包含該第一全內反射表面或該第二全內反射表面之外形及方向。 The optical device of claim 9, wherein the beam divergence rate of the single optical module is based on at least one physical property of at least one of the first total internal reflection surface and the second total internal reflection surface. It is set that the at least one physical characteristic comprises an outer shape and a direction of the first total internal reflection surface or the second total internal reflection surface. 如申請專利範圍第9項之光學裝置,其中,該單體光學模組係由聚合物所組成。 The optical device of claim 9, wherein the unitary optical module is composed of a polymer. 如申請專利範圍第9項之光學裝置,復包含:對準該V型的凹部之一或更多的光源,每一該光源發射各該第一輸入光束,並通過該第一主表面進入該單體光學模組;一或更多的第一光纖,每一個該第一光纖組構成,當該一或更多的第一輸出光束,通過該第二主表面離開該單體光學模組時,光耦合至各該第一輸出光束;一或更多的第一檢光器,每一個該第一檢光器組構成,當該一或更多的第二輸出光束通過該第一主表面離開該單體光學模組時,檢測各該第二輸出光束;複數個第一準直透鏡,每一個該第一準直透鏡組構成,當該一或更多的第一輸入光束進入該單體光學模組,準直各該第一輸入光束;複數個第二準直透鏡,每一個該第二準直透鏡組構成,當該一或更多的第一輸出光束離開該單體光學模組,準直各個第一輸出光束;以及複數個第三準直透鏡,每一個該第三準直透鏡組構成,當該一或更多的第二輸出光束離開該單體光學模組時,準直各該第二輸出光束。 The optical device of claim 9, comprising: aligning one or more light sources of the V-shaped recess, each of the light sources emitting each of the first input beams and entering the first main surface through the first main surface a single optical module; one or more first optical fibers, each of the first optical fiber groups, when the one or more first output beams exit the single optical module through the second major surface Optically coupled to each of the first output beams; one or more first optical detectors, each of the first optical detector groups configured to pass the one or more second output beams through the first major surface Detecting each of the second output beams when leaving the single optical module; a plurality of first collimating lenses, each of the first collimating lens groups, when the one or more first input beams enter the single a body optical module that collimates each of the first input beams; a plurality of second collimating lenses, each of the second collimating lens groups, when the one or more first output beams exit the single optical mode Grouping, collimating each of the first output beams; and a plurality of third collimating lenses Each of the third collimating lens group consisting of, when the one or more monomers second output beam exits the optical module, each of the second collimated output beam. 如申請專利範圍第9項之光學裝置,復包含:介於該第二全內反射表面與該第三全內反射表面之間的第四全內反射表面,該第四全內反射表面組構成,反射一 或更多的第二光束之第一部分,據此,該一或更多的第二光束之第一部分,做為一或更多的第三輸出光束以第四方向行進,通過該第一主表面離開該單體光學模組;一或更多的第二檢光器,每一個該第二檢光器組構成,當該一或更多的第三輸出光束通過該第一主表面離開該單體光學模組時,檢測各該第三輸出光束;以及複數個第四準直透鏡,每一個該第四準直透鏡組構成,當該一或更多的第三輸出光束離開該單體光學模組時,準直各該第三輸出光束。 The optical device of claim 9, comprising: a fourth total internal reflection surface between the second total internal reflection surface and the third total internal reflection surface, the fourth total internal reflection surface group Reflection Or a first portion of the second light beam, whereby the first portion of the one or more second light beams travels in a fourth direction as one or more third output beams, through the first major surface Leaving the single optical module; one or more second optical detectors, each of the second optical detector groups, when the one or more third output beams exit the single through the first major surface The body optical module detects each of the third output beams; and a plurality of fourth collimating lenses, each of the fourth collimating lens groups, when the one or more third output beams exit the single optics In the module, the third output beam is collimated. 如申請專利範圍第9項之光學裝置,復包含:一或更多的第二光纖,其耦合至該單體光學模組,用以將一或更多的第二輸入光束輸入至該單體光學模組,據此,該一或更多的第二輸入光束通過該第二主表面進入該單體光學模組,並透過該第一全內反射表面反射,做為一或更多的第四輸出光束以第五方向行進;一或更多的檢光器,每一個該檢光器組構成,當該一或更多的第四輸出光束通過該第一主表面離開該單體光學模組時,檢測各該第四輸出光束;複數個第五準直透鏡,每一個該第五準直透鏡組構成,當該一或更多的第二輸入光束進入該單體光學模組時,準直各該第二輸入光束;以及複數個第六準直透鏡,每一個該第六準直透鏡組構成, 當該一或更多的第四輸出光束離開該單體光學模組時,準直各該第四輸出光束。 An optical device according to claim 9 further comprising: one or more second optical fibers coupled to the single optical module for inputting one or more second input beams to the single An optical module, according to which the one or more second input beams enter the single optical module through the second main surface and are reflected by the first total internal reflection surface as one or more The four output beams travel in a fifth direction; one or more detectors, each of the detector groups being configured to exit the single optical mode as the one or more fourth output beams pass the first major surface Grouping, detecting each of the fourth output beams; a plurality of fifth collimating lenses, each of the fifth collimating lens groups, when the one or more second input beams enter the single optical module Compensating each of the second input beams; and a plurality of sixth collimating lenses, each of the sixth collimating lens groups, The fourth output beam is collimated when the one or more fourth output beams exit the single optical module. 一種光學裝置,包含:單體光學模組,包含:第一主表面;第二主表面;第一全內反射表面;以及第二全內反射表面,其中,該第一全內反射表面與該第二全內反射表面,以及該第一主表面與該第二主表面組構成,當一或更多的第一輸入光束從對準該第一全內反射表面之位置通過該第一主表面進入該單體光學模組時,該一或更多的第一輸入光束透過該第一全內反射表面反射,做為一或更多的第一光束以第一方向行進,其中,該一或更多的第一光束之第一部分透過該第二全內反射表面反射,並以第二方向行進,且做為一或更多的第一輸出光束,通過該第一主表面離開該單體光學模組,以及其中,該一或更多的第一光束之第二部分未透過該第二全內反射表面反射,並維持以第一方向行進,且做為一或更多的第二輸出光束,通過該第二主表面離開該單體光學模組。 An optical device comprising: a single optical module comprising: a first major surface; a second major surface; a first total internal reflection surface; and a second total internal reflection surface, wherein the first total internal reflection surface a second total internal reflection surface, and the first major surface and the second major surface group, when one or more first input beams pass through the first major surface from a position aligned with the first total internal reflection surface When entering the single optical module, the one or more first input beams are reflected by the first total internal reflection surface, and the first light beam travels in a first direction as one or more first light beams, wherein the one or a first portion of the first first beam is reflected by the second total internal reflection surface and travels in a second direction and acts as one or more first output beams through which the single optical exits a module, and wherein the second portion of the one or more first beams is not reflected by the second total internal reflection surface and remains in a first direction and serves as one or more second output beams Leaving the monomer through the second major surface Learning modules. 如申請專利範圍第15項之光學裝置,其中,該單體光學模 組之光束分歧率是依據該第二全內反射表面的至少一個物理特性預先設定。 An optical device according to claim 15 wherein the single optical mode The set beam divergence rate is predetermined based on at least one physical property of the second total internal reflection surface. 如申請專利範圍第15項之光學裝置,其中,該至少一個物理特性包含該第二全內反射表面之外形及方向。 The optical device of claim 15, wherein the at least one physical property comprises an outer shape and a direction of the second total internal reflection surface. 如申請專利範圍第15項之光學裝置,其中,該單體光學模組係由聚合物所組成。 The optical device of claim 15, wherein the unitary optical module is composed of a polymer. 如申請專利範圍第15項之光學裝置,復包含:對準該第一全內反射表面之一或更多的光源,每一該光源發射各該第一輸入光束,並通過該第一主表面進入該單體光學模組;一或更多的第一檢光器,每一個該第一檢光器組構成,當該一或更多的第一輸出光束通過該第一主表面離開該單體光學模組時,檢測各該第一輸出光束;一或更多的第一光纖,每一個該第一光纖組構成,當該一或更多的第二輸出光束,通過該第二主表面離開該單體光學模組時,光耦合至各該第二輸出光束;複數個第一準直透鏡,每一個該第一準直透鏡組構成,當該一或更多的第一輸入光束進入該單體光學模組,準直各該第一輸入光束;複數個第二準直透鏡,每一個該第二準直透鏡組構成,當該一或更多的第一輸出光束離開該單體光學模組,準直各個第一輸出光束;以及 複數個第三準直透鏡,每一個該第三準直透鏡組構成,當該一或更多的第二輸出光束離開該單體光學模組時,準直各該第二輸出光束。 The optical device of claim 15 further comprising: aligning one or more light sources of the first total internal reflection surface, each of the light sources emitting each of the first input beams and passing through the first major surface Entering the single optical module; one or more first optical detectors, each of the first optical detector groups, when the one or more first output beams exit the single through the first major surface The body optical module detects each of the first output beams; one or more first fibers, each of the first fiber groups, when the one or more second output beams pass through the second major surface When leaving the single optical module, light is coupled to each of the second output beams; a plurality of first collimating lenses, each of the first collimating lens groups, when the one or more first input beams enter The single optical module collimates each of the first input beams; a plurality of second collimating lenses, each of the second collimating lens groups, when the one or more first output beams exit the cell An optical module that collimates each of the first output beams; A plurality of third collimating lenses, each of the third collimating lens groups, collimating the second output beams when the one or more second output beams exit the single optical module. 如申請專利範圍第15項之光學裝置,復包含:第三全內反射表面,其相鄰於該第二全內反射表面;一或更多的第二光纖,其耦合至該單體光學模組,用以將一或更多的第二輸入光束輸入至該單體光學模組,據此,該一或更多的第二輸入光束通過該第二主表面進入該單體光學模組,並透過該第三全內反射表面反射,做為一或更多的第三輸出光束以第三方向行進;一或更多的檢光器,每一個該檢光器組構成,當該一或更多的第三輸出光束通過該第一主表面離開該單體光學模組時,檢測各該第三輸出光束;複數個第四準直透鏡,每一個該第四準直透鏡組構成,當該一或更多的第二輸入光束進入該單體光學模組時,準直各該第二輸入光束;以及複數個第五準直透鏡,每一個該第五準直透鏡組構成,當該一或更多的第三輸出光束離開該單體光學模組時,準直各該第三輸出光束。 An optical device according to claim 15 further comprising: a third total internal reflection surface adjacent to the second total internal reflection surface; and one or more second optical fibers coupled to the single optical mode a group for inputting one or more second input beams to the single optical module, whereby the one or more second input beams enter the single optical module through the second major surface, And reflecting through the third total internal reflection surface as one or more third output beams traveling in a third direction; one or more photodetectors, each of the photodetector groups, when the one or Detecting each of the third output beams when a plurality of third output beams exit the single optical module through the first main surface; and forming a plurality of fourth collimating lenses, each of the fourth collimating lens groups When the one or more second input beams enter the single optical module, collimate each of the second input beams; and a plurality of fifth collimating lenses, each of the fifth collimating lens groups, when Collimation when one or more third output beams exit the single optical module The third output beam.
TW101129123A 2011-08-16 2012-08-13 Monolithic optical coupling module based on total internal reflection surfaces TWI465785B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US21102811A 2011-08-16 2011-08-16
US13/527,234 US8933391B2 (en) 2011-02-01 2012-06-19 Monolithic optical coupling module based on total internal reflection surfaces

Publications (2)

Publication Number Publication Date
TW201310101A true TW201310101A (en) 2013-03-01
TWI465785B TWI465785B (en) 2014-12-21

Family

ID=48481957

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101129123A TWI465785B (en) 2011-08-16 2012-08-13 Monolithic optical coupling module based on total internal reflection surfaces

Country Status (1)

Country Link
TW (1) TWI465785B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI584011B (en) * 2015-09-03 2017-05-21 前源科技股份有限公司 Optically coupled device and optical transmission system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400054A (en) * 1978-10-10 1983-08-23 Spectronics, Inc. Passive optical coupler
US6842571B2 (en) * 2002-09-05 2005-01-11 Motorola, Inc. Optical interconnect system with layered lightpipe
TWI352223B (en) * 2007-11-09 2011-11-11 Hon Hai Prec Ind Co Ltd Optical coupling device and backlight module using
TWI482995B (en) * 2009-07-20 2015-05-01 Ind Tech Res Inst Light collecting device and illumination apparatus
TWM404385U (en) * 2010-12-24 2011-05-21 qing-ming Chen structure for optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI584011B (en) * 2015-09-03 2017-05-21 前源科技股份有限公司 Optically coupled device and optical transmission system

Also Published As

Publication number Publication date
TWI465785B (en) 2014-12-21

Similar Documents

Publication Publication Date Title
US8457457B2 (en) Lens array and optical module having the same
US8933391B2 (en) Monolithic optical coupling module based on total internal reflection surfaces
JP5025695B2 (en) Optical module
US9304270B2 (en) Monolithic optical coupling module based on total internal reflection surfaces
TWI601992B (en) Optical receptacle and optical module
JP6353196B2 (en) Optical receptacle and optical module
US10243661B2 (en) Optical mode matching
TWI579609B (en) Optical socket and its light module
CN108780197B (en) Optical receptacle, optical module, and method for manufacturing optical module
US10976510B2 (en) Optical receptacle and optical module
CN103543503B (en) A kind of optical devices with monolithic optical module based on total internal reflection surface
US8901478B2 (en) Optical fiber assembly capable of detecting light intensity
TWI587013B (en) Optical socket and optical module
TWI579610B (en) Optical socket and optical module having the same
US20170219784A1 (en) Optical receptacle and optical module
CN108627924B (en) Two-part optical coupling sub-assembly for monitoring optical output power in optical transceiver
JP2016139031A (en) Optical receptacle and optical module
TWI465785B (en) Monolithic optical coupling module based on total internal reflection surfaces
JP5867336B2 (en) Optical transceiver and optical transmission system
US9170150B2 (en) Optical fiber assembly with prism to detect light intensity of light beam entering optical fiber
JP6681751B2 (en) Optical receptacle and optical module
CN107209333B (en) Optical module
US20220187551A1 (en) Optical receptacle, optical module, and method for manufacturing optical module
TWI608263B (en) Optical socket and light module with it
WO2015054455A1 (en) Beam splitting for laser power monitoring in molded optical coupling units