TW201307669A - System and method for controlling waste heat for CO2 capture - Google Patents

System and method for controlling waste heat for CO2 capture Download PDF

Info

Publication number
TW201307669A
TW201307669A TW101111584A TW101111584A TW201307669A TW 201307669 A TW201307669 A TW 201307669A TW 101111584 A TW101111584 A TW 101111584A TW 101111584 A TW101111584 A TW 101111584A TW 201307669 A TW201307669 A TW 201307669A
Authority
TW
Taiwan
Prior art keywords
steam
turbine
auxiliary
unit
power plant
Prior art date
Application number
TW101111584A
Other languages
Chinese (zh)
Inventor
Nareshkumar B Handagama
Rasesh R Kotdawala
Staffan Jonsson
Allen M Pfeffer
Olivier Drenik
Jacques Marchand
Craig Norman Schubert
Original Assignee
Alstom Technology Ltd
Dow Global Technologies Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/432,350 external-priority patent/US20120247104A1/en
Application filed by Alstom Technology Ltd, Dow Global Technologies Llc filed Critical Alstom Technology Ltd
Publication of TW201307669A publication Critical patent/TW201307669A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/008Adaptations for flue gas purification in steam generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/04Using steam or condensate extracted or exhausted from steam engine plant for specific purposes other than heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/40Sorption with wet devices, e.g. scrubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Abstract

The present invention relates to systems and methods for providing steam to a gas recovery unit 130 based on changes to steam flow to and/or power generated by a power generation unit 119. The gas recovery unit 130 may part of a thermal power generation unit 100 and may be an amine based CO2 recovery unit including two or more regenerator columns 153.

Description

供二氧化碳擷取之控制廢熱的系統及方法 System and method for controlling waste heat for carbon dioxide extraction

本發明大體上係關於一種火力發電廠。更明確而言,本發明係關於整合用於藉由發電廠蒸汽擷取二氧化碳以使廢熱最小化之程序控制方案之方法及系統。 The present invention generally relates to a thermal power plant. More specifically, the present invention relates to a method and system for integrating a program control scheme for extracting carbon dioxide from a power plant steam to minimize waste heat.

本申請案依據35 U.S.C.§119(e)主張2011年3月31日申請之題為「供二氧化碳擷取之控制廢熱的系統及方法(A SYSTEM AND METHOD FOR CONTROLLING WASTE HEAT FOR CO2 CAPTURE)」的臨時專利申請案第61/469,919之權利,該申請案之揭示內容以全文引用的方式併入本文中。 This application is based on 35 USC § 119(e) and claims "A SYSTEM AND METHOD FOR CONTROLLING WASTE HEAT FOR CO 2 CAPTURE", which was filed on March 31, 2011. The disclosure of the Provisional Patent Application No. 61/469,919, the disclosure of which is incorporated herein in its entirety by reference.

[相關申請案之交互參照] [Reciprocal Reference of Related Applications]

本申請案涉及在2011年3月31日與本申請案同時申請之題為「供二氧化碳擷取之控制廢熱的系統及方法(A SYSTEM AND METHOD FOR CONTROLLING WASTE HEAT FOR CO2 CAPTURE)」的美國專利申請案第61/469,915號(代理人案號W09/078-0(27849-0011)),該專利申請案已讓與給本發明之受讓人且以全文引用的方式併入本文中。 This application relates to a US patent entitled "A SYSTEM AND METHOD FOR CONTROLLING WASTE HEAT FOR CO 2 CAPTURE", which was filed at the same time as this application on March 31, 2011. The application is hereby incorporated by reference in its entirety in its entirety by reference in its entirety in its entirety in the the the the the the the the the the the

化石燃料及天然氣發電站習知地使用蒸汽渦輪機及其他機器來將熱量轉換成電。此等燃料之燃燒產生包括酸氣之廢氣流,酸氣包括二氧化碳CO2、氧化氮NOx及氧化硫SOx。已努力減少來自此等發電站的酸氣排放,且詳言之,減少包括CO2之溫室氣體之排放。因而,已將CO2擷 取系統整合至此等發電站中。已在此方面取得了眾多進展,從而導致在化石燃料之燃燒期間產生的CO2與燃燒氣體自部分分離至完全分離。近來,已關注使用含水胺自燃燒氣流移除酸氣污染物之水吸收及汽提程序。 Fossil fuel and natural gas power plants conventionally use steam turbines and other machines to convert heat into electricity. These include combusting fuel to produce exhaust gas stream of acid gas, the acid gas including carbon dioxide CO 2, sulfur oxides and nitrogen oxides NO x SO x. Efforts have been made to reduce the acid gas emissions from such power stations, and detail, including to reduce emissions of CO 2 greenhouse gases. Thus, the CO 2 extraction system has been integrated into such power plants. Progress has been made in this regard numerous, resulting in CO 2 with the combustion gas during the combustion of fossil fuels to generate completely separated from the separation portion. Recently, attention has been paid to water absorption and stripping procedures for the removal of sour gas contaminants from aqueous combustion streams using aqueous amines.

氣體吸收為將氣體混合物之可溶組分溶解於液體中的程序。氣體/液體接觸可為逆流或同向流,其中最常實踐逆流接觸。汽提基本上為吸收之逆程序,此係因為其涉及將揮發性組分自液體混合物轉移至氣體。在典型之二氧化碳移除程序中,使用吸收自燃燒氣體移除二氧化碳,且隨後使用汽提再生溶劑,且擷取含於溶劑中之二氧化碳。一旦已自燃燒氣體及其他氣體移除二氧化碳,則可擷取二氧化碳且將其壓縮以在數個應用(包括封存、甲醇之生成及三次石油回收)中使用。 Gas absorption is the process of dissolving the soluble components of the gas mixture in a liquid. The gas/liquid contact can be a countercurrent or cocurrent flow, with countercurrent contact being most often practiced. Stripping is essentially a reverse process of absorption because it involves the transfer of volatile components from the liquid mixture to the gas. In a typical carbon dioxide removal procedure, carbon dioxide is removed from the combustion gases using a sorbent, and then the solvent is regenerated using stripping and the carbon dioxide contained in the solvent is extracted. Once carbon dioxide has been removed from combustion gases and other gases, carbon dioxide can be extracted and compressed for use in several applications including storage, methanol generation, and tertiary petroleum recovery.

為了實現吸收劑溶液之再生,將自吸收塔之底部汲出的富溶劑引入至汽提塔之上半部分中,且在壓力下將富溶劑維持在處於其沸點或沸點附近的高溫下。藉由使含於汽提塔中之吸收劑溶液再沸來提供維持高溫所必需之熱量,此需要能量且因此增加總操作成本。 To effect regeneration of the absorbent solution, a rich solvent depleted from the bottom of the absorption column is introduced into the upper portion of the stripper and the rich solvent is maintained at a high temperature near its boiling or boiling point under pressure. This requires energy and thus increases overall operating costs by reboiling the absorbent solution contained in the stripper to provide the heat necessary to maintain high temperatures.

因此,存在將節省成本且操作上有效率的能源提供至再沸器以再生有負載之含水胺流之需要。 Therefore, there is a need to provide cost effective and operationally efficient energy sources to the reboiler to regenerate the loaded aqueous amine stream.

本發明之目標為提供一種用於有效率地將熱量提供至與蒸汽發電系統整合之酸氣吸收/汽提程序之系統及方法。 It is an object of the present invention to provide a system and method for efficiently providing heat to an acid gas absorption/stripping process integrated with a steam power generation system.

本發明之另一目標為藉由使用來自不同渦輪機級及水及/ 或蒸汽循環位置的蒸汽分接頭(擷獲點)之特殊配置提供用於酸氣擷取系統之能量來使總體發電廠效能最佳化。 Another object of the invention is to use water from different turbine stages and/or The special configuration of the steam tap (snap point) at the steam cycle location provides energy for the sour gas extraction system to optimize overall plant performance.

本發明之另一目標為提供來自不同渦輪機級及水及/或蒸汽循環位置的蒸汽分接頭(擷獲點)之特殊配置以提供用於酸氣擷取系統之能量,該等酸氣擷取系統可具新的設計或修整至現有發電系統設計中。 Another object of the present invention is to provide a special configuration of steam taps (suck points) from different turbine stages and water and/or steam cycle locations to provide energy for the sour gas extraction system, such acid gas capture The system can be redesigned or trimmed into the design of existing power generation systems.

本發明之另一目標為提供程序控制方案以整合蒸汽發電負載與用於酸氣擷取之能量產生。 Another object of the present invention is to provide a program control scheme to integrate steam generation loads with energy production for sour gas extraction.

因此且取決於用於擷取酸氣之已知技術之操作及設計參數,本發明之目標可在於減少能量。 Thus, and depending on the operation and design parameters of known techniques for extracting sour gas, the object of the invention may be to reduce energy.

此外,本發明之目標可在於在用於酸氣吸收之此技術中使用的化學品之減少排放之環境、健康及/或經濟改良。 Furthermore, the object of the present invention may be to reduce the environmental, health and/or economical improvement of emissions of chemicals used in this technique for acid gas absorption.

在一個態樣中,揭示一種發電廠,該發電廠包括:鍋爐單元,其產生蒸汽;發電單元,其包括自該鍋爐單元接收該蒸汽之至少一個發電渦輪機;氣體回收單元,其包括兩個或兩個以上再生塔;及次要蒸汽源,其以不同速率將蒸汽提供至該兩個或兩個以上再生塔中之每一者。 In one aspect, a power plant is disclosed, the power plant comprising: a boiler unit that generates steam; a power generation unit that includes at least one power generating turbine that receives the steam from the boiler unit; and a gas recovery unit that includes two or More than two regeneration columns; and a secondary steam source that provides steam to each of the two or more regeneration columns at different rates.

在另一態樣中,揭示一種用於將蒸汽提供至氣體回收單元之方法,該方法包括:將蒸汽自鍋爐單元或發電單元提供至次要蒸汽源;及自該次要蒸汽源排出蒸汽;以不同速率將自該次要蒸汽源排出之蒸汽提供至氣體回收單元之兩個或兩個以上再生塔。 In another aspect, a method for providing steam to a gas recovery unit is disclosed, the method comprising: providing steam from a boiler unit or a power generation unit to a secondary steam source; and discharging steam from the secondary steam source; The steam discharged from the secondary steam source is supplied to the two or more regeneration columns of the gas recovery unit at different rates.

現參看為例示性實施例之諸圖,且其中類似元件被相似 地編號。 Reference is now made to the drawings of the exemplary embodiments, and wherein similar elements are similar Land number.

以下參看圖式描述根據本發明之用於利用發電蒸汽將能量提供至酸氣回收件之系統及程序之特定實施例。 Specific embodiments of systems and procedures for providing energy to an acid gas recovery unit utilizing power generation steam in accordance with the present invention are described below with reference to the drawings.

圖1說明根據本發明之實施例的發電廠100之示意性簡化程序圖。在一個實施例中,熱系統100可為火力發電廠。在另一實施例中,發電廠100可為包括產生含二氧化碳之廢氣之燃燒設施及至少一個蒸汽單元的發電廠或設施。蒸汽單元可為蒸汽渦輪機發電單元。 FIG. 1 illustrates a schematic simplified schematic diagram of a power plant 100 in accordance with an embodiment of the present invention. In one embodiment, the thermal system 100 can be a thermal power plant. In another embodiment, power plant 100 can be a power plant or facility that includes a combustion facility that produces carbon dioxide-containing exhaust gases and at least one steam unit. The steam unit can be a steam turbine power generating unit.

如在圖1中可看出,發電廠100包括主要蒸汽源110、發電單元119及氣體回收單元130。在此例示性實施例中,主要蒸汽源110為蒸汽鍋爐單元。蒸汽鍋爐單元110可包括自化石燃料產生蒸汽之一或多個蒸汽鍋爐。燃料可為煤、泥炭、生質燃料、合成氣體/燃料、天然氣或當燃燒時產生含有諸如酸氣之氣體污染物的廢氣之其他碳燃料源。 As can be seen in FIG. 1, the power plant 100 includes a primary steam source 110, a power generation unit 119, and a gas recovery unit 130. In this exemplary embodiment, primary steam source 110 is a steam boiler unit. The steam boiler unit 110 may include one or more steam boilers that generate steam from a fossil fuel. The fuel may be coal, peat, biomass fuel, synthetic gas/fuel, natural gas, or other carbon fuel source that produces exhaust gas containing gaseous pollutants such as sour gas when burned.

發電單元119包括主要蒸汽消耗裝置120及發電單元125。在此例示性實施例中,主要蒸汽消耗裝置120為一或多個蒸汽渦輪機。一或多個蒸汽渦輪機120耦接至發電單元125以將機械能提供至發電機125從而產生電125A。可將電提供至電力網(圖中未展示)。在此例示性實施例中,一或多個蒸汽渦輪機120包括高壓(HP)渦輪機121、中壓(IP)渦輪機122及低壓(LP)渦輪機123。在另一實施例中,一或多個蒸汽渦輪機120可包括具有類似或變化操作壓力之任何數目個渦輪機之組合。 The power generation unit 119 includes a main steam consuming device 120 and a power generation unit 125. In this exemplary embodiment, primary steam consuming device 120 is one or more steam turbines. One or more steam turbines 120 are coupled to the power generation unit 125 to provide mechanical energy to the generator 125 to produce electricity 125A. Electricity can be supplied to the power grid (not shown). In this exemplary embodiment, one or more steam turbines 120 include a high pressure (HP) turbine 121, a medium pressure (IP) turbine 122, and a low pressure (LP) turbine 123. In another embodiment, one or more steam turbines 120 may include any combination of turbines having similar or varying operating pressures.

如可在圖1中進一步看出,發電單元119進一步包括次要 蒸汽消耗裝置124。在此例示性實施例中,次要蒸汽消耗裝置124為輔助蒸汽渦輪機。輔助蒸汽渦輪機124可為背壓式渦輪機。輔助蒸汽渦輪機124耦接至輔助發電機152。輔助發電機152產生可提供至電力網、發電廠當地電力網或其他當地能源供應器(圖中未展示)之電152A。取決於電力網負載要求,可增加或減少提供至電力網之能量量值。電力網負載需求可對輔助蒸汽渦輪機124之速度控制(圖中未展示)提供設定點。在一個實施例中,設定點可基於輔助渦輪機124之廢蒸汽之壓力而更動。 As can be further seen in Figure 1, power generation unit 119 further includes secondary Steam consuming device 124. In this exemplary embodiment, the secondary steam consuming device 124 is an auxiliary steam turbine. The auxiliary steam turbine 124 can be a back pressure turbine. The auxiliary steam turbine 124 is coupled to the auxiliary generator 152. Auxiliary generator 152 produces electricity 152A that can be provided to a power grid, a power plant local power grid, or other local energy source (not shown). The amount of energy provided to the power grid can be increased or decreased depending on the power grid load requirements. The power grid load demand can provide a set point for the speed control of the auxiliary steam turbine 124 (not shown). In one embodiment, the set point may be changed based on the pressure of the waste steam of the auxiliary turbine 124.

氣體回收單元130可為酸氣擷取及回收單元。氣體回收單元130包括CO2吸收單元130a及CO2再生單元130b。在一個實施例中,氣體回收單元130可為基於胺之洗滌單元。在一個實施例中,氣體回收單元130可為用於CO2擷取之高級胺製程。在一個實施例中,高級胺製程可為包括基質汽提組態之雙基質方案。 The gas recovery unit 130 can be an acid gas extraction and recovery unit. The gas recovery unit 130 includes a CO 2 absorption unit 130a and a CO 2 regeneration unit 130b. In one embodiment, the gas recovery unit 130 can be an amine based wash unit. In one embodiment, the gas recovery unit 130 can be used for CO 2 capture process of higher amines. In one embodiment, the higher amine process can be a dual matrix solution that includes a matrix stripping configuration.

CO2吸收單元130a包括CO2吸收器(吸收器)231。CO2再生單元130b包括兩個或兩個以上再生塔153。兩個或兩個以上再生塔153中之每一再生塔包括兩個或兩個以上再沸器140。在一個實施例中,再生塔中之一或多者可具有兩個或兩個以上再沸器。兩個或兩個以上再生塔153之配置可被稱作基質汽提組態。在此例示性實施例中,兩個或兩個以上再生塔153包括高壓(HP)再生塔154與相關聯之第一再沸器141,及低壓(LP)再生塔155與相關聯之第二再沸器142。 The CO 2 absorption unit 130a includes a CO 2 absorber (absorber) 231. The CO 2 regeneration unit 130b includes two or more regeneration towers 153. Each of the two or more regeneration columns 153 includes two or more reboilers 140. In one embodiment, one or more of the regeneration columns may have two or more reboilers. The configuration of two or more regeneration columns 153 may be referred to as a matrix stripping configuration. In this exemplary embodiment, two or more regeneration columns 153 include a high pressure (HP) regeneration column 154 and associated first reboiler 141, and a low pressure (LP) regeneration column 155 and associated second Reboiler 142.

經由進料管線231a自蒸汽鍋爐單元110向吸收器231提供含有CO2之氣流。氣體流可為廢氣流。在一個實施例中,廢氣可在提供至吸收器231之前由廢氣去硫單元(圖中未展示)及/或冷卻單元(圖中未展示)處理。在吸收器231中,使廢氣與溶劑溶液接觸以藉由吸收將CO2自廢氣移除。溶劑溶液可為基於胺之溶劑溶液。經由排出管線231b自吸收器231排出CO2經移除之廢氣流。吸收器231可進一步包括流體沖洗循環232以消除任何溶劑留存物,該流體沖洗循環232可包括流體沖洗泵233及流體沖洗冷卻器234。 A gas stream containing CO 2 is supplied from the steam boiler unit 110 to the absorber 231 via a feed line 231a. The gas stream can be an exhaust stream. In one embodiment, the exhaust gases may be treated by an exhaust gas desulfurization unit (not shown) and/or a cooling unit (not shown) prior to being provided to the absorber 231. In the absorber 231, the exhaust gas is brought into contact with the solvent solution to remove CO 2 from the exhaust gas by absorption. The solvent solution can be an amine based solvent solution. The CO 2 removed exhaust stream is discharged from the absorber 231 via a discharge line 231b. The absorber 231 can further include a fluid flush cycle 232 to eliminate any solvent retentate, which can include a fluid flush pump 233 and a fluid flush cooler 234.

為了實現溶劑溶液之再生,將自吸收器231之底部汲出的富CO2溶劑溶液引入至兩個或兩個以上再生塔153中之每一者的上半部分中,且在每一塔中在壓力下將富溶劑維持在CO2沸騰之溫度下。藉由與每一再生塔相關聯之一或多個再沸器提供維持沸點所必需之熱量。再沸程序由待再生之溶液之部分與在適當溫度下之熱流體之間的間接熱交換實現。在再生過程中,藉由吸收劑溶液之蒸氣釋放且汽提維持於沸點下的待再生之富溶劑中含有之二氧化碳。含有汽提之CO2的蒸氣出現於再生塔之頂部,且穿過冷凝器系統,該冷凝器系統將由吸收劑溶液之傳出再生塔的蒸氣(具有氣態CO2)之冷凝產生的液相返回至再生塔。在再生塔之底部,汲取且再循環熱再生之吸收劑溶液(亦叫作貧溶劑溶液)。 In order to achieve regeneration of the solvent solution, the CO 2 -rich solvent solution taken out from the bottom of the absorber 231 is introduced into the upper half of each of the two or more regeneration columns 153, and in each column The rich solvent is maintained at a temperature at which the CO 2 is boiling under pressure. The heat necessary to maintain the boiling point is provided by one or more reboilers associated with each regeneration column. The reboiling procedure is accomplished by indirect heat exchange between the portion of the solution to be regenerated and the hot fluid at the appropriate temperature. During the regeneration process, the vapor contained in the rich solvent to be regenerated, which is maintained at the boiling point, is released by the vapor of the absorbent solution and stripped. The vapor containing stripped CO 2 is present at the top of the regeneration column and passes through a condenser system that returns the liquid phase resulting from the condensation of the vapor of the absorbent solution (with gaseous CO 2 ) from the regeneration column To the regeneration tower. At the bottom of the regeneration column, a thermally regenerated absorbent solution (also known as a lean solvent solution) is pumped and recycled.

在此例示性實施例中,HP再生塔154及LP再生塔155藉由為了CO2吸收/解吸而使溶劑溶液循環之流體互連系統 235與CO2吸收器231互連。流體互連系統包括貧冷卻器236、半貧冷卻器237、LP富溶液泵238、HP富溶液泵239、半貧/富熱交換器240、半貧溶液泵241、貧/富熱交換器242、貧溶液泵243及如所展示之各種管線及饋入。 In this exemplary embodiment, HP regeneration column 154 and LP regeneration column 155 are interconnected with CO 2 absorber 231 by a fluid interconnect system 235 that circulates solvent solution for CO 2 absorption/desorption. The fluid interconnect system includes a lean cooler 236, a semi-lean cooler 237, an LP rich solution pump 238, an HP rich solution pump 239, a semi-lean/rich heat exchanger 240, a semi-lean solution pump 241, a lean/rich heat exchanger 242 The lean solution pump 243 and various lines and feeds as shown.

將自富含CO2(或換言之,富含CO2之溶劑)之CO2吸收器排出的來自CO2吸收器231之溶劑溶液(諸如,胺溶液)提供至HP再生塔154及LP再生塔155,其中自溶液汽提CO2。分別經由排出管線244及245自HP再生塔154及LP再生塔155排出CO2,排出管線244及245組合以形成排出管線246。排出管線246饋入CO2冷卻劑,其中自CO2流移除殘餘水分。經由CO2產物排出管線248自氣體回收單元130排出CO2產物流。 The CO 2 from the rich (or in other words, the CO 2 rich solvent) of the CO 2 absorber is discharged solvent solution (such as amine) from the CO 2 absorber 231 is supplied to the regeneration column 154 HP and LP regeneration tower 155 Where the CO 2 is stripped from the solution. The CO 2 is discharged from the HP regeneration column 154 and the LP regeneration column 155 via the discharge lines 244 and 245, respectively, and the discharge lines 244 and 245 are combined to form a discharge line 246. Discharge line 246 feeding coolant CO 2, CO 2 stream which is removed from the residual moisture. From the exhaust gas recovery unit 248 via line 130 product CO 2 is discharged liquid CO 2 product stream.

如可在圖1中進一步看出,蒸汽鍋爐單元110經由高壓蒸汽管線126將高壓蒸汽提供至高壓渦輪機121。高壓蒸汽之壓力可處於約270巴與300巴之間且其溫度可處於約600℃與700℃之間。提供至高壓渦輪機121之高壓蒸汽之流量與總發電廠負載成比例。總發電廠負載為由發電廠100產生之總電力量。經由輔助高壓(HP)蒸汽管線126A將高壓蒸汽自高壓蒸汽管線126分接,且將高壓蒸汽饋入至輔助渦輪機124,輔助渦輪機124耦接至輔助發電機152以產生電。 As can be further seen in FIG. 1, steam boiler unit 110 provides high pressure steam to high pressure turbine 121 via high pressure steam line 126. The pressure of the high pressure steam may be between about 270 and 300 bar and the temperature may be between about 600 and 700 °C. The flow of high pressure steam provided to the high pressure turbine 121 is proportional to the total power plant load. The total power plant load is the total amount of power generated by the power plant 100. High pressure steam is tapped from high pressure steam line 126 via auxiliary high pressure (HP) steam line 126A and high pressure steam is fed to auxiliary turbine 124, which is coupled to auxiliary generator 152 to generate electricity.

壓力減小之蒸汽自輔助渦輪機124排出,且經由輔助蒸汽管線124a提供至氣體回收單元130。可在處於約5巴與約20巴之間的壓力下且在小於約300℃之溫度下提供壓力減小之蒸汽。 The reduced pressure steam is exhausted from the auxiliary turbine 124 and provided to the gas recovery unit 130 via the auxiliary steam line 124a. The reduced pressure steam can be provided at a pressure between about 5 bar and about 20 bar and at a temperature less than about 300 °C.

分別經由第一輔助蒸汽管線124a2及第二輔助蒸汽管線124a1將提供至氣體回收單元130的壓力減小之蒸汽提供至第一再沸器141及第二再沸器142。同時且以不同速率將壓力減小之蒸汽提供至兩個或兩個以上再生塔153中之每一者。以不同速率提供蒸汽可包括在不同壓力、溫度及/或流量體積下提供蒸汽。以不同速率將蒸汽提供至兩個或兩個以上再生塔153中之每一者可用以將不同量之能量提供至兩個或兩個以上再生塔153中之每一者以改良每一再生塔之可控性。藉由使用諸如(但不限於)閥、膨脹裝置、節流裝置及其任何組合之一或多個蒸汽控制裝置控制蒸汽之品質來以不同速率將蒸汽提供至兩個或兩個以上再生塔153。再生器153同步起作用,然而,CO2汽提速率及塔壓力不同,以使氣體擷取及回收系統130關於CO2擷取及能量而最佳化。第一輔助蒸汽管線124a2及第二輔助蒸汽管線124a1以將不同量之能量提供至第一再沸器141及第二再沸器142以改良每一再沸器之可控性的不同速率將蒸汽提供至第一再沸器141及第二再沸器142,其隨後分別改良HP再生塔154及LP再生塔155之可控性。藉由分別控制至第一再沸器141及第二再沸器142之蒸汽之速率來改良HP再生塔154及LP再生塔155之控制,最小限度地減少發電單元119之電力產生,或換言之,招致發電廠100之電力產生的最小損失。因此,獨立且靈活地提供熱負荷傳遞以維持系統之最佳性。在另一實施例中,經由兩個或兩個以上輔助蒸汽管線將減小壓力之蒸汽提供至兩個或兩個以上再沸器 140。 The reduced pressure supplied to the gas recovery unit 130 is supplied to the first reboiler 141 and the second reboiler 142 via the first auxiliary steam line 124a 2 and the second auxiliary steam line 124a 1 , respectively. Simultaneously and at different rates, the reduced pressure steam is provided to each of the two or more regeneration columns 153. Providing steam at different rates can include providing steam at different pressures, temperatures, and/or flow volumes. Providing steam at different rates to each of the two or more regeneration columns 153 can be used to provide different amounts of energy to each of the two or more regeneration columns 153 to improve each regeneration tower Controllability. Steam is supplied to two or more regeneration towers 153 at different rates by controlling the quality of the steam using one or more steam control devices such as, but not limited to, valves, expansion devices, throttling devices, and any combination thereof. . The regenerator 153 synchronization function, however, CO 2 stripping column at different rates and pressure to the gas capture and recovery system 130 on CO 2 capture and energy optimization. The first auxiliary steam line 124a 2 and the second auxiliary steam line 124a 1 will provide different amounts of energy to the first reboiler 141 and the second reboiler 142 to improve the controllability of each reboiler at different rates. The steam is supplied to the first reboiler 141 and the second reboiler 142, which subsequently improve the controllability of the HP regeneration column 154 and the LP regeneration column 155, respectively. The control of the HP regeneration column 154 and the LP regeneration column 155 is improved by controlling the rates of steam to the first reboiler 141 and the second reboiler 142, respectively, to minimize power generation by the power generation unit 119, or in other words, Incurring the minimum loss of electricity generated by the power plant 100. Therefore, heat load transfer is provided independently and flexibly to maintain system optimality. In another embodiment, the reduced pressure steam is provided to two or more reboilers 140 via two or more auxiliary steam lines.

根據所提供之系統及方法,至輔助渦輪機124之蒸汽流量與由發電廠100產生之電力成比例。換言之,由發電廠100產生之更多電力導致更多蒸汽可用於提供至輔助渦輪機124且更多蒸汽可為酸氣回收單元130所用。此提供當發電廠負載改變時之粗略預期控制動作。 According to the systems and methods provided, the steam flow to the auxiliary turbine 124 is proportional to the power generated by the power plant 100. In other words, more power generated by the power plant 100 results in more steam being available to the auxiliary turbine 124 and more steam may be used by the acid gas recovery unit 130. This provides a rough expected control action when the power plant load changes.

在另一實施例中,可計算至輔助渦輪機124之蒸汽對提供至HP渦輪機121之蒸汽的比率且將該比率維持為固定值。經計算之比率可對HP渦輪機之速度控制提供設定點以使歸因於對至輔助渦輪機之流量進行節流的壓力損失最小化。在另一實施例中,可使用低壓(LP)再生塔155之頂級塔溫度來設定第二再沸器142中之再沸器負荷。 In another embodiment, the ratio of steam to auxiliary turbine 124 to steam provided to HP turbine 121 may be calculated and maintained at a fixed value. The calculated ratio can provide a set point for the speed control of the HP turbine to minimize pressure loss due to throttling of the flow to the auxiliary turbine. In another embodiment, the top column temperature of the low pressure (LP) regeneration column 155 can be used to set the reboiler duty in the second reboiler 142.

自輔助渦輪機124至兩個或兩個以上再沸器140之蒸汽流量可用以控制CO2在HP再生塔154及LP再生塔155中之再生,此係因為自輔助渦輪機124至第一再沸器141及第二再沸器142之蒸汽之流量可用以控制HP再生塔154及LP再生塔155之溫度。 The steam flow from the auxiliary turbine 124 to the two or more reboilers 140 can be used to control the regeneration of CO 2 in the HP regeneration column 154 and the LP regeneration column 155, since the self-assisting turbine 124 to the first reboiler The flow of steam from 141 and second reboiler 142 can be used to control the temperature of HP regeneration column 154 and LP regeneration column 155.

如圖1中所展示,將蒸汽分接之位置大體上展示於蒸汽管線上。然而,圖1及本發明中稍後的諸圖意欲包括分接至在提供所要蒸汽品質之蒸汽源的管線或組件位置處之蒸汽中。舉例而言,可將蒸汽自熱交換器、冷凝器、旁路、渦輪機結構或提供所要品質之蒸汽之其他蒸汽通過組件分接。 As shown in Figure 1, the location where the steam is tapped is generally shown on the steam line. However, the later figures of Figure 1 and the present invention are intended to include tapping into the steam at the location of the line or assembly that provides the desired steam quality source of steam. For example, steam may be tapped from a heat exchanger, a condenser, a bypass, a turbine structure, or other steam that provides a desired quality of steam through the assembly.

圖2說明根據本發明之另一實施例的發電廠200之示意性 簡化程序圖。發電廠200之主要組件與以上參看圖1之發電廠100所展示及描述的組件相同。然而,在此實施例中,自/至輔助渦輪機124之蒸汽自HP渦輪機121與IP渦輪機122之間的IP蒸汽管線210分接,且經由輔助IP蒸汽管線210A提供至輔助渦輪機124。在一個實施例中,IP蒸汽管線210中之蒸汽處於約50巴與約60巴之間。在另一實施例中,IP蒸汽管線210中之蒸汽處於約58巴與約60巴之間。在另一實施例中,IP蒸汽管線210中之蒸汽處於約450℃與620℃之間。在另一實施例中,IP蒸汽管線中之蒸汽處於約480℃與520℃之間。在又一實施例中,IP蒸汽管線中之溫度為約500℃。 Figure 2 illustrates a schematic representation of a power plant 200 in accordance with another embodiment of the present invention. Simplify the program diagram. The major components of power plant 200 are the same as those shown and described above with reference to power plant 100 of FIG. However, in this embodiment, steam from/to auxiliary turbine 124 is tapped from IP steam line 210 between HP turbine 121 and IP turbine 122 and provided to auxiliary turbine 124 via auxiliary IP steam line 210A. In one embodiment, the steam in the IP steam line 210 is between about 50 bar and about 60 bar. In another embodiment, the steam in the IP steam line 210 is between about 58 bar and about 60 bar. In another embodiment, the steam in the IP steam line 210 is between about 450 °C and 620 °C. In another embodiment, the steam in the IP steam line is between about 480 °C and 520 °C. In yet another embodiment, the temperature in the IP steam line is about 500 °C.

圖3說明根據本發明之另一實施例的發電廠300之示意性簡化程序圖。發電廠300之主要組件與以上參看圖1之發電廠100所展示及描述的組件相同。然而,在此實施例中,自/至輔助渦輪機124之蒸汽自IP渦輪機122與LP渦輪機123之間的LP蒸汽管線310分接。 FIG. 3 illustrates a schematic simplified schematic diagram of a power plant 300 in accordance with another embodiment of the present invention. The main components of power plant 300 are the same as those shown and described above with reference to power plant 100 of FIG. However, in this embodiment, steam from/to the auxiliary turbine 124 is tapped from the LP steam line 310 between the IP turbine 122 and the LP turbine 123.

在一個實施例中,LP蒸汽管線310中之蒸汽處於約3巴與約7巴之間。在另一實施例中,LP蒸汽管線310中之蒸汽處於約4巴與約6巴之間。在另一實施例中,LP管線310中之蒸汽為約5巴。在另一實施例中,LP進料管線310中之蒸汽處於約300℃與400℃之間。在另一實施例中,LP蒸汽管線中之蒸汽處於約340℃與400℃之間。在又一實施例中,LP蒸汽管線中之溫度為約400℃。 In one embodiment, the steam in the LP steam line 310 is between about 3 bars and about 7 bars. In another embodiment, the steam in the LP steam line 310 is between about 4 bars and about 6 bars. In another embodiment, the steam in LP line 310 is about 5 bars. In another embodiment, the steam in the LP feed line 310 is between about 300 °C and 400 °C. In another embodiment, the steam in the LP steam line is between about 340 °C and 400 °C. In yet another embodiment, the temperature in the LP steam line is about 400 °C.

圖4說明根據本發明之另一實施例的發電廠400之示意性 簡化程序圖。發電廠400之主要組件與以上參看圖1之發電廠100所展示及描述的組件相同。然而,在此實施例中,自輔助鍋爐410向輔助渦輪機124提供蒸汽。由於提供了輔助鍋爐410,因此廢氣流與自蒸汽鍋爐單元110輸入至酸氣回收單元130之熱量解偶。在一個實施例中,當主鍋爐上之負載改變時,輔助鍋爐410上之負載改變。可改變輔助鍋爐410上之負載以維持由輔助鍋爐410及蒸汽鍋爐單元110產生的蒸汽之比率。在另一實施例中,藉由基於至蒸汽鍋爐單元110之燃料饋入之改變來改變至輔助鍋爐410之燃料饋入,從而改變輔助鍋爐410上之負載。 4 illustrates a schematic representation of a power plant 400 in accordance with another embodiment of the present invention. Simplify the program diagram. The main components of power plant 400 are the same as those shown and described above with reference to power plant 100 of FIG. However, in this embodiment, steam is supplied from the auxiliary boiler 410 to the auxiliary turbine 124. Since the auxiliary boiler 410 is provided, the exhaust gas flow is decoupled from the heat input from the steam boiler unit 110 to the acid gas recovery unit 130. In one embodiment, the load on the auxiliary boiler 410 changes as the load on the main boiler changes. The load on the auxiliary boiler 410 can be varied to maintain the ratio of steam produced by the auxiliary boiler 410 and the steam boiler unit 110. In another embodiment, the load on the auxiliary boiler 410 is varied by changing the fuel feed to the auxiliary boiler 410 based on the change in fuel feed to the steam boiler unit 110.

圖5說明根據本發明之另一實施例的發電廠500之示意性簡化程序圖。發電廠500之主要組件與以上參看圖1之發電廠100所展示及描述的組件相同。在此實施例中,次要蒸汽消耗裝置524為蒸汽混合器。蒸汽混合器524可為蒸汽飽和器。在另一實施例中,次要蒸汽消耗裝置524可為接收相同或各種蒸汽品質之一或多種蒸汽饋入物且產生所要蒸汽品質之所得蒸汽排出物的蒸汽裝置。蒸汽飽和器524接收相同或類似蒸汽品質之蒸汽饋入物,且組合各種蒸汽饋入物以產生所要蒸汽品質之蒸汽排出物。在一個實施例中,蒸汽排出物為飽和之蒸汽排出物。蒸汽饋入物可為蒸汽、飽和或過飽和蒸汽與水之任何組合。自蒸汽鍋爐單元110及自發電單元119中之各種蒸汽分接頭向蒸汽飽和器524提供蒸汽。 FIG. 5 illustrates a schematic simplified schematic diagram of a power plant 500 in accordance with another embodiment of the present invention. The major components of power plant 500 are the same as those shown and described above with reference to power plant 100 of FIG. In this embodiment, the secondary steam consuming device 524 is a steam mixer. Steam mixer 524 can be a steam saturator. In another embodiment, the secondary steam consuming device 524 can be a steam device that receives one or more steam feeds of the same or various steam qualities and produces the resulting steam effluent of the desired steam quality. The steam saturator 524 receives steam feeds of the same or similar steam quality and combines the various steam feeds to produce a steam effluent of the desired steam quality. In one embodiment, the vapor effluent is a saturated vapor effluent. The steam feed can be any combination of steam, saturated or supersaturated steam and water. Steam is supplied to the steam saturator 524 from various steam taps in the steam boiler unit 110 and the self-generating unit 119.

渦輪機單元110包括主要渦輪機迴路110a及次要渦輪機 迴路110b。主要渦輪機迴路110a經由主要進料管線111a接收水且經由高壓蒸汽管線126排出蒸汽。次要渦輪機迴路110b經由次要進料管線111b接收水且經由次要蒸汽管線516排出蒸汽。在一個實施例中,經由次要蒸汽管線516排出之蒸汽為高壓蒸汽。 Turbine unit 110 includes a primary turbine circuit 110a and a secondary turbine Loop 110b. Main turbine circuit 110a receives water via primary feed line 111a and exhausts steam via high pressure steam line 126. Secondary turbine circuit 110b receives water via secondary feed line 111b and exits steam via secondary steam line 516. In one embodiment, the steam exiting via the secondary steam line 516 is high pressure steam.

蒸汽飽和器524自次要蒸汽管線516接收蒸汽。在一個實施例中,在約250巴至約320巴之間的壓力下且在約580℃與約700℃之間的溫度下將來自次要蒸汽管線516之蒸汽提供至蒸汽飽和器524。在另一實施例中,次要蒸汽管線516在約280巴至約300巴之間的壓力下且在約600℃與約670℃之間的溫度下將蒸汽提供至蒸汽飽和器524。 Steam saturator 524 receives steam from secondary steam line 516. In one embodiment, steam from the secondary steam line 516 is provided to the steam saturator 524 at a pressure between about 250 bar and about 320 bar and at a temperature between about 580 ° C and about 700 ° C. In another embodiment, the secondary steam line 516 provides steam to the steam saturator 524 at a pressure between about 280 bar and about 300 bar and at a temperature between about 600 ° C and about 670 ° C.

如可在圖5中看出,向蒸汽飽和器524進一步提供來自發電單元119之蒸汽,包括:經由輔助HP蒸汽管線126A自HP蒸汽管線126提供之HP蒸汽;經由輔助IP蒸汽管線210A自HP渦輪機121與IP渦輪機122之間的IP蒸汽進料管線210提供之IP蒸汽;經由輔助LP蒸汽管線310A自IP渦輪機122與LP渦輪機123之間的LP蒸汽管線310提供之LP蒸汽;及經由輔助排出蒸汽管線520A自排出來自LP渦輪機123之蒸汽的排出蒸汽管線520提供之排出蒸汽。 As can be seen in Figure 5, steam from the power generation unit 119 is further provided to the steam saturator 524, including: HP steam supplied from the HP steam line 126 via the auxiliary HP steam line 126A; from the HP turbine via the auxiliary IP steam line 210A IP steam provided by IP steam feed line 210 between IP turbine 122 and IP turbine; LP steam supplied from LP steam line 310 between IP turbine 122 and LP turbine 123 via auxiliary LP steam line 310A; and exhaust steam via auxiliary Line 520A discharges steam from a discharge steam line 520 that discharges steam from LP turbine 123.

在一個實施例中,來自次要蒸汽管線516之蒸汽處於約500℃與約600℃之間。在另一實施例中,來自次要蒸汽管線516之蒸汽處於約510℃與約565℃之間。在另一實施例中,來自次要蒸汽管線516之蒸汽處於約150巴與約175巴之間。在另一實施例中,來自次要蒸汽管線516之蒸汽處 於約160巴與約165巴之間。 In one embodiment, the steam from the secondary steam line 516 is between about 500 ° C and about 600 ° C. In another embodiment, the steam from the secondary steam line 516 is between about 510 ° C and about 565 ° C. In another embodiment, the steam from the secondary steam line 516 is between about 150 bar and about 175 bar. In another embodiment, the steam from the secondary steam line 516 It is between about 160 bar and about 165 bar.

以產生經由輔助蒸汽管線124a至酸氣回收單元130之所要蒸汽流之方式提供蒸汽且將其組合至蒸汽飽和器524。在一個實施例中,可在約5巴與約20巴之間的壓力下且在小於約300℃之溫度下提供壓力減小之蒸汽。將壓力減小之蒸汽提供至第一再沸器141及第二再沸器142。在另一實施例中,將壓力減小之蒸汽提供至一或多個再沸器。取決於發電單元119之需求,可利用或關斷輔助蒸汽管線中之一或多者以及次要蒸汽管線516。 Steam is provided in a manner that produces a desired vapor stream via auxiliary steam line 124a to acid gas recovery unit 130 and is combined to steam saturator 524. In one embodiment, the reduced pressure steam may be provided at a pressure between about 5 bar and about 20 bar and at a temperature less than about 300 °C. The reduced pressure steam is supplied to the first reboiler 141 and the second reboiler 142. In another embodiment, the reduced pressure steam is provided to one or more reboilers. One or more of the auxiliary steam lines and the secondary steam line 516 may be utilized or shut down depending on the demand of the power generation unit 119.

圖6說明根據本發明之另一實施例的發電廠600之示意性簡化程序圖。發電廠600之主要組件與以上參看圖3之發電廠300所展示及描述的組件相同。然而,在此實施例中,流量控制裝置610替換輔助渦輪機124(圖3)作為次要蒸汽源150。將流量控制裝置610提供於輔助LP蒸汽管線310A上。流量控制裝置610可為節流閥。可選擇、控制及/或調整流量控制裝置610以調節提供至輔助渦輪機124之蒸汽量。在另一實施例中,流量控制裝置610可替換圖2之輔助渦輪機124,且提供於輔助IP蒸汽管線210A上。在又一實施例中,流量控制裝置610可替換圖1之輔助渦輪機124,且提供於輔助HP蒸汽管線126A上。 FIG. 6 illustrates a schematic simplified schematic diagram of a power plant 600 in accordance with another embodiment of the present invention. The major components of power plant 600 are the same as those shown and described above with reference to power plant 300 of FIG. However, in this embodiment, flow control device 610 replaces auxiliary turbine 124 (FIG. 3) as secondary steam source 150. Flow control device 610 is provided on auxiliary LP steam line 310A. Flow control device 610 can be a throttle valve. The flow control device 610 can be selected, controlled, and/or adjusted to adjust the amount of steam provided to the auxiliary turbine 124. In another embodiment, flow control device 610 can be substituted for auxiliary turbine 124 of FIG. 2 and provided on auxiliary IP steam line 210A. In yet another embodiment, flow control device 610 can be substituted for auxiliary turbine 124 of FIG. 1 and provided on auxiliary HP steam line 126A.

圖7說明根據本發明之另一實施例的發電廠700之示意性簡化程序圖。發電廠700之主要組件與以上參看圖1之發電廠100所展示及描述的組件相同。然而,在此實施例中,至輔助渦輪機124之蒸汽管線為代替輔助HP蒸汽管線126A (圖1)之輔助組合式蒸汽管線726A。輔助蒸汽管線726A自輔助HP蒸汽管線126A、輔助IP蒸汽管線210A及輔助LP蒸汽管線310A接收蒸汽。 FIG. 7 illustrates a schematic simplified schematic diagram of a power plant 700 in accordance with another embodiment of the present invention. The major components of power plant 700 are the same as those shown and described above with reference to power plant 100 of FIG. However, in this embodiment, the steam line to the auxiliary turbine 124 is in place of the auxiliary HP steam line 126A. (Fig. 1) an auxiliary combined steam line 726A. The auxiliary steam line 726A receives steam from the auxiliary HP steam line 126A, the auxiliary IP steam line 210A, and the auxiliary LP steam line 310A.

圖8說明根據本發明之另一實施例的發電廠800之示意性簡化程序圖。發電廠800之主要組件與以上參看圖2之發電廠200所展示及描述的組件相同。然而,在此實施例中,輔助蒸汽管線124a僅將蒸汽提供至LP再生塔155,而不將蒸汽提供至HP再生塔154。實情為,經由輔助LP蒸汽管線310A將來自LP蒸汽管線310之蒸汽提供至第二輔助蒸汽渦輪機824。第二輔助蒸汽渦輪機824耦接至第二輔助發電機852以產生電852A。在另一實施例中,可使用一或多個第二輔助蒸汽渦輪機824。經由第二輔助蒸汽管線824A將蒸汽自第二輔助蒸汽渦輪機824排出,第二輔助蒸汽管線824A將蒸汽提供至HP再生塔154。在另一實施例中,經由輔助HP蒸汽管線126A將來自HP蒸汽管線126之蒸汽提供至輔助渦輪機124。在又一實施例中,將來自HP蒸汽管線126及輔助LP蒸汽管線210兩者之蒸汽提供至輔助渦輪機124。 FIG. 8 illustrates a schematic simplified schematic diagram of a power plant 800 in accordance with another embodiment of the present invention. The major components of power plant 800 are the same as those shown and described above with reference to power plant 200 of FIG. However, in this embodiment, the auxiliary steam line 124a provides only steam to the LP regeneration column 155 without providing steam to the HP regeneration column 154. The steam from the LP steam line 310 is provided to the second auxiliary steam turbine 824 via the auxiliary LP steam line 310A. The second auxiliary steam turbine 824 is coupled to the second auxiliary generator 852 to generate electricity 852A. In another embodiment, one or more second auxiliary steam turbines 824 can be used. Steam is withdrawn from the second auxiliary steam turbine 824 via a second auxiliary steam line 824A that provides steam to the HP regeneration tower 154. In another embodiment, steam from the HP steam line 126 is provided to the auxiliary turbine 124 via the auxiliary HP steam line 126A. In yet another embodiment, steam from both the HP steam line 126 and the auxiliary LP steam line 210 is provided to the auxiliary turbine 124.

圖9說明根據本發明之另一實施例的發電廠900之示意性簡化程序圖。發電廠900之主要組件與以上參看圖3之發電廠300所展示及描述的組件相同。然而,在此實施例中,輔助蒸汽管線124a僅將蒸汽提供至LP再生塔155,而不將蒸汽提供至HP再生塔154。實情為,經由輔助蒸汽旁路管線910A使來自輔助蒸汽管線124a之至少一些蒸汽旁通至第二輔助蒸汽渦輪機924。在另一實施例中,可使用一或多 個第二輔助蒸汽渦輪機924。第二輔助蒸汽渦輪機924耦接至第二輔助發電機952以產生電952A。經由第二輔助蒸汽管線924A將蒸汽自第二輔助蒸汽渦輪機924排出,第二輔助蒸汽管線924A將蒸汽提供至HP再生塔154。在另一實施例中,可將來自HP蒸汽管線126、IP蒸汽管線210及LP蒸汽管線310中之一者或任何組合的蒸汽提供至輔助渦輪機124。 FIG. 9 illustrates a schematic simplified schematic diagram of a power plant 900 in accordance with another embodiment of the present invention. The major components of power plant 900 are the same as those shown and described above with reference to power plant 300 of FIG. However, in this embodiment, the auxiliary steam line 124a provides only steam to the LP regeneration column 155 without providing steam to the HP regeneration column 154. Instead, at least some of the steam from the auxiliary steam line 124a is bypassed to the second auxiliary steam turbine 924 via the auxiliary steam bypass line 910A. In another embodiment, one or more may be used A second auxiliary steam turbine 924. The second auxiliary steam turbine 924 is coupled to the second auxiliary generator 952 to generate electricity 952A. Steam is withdrawn from the second auxiliary steam turbine 924 via a second auxiliary steam line 924A that provides steam to the HP regeneration tower 154. In another embodiment, steam from one or any combination of HP steam line 126, IP steam line 210, and LP steam line 310 may be provided to auxiliary turbine 124.

雖然已參照各種例示性實施例描述了本發明,但熟習此項技術者應理解,在不脫離本發明之範疇之情況下,可進行各種改變,且可用等效物替代例示性實施例之元件。此外,在不脫離本發明之基本範疇的情況下,可進行許多修改以使特定情形或材料適合於本發明之教示。因此,預期本發明不限於揭示為經涵蓋以用於進行本發明之最佳模式之特定實施例,而是本發明將包括屬於隨附申請專利範圍之範疇的所有實施例。 While the invention has been described with respect to the embodiments of the exemplary embodiments of the embodiments of the invention . In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the scope of the invention. Therefore, the invention is not intended to be limited to the specific embodiments disclosed as the preferred embodiments of the invention.

100‧‧‧火力發電單元/發電廠/熱系統 100‧‧‧ Thermal Power Unit / Power Plant / Thermal System

110‧‧‧主要蒸汽源/蒸汽鍋爐單元 110‧‧‧Main steam source/steam boiler unit

110a‧‧‧主要渦輪機迴路 110a‧‧‧Main turbine circuit

110b‧‧‧次要渦輪機迴路 110b‧‧‧Secondary turbine circuit

111a‧‧‧主要進料管線 111a‧‧‧Main feed line

111b‧‧‧次要進料管線 111b‧‧‧Secondary feed line

119‧‧‧發電單元 119‧‧‧Power unit

120‧‧‧主要蒸汽消耗裝置/蒸汽渦輪機 120‧‧‧Main steam consuming device/steam turbine

121‧‧‧高壓(HP)渦輪機 121‧‧‧High pressure (HP) turbine

122‧‧‧中壓(IP)渦輪機 122‧‧‧Medium pressure (IP) turbine

123‧‧‧低壓(LP)渦輪機 123‧‧‧Low pressure (LP) turbine

124‧‧‧次要蒸汽消耗裝置/輔助蒸汽渦輪機 124‧‧‧Secondary steam consuming device/auxiliary steam turbine

124a‧‧‧輔助蒸汽管線 124a‧‧‧Auxiliary steam line

124a1‧‧‧第二輔助蒸汽管線 124a 1 ‧‧‧Second auxiliary steam line

124a2‧‧‧第一輔助蒸汽管線 124a 2 ‧‧‧First auxiliary steam line

125‧‧‧發電機/發電單元 125‧‧‧Generator/Power Unit

125A‧‧‧電 125A‧‧‧Electric

126‧‧‧高壓(HP)蒸汽管線 126‧‧‧High pressure (HP) steam line

126A‧‧‧輔助高壓(HP)蒸汽管線 126A‧‧‧Assisted high pressure (HP) steam line

130‧‧‧氣體擷取及回收單元/酸氣回收單元 130‧‧‧Gas extraction and recovery unit/acid gas recovery unit

130a‧‧‧CO2吸收單元 130a‧‧‧CO 2 absorption unit

130b‧‧‧CO2再生單元 130b‧‧‧CO 2 regeneration unit

140‧‧‧再沸器 140‧‧‧ reboiler

141‧‧‧第一再沸器 141‧‧‧First reboiler

142‧‧‧第二再沸器 142‧‧‧Second reboiler

150‧‧‧次要蒸汽源 150‧‧‧ secondary steam source

152‧‧‧輔助發電機 152‧‧‧Auxiliary generator

152A‧‧‧電 152A‧‧‧Electricity

153‧‧‧再生塔/再生器 153‧‧‧Regeneration tower/regenerator

154‧‧‧高壓(HP)再生塔 154‧‧‧High Pressure (HP) Regeneration Tower

155‧‧‧低壓(LP)再生塔 155‧‧‧Low Pressure (LP) Regeneration Tower

200‧‧‧發電廠 200‧‧‧ power plant

210‧‧‧IP蒸汽管線/IP蒸汽進料管線 210‧‧‧IP steam line/IP steam feed line

210A‧‧‧輔助IP蒸汽管線 210A‧‧‧Auxiliary IP steam line

231‧‧‧CO2吸收器(吸收器) 231‧‧‧CO 2 absorber (absorber)

231a‧‧‧進料管線 231a‧‧‧feed line

231b‧‧‧排出管線 231b‧‧‧Drainage line

232‧‧‧流體沖洗循環 232‧‧‧ fluid flushing cycle

233‧‧‧流體沖洗泵 233‧‧‧ fluid flushing pump

234‧‧‧流體沖洗冷卻器 234‧‧‧Fluid Flush Cooler

235‧‧‧流體互連系統 235‧‧‧Fluid interconnection system

236‧‧‧貧冷卻器 236‧‧‧ lean cooler

237‧‧‧半貧冷卻器 237‧‧‧Semi-lean cooler

238‧‧‧LP富溶液泵 238‧‧‧LP rich solution pump

239‧‧‧HP富溶液泵 239‧‧‧HP rich solution pump

240‧‧‧半貧/富熱交換器 240‧‧‧semi-lean/rich heat exchanger

241‧‧‧半貧溶液泵 241‧‧‧ semi-lean solution pump

242‧‧‧貧/富熱交換器 242‧‧‧Low/rich heat exchanger

243‧‧‧貧溶液泵 243‧‧‧ lean solution pump

244‧‧‧排出管線 244‧‧‧Drainage line

245‧‧‧排出管線 245‧‧‧Drainage line

246‧‧‧排出管線 246‧‧‧Drainage line

248‧‧‧CO2產物排出管線 248‧‧‧CO 2 product discharge line

300‧‧‧發電廠 300‧‧‧Power Plant

310‧‧‧LP蒸汽管線/LP進料管線 310‧‧‧LP steam line/LP feed line

310A‧‧‧輔助LP蒸汽管線 310A‧‧‧Auxiliary LP steam line

400‧‧‧發電廠 400‧‧‧ power plant

410‧‧‧輔助鍋爐 410‧‧‧Auxiliary boiler

500‧‧‧發電廠 500‧‧‧ power plant

516‧‧‧次要蒸汽管線 516‧‧‧Secondary steam pipeline

520‧‧‧排出蒸汽管線 520‧‧‧Exhaust steam line

520A‧‧‧輔助排出蒸汽管線 520A‧‧‧Auxiliary exhaust steam line

524‧‧‧次要蒸汽消耗裝置/蒸汽混合器/蒸汽飽和器 524‧‧‧Secondary steam consumption unit/steam mixer/steam saturator

600‧‧‧發電廠 600‧‧‧ power plant

610‧‧‧流量控制裝置 610‧‧‧Flow control device

700‧‧‧發電廠 700‧‧‧Power Plant

726A‧‧‧輔助組合式蒸汽管線 726A‧‧‧Auxiliary combined steam line

800‧‧‧發電廠 800‧‧‧ power plant

824‧‧‧第二輔助蒸汽渦輪機 824‧‧‧Second auxiliary steam turbine

824A‧‧‧第二輔助蒸汽管線 824A‧‧‧Second auxiliary steam line

852‧‧‧第二輔助發電機 852‧‧‧Second auxiliary generator

852A‧‧‧電 852A‧‧‧Electricity

900‧‧‧發電廠 900‧‧‧Power Plant

910A‧‧‧輔助蒸汽旁路管線 910A‧‧‧Auxiliary steam bypass line

924‧‧‧第二輔助蒸汽渦輪機 924‧‧‧Second auxiliary steam turbine

924a‧‧‧第二輔助蒸汽管線 924a‧‧‧Second auxiliary steam line

952‧‧‧第二輔助發電機 952‧‧‧Second auxiliary generator

952A‧‧‧電 952A‧‧‧Electric

圖1說明根據本發明之實施例的發電廠之示意性簡化程序圖。 Figure 1 illustrates a schematic simplified schematic diagram of a power plant in accordance with an embodiment of the present invention.

圖2說明根據本發明之另一實施例的發電廠之示意性簡化程序圖。 2 illustrates a schematic simplified schematic diagram of a power plant in accordance with another embodiment of the present invention.

圖3說明根據本發明之另一實施例的發電廠之示意性簡化程序圖。 Figure 3 illustrates a schematic simplified schematic diagram of a power plant in accordance with another embodiment of the present invention.

圖4說明根據本發明之另一實施例的發電廠之示意性簡化程序圖。 4 illustrates a schematic simplified schematic diagram of a power plant in accordance with another embodiment of the present invention.

圖5說明根據本發明之另一實施例的發電廠之示意性簡 化程序圖。 Figure 5 illustrates a schematic representation of a power plant in accordance with another embodiment of the present invention. Program diagram.

圖6說明根據本發明之另一實施例的發電廠之示意性簡化程序圖。 Figure 6 illustrates a schematic simplified schematic diagram of a power plant in accordance with another embodiment of the present invention.

圖7說明根據本發明之另一實施例的發電廠之示意性簡化程序圖。 Figure 7 illustrates a schematic simplified schematic diagram of a power plant in accordance with another embodiment of the present invention.

圖8說明根據本發明之另一實施例的發電廠之示意性簡化程序圖。 Figure 8 illustrates a schematic simplified schematic diagram of a power plant in accordance with another embodiment of the present invention.

圖9說明根據本發明之另一實施例的發電廠之示意性簡化程序圖。 Figure 9 illustrates a schematic simplified schematic diagram of a power plant in accordance with another embodiment of the present invention.

100‧‧‧火力發電單元/發電廠/熱系統 100‧‧‧ Thermal Power Unit / Power Plant / Thermal System

110‧‧‧主要蒸汽源/蒸汽鍋爐單元 110‧‧‧Main steam source/steam boiler unit

119‧‧‧發電單元 119‧‧‧Power unit

120‧‧‧主要蒸汽消耗裝置/蒸汽渦輪機 120‧‧‧Main steam consuming device/steam turbine

121‧‧‧高壓(HP)渦輪機 121‧‧‧High pressure (HP) turbine

122‧‧‧中壓(IP)渦輪機 122‧‧‧Medium pressure (IP) turbine

123‧‧‧低壓(LP)渦輪機 123‧‧‧Low pressure (LP) turbine

124‧‧‧次要蒸汽消耗裝置/輔助蒸汽渦輪機 124‧‧‧Secondary steam consuming device/auxiliary steam turbine

124a‧‧‧輔助蒸汽管線 124a‧‧‧Auxiliary steam line

124a1‧‧‧第二輔助蒸汽管線 124a 1 ‧‧‧Second auxiliary steam line

124a2‧‧‧第一輔助蒸汽管線 124a 2 ‧‧‧First auxiliary steam line

125‧‧‧發電機/發電單元 125‧‧‧Generator/Power Unit

125A‧‧‧電 125A‧‧‧Electric

126‧‧‧高壓(HP)蒸汽管線 126‧‧‧High pressure (HP) steam line

126A‧‧‧輔助高壓(HP)蒸汽管線 126A‧‧‧Assisted high pressure (HP) steam line

130‧‧‧氣體擷取及回收單元/酸氣回收單元 130‧‧‧Gas extraction and recovery unit/acid gas recovery unit

130a‧‧‧CO2吸收單元 130a‧‧‧CO 2 absorption unit

130b‧‧‧CO2再生單元 130b‧‧‧CO 2 regeneration unit

140‧‧‧再沸器 140‧‧‧ reboiler

141‧‧‧第一再沸器 141‧‧‧First reboiler

142‧‧‧第二再沸器 142‧‧‧Second reboiler

150‧‧‧次要蒸汽源 150‧‧‧ secondary steam source

152‧‧‧輔助發電機 152‧‧‧Auxiliary generator

152A‧‧‧電 152A‧‧‧Electricity

153‧‧‧再生塔/再生器 153‧‧‧Regeneration tower/regenerator

154‧‧‧高壓(HP)再生塔 154‧‧‧High Pressure (HP) Regeneration Tower

155‧‧‧低壓(LP)再生塔 155‧‧‧Low Pressure (LP) Regeneration Tower

210‧‧‧IP蒸汽管線/IP蒸汽進料管線 210‧‧‧IP steam line/IP steam feed line

231‧‧‧CO2吸收器(吸收器) 231‧‧‧CO 2 absorber (absorber)

231a‧‧‧進料管線 231a‧‧‧feed line

231b‧‧‧排出管線 231b‧‧‧Drainage line

232‧‧‧流體沖洗循環 232‧‧‧ fluid flushing cycle

233‧‧‧流體沖洗泵 233‧‧‧ fluid flushing pump

234‧‧‧流體沖洗冷卻器 234‧‧‧Fluid Flush Cooler

235‧‧‧流體互連系統 235‧‧‧Fluid interconnection system

236‧‧‧貧冷卻器 236‧‧‧ lean cooler

237‧‧‧半貧冷卻器 237‧‧‧Semi-lean cooler

238‧‧‧LP富溶液泵 238‧‧‧LP rich solution pump

239‧‧‧HP富溶液泵 239‧‧‧HP rich solution pump

240‧‧‧半貧/富熱交換器 240‧‧‧semi-lean/rich heat exchanger

241‧‧‧半貧溶液泵 241‧‧‧ semi-lean solution pump

242‧‧‧貧/富熱交換器 242‧‧‧Low/rich heat exchanger

243‧‧‧貧溶液泵 243‧‧‧ lean solution pump

244‧‧‧排出管線 244‧‧‧Drainage line

245‧‧‧排出管線 245‧‧‧Drainage line

246‧‧‧排出管線 246‧‧‧Drainage line

248‧‧‧CO2產物排出管線 248‧‧‧CO 2 product discharge line

310‧‧‧LP蒸汽管線/LP進料管線 310‧‧‧LP steam line/LP feed line

520‧‧‧排出蒸汽管線 520‧‧‧Exhaust steam line

Claims (15)

一種發電廠,其包含:鍋爐單元,其產生蒸汽;發電單元,其包含自該鍋爐單元接收該蒸汽之至少一個發電渦輪機;氣體回收單元,其包含兩個或兩個以上的再生塔;及次要蒸汽源,其以不同速率將蒸汽提供至該兩個或兩個以上再生塔中之每一者。 A power plant comprising: a boiler unit that generates steam; a power generation unit that includes at least one power generation turbine that receives the steam from the boiler unit; a gas recovery unit that includes two or more regeneration towers; A steam source is provided that provides steam to each of the two or more regeneration columns at different rates. 如請求項1之發電廠,其中該氣體回收單元包含基於胺之洗滌單元。 The power plant of claim 1, wherein the gas recovery unit comprises an amine based washing unit. 如請求項1之發電廠,其中該次要蒸汽源包含輔助渦輪機、流量控制裝置或其組合。 A power plant of claim 1 wherein the secondary steam source comprises an auxiliary turbine, a flow control device, or a combination thereof. 如請求項1之發電廠,其中該發電單元包含高壓渦輪機、中壓渦輪機、低壓渦輪機或其任何組合,且其中蒸汽係自至該高壓渦輪機之高壓蒸汽饋入、至該中壓渦輪機之中壓蒸汽饋入、至該低壓渦輪機之低壓蒸汽饋入及其任何組合中之任一者提供至該次要蒸汽源。 The power plant of claim 1, wherein the power generating unit comprises a high pressure turbine, an intermediate pressure turbine, a low pressure turbine, or any combination thereof, and wherein the steam is fed from the high pressure steam to the high pressure turbine to the medium pressure turbine Any of the steam feed, low pressure steam feed to the low pressure turbine, and any combination thereof is provided to the secondary steam source. 如請求項1之發電廠,其中該次要蒸汽源包含蒸汽飽和器,且其中該蒸汽飽和器自高壓進料管線、中壓進料管線、低壓進料管線、來自該鍋爐單元之次要進料管線及其任何組合中之任一者接收蒸汽。 The power plant of claim 1, wherein the secondary steam source comprises a steam saturator, and wherein the steam satifier is from a high pressure feed line, a medium pressure feed line, a low pressure feed line, and a secondary feed from the boiler unit Any of the feed lines and any combination thereof receive steam. 如請求項1之發電廠,其中該次要蒸汽源包含輔助鍋爐及輔助渦輪機;或包含輔助渦輪機及第二輔助渦輪機。 The power plant of claim 1, wherein the secondary steam source comprises an auxiliary boiler and an auxiliary turbine; or comprises an auxiliary turbine and a second auxiliary turbine. 如請求項6之發電廠,其中該第二輔助渦輪機自該輔助 渦輪機之蒸汽排出口接收蒸汽。 The power plant of claim 6, wherein the second auxiliary turbine is from the auxiliary The steam outlet of the turbine receives steam. 一種將蒸汽提供至氣體回收單元之方法,其包含:將蒸汽自鍋爐單元或發電單元提供至次要蒸汽源;自該次要蒸汽源排出蒸汽;及以不同速率將自該次要蒸汽源排出之蒸汽提供至氣體回收單元之兩個或兩個以上的再生塔。 A method of providing steam to a gas recovery unit, comprising: providing steam from a boiler unit or a power generation unit to a secondary steam source; discharging steam from the secondary steam source; and discharging the secondary steam source at different rates The steam is supplied to two or more regeneration towers of the gas recovery unit. 如請求項8之方法,其中蒸汽係自鍋爐單元或發電單元提供至該次要蒸汽源。 The method of claim 8, wherein the steam is supplied to the secondary steam source from a boiler unit or a power generating unit. 如請求項8之方法,其中該次要蒸汽源包含至少一個輔助渦輪機、蒸汽飽和器或其組合。 The method of claim 8, wherein the secondary steam source comprises at least one auxiliary turbine, a steam saturator, or a combination thereof. 如請求項8之方法,其進一步包含:將蒸汽提供至發電單元以產生電。 The method of claim 8, further comprising: providing steam to the power generating unit to generate electricity. 如請求項8之方法,其中該氣體回收單元將酸氣與氣體流分離。 The method of claim 8, wherein the gas recovery unit separates the acid gas from the gas stream. 如請求項8之方法,其中該氣體回收單元為CO2回收單元。 The method of claim 8, wherein the gas recovery unit is a CO 2 recovery unit. 如請求項8之方法,其中該氣體回收單元包含兩個或兩個以上的再沸器。 The method of claim 8, wherein the gas recovery unit comprises two or more reboilers. 如請求項8之方法,其中提供至該氣體回收單元之蒸汽流量係回應於由該發電單元產生之電力之改變而變化。 The method of claim 8, wherein the steam flow rate provided to the gas recovery unit changes in response to a change in power generated by the power generation unit.
TW101111584A 2011-03-31 2012-03-30 System and method for controlling waste heat for CO2 capture TW201307669A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161469919P 2011-03-31 2011-03-31
US13/432,350 US20120247104A1 (en) 2011-03-31 2012-03-28 System and method for controlling waste heat for co2 capture

Publications (1)

Publication Number Publication Date
TW201307669A true TW201307669A (en) 2013-02-16

Family

ID=46932351

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101111584A TW201307669A (en) 2011-03-31 2012-03-30 System and method for controlling waste heat for CO2 capture

Country Status (7)

Country Link
EP (1) EP2691611A2 (en)
JP (1) JP2014515074A (en)
CN (1) CN103534444A (en)
AU (1) AU2012236370A1 (en)
CA (1) CA2831818A1 (en)
TW (1) TW201307669A (en)
WO (1) WO2012135574A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD4322C1 (en) * 2011-05-17 2015-07-31 Иван ГОНЧАРЮК Device and process for converting steam energy into electrical energy
TWI648506B (en) * 2014-05-08 2019-01-21 瑞士商通用電器技術有限公司 Coal-fired oxygen plant with heat integration

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105582794A (en) * 2016-01-19 2016-05-18 河北工程大学 Solar energy and geothermal energy assisted CO2 Rankine cycle assisted decarbonization and denitrification system for coal-fired unit
US10690010B2 (en) * 2018-03-16 2020-06-23 Uop Llc Steam reboiler with turbine
CN112452109B (en) * 2020-12-31 2021-08-27 双盾环境科技有限公司 Desorption SO for improving desulfurization absorbent2Efficient process

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2600328A (en) * 1948-06-07 1952-06-10 Fluor Corp Separation of acidic constituents from gases
NO321817B1 (en) * 2003-11-06 2006-07-10 Sargas As Wastewater treatment plants
WO2008009049A1 (en) * 2006-07-17 2008-01-24 Commonwealth Scientific And Industrial Research Organisation Co2 capture using solar thermal energy
WO2008090168A1 (en) * 2007-01-25 2008-07-31 Shell Internationale Research Maatschappij B.V. Process for reducing carbon dioxide emission in a power plant
JP2008307520A (en) * 2007-06-18 2008-12-25 Mitsubishi Heavy Ind Ltd Co2 or h2s removal system, co2 or h2s removal method
US20090151318A1 (en) * 2007-12-13 2009-06-18 Alstom Technology Ltd System and method for regenerating an absorbent solution
EP2105190A1 (en) * 2008-03-27 2009-09-30 Siemens Aktiengesellschaft Method and device for separating carbon dioxide from an exhaust gas of a fossil fuel-powered power plant
JP5558036B2 (en) * 2008-09-04 2014-07-23 株式会社東芝 Carbon dioxide recovery steam power generation system
DE102009032537A1 (en) * 2009-07-10 2011-01-13 Hitachi Power Europe Gmbh Coal-fired power station with associated CO2 scrubbing and heat recovery
JP5484811B2 (en) * 2009-07-17 2014-05-07 三菱重工業株式会社 Carbon dioxide recovery system and method
JP2011047364A (en) * 2009-08-28 2011-03-10 Toshiba Corp Steam turbine power generation facility and operation method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD4322C1 (en) * 2011-05-17 2015-07-31 Иван ГОНЧАРЮК Device and process for converting steam energy into electrical energy
TWI648506B (en) * 2014-05-08 2019-01-21 瑞士商通用電器技術有限公司 Coal-fired oxygen plant with heat integration

Also Published As

Publication number Publication date
AU2012236370A1 (en) 2013-10-10
CA2831818A1 (en) 2012-10-04
CN103534444A (en) 2014-01-22
JP2014515074A (en) 2014-06-26
WO2012135574A3 (en) 2013-08-15
WO2012135574A2 (en) 2012-10-04
EP2691611A2 (en) 2014-02-05

Similar Documents

Publication Publication Date Title
CA2491163C (en) Improved split flow process and apparatus
EP2200731B1 (en) Improved method for regeneration of absorbent
KR101474929B1 (en) Method and absorbent composition for recovering a gaseous component from a gas stream
RU2508158C2 (en) Method and device for separation of carbon dioxide from offgas at electric power station running at fossil fuel
JP5875245B2 (en) CO2 recovery system and CO2 gas-containing moisture recovery method
US20120247104A1 (en) System and method for controlling waste heat for co2 capture
US8806870B2 (en) Carbon-dioxide-recovery-type thermal power generation system and method of operating the same
AU2016318755B2 (en) Method and plant for CO2 capture
KR20110110244A (en) Method and device for separating carbon dioxide from an exhaust gas of a fossil fired power plant
NO344753B1 (en) System and procedure for CO2 recovery
WO2014129254A1 (en) System and method for recovering gas containing co2 and h2s
TW201307669A (en) System and method for controlling waste heat for CO2 capture
KR20120110122A (en) Regeneration of capture medium
WO2012070304A1 (en) System and method for recovering gas containing c02 and h2s
US20130199151A1 (en) Steam Generator for Combined Cycle Gas Turbine Plant
WO2014129391A1 (en) Co2 recovery system and co2 recovery method
KR101749287B1 (en) Feedwater storage and recirculation system and method
JP5584040B2 (en) CO2 recovery steam turbine system and operation method thereof
AU2006200510A1 (en) Carbon Dioxide Recovery and Power Generation
Andersson et al. Temperature dependence of heat integration possibilities of an MEA scrubber plant at a refinery
KR20140088860A (en) Method and system for removing carbon dioxide from flue gases
US20240050890A1 (en) Method for capturing a molecule of interest and associated capture system
TW201247995A (en) System and method for controlling waste heat for CO2 capture