TW201308599A - Trench-gate metal oxide semiconductor device and fabricating method thereof - Google Patents

Trench-gate metal oxide semiconductor device and fabricating method thereof Download PDF

Info

Publication number
TW201308599A
TW201308599A TW100128382A TW100128382A TW201308599A TW 201308599 A TW201308599 A TW 201308599A TW 100128382 A TW100128382 A TW 100128382A TW 100128382 A TW100128382 A TW 100128382A TW 201308599 A TW201308599 A TW 201308599A
Authority
TW
Taiwan
Prior art keywords
trench
region
layer
substrate
dielectric layer
Prior art date
Application number
TW100128382A
Other languages
Chinese (zh)
Other versions
TWI550864B (en
Inventor
Kuan-Ling Liu
Shih-Yuan Ueng
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW100128382A priority Critical patent/TWI550864B/en
Publication of TW201308599A publication Critical patent/TW201308599A/en
Application granted granted Critical
Publication of TWI550864B publication Critical patent/TWI550864B/en

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

A trench-gate metal oxide semiconductor device includes a substrate, a first gate dielectric layer, a first gate electrode and a first source/drain structure. The substrate has a first doping region, a second doping region and at least one trench. A P/N junction is formed between the first doping region and the second doping region. The trench extends from a surface of the substrate to the first doping region through the second doping region and the P/N junction. The first gate dielectric layer is formed on a sidewall of the second trench. The first gate electrode is disposed within the trench. A height difference between the top surface of the first gate electrode and the surface of the substrate is substantially smaller than 1500 Å . The first source/drain structure is formed in the substrate and adjacent to the first gate dielectric layer.

Description

溝槽型金屬-氧化物-半導體元件及其製造方法Trench type metal-oxide-semiconductor element and method of manufacturing the same

本發明是有關於一種半導體元件及其製造方法,且特別是有關於一種有關於溝槽型金屬-氧化物-半導體元件及其製造方法。The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a trench type metal-oxide-semiconductor device and a method of fabricating the same.

溝槽式閘極金屬氧化物半導體(trench-gate metal oxide semiconductor,TMOS)場效應電晶體的特色,是把閘極結構嵌設於半導體磊晶層(epitaxial layer)中的蝕刻溝槽。由於,此種場效應電晶體的載子漂移路徑(drift path)係沿著溝槽側壁形成,使得場效應電晶體的通道長度(channel length)可大幅增加,進而大幅降低特徵通道的阻值(約降低30%左右)。因此,在相同操作電流下,不僅有助於減少靜態功率損失,提高元件電流密度,並可改善了傳統的平面通道(plane channel)場效應電晶體無法同時提高元件密度與低導通阻抗要求的缺點。對於改善特徵尺寸以及佈線空間日益限縮的問題而言,顯得相當重要。A trench-gate metal oxide semiconductor (TMOS) field effect transistor is characterized by an etched trench in which a gate structure is embedded in a semiconductor epitaxial layer. Since the drift path of the field effect transistor is formed along the sidewall of the trench, the channel length of the field effect transistor can be greatly increased, thereby greatly reducing the resistance of the characteristic channel ( About 30% lower). Therefore, under the same operating current, it not only helps to reduce static power loss, improve component current density, but also improves the disadvantages of conventional planar channel field effect transistors that cannot simultaneously increase component density and low on-resistance requirements. . It is important to improve the feature size and the shrinking of the wiring space.

然而隨著積體電路的日益複雜,溝槽式閘極金屬氧化物半導體場效應電晶體的發展仍有其極限,因此有需要進一步與具有平面通道的電晶體進行結構及製的整合,以因應積體電路積集度不斷提升,以及功能多元化的發展需求,並降低製造成本。However, with the increasing complexity of integrated circuits, the development of trench gate metal oxide semiconductor field effect transistors still has its limits. Therefore, there is a need to further integrate the structure and system with transistors with planar channels to cope with The accumulating degree of integrated circuits is increasing, as well as the development needs of diversified functions, and reducing manufacturing costs.

有鑑於此,本發明的目的之一,是在提供一種溝槽式金屬氧化物半導體(trench-gate metal oxide semiconductor,TMOS)元件,包括:基材、第一閘介電層、第一閘電極以及第一源極/汲極。基材具有第一摻雜區、第二摻雜區、和至少一個溝槽;且第一摻雜區與第二摻雜區形成P/N接面;溝槽由基材表面延伸穿過第二摻雜區及P/N接面,進入第一摻雜區之中。第一閘介電層位於溝槽之側壁上。第一閘電極位於閘溝槽之中,且第一閘電極的上表面與基材表面之間的高度差係實質上小於1500 。第一源極/汲極位基材之中,並鄰接第一閘介電層。In view of the above, one of the objects of the present invention is to provide a trench-gate metal oxide semiconductor (TMOS) device including: a substrate, a first gate dielectric layer, and a first gate electrode And the first source/drain. The substrate has a first doped region, a second doped region, and at least one trench; and the first doped region and the second doped region form a P/N junction; the trench extends from the surface of the substrate through the first The two doped regions and the P/N junction enter the first doped region. The first gate dielectric layer is on the sidewall of the trench. The first gate electrode is located in the gate trench, and the height difference between the upper surface of the first gate electrode and the surface of the substrate is substantially less than 1500 . The first source/drain potential substrate is adjacent to the first gate dielectric layer.

在本發明之一實施例中,此溝槽式金屬氧化物半導體元件,更包括一個覆蓋於第一閘電極上表面的介電覆蓋層(dielectric capping layer)。In an embodiment of the invention, the trench metal oxide semiconductor device further includes a dielectric capping layer covering the upper surface of the first gate electrode.

在本發明之一實施例中,第一摻雜區為由基材表面延伸入基材的N型阱區,第二摻雜區為P型阱區;且此P型阱區由基材表面延伸入N型阱區之中。在本發明之一實施例中,基材包括N型埋藏層(buried layer)以及位於埋藏層上的P型磊晶層,其中P型磊晶層容許N型阱區由基材表面延伸進入其中。In an embodiment of the invention, the first doped region is an N-type well region extending from the surface of the substrate into the substrate, and the second doped region is a P-type well region; and the P-type well region is formed by the surface of the substrate Extends into the N-well region. In an embodiment of the invention, the substrate comprises an N-type buried layer and a P-type epitaxial layer on the buried layer, wherein the P-type epitaxial layer allows the N-type well region to extend from the surface of the substrate into the substrate .

在本發明之一實施例中,第一源極/汲極係一種由基材表面,沿著溝槽側壁延伸進入P型阱區中的N型摻雜結構。In one embodiment of the invention, the first source/drain is an N-type doped structure extending from the surface of the substrate into the P-type well region along the sidewall of the trench.

在本發明之一實施例中,溝槽式金屬氧化物半導體元件,更包括第三摻雜區、第二閘介電層、第二閘介電層以及第二源極/汲極結構。其中,第三摻雜區位於基材內,並與第一摻雜區分離,且具有與第一摻雜區相同的電性。第二閘介電層位於第三摻雜區的基材表面上。第二閘電極位於第二閘介電層上。第二源極/汲極結構位於第三摻雜區中,鄰接第二閘介電層,並且具有與第二摻雜區相同的電性。In an embodiment of the invention, the trench metal oxide semiconductor device further includes a third doped region, a second gate dielectric layer, a second gate dielectric layer, and a second source/drain structure. Wherein, the third doping region is located in the substrate and is separated from the first doping region and has the same electrical property as the first doping region. The second gate dielectric layer is on the surface of the substrate of the third doped region. The second gate electrode is located on the second gate dielectric layer. The second source/drain structure is located in the third doped region adjacent to the second gate dielectric layer and has the same electrical conductivity as the second doped region.

本發明的另一目的,是在提供一種溝槽式金屬氧化物半導體元件的製造方法,包括下述步驟:首先於基材上定義第一區以及第二區。之後,於第二區中形成至少一個第一溝槽;再於第一區以及第二區上形成介電層,並填充第一溝槽。使用介電層為蝕刻罩幕層,於第一區中形成至少一個第二溝槽;接著,於第二溝槽的側壁上形成第一閘介電層;再以導體材料填充第二溝槽,以形成一個第一閘電極層。Another object of the present invention is to provide a method of fabricating a trench metal oxide semiconductor device comprising the steps of first defining a first region and a second region on a substrate. Thereafter, at least one first trench is formed in the second region; a dielectric layer is formed on the first region and the second region, and the first trench is filled. Forming at least one second trench in the first region using the dielectric layer as an etch mask layer; then forming a first gate dielectric layer on the sidewall of the second trench; and filling the second trench with the conductor material To form a first gate electrode layer.

在本發明之一實施例中,在形成第二溝槽之前或之後,更包括於第一區中,形成第一源極/汲極結構。In an embodiment of the invention, the first source/drain structure is formed before or after forming the second trench, further included in the first region.

在本發明之一實施例中,介電層係一種化學氣相沉積層;導體材料為多晶矽。In one embodiment of the invention, the dielectric layer is a chemical vapor deposited layer; the conductor material is polycrystalline germanium.

在本發明之一實施例中,在填充導體材料之後,更包括下述步驟:先形成平坦層覆蓋於導體材料上。之後,進行化學機械研磨移除平坦層,以及一部分導體材料;再進行全面蝕刻(blanket etching)製程,以移除位於第一區以及第二區二者表面上的導體材料以及介電層。In an embodiment of the invention, after filling the conductor material, the method further comprises the step of forming a flat layer over the conductor material. Thereafter, chemical mechanical polishing is performed to remove the planarization layer, and a portion of the conductor material; and a blanket etching process is performed to remove the conductor material and the dielectric layer on both surfaces of the first region and the second region.

在本發明之一實施例中,在移除導體材料以及介電層之後,更包括下述步驟:於第二區上方形成第二閘介電層;於第二閘介電層上形成第二閘電極;以及於第二區中形成第二源極/汲極結構。In an embodiment of the invention, after removing the conductor material and the dielectric layer, the method further comprises the steps of: forming a second gate dielectric layer over the second region; forming a second layer on the second gate dielectric layer a gate electrode; and a second source/drain structure in the second region.

在本發明之一實施例中,在形成第二源極/汲極結構之前,更包括於第一閘電極上覆蓋一個介電覆蓋層。In an embodiment of the invention, before forming the second source/drain structure, the first gate electrode is further covered with a dielectric cap layer.

本發明的又一目的,是在提供一種溝槽式金屬氧化物半導體元件的製造方法,包括下述步驟:首先於基材上定義出第一區以及第二區。再於第一區以及第二區上形成一個圖案化硬罩幕層。接著以圖案化硬罩幕層為罩幕進行蝕刻,於第一區中形成至少一個溝槽。然後,於溝槽的側壁上形成第一閘介電層;並以導體材料填充此溝槽,以形成一個第一閘電極層。It is still another object of the present invention to provide a method of fabricating a trench metal oxide semiconductor device comprising the steps of first defining a first region and a second region on a substrate. A patterned hard mask layer is formed on the first region and the second region. The patterned hard mask layer is then etched as a mask to form at least one trench in the first region. Then, a first gate dielectric layer is formed on the sidewall of the trench; and the trench is filled with a conductor material to form a first gate electrode layer.

在本發明之一實施例中,在形成圖案化硬罩幕層的步驟之前,更包括:於第二區中形成至少一個隔離結構。在本發明之一實施例中,此隔離結構為淺溝隔離層(shallow trench isolator),而導體材料為多晶矽。In an embodiment of the invention, before the step of forming the patterned hard mask layer, the method further comprises: forming at least one isolation structure in the second region. In one embodiment of the invention, the isolation structure is a shallow trench isolator and the conductor material is polysilicon.

在本發明之一實施例中,圖案化硬罩幕層包含一個氧化矽薄膜層和一個氮化矽厚膜層,或一個氧化矽厚膜層和一氮化矽薄膜層。In one embodiment of the invention, the patterned hard mask layer comprises a hafnium oxide film layer and a tantalum nitride film layer, or a hafnium oxide thick film layer and a tantalum nitride film layer.

在本發明之一實施例中,在填充導體材料之後,更包括下述步驟:先形成平坦層覆蓋導體材料。再進行化學機械研磨移除平坦層,以及一部分導體材料。接著進行全面蝕刻製程,以移除位於第一區以及第二區二者表面上的導體材料以及圖案化硬罩幕層。In an embodiment of the invention, after filling the conductor material, the method further comprises the step of forming a flat layer covering the conductor material. Chemical mechanical polishing is then performed to remove the flat layer, as well as a portion of the conductor material. A full etch process is then performed to remove the conductor material and the patterned hard mask layer on both the first and second regions.

在本發明之一實施例中,在移除導體材料以及圖案化硬罩幕層之後,更包括:於第二區上方,形成第二閘介電層;於第二閘介電層上形成第二閘電極;以及於於第二區中,形成第二源極/汲極結構。In an embodiment of the present invention, after removing the conductor material and patterning the hard mask layer, the method further includes: forming a second gate dielectric layer over the second region; forming a first layer on the second gate dielectric layer a second gate electrode; and in the second region, a second source/drain structure is formed.

在本發明之一實施例中,在形成第二源極/汲極結構之前,更包括於閘電極上覆蓋介電覆蓋層。In an embodiment of the invention, the dielectric cap layer is further covered on the gate electrode before the second source/drain structure is formed.

根據上述實施例,本發明係將製造溝槽式金屬氧化物半導體元件,與製造具有平面通道的金屬氧化物半導體元件的兩種製程加以整合,藉以製造出同時具有溝槽式金屬氧化物半導體結構及平面通道金屬氧化物半導體結構的(互補式)金屬氧化物半導體元件。According to the above embodiment, the present invention integrates a trench metal oxide semiconductor device with two processes for fabricating a metal oxide semiconductor device having planar vias, thereby fabricating a trench metal oxide semiconductor structure. And a (complementary) metal oxide semiconductor device of a planar channel metal oxide semiconductor structure.

在本發明的一些實施例中,可將平面通道金屬氧化物半導體製程中的淺溝隔離製程,與溝槽式金屬氧化物半導體製程的溝槽蝕刻步驟加以整合。將用來形成淺溝隔離結構的介電層,轉用為形成溝槽的蝕刻罩幕層,具有降低製造成本的優勢,達成半導體製程及結構整合,降低製程成本的發明目的。In some embodiments of the invention, the shallow trench isolation process in a planar channel metal oxide semiconductor process can be integrated with the trench etch step of a trench metal oxide semiconductor process. The dielectric layer used to form the shallow trench isolation structure is used as an etching mask layer for forming trenches, which has the advantages of reducing the manufacturing cost, achieving the semiconductor process and structural integration, and reducing the process cost.

本發明的目的就是在提供一種先進的溝槽式金屬氧化物半導體元件及其製造方法,可成功地整合具有平面通道以及具有垂直通道的兩種金屬氧化物半導體結構及其製造流程,並降低製造成本。為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉數個互補式金屬氧化物半導體元件及其製作方法,做較佳實施例,並配合所附圖式,作詳細說明如下。SUMMARY OF THE INVENTION An object of the present invention is to provide an advanced trench metal oxide semiconductor device and a method of fabricating the same, which can successfully integrate two metal oxide semiconductor structures having planar vias and vertical vias, and manufacturing processes thereof, and reduce manufacturing cost. The above and other objects, features, and advantages of the present invention will become more apparent and understood. The details are as follows.

請參照圖1A到圖1I,圖1A到圖1I係根據本發明的一較佳實施例所繪示之互補式金屬氧化物半導體元件100的製程剖面示意圖。其中,製造互補式金屬氧化物半導體元件100的製造方法,包括下述步驟:Referring to FIG. 1A to FIG. 1I, FIG. 1A to FIG. 1I are schematic cross-sectional views showing a process of a complementary metal-oxide-semiconductor device 100 according to a preferred embodiment of the present invention. Wherein, a method of manufacturing the complementary metal oxide semiconductor device 100 includes the following steps:

首先在基材101上定義出第一區101a以及第二區101b。在本發明的一些實施例之中,第一區101a以及第二區101b的定義方式,較佳是藉由一系列的離子植入(ion implant)製程,根據電晶體元件的功能需求,在基材101中形成兩個彼此分離的離子摻雜區域。其中,第一區101a包含一個第一摻雜區102。第二區101b則包含有一個與第一摻雜區102彼此分離的第三摻雜區104(如圖1A所繪示)。First, a first region 101a and a second region 101b are defined on the substrate 101. In some embodiments of the present invention, the first region 101a and the second region 101b are defined by a series of ion implantation processes, according to the functional requirements of the transistor component. Two ion doped regions separated from each other are formed in the material 101. The first region 101a includes a first doping region 102. The second region 101b then includes a third doped region 104 (as shown in FIG. 1A) separated from the first doped region 102.

第三摻雜區104的電性則係根據欲形成之元件的導電類型來決定。若兩摻雜區欲形成的元件導電類型相同則兩摻雜區的電性相同,反之相異。在本發明的實施例之中,第三摻雜區104的電性可以與第一摻雜區102相同或相異。在本實施例之中,第三摻雜區104的電性與第一摻雜區102相同。The electrical conductivity of the third doped region 104 is determined by the conductivity type of the component to be formed. If the elements to be formed in the two doped regions have the same conductivity type, the electrical properties of the two doped regions are the same, and vice versa. In an embodiment of the invention, the electrical conductivity of the third doped region 104 may be the same as or different from the first doped region 102. In the present embodiment, the third doping region 104 is electrically identical to the first doping region 102.

本發明所謂的電性,可分成P型(P type)及N型(N type)兩種,其係由植入的掺質,例如硼離子(B+)和磷離子(P+),砷離子(As+)及銻離子(Sb+),的半導體區域之呈現正電(傳輸載子為電洞)或負電(傳輸載子為電子)來決定。但值得注意的是,下述實施例中,各種元件所採用的電性,僅係例示說明,並非特定。The so-called electrical properties of the present invention can be classified into two types, P type and N type, which are implanted dopants such as boron ions (B+) and phosphorus ions (P+), and arsenic ions ( The semiconductor regions of As+) and strontium ions (Sb+) are determined by positive charge (transfer carrier is a hole) or negative (transfer carrier is an electron). It should be noted, however, that the electrical properties employed by the various components in the following embodiments are merely illustrative and not specific.

例如,在本實施例之中,基材101包含有一個N型埋藏層106,以及位於埋藏層106上的P型磊晶層107。第一摻雜區102為一種由基材表面101c延伸入P型磊晶層107的N型阱區。第三摻雜區104則係由基材表面101c延伸入P型磊晶層107的另一個N型阱區。且第三摻雜區104與第一摻雜區102兩者,係藉由基材101的P型磊晶層107彼此隔離。For example, in the present embodiment, the substrate 101 includes an N-type buried layer 106 and a P-type epitaxial layer 107 on the buried layer 106. The first doped region 102 is an N-type well region extending from the substrate surface 101c into the P-type epitaxial layer 107. The third doped region 104 extends from the substrate surface 101c into another N-type well region of the P-type epitaxial layer 107. The third doped region 104 and the first doped region 102 are separated from each other by the P-type epitaxial layer 107 of the substrate 101.

之後,於第二區101b中形成至少一個第一溝槽108。在本發明之一實施例中,第一溝槽108的形成包含:先在基材表面101c上成長墊氧化矽層與氮化矽層(未繪示);再以微影蝕刻製程,進行淺溝槽蝕刻,依序在墊氧化矽層、氮化矽層與基材101之中形成至少一個淺溝。再形成介電層109,覆蓋於基材101的第一區101a以及第二區101b上,並填充此第一溝槽108(如圖1B所繪示)。在本發明之一實施例中,介電層109是由化學氣相沉積製程所形成的一種沉積氧化層。Thereafter, at least one first trench 108 is formed in the second region 101b. In an embodiment of the present invention, the first trench 108 is formed by first growing a pad of germanium oxide layer and a layer of tantalum nitride (not shown) on the surface 101c of the substrate; The trench etching sequentially forms at least one shallow trench in the pad yttria layer, the tantalum nitride layer, and the substrate 101. A dielectric layer 109 is formed overlying the first region 101a and the second region 101b of the substrate 101 and filling the first trench 108 (as shown in FIG. 1B). In one embodiment of the invention, dielectric layer 109 is a deposited oxide layer formed by a chemical vapor deposition process.

接著,使用介電層109作為硬罩幕層(hard mask)進行蝕刻,於第一區101a中形成至少一個實質垂直基材表面101c的第二溝槽110。然後,於第二溝槽110的側壁110a上形成第一閘介電層111(如圖1C所繪示)。在本發明的一些實施例之中,形成第一閘介電層111之前,較佳先在第二溝槽110的側壁110a上形成氧化犧牲層(未繪示),修補蝕刻對側壁110a所造成的損害。在移除此一氧化犧牲層之後,藉由化學氣相沉積、熱氧化法或其他合適的方法,在第二溝槽110的側壁110a及底部面上,形成第一閘介電層111。第一閘介電層111的材質較佳為二氧化矽。Next, etching is performed using the dielectric layer 109 as a hard mask to form at least one second trench 110 substantially perpendicular to the substrate surface 101c in the first region 101a. Then, a first gate dielectric layer 111 is formed on the sidewall 110a of the second trench 110 (as shown in FIG. 1C). In some embodiments of the present invention, before forming the first gate dielectric layer 111, an oxidized sacrificial layer (not shown) is preferably formed on the sidewall 110a of the second trench 110, and the repair etching is caused by the sidewall 110a. Damage. After removing the oxidized sacrificial layer, the first thyristor layer 111 is formed on the sidewall 110a and the bottom surface of the second trench 110 by chemical vapor deposition, thermal oxidation, or other suitable method. The material of the first gate dielectric layer 111 is preferably hafnium oxide.

隨後,以導體材料112填充第二溝槽110(如圖1D所繪示)。在本發明的一些實施例之中,導體材料112為多晶矽材質,其係藉由沉積製程,覆蓋於第一閘介電層111上,並填滿第二溝槽110。Subsequently, the second trench 110 is filled with a conductor material 112 (as shown in FIG. 1D). In some embodiments of the present invention, the conductive material 112 is a polysilicon material which is overlaid on the first gate dielectric layer 111 by a deposition process and fills the second trench 110.

在填充導體材料112之後,較佳是對導體材料112進行平坦化。首先於導體材料112上,選擇性地形成一平坦層113,例如二氧化矽層,覆蓋於導體材料112上(如圖1E所繪示)。之後,進行化學機械研磨製程,以移除平坦層113,以及一部分的介電層109和導體材料112,並暴露出基材表面101c(如圖1F所繪示)。After filling the conductor material 112, the conductor material 112 is preferably planarized. First, a planarization layer 113, such as a ruthenium dioxide layer, is selectively formed over the conductor material 112 over the conductor material 112 (as depicted in FIG. 1E). Thereafter, a chemical mechanical polishing process is performed to remove the planarization layer 113, and a portion of the dielectric layer 109 and the conductor material 112, and expose the substrate surface 101c (as depicted in FIG. 1F).

接著,再選擇性地進行蝕刻製程,以移除位於第二溝槽110之中的少部份導體材料112,並將位於第二溝槽110之中的一部份導體材料112以及一部份第一閘介電層111餘留下來,作為後續所形成之溝槽式金屬氧化物半導體場效應電晶體元件10的垂直閘氧化層111a以及垂直閘電極112a(如圖1G所繪示)。Then, an etching process is selectively performed to remove a small portion of the conductive material 112 located in the second trench 110, and a portion of the conductive material 112 and a portion of the second trench 110 are located. The first gate dielectric layer 111 remains as a vertical gate oxide layer 111a and a vertical gate electrode 112a (shown in FIG. 1G) of the subsequently formed trench MOSFET.

值得注意得的是,平坦層113的功能,僅係用以平坦化導體材料112填溝製程知所形成的表面凹陷,以作為後續化學機械研磨製程的研磨緩衝層。因此,在本發明的一些實施例之中,在填充導體材料112之後,並未形成平坦層113,而是直接進行化學機械研磨製程。亦或者是,在形成平坦層113之後,直接進行選擇性蝕刻,以移除上述的的介電層109以及導體材料112。It should be noted that the function of the flat layer 113 is only used to planarize the surface depression formed by the trench material process of the conductive material 112 as a polishing buffer layer for the subsequent chemical mechanical polishing process. Therefore, in some embodiments of the present invention, after filling the conductor material 112, the flat layer 113 is not formed, but the chemical mechanical polishing process is directly performed. Alternatively, after the planarization layer 113 is formed, selective etching is directly performed to remove the dielectric layer 109 and the conductor material 112 described above.

不過,由於蝕刻製程對導體材料112的移除能夠精準地控制,因此可更精準的將垂直閘電極112a與基材表面101c之間的高度差S,控制在實質小於1500 的範圍內。However, since the removal of the conductor material 112 by the etching process can be precisely controlled, the height difference S between the vertical gate electrode 112a and the substrate surface 101c can be more accurately controlled to be substantially less than 1500. In the range.

移除導體材料112以及第一閘介電層111之後,再進行一連串的離子植入製程,於第一區101a的基材101之中,形成一個第二摻雜區103。在本發明的一些較佳實施例中,第二摻雜區103係一種由基材表面101c延伸入第一摻雜區102(N型阱區)之中的P型阱區。After the conductor material 112 and the first gate dielectric layer 111 are removed, a series of ion implantation processes are performed to form a second doping region 103 in the substrate 101 of the first region 101a. In some preferred embodiments of the invention, the second doped region 103 is a P-type well region extending from the substrate surface 101c into the first doped region 102 (N-type well region).

接著,於第二區101b的基材表面101c上方,形成第二閘介電層117,並且於第二閘介電層117上形成第二閘電極118(如圖1H所繪示)。再藉由另一離子植入製程,在第二摻雜區103形成複數個(至少一個)第四摻雜區105。其中第四摻雜區105,是一種由第一主動區101a的基材表面101c,沿著溝槽側壁110a延伸進入第一摻雜區102,且具有較高濃度N型摻質的N型摻雜結構。其中,第四摻雜區105鄰接垂直閘氧化層111a,並被第二摻雜區103(P型阱區)包圍。Next, a second gate dielectric layer 117 is formed over the substrate surface 101c of the second region 101b, and a second gate electrode 118 is formed on the second gate dielectric layer 117 (as shown in FIG. 1H). A plurality of (at least one) fourth doped regions 105 are formed in the second doped region 103 by another ion implantation process. The fourth doping region 105 is a substrate surface 101c of the first active region 101a, extending along the trench sidewall 110a into the first doping region 102, and having a higher concentration of N-type dopants. Miscellaneous structure. The fourth doping region 105 is adjacent to the vertical gate oxide layer 111a and is surrounded by the second doping region 103 (P-type well region).

然後,再以第二閘介電層117和第二閘電極118為罩幕,進行另一系列的離子植入製程,於第二區101b中定義出平面通道金屬氧化物半導體場效應電晶體元件12的第二源極/汲極結構116,以鄰接第二閘介電層117和第二閘電極118。完成平面通道金屬氧化物半導體場效應電晶體元件12的製備(如圖1I所繪示)。在本實施例中,第二源極/汲極結構116,係由兩個彼此分離,且分別自基材表面101c延伸入第三摻雜區104(N型阱區)之中的P型摻雜結構。Then, using the second gate dielectric layer 117 and the second gate electrode 118 as a mask, another series of ion implantation processes are performed, and a planar channel metal oxide semiconductor field effect transistor element is defined in the second region 101b. The second source/drain structure 116 of 12 is adjacent to the second gate dielectric layer 117 and the second gate electrode 118. The preparation of the planar channel metal oxide semiconductor field effect transistor element 12 is completed (as shown in FIG. 1I). In the present embodiment, the second source/drain structure 116 is separated by two P-type dopings which are separated from each other and extend from the substrate surface 101c into the third doping region 104 (N-type well region), respectively. Miscellaneous structure.

由於第二摻雜區103與第一摻雜區102二者形成一個P/N接面115;且第四摻雜區105具有與第一摻雜區102相同的電性,且又與第二摻雜區103形成另一個P/N接面114。因此第四摻雜區105與第一摻雜區102,可分別作為溝槽式金屬氧化物半導體場效應電晶體元件10的源極或汲極(以下簡稱第一源極/汲極);位於第四摻雜區105與第一摻雜區102之間的第二摻雜區103,則構成溝槽式金屬氧化物半導體場效應電晶體元件10的通道。故而,第二摻雜區103的摻雜深度,恰可決定溝槽式金屬氧化物半導體場效應電晶體元件10的通道長度。Since the second doping region 103 and the first doping region 102 form a P/N junction 115; and the fourth doping region 105 has the same electrical property as the first doping region 102, and is second The doped region 103 forms another P/N junction 114. Therefore, the fourth doping region 105 and the first doping region 102 can be respectively used as the source or drain of the trench MOSFET field element 10 (hereinafter referred to as the first source/drain); The second doped region 103 between the fourth doped region 105 and the first doped region 102 constitutes a channel of the trench MOSFET field element 10. Therefore, the doping depth of the second doping region 103 can determine the channel length of the trench MOSFET field element 10.

但值得注意的是,雖然在本實施例之中,形成第二摻雜區103與第四摻雜區105的離子摻雜製程,是在第二溝槽形成之後進行。但在本發明的其他實施例之中,形成第二摻雜區103與第四摻雜區105的離子摻雜製程,也可以緊接於形成第一閘介電層111的製程步驟之後實施;待形成上述的第一源極/汲極之後,再於第一區101a中進行溝槽蝕刻製程,而形成第二溝槽110。由於上述兩種實施例,係採用類似的製程步驟,差異僅在於實施順序有所不同,因此詳細製程不在此贅述。It is to be noted, however, that in the present embodiment, the ion doping process for forming the second doping region 103 and the fourth doping region 105 is performed after the second trench is formed. However, in other embodiments of the present invention, the ion doping process for forming the second doping region 103 and the fourth doping region 105 may also be performed immediately after the process step of forming the first gate dielectric layer 111; After the first source/drain is formed, the trench etching process is performed in the first region 101a to form the second trench 110. Because of the above two embodiments, similar process steps are adopted, the difference is only that the order of implementation is different, so the detailed process is not described here.

另外,在本發明的較佳實施例中,在形成平面通道金屬氧化物半導體場效應電晶體元件12的第二源極/汲極結構116之前,更包括於平面通道金屬氧化物半導體場效應電晶體元件12以及溝槽式金屬氧化物半導體場效應電晶體元件10的垂直閘電極112a上方,選擇性地覆蓋一個介電覆蓋層119(如圖1I所繪示),介電覆蓋層119的材質,較佳可包含氮化矽、氧化矽或其他類似材質。此舉,可確保第二溝槽110中所填充的導體材料112(多晶矽),不會受到後續製備平面通道金屬氧化物半導體場效應電晶體元件12的製程損害。故而,可使第一閘電極111的通道長度受到較精準的控制。In addition, in the preferred embodiment of the present invention, prior to forming the second source/drain structure 116 of the planar channel MOSFET, it is further included in the planar channel metal oxide semiconductor field effect transistor. Above the vertical gate electrode 112a of the crystal element 12 and the trench metal-oxide-semiconductor field effect transistor element 10, a dielectric cap layer 119 (shown in FIG. 1I) is selectively covered, and the material of the dielectric cap layer 119 is covered. Preferably, it may comprise tantalum nitride, hafnium oxide or the like. This ensures that the conductor material 112 (polysilicon) filled in the second trench 110 is not damaged by the subsequent process of fabricating the planar channel metal oxide semiconductor field effect transistor element 12. Therefore, the channel length of the first gate electrode 111 can be controlled more accurately.

後續,再藉由半導體後段製程(未繪示),將平面通道金屬氧化物半導體場效應電晶體元件12和溝槽式金屬氧化物半導體場效應電晶體元件10整合成一個互補式金屬氧化物半導體元件100。Subsequently, the planar via metal oxide semiconductor field effect transistor element 12 and the trench metal oxide semiconductor field effect transistor element 10 are integrated into a complementary metal oxide semiconductor by a semiconductor back-end process (not shown). Element 100.

請參照圖2A到圖2H,圖2A到圖2H係根據本發明的另一較佳實施例,所繪示之互補式金屬氧化物半導體元件200的製程剖面示意圖。其中,製造互補式金屬氧化物半導體元件200的製造方法,包括下述步驟:Referring to FIG. 2A to FIG. 2H, FIG. 2A to FIG. 2H are schematic cross-sectional views showing a process of the complementary metal-oxide-semiconductor device 200 according to another preferred embodiment of the present invention. Wherein, a method of manufacturing the complementary metal oxide semiconductor device 200 includes the following steps:

首先在基材201上定義出第一區201a以及第二區201b。在本發明的一些實施例之中,第一區201a以及第二區201b的定義方式,較佳是藉由一系列的離子植入(ion implant)製程,根據電晶體元件的功能需求,在基材201中形成兩個彼此分離的離子摻雜區域。其中,第一區201a包含一個第一摻雜區202。第二區201b則包含有一個第三摻雜區204(如圖2A所繪示),並且第三摻雜區204的電性與第一摻雜區202相同。First, a first region 201a and a second region 201b are defined on the substrate 201. In some embodiments of the present invention, the first region 201a and the second region 201b are preferably defined by a series of ion implantation processes according to the functional requirements of the transistor component. Two ion doped regions separated from each other are formed in the material 201. The first region 201a includes a first doping region 202. The second region 201b includes a third doping region 204 (as shown in FIG. 2A), and the third doping region 204 is electrically identical to the first doping region 202.

在本實施例之中,基材201包含有一個N型埋藏層206,以及位於埋藏層206上的P型磊晶層207。第一摻雜區202為一種由基材表面201c延伸入P型磊晶層207的N型阱區。第三摻雜區204則係由基材表面201c延伸入P型磊晶層207的另一個N型阱區。並且第一摻雜區202與第三摻雜區204,兩者係藉由基材201的P型磊晶層207彼此隔離。In the present embodiment, the substrate 201 includes an N-type buried layer 206 and a P-type epitaxial layer 207 on the buried layer 206. The first doped region 202 is an N-type well region extending from the substrate surface 201c into the P-type epitaxial layer 207. The third doped region 204 extends from the substrate surface 201c into another N-type well region of the P-type epitaxial layer 207. And the first doping region 202 and the third doping region 204 are separated from each other by the P-type epitaxial layer 207 of the substrate 201.

之後,於第二區201b中形成至少一個隔離結構208。在本發明之一實施例中,隔離結構208係一淺溝隔離層。至於其製備方式,則是先在基材表面201c上成長一墊氧化矽層與氮化矽層(未繪示);再以微影蝕刻製程,進行淺溝槽蝕刻,依序在墊氧化矽層、氮化矽層與基材201之中形成至少一個淺溝(未繪示)。再以介電材質填充淺溝,並且對介電材質進行一個平坦化製程,進而形成如圖2B所繪示的隔離結構208。Thereafter, at least one isolation structure 208 is formed in the second region 201b. In one embodiment of the invention, the isolation structure 208 is a shallow trench isolation layer. As for the preparation method, a pad yttrium oxide layer and a tantalum nitride layer (not shown) are first grown on the surface 201c of the substrate; then a micro-etching process is performed to perform shallow trench etching, sequentially in the pad yttrium oxide. At least one shallow groove (not shown) is formed in the layer, the tantalum nitride layer and the substrate 201. The shallow trench is filled with a dielectric material, and a planarization process is performed on the dielectric material to form an isolation structure 208 as illustrated in FIG. 2B.

接著,進行離子植入製程,以於第一主動區201a的基材201之中,形成一個第二摻雜區203。在本發明的一些較佳實施例中,第二摻雜區203係一種由基材表面201c延伸入第一摻雜區202(N型阱區)之中的P型阱區(如圖2C所繪示)。Next, an ion implantation process is performed to form a second doping region 203 among the substrates 201 of the first active region 201a. In some preferred embodiments of the present invention, the second doped region 203 is a P-type well region extending from the substrate surface 201c into the first doped region 202 (N-type well region) (as shown in FIG. 2C). Painted).

之後,在基材201上形成一個圖案化的硬罩幕層220,覆蓋第一區201a以及第二區201b,並將第一區201a的一部分基材表面201c暴露出來。在本發明的一實施例中,圖案化的硬罩幕層220包含一個氧化矽薄膜層和一個氮化矽厚膜層。不過在另一個實施例之中,硬罩幕層220則包含一個氧化矽厚膜層和一氮化矽薄膜層。在本實施例之中,硬罩幕層220的製備方式,是先利用沉積製程,在基材201上形成一個氮化矽薄膜層220a;再以四乙氧基矽烷作為前驅物進行沉積,於氮化矽薄膜層220a上,形成一個氧化矽厚膜層220b;之後再進行圖案化,將位於第一區201a的一部分基材表面201c暴露出來(如圖2D所繪示)。Thereafter, a patterned hard mask layer 220 is formed on the substrate 201 to cover the first region 201a and the second region 201b, and a portion of the substrate surface 201c of the first region 201a is exposed. In an embodiment of the invention, the patterned hard mask layer 220 comprises a hafnium oxide film layer and a tantalum nitride film layer. In yet another embodiment, the hard mask layer 220 comprises a thick yttrium oxide film layer and a tantalum nitride film layer. In the present embodiment, the hard mask layer 220 is prepared by first forming a tantalum nitride film layer 220a on the substrate 201 by using a deposition process; and depositing with tetraethoxy decane as a precursor. On the tantalum nitride film layer 220a, a thick ruthenium oxide film layer 220b is formed; and then patterned to expose a portion of the substrate surface 201c located in the first region 201a (as shown in FIG. 2D).

接著,使用圖案化的硬罩幕層220為罩幕進行蝕刻,於第一主動區201a中形成至少一個溝槽210。然後,於溝槽210的側壁210a上,形成第一閘介電層211(如圖2E所繪示)。在本發明的一些實施例之中,形成第一閘介電層211之前,較佳先在溝槽210的側壁210a上形成氧化犧牲層(未繪示),修補蝕刻對側壁210a所造成的損害。在移除此一氧化犧牲層之後,再藉由化學氣相沉積、熱氧化法或其他合適的方法,在溝槽側壁210a及底部上形成第一閘介電層211。第一閘介電層211的材質較佳為二氧化矽。Next, the mask is etched using the patterned hard mask layer 220 to form at least one trench 210 in the first active region 201a. Then, on the sidewall 210a of the trench 210, a first gate dielectric layer 211 is formed (as shown in FIG. 2E). In some embodiments of the present invention, before forming the first gate dielectric layer 211, an oxidized sacrificial layer (not shown) is preferably formed on the sidewall 210a of the trench 210 to repair the damage caused by the etching to the sidewall 210a. . After removing the oxidized sacrificial layer, a first thyristor layer 211 is formed on the trench sidewalls 210a and the bottom by chemical vapor deposition, thermal oxidation, or other suitable methods. The material of the first gate dielectric layer 211 is preferably hafnium oxide.

隨後,以導體材料212填充溝槽210。在本發明的一些實施例之中,導體材料212為多晶矽材質,其係藉由沉積製程,覆蓋於第一閘介電層211上,並填滿溝槽210。Subsequently, the trench 210 is filled with a conductor material 212. In some embodiments of the present invention, the conductive material 212 is a polysilicon material that is overlaid on the first gate dielectric layer 211 by a deposition process and fills the trenches 210.

在填充導體材料212之後,較佳是對導體材料212進行平坦化。首先於導體材料212上,選擇性地形成一平坦層213,例如二氧化矽層,覆蓋於導體材料212上(如圖2F所繪示)。之後,進行化學機械研磨製程,以移除平坦層213,硬罩幕層220以及一部分導體材料212,並將基材表面201c暴露出來。After filling the conductor material 212, the conductor material 212 is preferably planarized. First, a planarization layer 213, such as a ruthenium dioxide layer, is selectively formed over the conductor material 212 overlying the conductor material 212 (as depicted in Figure 2F). Thereafter, a chemical mechanical polishing process is performed to remove the flat layer 213, the hard mask layer 220, and a portion of the conductor material 212, and expose the substrate surface 201c.

接著,再進行全面蝕刻製程,以移除位於第二溝槽210之中的少部份導體材料212,並將位於第二溝槽210之中的一部份導體材料212以及一部份第一閘介電層211餘留下來,以形成溝槽式金屬氧化物半導體場效應電晶體元件20(如圖2G所繪示)。Then, a full etching process is performed to remove a small portion of the conductor material 212 located in the second trench 210, and a portion of the conductive material 212 located in the second trench 210 and a portion of the first portion The gate dielectric layer 211 remains to form a trench metal oxide semiconductor field effect transistor element 20 (as depicted in Figure 2G).

值得注意得的是,平坦層213的功能,僅係用以平坦化導體材料212填溝製程所形成的表面凹陷,係作為後續化學機械研磨製程的研磨緩衝層。因此,在本發明的一些實施例之中,在填充導體材料212之後,並未形成平坦層213,而是直接進行化學機械研磨製程。亦或者是,在形成平坦層213之後,直接進行選擇性蝕刻,以移除上述的的介電層209以及導體材料212。It is worth noting that the function of the flat layer 213 is only used to planarize the surface depression formed by the filling process of the conductor material 212, and is used as a grinding buffer layer for the subsequent chemical mechanical polishing process. Therefore, in some embodiments of the present invention, after filling the conductor material 212, the planarization layer 213 is not formed, but the chemical mechanical polishing process is directly performed. Alternatively, after the planarization layer 213 is formed, selective etching is directly performed to remove the dielectric layer 209 and the conductor material 212 described above.

其中,餘留於溝槽210之中的一部份導體材料212,係溝槽式金屬氧化物半導體場效應電晶體元件20的垂直閘電極212a;位於溝槽側壁210a的第一閘介電層211,則為溝槽式金屬氧化物半導體場效應電晶體元件20的垂直閘氧化層211a。Wherein, a portion of the conductor material 212 remaining in the trench 210 is a vertical gate electrode 212a of the trench MOSFET field element 20; and a first gate dielectric layer at the trench sidewall 210a. 211 is a vertical gate oxide layer 211a of the trench MOSFET field effect element 20.

另外,由於第二摻雜區203與第一摻雜區202二者形成一個P/N接面215;且第四摻雜區205具有與第一摻雜區202相同的電性,並和第二摻雜區203形成另一個P/N接面214。因此第四摻雜區205與第一摻雜區202,可分別作為溝槽式金屬氧化物半導體場效應電晶體元件20的源極或汲極(以下簡稱第一源極/汲極);位於第四摻雜區205與第一摻雜區202之間的第二摻雜區203,則構成溝槽式金屬氧化物半導體場效應電晶體元件20的通道。故而,第二摻雜區203的摻雜深度,恰可決定溝槽式金屬氧化物半導體場效應電晶體元件20的通道長度。In addition, since the second doping region 203 and the first doping region 202 form a P/N junction 215; and the fourth doping region 205 has the same electrical property as the first doping region 202, and The two doped regions 203 form another P/N junction 214. Therefore, the fourth doping region 205 and the first doping region 202 may be respectively used as the source or drain of the trench MOSFET field element 20 (hereinafter referred to as the first source/drain); The second doped region 203 between the fourth doped region 205 and the first doped region 202 constitutes a channel of the trench MOSFET field element 20. Therefore, the doping depth of the second doping region 203 can determine the channel length of the trench MOSFET field element 20.

接著,於第一區201a、第二區201b以及溝槽式金屬氧化物半導體場效應電晶體元件20的垂直閘電極212a上,覆蓋一個介電覆蓋層219。再於第二區201b的基材表面201c上方,形成第二閘介電層217,並且於第二閘介電層217上形成第二閘電極218。然後,再藉由另一個離子植入製程,形成複數個(至少一個)第四摻雜區205,鄰接於第一閘介電層211和垂直閘氧化層211a;並以第二閘介電層217和第二閘電極218為罩幕,同步在第三摻雜區204中,定義出平面通道金屬氧化物半導體場效應電晶體元件22的第二源極/汲極結構216鄰接第二閘介電層217和第二閘電極218,完成平面通道金屬氧化物半導體場效應電晶體元件22的製備(如圖2H所繪示)。如圖2H所繪示,其中第四摻雜區205,係一種由第一主動區201a的基材表面201c,延伸進入第一摻雜區202,且具有較高濃度N型摻質的N型摻雜結構。使第四摻雜區205被第二摻雜區203(P型阱區)所包圍。Next, a dielectric cap layer 219 is overlaid on the first region 201a, the second region 201b, and the vertical gate electrode 212a of the trench MOSFET. A second gate dielectric layer 217 is formed over the substrate surface 201c of the second region 201b, and a second gate electrode 218 is formed on the second gate dielectric layer 217. Then, through another ion implantation process, a plurality of (at least one) fourth doped regions 205 are formed adjacent to the first gate dielectric layer 211 and the vertical gate oxide layer 211a; and a second gate dielectric layer is formed. 217 and the second gate electrode 218 are masks, synchronized in the third doped region 204, defining a second source/drain structure 216 of the planar channel MOSFET field element 22 adjacent to the second gate Electrical layer 217 and second gate electrode 218 complete the fabrication of planar channel MOSFET field effect transistor 22 (as depicted in Figure 2H). As shown in FIG. 2H, the fourth doped region 205 is an N-type layer extending from the substrate surface 201c of the first active region 201a into the first doped region 202 and having a higher concentration of N-type dopants. Doped structure. The fourth doping region 205 is surrounded by the second doping region 203 (P-type well region).

後續,再藉由半導體後段製程(未繪示),將平面通道金屬氧化物半導體場效應電晶體元件22和溝槽式金屬氧化物半導體場效應電晶體元件20整合成一個互補式金屬氧化物半導體元件200。Subsequently, the planar via metal oxide semiconductor field effect transistor element 22 and the trench metal oxide semiconductor field effect transistor element 20 are integrated into a complementary metal oxide semiconductor by a semiconductor back end process (not shown). Element 200.

根據上述實施例,本發明係將製備溝槽式金屬氧化物半導體元件與製備平面通道金屬氧化物半導體元件的製程加以整合,藉以製造出同時具有溝槽式金屬氧化物半導體結構及平面通道金屬氧化物半導體結構的(互補式)金屬氧化物半導體元件。According to the above embodiments, the present invention integrates a trench metal oxide semiconductor device and a process for fabricating a planar via metal oxide semiconductor device, thereby fabricating a trench metal oxide semiconductor structure and planar channel metal oxide. (Complementary) metal oxide semiconductor device of a semiconductor structure.

在本發明的一些實施例中,可將平面通道金屬氧化物半導體製程中的淺溝隔離製程,與溝槽式金屬氧化物半導體製程的溝槽蝕刻步驟加以整合。將用來形成淺溝隔離結構的介電層,轉用為形成溝槽的蝕刻罩幕層,具有降低製造成本的優勢,達成上述整合半導體製程和結構及降低製程成本的發明目的。In some embodiments of the invention, the shallow trench isolation process in a planar channel metal oxide semiconductor process can be integrated with the trench etch step of a trench metal oxide semiconductor process. The use of a dielectric layer for forming a shallow trench isolation structure into an etch mask layer for forming trenches has the advantage of reducing manufacturing costs, achieving the above-described object of integrating semiconductor processes and structures and reducing process cost.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

10...溝槽式金屬氧化物半導體場效應電晶體元件10. . . Trenched metal oxide semiconductor field effect transistor

12...平面通道金屬氧化物半導體場效應電晶體元件12. . . Planar channel metal oxide semiconductor field effect transistor

100...互補式金屬氧化物半導體元件100. . . Complementary metal oxide semiconductor device

101...基材101. . . Substrate

101a...第一區101a. . . First district

101b...第二區101b. . . Second district

101c...基材表面101c. . . Substrate surface

102...第一摻雜區102. . . First doped region

103...第二摻雜區103. . . Second doped region

104...第三摻雜區104. . . Third doped region

105...第四摻雜區105. . . Fourth doped region

106...埋藏層106. . . Buried layer

107...P型磊晶層107. . . P-type epitaxial layer

108...第一溝槽108. . . First groove

109...介電層109. . . Dielectric layer

110...第二溝槽110. . . Second groove

110a...第二溝槽的側壁110a. . . Side wall of the second groove

111...第一閘介電層111. . . First gate dielectric layer

111a...垂直閘氧化層111a. . . Vertical gate oxide

112...導體材料112. . . Conductor material

112a...垂直閘電極112a. . . Vertical gate electrode

113...平坦層113. . . Flat layer

114...P/N接面114. . . P/N junction

115...P/N接面115. . . P/N junction

116...第二源極/汲極結構116. . . Second source/drain structure

117...第二閘介電層117. . . Second gate dielectric layer

118...第二閘電極118. . . Second gate electrode

119...介電覆蓋層119. . . Dielectric overlay

S...高度差S. . . Height difference

20...溝槽式金屬氧化物半導體場效應電晶體元件20. . . Trenched metal oxide semiconductor field effect transistor

22...平面通道金屬氧化物半導體場效應電晶體元件twenty two. . . Planar channel metal oxide semiconductor field effect transistor

200...互補式金屬氧化物半導體元件200. . . Complementary metal oxide semiconductor device

201...基材201. . . Substrate

201a...第一區201a. . . First district

201b...第二區201b. . . Second district

201c...基材表面201c. . . Substrate surface

202...第一摻雜區202. . . First doped region

203...第二摻雜區203. . . Second doped region

204...第三摻雜區204. . . Third doped region

205...第四摻雜區205. . . Fourth doped region

206...埋藏層206. . . Buried layer

207...P型磊晶層207. . . P-type epitaxial layer

208...隔離結構208. . . Isolation structure

210...溝槽210. . . Trench

210a...第二溝槽的側壁210a. . . Side wall of the second groove

211...第一閘介電層211. . . First gate dielectric layer

211a...垂直閘氧化層211a. . . Vertical gate oxide

212...導體材料212. . . Conductor material

212a...垂直閘電極212a. . . Vertical gate electrode

213...平坦層213. . . Flat layer

214...P/N接面214. . . P/N junction

215...P/N接面215. . . P/N junction

216...第二源極/汲極結構216. . . Second source/drain structure

217...第二閘介電層217. . . Second gate dielectric layer

218...第二閘電極218. . . Second gate electrode

219...介電覆蓋層219. . . Dielectric overlay

220...硬罩幕層220. . . Hard mask layer

220a...氮化矽薄膜層220a. . . Tantalum nitride film layer

220b...氧化矽厚膜層220b. . . Thick ruthenium oxide layer

圖1A到圖1I係根據本發明的一較佳實施例,所繪示之互補式金屬氧化物半導體元件的製程剖面示意圖。1A through 1I are schematic cross-sectional views showing a process of a complementary metal-oxide-semiconductor device according to a preferred embodiment of the present invention.

圖2A到圖2H係根據本發明的另一較佳實施例,所繪示之互補式金屬氧化物半導體元件的製程剖面示意圖。2A through 2H are schematic cross-sectional views showing a process of a complementary metal oxide semiconductor device according to another preferred embodiment of the present invention.

10...溝槽式金屬氧化物半導體場效應電晶體元件10. . . Trenched metal oxide semiconductor field effect transistor

12...平面通道金屬氧化物半導體場效應電晶體元件12. . . Planar channel metal oxide semiconductor field effect transistor

100...互補式金屬氧化物半導體元件100. . . Complementary metal oxide semiconductor device

101...基材101. . . Substrate

101a...第一主動區101a. . . First active zone

101b...第二主動區101b. . . Second active area

102...第一摻雜區102. . . First doped region

103...第二摻雜區103. . . Second doped region

104...第三摻雜區104. . . Third doped region

105...第四摻雜區105. . . Fourth doped region

106...埋藏層106. . . Buried layer

107...P型磊晶層107. . . P-type epitaxial layer

109...介電層109. . . Dielectric layer

111a...垂直閘氧化層111a. . . Vertical gate oxide

112a...垂直閘電極112a. . . Vertical gate electrode

114...P/N接面114. . . P/N junction

115...P/N接面115. . . P/N junction

116...第二源極/汲極結構116. . . Second source/drain structure

117...第二閘介電層117. . . Second gate dielectric layer

118...第二閘電極118. . . Second gate electrode

119...介電覆蓋層119. . . Dielectric overlay

Claims (19)

一種溝槽式金屬氧化物半導體(trench-gate metal oxide semiconductor,TMOS)元件,包括:一基材,具有一第一摻雜區、一第二摻雜區、和至少一溝槽,其中該第一摻雜區與該第二摻雜區形成一P/N接面,該溝槽由一基材表面延伸穿過該第二摻雜區及該P/N接面,並進入該第一摻雜區之中;一第一閘介電層,位於該溝槽之側壁上;一第一閘電極,位於該溝槽之中,且該第一閘電極的一上表面與該基材表面之間具有實質上小於1500 的一高度差;以及一第一源極/汲極,位於該基材中,並鄰接該第一閘介電層。A trench-gate metal oxide semiconductor (TMOS) device includes: a substrate having a first doped region, a second doped region, and at least one trench, wherein the first a doped region and the second doped region form a P/N junction, the trench extends from a substrate surface through the second doped region and the P/N junction, and enters the first doping a first gate dielectric layer on the sidewall of the trench; a first gate electrode located in the trench, and an upper surface of the first gate electrode and the surface of the substrate Between substantially less than 1500 a height difference; and a first source/drainage located in the substrate adjacent to the first gate dielectric layer. 如申請專利範圍第1項所述之溝槽式金屬氧化物半導體元件,更包括一介電覆蓋層(dielectric capping layer),覆蓋於該第一閘電極的該上表面。The trench MOS device of claim 1, further comprising a dielectric capping layer covering the upper surface of the first gate electrode. 如申請專利範圍第1項所述之溝槽式金屬氧化物半導體元件,其中該第一摻雜區為一N型阱區,由該基材表面延伸入該基材;該第二摻雜區為一P型阱區,且由該基材表面延伸入該N型阱區之中。The trench MOS device of claim 1, wherein the first doped region is an N-type well region extending from the surface of the substrate into the substrate; the second doped region It is a P-type well region and extends from the surface of the substrate into the N-type well region. 如申請專利範圍第3項所述之溝槽式金屬氧化物半導體元件,其中該基材包括:一N型埋藏層(buried layer);一P型磊晶層,位於該埋藏層之上,並使該N型阱區由該基材表面延伸入其中。The trench MOS device of claim 3, wherein the substrate comprises: an N-type buried layer; a P-type epitaxial layer on the buried layer, and The N-well region is extended into the surface of the substrate. 如申請專利範圍第3項所述之溝槽式金屬氧化物半導體元件,其中該第一源極/汲極,為一N型摻雜結構;其係由該基材表面,沿著該溝槽側壁延伸進入該P型阱區中。The trench MOS device of claim 3, wherein the first source/drain is an N-type doped structure; the surface of the substrate is along the trench The sidewall extends into the P-well region. 如申請專利範圍第1項所述之溝槽式金屬氧化物半導體元件,更包括:一第三摻雜區,位於該基材內,並與該第一摻雜區分離,且具有與該第一摻雜區相同的一電性;一第二閘介電層,位於該第三摻雜區的該基材表面上;一第二閘電極,位於該第二閘介電層上;以及一第二源極/汲極結構,位於該第三摻雜區中,鄰接該第二閘介電層,且具有與該第二摻雜區相同的一電性。The trench MOS device of claim 1, further comprising: a third doped region located in the substrate and separated from the first doped region, and having the same a doped region of the same electrical property; a second gate dielectric layer on the surface of the substrate of the third doped region; a second gate electrode on the second gate dielectric layer; and a A second source/drain structure is located in the third doped region adjacent to the second gate dielectric layer and has the same electrical property as the second doped region. 一種溝槽式金屬氧化物半導體元件的製造方法,包括:於一基材上定義一第一區以及一第二區;於該第二區中,形成至少一第一溝槽;形成一介電層,於該第一區以及該第二區上,並填充該第一溝槽;使用該介電層為一蝕刻罩幕層,於該第一區中形成至少一第二溝槽;形成一第一閘介電層於該第二溝槽的側壁上;以及以一導體材料填充該第二溝槽,以形成一第一閘電極。A method of fabricating a trench MOS device includes: defining a first region and a second region on a substrate; forming at least one first trench in the second region; forming a dielectric a layer on the first region and the second region, and filling the first trench; using the dielectric layer as an etch mask layer, forming at least one second trench in the first region; forming a The first gate dielectric layer is on the sidewall of the second trench; and the second trench is filled with a conductive material to form a first gate electrode. 如申請專利範圍第7項所述之溝槽式金屬氧化物半導體元件的製造方法,在形成該第二溝槽之前或之後,更包括於該第一區中,形成一第一源極/汲極結構。The method for fabricating a trench MOS device according to claim 7, wherein before or after forming the second trench, further comprising the first region, forming a first source/汲Pole structure. 如申請專利範圍第7項所述之溝槽式金屬氧化物半導體元件的製造方法,其中該介電層係一化學氣相沉積層;該導體材料為多晶矽。The method of fabricating a trench metal oxide semiconductor device according to claim 7, wherein the dielectric layer is a chemical vapor deposited layer; and the conductive material is polycrystalline germanium. 如申請專利範圍第7項所述之溝槽式金屬氧化物半導體元件的製造方法,其中在填充該導體材料之後,更包括:形成一平坦層,覆蓋於該導體材料上;進行一化學機械研磨移除該平坦層,以及一部分該導體材料;以及進行一全面蝕刻(blanket etching)製程,移除位於該第一區以及該第二區二者表面上的該導體材料以及該介電層。The method for fabricating a trench MOS device according to claim 7, wherein after filling the conductor material, further comprising: forming a flat layer overlying the conductor material; performing a chemical mechanical polishing Removing the planar layer, and a portion of the conductive material; and performing a blanket etching process to remove the conductive material and the dielectric layer on both surfaces of the first region and the second region. 如申請專利範圍第10項所述之溝槽式金屬氧化物半導體元件的製造方法,在移除該導體材料以及該介電層之後,更包括:於該第二區上方,形成一第二閘介電層;於該第二閘介電層上形成一第二閘電極;以及於該第二區中,形成一第二源極/汲極結構。The method for manufacturing a trench metal oxide semiconductor device according to claim 10, after removing the conductive material and the dielectric layer, further comprising: forming a second gate over the second region a dielectric layer; a second gate electrode formed on the second gate dielectric layer; and a second source/drain structure formed in the second region. 如申請專利範圍第11項所述之溝槽式金屬氧化物半導體元件的製造方法,在形成該第二源極/汲極結構之前,更包括:於該第一閘電極上覆蓋一介電覆蓋層。The method for manufacturing a trench MOS device according to claim 11, further comprising: covering the first gate electrode with a dielectric cover before forming the second source/drain structure Floor. 一種溝槽式金屬氧化物半導體元件的製造方法,包括:於一基材上定義一第一區以及一第二區;形成一圖案化硬罩幕層,於該第一區以及該第二區上;以該圖案化硬罩幕層為一罩幕,進行一蝕刻製程,於該第一區中形成至少一溝槽;形成一第一閘介電層,於該溝槽的側壁上;以及以一導體材料填充該溝槽,以形成一第一閘電極。A method of fabricating a trench metal oxide semiconductor device, comprising: defining a first region and a second region on a substrate; forming a patterned hard mask layer in the first region and the second region Forming the hard mask layer as a mask, performing an etching process to form at least one trench in the first region; forming a first gate dielectric layer on the sidewall of the trench; The trench is filled with a conductor material to form a first gate electrode. 如申請專利範圍第13項所述之溝槽式金屬氧化物半導體元件的製造方法,其中在形成該圖案化硬罩幕層的步驟之前,更包括:形成至少一隔離結構,於該第二區中。The method of fabricating a trench metal oxide semiconductor device according to claim 13, wherein before the step of forming the patterned hard mask layer, the method further comprises: forming at least one isolation structure in the second region in. 如申請專利範圍第14項所述之溝槽式金屬氧化物半導體元件的製造方法,其中該隔離結構係一淺溝隔離層(shallow trench isolator);該導體材料為多晶矽。The method of fabricating a trench metal oxide semiconductor device according to claim 14, wherein the isolation structure is a shallow trench isolator; the conductor material is polysilicon. 如申請專利範圍第13項所述之溝槽式金屬氧化物半導體元件的製造方法,其中該圖案化硬罩幕層包含一氧化矽薄膜層和一氮化矽厚膜層,或一氧化矽厚膜層和一氮化矽薄膜層。The method for fabricating a trench metal oxide semiconductor device according to claim 13, wherein the patterned hard mask layer comprises a hafnium oxide thin film layer and a tantalum nitride thick film layer, or a tantalum oxide layer a film layer and a tantalum nitride film layer. 如申請專利範圍第13項所述之溝槽式金屬氧化物半導體元件的製造方法,其中在填充該導體材料之後,更包括:形成一平坦層,覆蓋該導體材料;進行一化學機械研磨移除該平坦層,以及一部分該導體材料;以及進行一全面蝕刻製程,移除位於該第一區以及該第二區二者表面上的該導體材料以及該圖案化硬罩幕層。The method of manufacturing a trench MOS device according to claim 13, wherein after filling the conductor material, further comprising: forming a flat layer covering the conductor material; performing a chemical mechanical polishing removal The planarization layer, and a portion of the conductor material; and performing a full etch process to remove the conductor material and the patterned hard mask layer on both surfaces of the first region and the second region. 如申請專利範圍第17項所述之溝槽式金屬氧化物半導體元件的製造方法,在移除該導體材料以及該圖案化硬罩幕層之後,更包括:於該第二區上方,形成一第二閘介電層;以及於該第二閘介電層上形成一第二閘電極;以及於該第二區中,形成一第二源極/汲極結構。The method for manufacturing a trench MOS device according to claim 17, after removing the conductive material and the patterned hard mask layer, further comprising: forming a layer over the second region a second gate dielectric layer; and a second gate electrode formed on the second gate dielectric layer; and a second source/drain structure in the second region. 如申請專利範圍第18項所述之溝槽式金屬氧化物半導體元件的製造方法,在形成該第二源極/汲極結構之前,更包括:於該第一閘電極上覆蓋一介電覆蓋層。The method for fabricating a trench MOS device according to claim 18, further comprising: covering the first gate electrode with a dielectric cover before forming the second source/drain structure Floor.
TW100128382A 2011-08-09 2011-08-09 Trench-gate metal oxide semiconductor device and fabricating method thereof TWI550864B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100128382A TWI550864B (en) 2011-08-09 2011-08-09 Trench-gate metal oxide semiconductor device and fabricating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100128382A TWI550864B (en) 2011-08-09 2011-08-09 Trench-gate metal oxide semiconductor device and fabricating method thereof

Publications (2)

Publication Number Publication Date
TW201308599A true TW201308599A (en) 2013-02-16
TWI550864B TWI550864B (en) 2016-09-21

Family

ID=48169932

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100128382A TWI550864B (en) 2011-08-09 2011-08-09 Trench-gate metal oxide semiconductor device and fabricating method thereof

Country Status (1)

Country Link
TW (1) TWI550864B (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7462910B1 (en) * 1998-10-14 2008-12-09 International Rectifier Corporation P-channel trench MOSFET structure
GB0122122D0 (en) * 2001-09-13 2001-10-31 Koninkl Philips Electronics Nv Trench-gate semiconductor devices and their manufacture
US6924995B2 (en) * 2002-06-06 2005-08-02 Integrated Device Technology, Inc. CAM circuit with radiation resistance
JP2008108785A (en) * 2006-10-23 2008-05-08 Nec Electronics Corp Semiconductor device and manufacturing method therefor
US20080121985A1 (en) * 2006-11-07 2008-05-29 International Business Machines Corporation Structure and method to improve short channel effects in metal oxide semiconductor field effect transistors

Also Published As

Publication number Publication date
TWI550864B (en) 2016-09-21

Similar Documents

Publication Publication Date Title
US7348256B2 (en) Methods of forming reduced electric field DMOS using self-aligned trench isolation
US8399921B2 (en) Metal oxide semiconductor (MOS) structure and manufacturing method thereof
US8502308B2 (en) Semiconductor device with a trench isolation and method of manufacturing trenches in a semiconductor body
US8809163B2 (en) Fabricating method of trench-gate metal oxide semiconductor device
TWI488297B (en) Device and method for manufacturing the same
CN107799601A (en) Shield grid groove power MOSTET devices and its manufacture method
US10177154B2 (en) Structure and method to prevent EPI short between trenches in FinFET eDRAM
JP5759077B1 (en) Semiconductor device manufacturing method and semiconductor device
CN106876278A (en) The manufacture method of the trench-gate device with shield grid
TWI503983B (en) Power mosfet and methods for forming the same
TW201349509A (en) Semiconductor device
US8492221B2 (en) Method for fabricating power semiconductor device with super junction structure
US8643093B2 (en) Semiconductor device and method of manufacturing the same
KR101469343B1 (en) Vertical power mosfet and methods of forming the same
JP5838529B1 (en) Semiconductor device manufacturing method and semiconductor device
US20130307064A1 (en) Power transistor device and fabricating method thereof
KR100906557B1 (en) Semiconductor Device and Method for manufacturing the same
TWI550864B (en) Trench-gate metal oxide semiconductor device and fabricating method thereof
CN105981144B (en) Termination structure and preparation method thereof
US9214531B2 (en) Trenched power MOSFET with enhanced breakdown voltage and fabrication method thereof
CN102956639B (en) Trench metal-oxide semiconductor element and its manufacture method
US20180261692A1 (en) Semiconductor device and manufacturing method thereof
CN109980009B (en) Method for manufacturing semiconductor device and integrated semiconductor device
TWI606519B (en) Trench power semiconductor device and manufacturing method thereof
JP6033938B2 (en) Semiconductor device manufacturing method and semiconductor device