TW201307145A - 腳踏車車手每條腿的蹬踏扭矩感測器設備及功率測量儀器 - Google Patents

腳踏車車手每條腿的蹬踏扭矩感測器設備及功率測量儀器 Download PDF

Info

Publication number
TW201307145A
TW201307145A TW101127552A TW101127552A TW201307145A TW 201307145 A TW201307145 A TW 201307145A TW 101127552 A TW101127552 A TW 101127552A TW 101127552 A TW101127552 A TW 101127552A TW 201307145 A TW201307145 A TW 201307145A
Authority
TW
Taiwan
Prior art keywords
crank arm
torque
crank
pedaling
bottom bracket
Prior art date
Application number
TW101127552A
Other languages
English (en)
Inventor
Carrasco Vergara Pablo
Original Assignee
Rotor Componentes Tecnologicos S L
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rotor Componentes Tecnologicos S L filed Critical Rotor Componentes Tecnologicos S L
Publication of TW201307145A publication Critical patent/TW201307145A/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

用於車手每條腿的踩踏扭矩感測器曲柄臂(1)包含一個內部工具化的曲柄臂,以瞭解踩踏平面的撓度。該曲柄臂相對於包含底部支架軸(3)和踩踏軸(4)的平面對稱,並分別具有兩個相對於該平面對稱的直孔(5、6),在相對於底部支架軸的曲柄臂一端內部開設,孔內安裝有應變感測器(2)。本發明的目的還有設計一個功率測量設備(40),包含兩個上述踩踏扭矩感測器,整合了一個訓練踩踏的計算工具,由車手選擇性啟動,每當工具檢測到車手某條腿沒有施加扭矩時則產生警報信號。

Description

腳踏車車手每條腿的蹬踏扭矩感測器設備及功率測量儀器
在腳踏車領域,本發明涉及車手每條腿蹬踏時產生的扭矩和功率測量設備,這有助於分析不同肌肉群體的參與程度以及兩條腿之間可能的不對稱性,改善訓練品質及運動成績,不僅適用於實驗室還適用於一輛獨立的腳踏車。
目前有幾個測量車手施加的力量及扭矩的系統,當知道速度或相應角速度後即可測量功率。
系統應用於腳踏車獲得扭矩資料,通常基於應變感測器的使用,測量一些傳動系統元件的彈性形變,該形變由車手蹬踏產生的機械載荷造成。在底部支架主軸計算得出的扭矩乘以曲柄組旋轉速度得出暫態功率。鑒於曲柄組每圈的轉速約為恒定,通過蹬車的腳踏圈速足以估算暫態角速度資料和暫態功率值,這是扭矩和角速度數值的計算結果。
測量彈性形變和扭矩的常見元件通常為支撐鏈輪的星形輪。其它系統測量底部支架主軸、鏈條、後輪轂等的形變。如果在底部支架主軸上進行測量,僅獲得非驅動側那條腿的扭矩資料。
然而,根據腳踏車車手產生的總功率,你將失去騎腳踏車時重要的生物力學資訊,因為瞭解你是如何用每條腿進行工作及其工作方式是非常重要的;例如腿部上升階段你的蹬踏方式或者作用力是如何統一的。
實驗室已經使用每條腿各自的資料開展工作,有時使用兩個 基於星形輪的功率計和兩條鏈條,分別用於車手的每條腿。此外,每條腿獨立的扭矩和功率測量系統的基礎是為踏板、曲柄臂或甚至車手鞋底安裝壓力感測器改裝成測量工具,後者在測量每次蹬踏有效作用力時非常不精確。
近年來,幾個普通運動監控尤其是腳踏車監控設備的知名品牌已經展示了未來扭矩或功率測量產品,這些產品的感測器都安裝在踏板軸上:例如專業設計運動員測量工具的Metrigear公司被Garmin收購,該公司是可擕式導航解決方案行業的領導者,創造了專門的測量系統,使用兩個安裝在踏板軸上的獨立的感測器測量車手蹬踏時所作的功,如檔US2010/0024590中描述的那樣;同時還有與Look公司結盟的Polar公司,如專利FR2878328A1中描述的那樣。
但是隨著時間的流逝,公佈許久的這些系統尚未有產品投入市場,讓人不難感覺到基於踏板設計的測量系統的複雜性,特別是考慮到施加在踏板上的許多力量都不產生扭矩,繼而也不會產生功率。因此,認為每個踏板軸上的撓度資料根據不同的使用範疇需要誤差校正演算法是合理的,因為在位移切線方向施加在踏板上的力量將在踏板軸上產生彎曲撓度,不產生扭矩;但是現在施加在踏板並與曲柄對齊的扭矩〔例如原地等他保持腳踏車兩側平衡時〕也在踏板軸上產生撓度,然而這個撓度並不意味會產生扭矩。基於上述原因,在狹小空間操作的複雜性以及敏感位置可能受到的潛在影響,我們認為安裝在踏板上的測量系統都不利於製造出可以投放市場的產品,通過實實在在的產品進行可靠的測量。
最後,還有些系統通過安裝在曲柄上的多個應變感測器測量每個曲柄臂在蹬踏期間產生的彈性形變獲得車手施加的扭矩。目前,這些系統的問題在於結構蓬鬆或簡單而言就是容易接觸到撞擊或刮擦,從多個感測器測得的局部變形資料獲得扭矩時所需的電子元件更增加了複雜性。因此,通常應用於迴圈測功儀和實驗室腳踏車,例如Studio AIP的曲柄系統MEP,參見檔WO2011030215的描述。
本發明涉及一個安裝在腳踏車曲柄臂上的蹬踏扭矩感測器,將該曲柄臂內部改造為測量工具,目的是瞭解蹬踏平面上的撓度,進而直接瞭解車手相應的那條腿產生的扭矩。
該扭矩傳感曲柄臂被用作腳踏車功率測量設備的組成部分。
該扭矩感測器安裝在曲柄臂中,相對於包含底部支架軸和踏板軸的平面對稱分佈。該曲柄臂有兩個相對於上述平面分別對稱的直孔,這些孔位於底部支架軸對應的曲柄臂末端,因此,這些孔在曲柄臂內部有兩條縱腔。
這些孔的內壁上裝有一個或多個應變感測器,這些感測器相對於包含底部支架軸和踏板軸的平面對稱分佈。
為了發揮作用,改造成工具的曲柄臂必須連接到一個電子模組上,任務是將應變感測器測得的變形轉換為電子信號,重現局部變形。由於感測器在改造成工具的曲柄臂中對稱分佈,一旦電氣連接配置相反,只有在測量相反變形的情況下才會導致輸出信號。因此,這種感測器的配置僅回應曲柄臂工作方向上的曲柄變形,例如,曲柄臂縱向軸的正交線並包含在對稱平面中,曲柄的 所有其它工作顯示空值:牽引壓縮、扭轉〔沿其縱軸〕和側向撓度〔正常對稱平面〕,直接從電子模組中獲得一個線性輸出信號,在曲柄工作方向上與其彎矩值成正比。由於曲柄臂的幾何性質,這個方向幾乎與底部支架軸重合,根據本發明感測器測得的彎矩接近車手腿部在底部支架軸施加的扭矩。
這消除了使用具有扭矩測量系統的電子校正或電腦程式設計的需要〔如“先前技術”段落所述〕,以便轉換相應感測器採集的資料,因為如果使用本發明,要獲得上述撓度值除了必要的相似擴大不需要其它換算以改變測量的資料單位,在此之前對扭矩傳感曲柄臂進行校準。
根據本發明,扭矩傳感曲柄臂通過其幾何結構解決“先前技術”中存在的技術問題,無論從結構還是功能角度而言。結構上,為了在傳統的曲柄臂上安裝感測器並使用其比例,以便保持曲柄臂的重量和機械剛性,甚至適用於專業的腳踏車、公路腳踏車和山地腳踏車;此外,它為安裝有感測器的區域提供了全面的保護,對抗外部元件的影響,避免結構膨脹、超重及其它設置的體積。另一方面,功能上它實現了輸入和輸出之間的直接比率,例如,扭矩和電子信號之間的比率,這有助於測量的高精確度,同時降低運行過程中電池的電力消耗。
本發明的另一個目的是設計一種功率測量設備,由兩個扭矩感測器及上述相應的電子模組組成〔用於測量或估算曲柄組的暫態角速度〕以及一個功率計CPU〔負責整合上述感測器接收的各種信號〕,以便計算腳踏車腿部施加的暫態功率並將這些資訊通過無線信號發送至電腦、腳踏車電腦等。上述信號在電子模組、功率 計CPU和測量曲柄組暫態角速度的媒介之間時傾向於使用無線技術進行通訊,因而使用天線,而這些元件將包含電池。
由於該功率計使用兩個扭矩感測器曲柄臂,它將獨立並持續獲得車手每條腿施加的功率資料。
這使得它不僅可以計算並顯示兩條腿之間分佈的功率平衡資料百分比,即所謂的“左右平衡”;還可以計算和顯示每條腿向下蹬踏時施加的功率及踏板上升階段時施加的功率之間的比率,即所謂的“推拉平衡”,進而計算每條腿和/或兩條腿的比率。
最後,根據先前技術段落對發明的描述,功率測量設備的另一個方面在於增加蹬踏技術訓練的效用,通過聲音警報或蜂鳴設置一個預警模式,由車手選擇性地啟動:當該實用程式檢測到車手的某一條腿扭矩為負時,將產生一個警告信號,兩條腿的信號甚至不相同。
優選的具體實施方法
建議使用一個曲柄臂(1),當轉換成測量工具後,除了具有結構功能,將施加在踏板上的力量轉換為底部支架上的扭矩,還變成一個測量上述扭矩的感測器。該扭矩感測器包括一個特殊結構的曲柄臂,內部裝有應變感測器(2),連接至相應的電子模組(30)上,以瞭解踩踏平面上的撓度,並直接獲知車手每條腿施加的扭矩。內部裝有工具的曲柄臂其實是扭矩感測器,用於構成功率測量設備(40)。
該金屬曲柄相對於固定軸、踏板軸(3和4)的平面(10)對稱,這些軸分別對應底部支架和踏板,曲柄臂是直的並具有兩個 相對於上述平面對稱的直孔(5和6),位於底部支架軸對應的曲柄臂端部的兩個孔是兩個曲柄臂內部的縱向空腔,如曲柄臂橫截面L-L’〔第四圖〕所示,相對於橫截面的兩個主軸對稱且沿著曲柄臂分佈。上述直孔(5和6)最好是鑽開的。每一個孔在側壁上安裝一個或多個應變感測器(2),感測器相對於上述平面(10)對稱分佈,平面包含底部支架軸和踏板軸。
考慮到一個笛卡爾坐標系(XYZ)如第一圖所示,原點位於底部支架軸(3)和曲柄軸(7)的主要徑向軸的交點(XYZ),此處X軸指的是底部支架軸,XY面包含對應踏板軸(4),因此對應曲柄對稱平面(10)。Z軸對應施加在踏板上的有效力方向,考慮到曲柄是個剛體。主要的縱向曲柄軸(7),即Y’軸包含在XY平面上,實質上與Y軸方向對齊,儘管由於人體工程學的原因有一定的開角,以便釋放一定的空間,以避免與車手的腳踝發生撞擊和摩擦。這樣我們可以定義開角(12)位於主軸Y’〔與主要曲柄軸(7)對應〕和軸Y之間。
兩個孔中感測器的佈局如上所描述,這樣X軸和Y軸的座標完全相同,但是與Z軸座標值相反。有了這樣的安排,我們可以精確地知道曲柄臂(1)在Y’Z平面法線方向上的彎矩。鑒於開角(12)很小,在0至5度之間,我們可以考慮曲柄在X軸方向上的彎矩可以通過該值精確估算。無論在任何情況下,當圍繞Y’軸曲柄臂(1)在距離感測器(2)位於底部支架軸(3)的位置的現有高度上受到彎曲變形,測量誤差就越小;上述變形可以通過設計減小,由於曲柄臂的結構為管狀,將感測器(2)和底部支架軸(3)之間的距離降至最低。
為了使應變感測器(2)提供正確的撓度資料,感測器必須與曲柄臂孔壁經受相同的變形,因此感測器的固定操作非常的重要。
接著,這些感測器(2)必須通過電線(20)連接至相應的電子模組(30)上,電子模組將感測器檢測到的位移通過感測器的一個惠斯通電橋配置轉換成電子信號。由於感測器(2)在扭矩感測器曲柄臂(1)中對稱分佈,一旦通過電線連接至該橋上,具有相反的配置,只有測量反向形變將從電子模組(30)產生輸出信號。因此感測器的這種配置只會反映在曲柄在其工作方向上的撓度,例如,主要縱向曲柄軸的正交方向及對稱平面,假設其它曲柄力均為空值:牽引壓縮、扭曲〔沿其縱向軸〕和橫向偏轉〔對稱平面的法線〕,直接從電子模組(30)獲得一個線性輸出信號,與曲柄沿著工作方向的彎矩值成正比。而且鑒於曲柄的幾何性質,該方向實際上對應底部支架,扭矩感測器曲柄臂(1)測得的彎矩幾乎接近於車手腿部在底部支架軸(3)施加的扭矩。
這種安排消除了進一步進行電子修正或電腦程式設計的需要,其中包含一些先前技術中描述的扭矩測量系統,轉換相應感測器收集的資料,因為在這種情況下扭矩感測器曲柄臂(1)是發明物件,上述沿工作方向上的撓度值以及車手每條腿施加的扭矩將不需要轉換直接獲得,僅需要類似性改變測量到的數值,每個扭矩感測器曲柄臂都需要事先進行校準,這樣感測器(2)發生的變形被轉換成電子模組(30)中的電壓單位(毫伏),繼而轉換成功率計CPU(35)中的扭矩單位〔N-m(牛頓-米)〕並在腳踏車電腦(50)或PC上顯示出來。
因此,該發明的另一方面是功率測量設備(40),如第八圖: 所示,由兩個扭矩感測器曲柄臂(1)及其相應的電子模組(30)構成,如上文描述,用於測量或估算曲柄組的暫態角速度以及一個負責整合上述感測器及設備獲得的各種資料的功率計CPU(35),以便整體和分別計算每條腿施加的暫態功率並通過無線信號輸送上述資料,使得使用者可以通過監視器或腳踏車電腦(50)查看資料。
該設備可以配置在一個與其中一個扭矩感測器曲柄臂(1)連接的防水外殼內,如第七圖所示。由於曲柄組是一個旋轉元件,功率測量設備(40)需要電池和一個或多個天線用於不同元件之間的通訊:從電子模組(30)至功率計CPU(35),從功率計CPU(35)至腳踏車電腦(50)。
上述測量或估算曲柄組暫態角速度的工具可以基於一個曲柄組的角位置感測器(14),一個腳踏圈速感測器,一個加速度感測器等。儘管腳踏節奏也可以通過過濾扭矩信號本身獲得,這將降低精確度及造成高電力消耗。
此外,該功率計CPU(35)處理角位置感測器(14)的資訊,同時處理每個扭矩感測器曲柄臂(1)測得的資訊,根據曲柄組的角位置獲得每條腿的功率分佈。此時功率測量設備(40)通常通過無線技術將該資訊傳輸至一台電腦或腳踏車電腦(50),用於後續分析及顯示給使用者:車手、鉸鏈、體育指導或科學家。
這不僅使得功率測量設備(40)可以計算左右平衡率,還可以測量推拉平衡率,此外還可以獲得每一條腿或兩條腿的平衡比例。
其它實施方法
從結構角度而言,扭矩感測器曲柄臂(1)還可以具有一個中心鑽孔(13),縱向分佈於底部支架軸(3)相應那端的曲柄臂(1)上,底部支架軸的縱向軸對應曲柄臂的主要縱向軸(7),其重量較輕,但是還可以在一側放置一些其它感測器,例如加速度感測器或甚至是一些功率測量設備(40)的一些元件,然後在結構上可以支援功率計CPU(35),連接在外部。
該曲柄臂可以具有很多應變感測器(2)用於改善扭矩測量精確度,並獲得其它輔助資料,如扭矩〔在Y’軸上〕、橫向彎曲〔在XY平面上〕或者曲柄臂的牽拉壓縮,這將幫助我們改善踩踏腳踏車人體工程學的其它方面。在這種情況下功率計CPU(35)可以更加複雜,而電力消耗將更大。
在令一種踩踏功率測量設備(40)的實施方法中,功率計CPU(35)可以在結構上連接至其中一個扭矩感測器曲柄臂(1)上,整合相應的電子模組(30),而與另一個扭矩感測器曲柄臂(1)相應的電子模組(30)的連接則通過無線通訊。
底部支架主軸(9)從結構上與兩個扭矩感測器曲柄臂連接,我們可以在底部支架主軸內部鋪設電線連接。所以,我們建議另一種實施方法,將兩個相應的電子模組(30)整合至功率計CPU(35),放置在底部支架主軸(9)內部,此處有足夠的空間放置這些元件,包括電線接頭。我們也可以從結構上放置功率計CPU(35),連接至其中一個扭矩感測器曲柄臂(1)上。由於從感測器的電路連接通過底部支架主軸鋪設,唯一的缺點在於如果在進行機械維護或將曲柄組從腳踏車上拆除時需要拆卸,需要由終端使用者切斷電線(20)。在此佈局中,在底部支架主軸(9)內部 使用電線連接,該主軸內部有凹槽(91),使得電線(20)可以通過其內部避免結構固定曲柄組的螺絲封閉空間。
在另一種實施方法中,功率計CPU(35)可以連接至腳踏車架上,上述兩個扭矩感測器曲柄臂(1)通過無線信號連接。因此,我們可以將很大一部分電力消耗轉移至一個非結構腳踏車元件,當需要重新充電或甚至從功率計CPU的記憶體模組中下載資料時,使用者的轉移操作容易。
最終,由於很多車手有興趣訓練踩踏的上升階段,以便測量是否腿部在踩踏上升階段也在工作,並糾正踩踏技術,我們建議在功率計CPU(35)或腳踏車電腦(50)中增加一個計算工具。該工具包含一個聲音或蜂鳴警報模式,可以由車手選擇性地啟動:當該工具檢測到車手的某一條腿無扭矩輸出,將產生一個警報信號,每條腿的信號可能並不相同。
〔本發明〕
(1)‧‧‧曲柄臂
(2)‧‧‧感測器
(3)‧‧‧支架軸
(4)‧‧‧踏板軸
(5、6、8)‧‧‧孔
(7)‧‧‧曲柄軸
(9)‧‧‧底部支架主軸
(91)‧‧‧凹槽
(10)‧‧‧平面
(12)‧‧‧開角
(13)‧‧‧中心鑽孔
(14)‧‧‧角位置感測器
(20)‧‧‧電線
(30)‧‧‧電子模組
(35)‧‧‧功率計CPU
(40)‧‧‧功率測量設備
(50)‧‧‧腳踏車電腦
第一圖:顯示建議的解決方案所涉及的扭矩感測器曲柄臂(1)及其最重要的幾何元素:底部支架軸(3)、踏板軸(4)、主要縱向曲柄軸(7)以及曲柄臂的縱向對稱平面(10)。
第二圖:顯示上述扭矩感測器曲柄臂(1)的內部視圖以及沿其對稱平面(10)的正交平面的縱切面H-H’,顯示曲柄臂上的兩個孔(5、6),用以安裝應變感測器(2);曲柄臂上還有一個中心孔(8)。
第三圖:顯示曲柄臂(1)的透視截面視圖,顯示安裝在那裡的應變感測器(2),及其連接至相應電子模組(30)的電線(20)。
第四圖:顯示扭矩感測器曲柄臂(1)的橫截面L-L’,我們可以看到其兩個軸的對稱,以及相應的開孔(5、6和8)。
第五圖:顯示兩個扭矩感測器曲柄臂(1)構成的曲柄組,包含安裝在其中一個曲柄臂上的底部支架主軸(9),我們可以看到底部支架主軸上的凹槽(91),用於鋪設電線(20)。
第六圖:顯示兩個扭矩感測器曲柄臂(1)構成的曲柄組。
第七圖:顯示位於其中一個扭矩感測器曲柄臂(1)上的功率測量設備(35)可能的實施方式之一。
第八圖:顯示完整測量系統的不同元件之間的連接配置方式之一以及兩個扭矩感測器曲柄臂(1)採集的資料電子管理,相應的電子模組(30)及角位置感測器(14), 它們將資料發送至功率測量設備(40),設備中包含一個功率計CPU(35),最終將資料發送至腳踏車電腦(50)進行處理、管理、儲存和/或使用者操作顯示。
(2)‧‧‧感測器
(5、6)‧‧‧孔
(20)‧‧‧電線

Claims (12)

  1. 一個用於車手任一條退的扭矩傳感設備,也成為扭矩感測器曲柄臂,包含一個腳踏車曲柄臂(1)及連接的一些應變感測器(2),目的在於測量曲柄臂在底部支架軸(3)方向上的彎矩,由於這些感測器電線(20)連接至一個電子模組(30),可以將測量的撓度資料傳輸至功率計CPU(35)。 其特點是上述曲柄臂(1)具有一個對稱平面(10)將底部支架軸(3)和踏板軸(4)連接,具有至少兩個直孔(5、6)相對上述對稱平面(10)對稱,位置在底部支架軸(3)相應的曲柄臂端部,這些孔在上述曲柄臂(1)中具有縱向空腔,因此上述應變感測器(2)安裝在曲柄臂(1)端部的孔(5、6)內,相對於上述對稱平面(10)對稱分佈。
  2. 如申請專利範圍第1項,一個踩踏扭矩傳感設備特點在於上述曲柄臂(1)的橫截面也相對於平面對稱,包含曲柄軸(7)的主要縱向軸,位於上述對稱平面(10)的正交線上。
  3. 如申請專利範圍第1至2項,一個踩踏扭矩傳感設備特點在於上述直孔(5、6)是鑽孔。
  4. 如申請專利範圍第1至3項,一個踩踏扭矩傳感設備特點在於具有一個中心鑽孔(13),在對應底部支架軸(3)的曲柄臂(1)一端縱向開設,底部支架的縱向軸與曲柄臂的主要縱向曲柄軸(7)對應。
  5. 一個踩踏功率測量設備(40)包含每條腿的扭矩感測器,測量或估算曲柄組暫態角速度的工具以及一個負責整合和處理上述各個感測器和工具測得的信號的功率計CPU(35);功率測量設 備(40)的功能是整體或各自計算每條腿施加的暫態功率並通過無線信號傳輸資料,使得使用者通過監視器或腳踏車電腦(50)查看或保存資料;而如申請專利範圍第1至4項,特點在於每一個扭矩感測器都是一個踩踏扭矩傳感設備。
  6. 如申請專利範圍第5項,一個踩踏功率測量設備(40)特點在於整合一個可以計算並傳輸資料至腳踏車電腦(50)的計算工具,以便顯示比較兩條腿的左右平衡率,以及比較踩踏下降和上升的推拉平衡率,提供每條腿和/或兩條腿的平衡工作。
  7. 如申請專利範圍第5至6項,一個踩踏功率測量設備(40)特點在於整合一個用於訓練踩踏技術的計算工具,由車手選擇性地啟動,每當工具檢測到車手某條腿沒有扭矩產生則發出警報聲音信號。
  8. 如申請專利範圍第5、6或7項,一個踩踏功率測量設備(40)特點在於功率計CPU(35)結構上連接至扭矩感測器曲柄臂(1)之一,整合期相應的電子模組(30),而電子模組(30)與另一個扭矩感測器曲柄臂(1)的連接是通過無線通訊。
  9. 如申請專利範圍第5、6或7項,一個踩踏功率測量設備(40)特點在於功率計CPU(35)整合兩個電子模組(30),通過電線(20)連接至兩個扭矩感測器曲柄臂(1)中相應的感測器(2),上述電線(20)鋪設在底部支架主軸(9)內部,為此主軸內部有一些凹槽(91),使得上述電線(20)通過主軸內部避免結構固定曲柄組的螺絲封死空間。
  10. 如申請專利範圍第9項,一個踩踏功率測量設備(40)特點在於功率計CPU(35)結構上連接至底部支架主軸(9)的內部。
  11. 如申請專利範圍第9項,一個踩踏功率測量設備(40)特點在於功率計CPU(35)結構上連接至兩個扭矩感測器曲柄臂之一。
  12. 如申請專利範圍第5至7項,一個踩踏功率測量設備(40)特點在於功率計CPU(35)結構上位置獨立於兩個扭矩感測器曲柄臂(1),附在腳踏車架上通過無線通訊連接至兩個扭矩感測器曲柄臂(1)的電子模組(30)上。
TW101127552A 2011-08-02 2012-07-30 腳踏車車手每條腿的蹬踏扭矩感測器設備及功率測量儀器 TW201307145A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ES201100881 2011-08-02

Publications (1)

Publication Number Publication Date
TW201307145A true TW201307145A (zh) 2013-02-16

Family

ID=46598493

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101127552A TW201307145A (zh) 2011-08-02 2012-07-30 腳踏車車手每條腿的蹬踏扭矩感測器設備及功率測量儀器

Country Status (6)

Country Link
US (1) US20140200835A1 (zh)
EP (1) EP2739950A2 (zh)
DE (2) DE212012000134U1 (zh)
ES (1) ES1101230Y (zh)
TW (1) TW201307145A (zh)
WO (1) WO2013017465A2 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110466663A (zh) * 2018-05-11 2019-11-19 坎培诺洛有限公司 自行车曲柄臂及其制造过程、检测踩踏扭矩或功率的方法
US11377169B2 (en) 2018-05-11 2022-07-05 Campagnolo S.R.L. Bicycle crankarm and related crankset
CN115515847A (zh) * 2020-07-21 2022-12-23 法韦罗电子有限责任公司 自行车踏板及相关制造方法
US11547004B2 (en) 2018-05-11 2023-01-03 Campagnolo S.R.L. Bicycle component made of composite material and related manufacturing process
US11577801B2 (en) 2018-05-11 2023-02-14 Campagnolo S.R.L. Bicycle component provided with a temperature-compensated stress/strain sensor
US11597469B2 (en) 2018-05-11 2023-03-07 Campagnolo S.R.L. Bicycle crankarm provided with electric/electronic system
US11772742B2 (en) 2020-03-24 2023-10-03 Sram, Llc Front chainring assembly
US11913534B2 (en) 2020-03-24 2024-02-27 Sram, Llc Front chainring assembly

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9921118B2 (en) * 2012-01-23 2018-03-20 Foundation Fitness, LLC Apparatus, system and method for power measurement at a crank axle and crank arm
US9463358B2 (en) 2014-04-23 2016-10-11 Shimano Inc. Pedaling state detecting apparatus
US9773966B2 (en) 2014-09-08 2017-09-26 Shimano Inc. Piezoelectric sensor for bicycle component
US9964456B2 (en) * 2014-11-18 2018-05-08 Saris Cycling Group, Inc. System for estimating total power input by a bicyclist using a single sided power meter system
US9688348B2 (en) 2014-12-15 2017-06-27 Shimano Inc. Hydraulic hose fitting and hydraulic device
US9581508B2 (en) * 2015-01-23 2017-02-28 Shimano Inc. Bicycle pedaling force detector
US9771126B2 (en) 2015-05-27 2017-09-26 Shimano Inc. Bicycle crank assembly
JP6757903B2 (ja) * 2015-09-03 2020-09-23 株式会社スミス 左右脚別にギヤ倍数を設けた非円形形状の自転車ギヤ
JP6460972B2 (ja) * 2015-12-21 2019-01-30 株式会社シマノ クランクアームアッセンブリ
US10000253B1 (en) 2016-11-25 2018-06-19 Shimano Inc. Bicycle crank assembly
US10475303B2 (en) 2017-03-16 2019-11-12 Shimano Inc. Bicycle electric device
EP3501961A1 (en) * 2017-12-20 2019-06-26 Specialized Bicycle Components, Inc. Bicycle pedaling torque sensing systems, methods, and devices
FR3080214A1 (fr) * 2018-04-13 2019-10-18 Centre National De La Recherche Scientifique Procede et dispositif d'aide a l'amelioration de techniques de pedalage
US10286978B1 (en) * 2018-04-18 2019-05-14 TWDT Precision Co., Ltd. Bicycle crank arm with strain gauge
CN110001842B (zh) * 2019-05-15 2023-12-05 吕林宝 一种平衡车
US11029225B1 (en) 2019-12-27 2021-06-08 Shimano Inc. Electronic device, crank assembly with electronic device and drive train including crank assembly with electronic device
ES2875174B2 (es) 2020-05-05 2022-07-21 Bikone Bearings S L Sensor de fuerza para pedalier de bicicleta
US11858581B2 (en) 2021-11-23 2024-01-02 Shimano Inc. Detecting system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2878328B1 (fr) 2004-11-24 2007-02-02 Look Cycle Internat Sa Pedale de cycle dynamometrique
EP2304403B1 (en) 2008-07-29 2018-11-28 Garmin Switzerland GmbH System and device for measuring and analyzing forces applied by a cyclist on a pedal of a bicycle
IT1395605B1 (it) * 2009-09-14 2012-10-16 Studio Aip S R L Dispositivo per il rilevamento di parametri significativi dell attività fisica necessaria per la propulsione umana effettauta mediante sistemi a doppia leva
AU2010324542B2 (en) * 2009-11-28 2015-02-12 Breakaway Innovations Pty Ltd Cyclic cranked system method and related devices

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110466663A (zh) * 2018-05-11 2019-11-19 坎培诺洛有限公司 自行车曲柄臂及其制造过程、检测踩踏扭矩或功率的方法
US11377169B2 (en) 2018-05-11 2022-07-05 Campagnolo S.R.L. Bicycle crankarm and related crankset
US11401002B2 (en) 2018-05-11 2022-08-02 Campagnolo S.R.L. Bicycle crankarm having a stress/strain detector for a torque meter or a power meter, and methods for manufacturing and using the crankarm
US11547004B2 (en) 2018-05-11 2023-01-03 Campagnolo S.R.L. Bicycle component made of composite material and related manufacturing process
US11577801B2 (en) 2018-05-11 2023-02-14 Campagnolo S.R.L. Bicycle component provided with a temperature-compensated stress/strain sensor
US11597469B2 (en) 2018-05-11 2023-03-07 Campagnolo S.R.L. Bicycle crankarm provided with electric/electronic system
US11772742B2 (en) 2020-03-24 2023-10-03 Sram, Llc Front chainring assembly
US11913534B2 (en) 2020-03-24 2024-02-27 Sram, Llc Front chainring assembly
CN115515847A (zh) * 2020-07-21 2022-12-23 法韦罗电子有限责任公司 自行车踏板及相关制造方法

Also Published As

Publication number Publication date
DE212012000134U1 (de) 2014-03-27
US20140200835A1 (en) 2014-07-17
ES1101230Y (es) 2014-05-19
EP2739950A2 (en) 2014-06-11
DE202012012932U1 (de) 2014-04-08
ES1101230U (es) 2014-02-25
WO2013017465A4 (en) 2013-06-13
WO2013017465A3 (en) 2013-04-25
WO2013017465A2 (en) 2013-02-07

Similar Documents

Publication Publication Date Title
TW201307145A (zh) 腳踏車車手每條腿的蹬踏扭矩感測器設備及功率測量儀器
US8899110B2 (en) Pedaling motion measuring device and pedaling motion sensor device
US8011242B2 (en) System and device for measuring and analyzing forces applied by a cyclist on a pedal of a bicycle
US10000249B2 (en) Bicycle pedal
US9810593B2 (en) Pedaling torque and power measuring device for a bicycle
US8505393B2 (en) Crankset based bicycle power measurement
AU2008274881B2 (en) Crank arm with strain amplifier
US9551623B2 (en) Apparatus for measuring and determining the force, the torque and the power on a crank, in particular the pedal crank of a bicycle
JP6466608B2 (ja) パワー測定アセンブリ
US7975561B1 (en) Chain ring power sensor for a bicycle
TW202005685A (zh) 自行車鞋功率感測器
US20200102036A1 (en) Direct force measurement device for crank
JP2015529330A5 (zh)
WO2009083787A1 (en) System for evaluating the pedalling efficiency of a cyclist
WO2015095933A1 (en) Improvements to cyclic cranked system data gathering
US9964456B2 (en) System for estimating total power input by a bicyclist using a single sided power meter system
US11029225B1 (en) Electronic device, crank assembly with electronic device and drive train including crank assembly with electronic device
Reiser et al. Instrumented bicycle pedals for dynamic measurement of propulsive cycling loads
CN102175371B (zh) 脚踏曲柄组合的功率测量装置
TWI628109B (zh) 電助自行車之後車架扭矩感測裝置
NL2020897B1 (en) Apparatus and methods for recording power output during an activity.
US20190202424A1 (en) Brake power measuring device
TWI756080B (zh) 智慧自行車鞋
TWM656921U (zh) 曲柄功率量測系統