TW201305480A - Remote phosphor converted LED - Google Patents

Remote phosphor converted LED Download PDF

Info

Publication number
TW201305480A
TW201305480A TW101116975A TW101116975A TW201305480A TW 201305480 A TW201305480 A TW 201305480A TW 101116975 A TW101116975 A TW 101116975A TW 101116975 A TW101116975 A TW 101116975A TW 201305480 A TW201305480 A TW 201305480A
Authority
TW
Taiwan
Prior art keywords
light
phosphor
illumination system
disposed
led
Prior art date
Application number
TW101116975A
Other languages
Chinese (zh)
Inventor
Andrew John Ouderkirk
Craig Russell Schardt
xiao-hui Cheng
Zhi-Sheng Yun
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Publication of TW201305480A publication Critical patent/TW201305480A/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3158Modulator illumination systems for controlling the spectrum
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3167Modulator illumination systems for polarizing the light beam

Abstract

The disclosure generally relates to broadband solid state illumination sources and image projectors that utilize a phosphor layer or material that is pumped or excited by light from one or more LEDs. The configuration is compact, efficient, and has especially low etendue.

Description

遠端磷光體轉換發光二極體 Remote phosphor-converted light-emitting diode

本發明大體上係關於光源,特別適用於併有發光二極體(LED)及磷光體之固態光源。本發明亦係關於相關聯之物品、系統及方法。 The present invention relates generally to light sources, and is particularly useful for solid state light sources incorporating light emitting diodes (LEDs) and phosphors. The invention is also related to related articles, systems and methods.

本申請案係關於以引用之方式併入的以下美國專利申請案:「REMOTE PHOSPHOR POLARIZATION CONVERTER」(代理人案號67422US002)及「OPTICAL STRUCTURE FOR REMOTE PHOSPHOR」(代理人案號67421US002),該兩個申請案與本案在同一日期申請。 This application is related to the following U.S. patent applications incorporated by reference: "REMOTE PHOSPHOR POLARIZATION CONVERTER" (Attorney Docket No. 67422US002) and "OPTICAL STRUCTURE FOR REMOTE PHOSPHOR" (Attorney Docket No. 67421US002), both The application is filed on the same date as the case.

發射寬頻光之固態光源係已知的。在一些狀況下,藉由將黃光發射磷光體層塗覆至藍色LED上來製造此等光源。在來自藍色LED之光穿過磷光體層時,藍光中之一些被吸收,且所吸收能量之實質部分作為在可見光譜中之較長波長下的斯托克位移光(通常為黃光)而由磷光體重新發射。磷光體厚度足夠小以使得藍色LED光中之一些始終穿過磷光體層,且與來自磷光體之黃光組合以提供具有白色外觀之寬頻輸出光。 Solid state light sources that emit broadband light are known. In some cases, such light sources are fabricated by coating a yellow light emitting phosphor layer onto a blue LED. When light from the blue LED passes through the phosphor layer, some of the blue light is absorbed and a substantial portion of the absorbed energy acts as Stokes shifted light (usually yellow) at longer wavelengths in the visible spectrum. Re-emitted by the phosphor. The phosphor thickness is small enough that some of the blue LED light is always passed through the phosphor layer and combined with the yellow light from the phosphor to provide broadband output light with a white appearance.

亦已提議其他LED泵激之磷光體光源。在美國專利7,091,653(Ouderkirk等人)中,論述一種光源,其中藉由遠傳反射器將來自LED之紫外(UV)光反射至磷光體層上。磷光體層發射可見光(較佳為白光),該光實質上藉由遠傳反射器透射。以使得在UV光自LED行進至遠傳反射器時該 UV光不穿過磷光體層之方式來配置LED、磷光體層及長通濾光片。 Other LED pumped phosphor sources have also been proposed. In U.S. Patent 7,091,653 (Ouderkirk et al.), a light source is discussed in which ultraviolet (UV) light from an LED is reflected onto a phosphor layer by a remote reflector. The phosphor layer emits visible light (preferably white light) which is substantially transmitted by the remote reflector. So that when UV light travels from the LED to the remote reflector The LED light, the phosphor layer, and the long pass filter are disposed without passing the UV light through the phosphor layer.

本發明大體上係關於利用一磷光體層或材料之寬頻固態照明源及影像投影器,該磷光體層或材料係藉由來自一或多個LED之光泵激或激勵。該組態緊密、有效且具有尤其低的光展量。在一態樣中,本發明提供一種照明系統,其包括:一發光二極體(LED),其安置於一基板上且經組態以沿一第一傳播方向射出一第一光束從而使該第一光束穿過一準直光學器件;一反射器,其經安置以將該第一光束反射回從而穿過該準直光學器件;一磷光體,其緊鄰該LED而安置於該基板之一可見光透明區上,該磷光體經安置以截取該第一光束;其中該第一光束之一主要部分係藉由該磷光體降頻轉換以變成傳播穿過該可見光透明區之一第二光束。 The present invention generally relates to broadband solid state illumination sources and image projectors utilizing a phosphor layer or material that is pumped or energized by light from one or more LEDs. This configuration is compact, efficient and has a particularly low light spread. In one aspect, the present invention provides an illumination system including: a light emitting diode (LED) disposed on a substrate and configured to emit a first light beam in a first propagation direction such that The first beam passes through a collimating optics; a reflector disposed to reflect the first beam back through the collimating optics; a phosphor disposed adjacent to the LED and disposed on the substrate The visible light transparent region is disposed to intercept the first light beam; wherein a major portion of the first light beam is down-converted by the phosphor to become a second light beam propagating through one of the visible light transparent regions.

在另一態樣中,本發明提供一種影像投影器,其包括:一照明系統;一極化轉換器,其能夠將第二光束轉換成具有一第一極化方向之一第三光束;一成像器,其經安置以截取該第一極化方向之該第二光束;及投影光學器件。該照明系統包括:一發光二極體(LED),其安置於一基板上且經組態以沿一第一傳播方向射出一第一光束從而使該第一光束穿過一準直光學器件;一反射器,其經安置以將該第一光束反射回從而穿過該準直光學器件;及一磷光體,其緊鄰該LED而安置於該基板之一可見光透明區上,該磷 光體經安置以截取該第一光束。該第一光束之一主要部分係藉由該磷光體降頻轉換以變成傳播穿過該可見光透明區之一第二光束。 In another aspect, the present invention provides an image projector comprising: an illumination system; a polarization converter capable of converting a second beam into a third beam having a first polarization direction; An imager positioned to intercept the second beam of the first polarization direction; and projection optics. The illumination system includes: a light emitting diode (LED) disposed on a substrate and configured to emit a first light beam in a first propagation direction to pass the first light beam through a collimating optics; a reflector disposed to reflect the first beam back through the collimating optics; and a phosphor disposed adjacent to the LED on a visible light transparent region of the substrate, the phosphor The light body is positioned to intercept the first light beam. A major portion of the first beam is down-converted by the phosphor to become a second beam propagating through one of the visible regions of the visible light.

以上概述並不意欲描述本發明之每一所揭示之實施例或每一實施。以下諸圖及詳細描述更特定地例示說明性實施例。 The above summary is not intended to describe each embodiment or every implementation of the invention. The following figures and detailed description more particularly exemplify illustrative embodiments.

貫穿本說明書而參看隨附圖式,其中類似參考數字指示類似元件。 Throughout the specification, reference is made to the drawings, in which like reference numerals

諸圖未必按比例繪製。在諸圖中使用之類似數字指代類似組件。然而應理解,使用數字指代給定圖中之組件並不意欲限制另一圖中之以同一數字標記的組件。 The figures are not necessarily drawn to scale. Similar numbers used in the figures refer to like components. It should be understood, however, that the use of a number to refer to a component in a given figure is not intended to limit the components in the other figures.

本申請案描述利用一磷光體層或材料之寬頻固態照明源,該磷光體層或材料係藉由來自一或多個LED之光泵激或激勵。該等源亦包括反射器及準直光學器件。在一些狀況下,反射器可為雙向色反射器,其將LED光中之至少一些反射至磷光體層上。射離LED之光在進入準直光學器件之準直角內傳播,該準直光學器件藉由光之準直角的後續減小而增加照明區域,從而產生準直光。準直光自反射器反射且被導引回從而穿過準直光學器件而至磷光體層。 This application describes a broadband solid state illumination source utilizing a phosphor layer or material that is pumped or energized by light from one or more LEDs. The sources also include reflectors and collimating optics. In some cases, the reflector can be a bi-directional color reflector that reflects at least some of the LED light onto the phosphor layer. Light that exits the LED propagates within a collimation angle that enters the collimating optics, which increases the illumination area by subsequent reduction in the collimation angle of the light, thereby producing collimated light. The collimated light is reflected from the reflector and directed back through the collimating optics to the phosphor layer.

本發明描述在遠端對磷光體進行照明之LED,其中LED係藉由具有相對低之折射率的材料耦接至準直光學器件,且該磷光體係藉由具有相對高之折射率的材料耦接至準直光學器件。在一特定實施例中,LED及磷光體可使用共同的準直光學器件;然而,亦可使用單獨的準直光學器件。 The present invention describes an LED that illuminates a phosphor at a distal end, wherein the LED is coupled to the collimating optic by a material having a relatively low refractive index, and the phosphorescent system is coupled by a material having a relatively high refractive index Connect to collimating optics. In a particular embodiment, LEDs and phosphors can use common collimating optics; however, separate collimating optics can also be used.

一般已知光源之光展量與圍繞該源之囊封劑之折射率的平方成比例。因為許多光學裝置之光展量受限,所以通常較佳地將光源(例如,LED)囊封於諸如空氣之低折射率材料中。在一些光學裝置中,LED用以激發波長轉換材料(諸如,磷光體)或半導體波長轉換器。在浸沒於具有相對高折射率之囊封物中時,許多磷光體及半導體波長轉換器更有效。又,半導體波長轉換器可為昂貴的或含有有害材料,或既昂貴又含有有害材料。在此等狀況下,可能需要將波長轉換器浸沒於折射率較高之介質中以減小所需要之區域。所揭示之裝置具有高光學效率,其中LED在低折射率囊封物中,且磷光體在具有較高折射率之囊封物中,同時實質上不增加系統之光展量。 It is generally known that the light spread of a source is proportional to the square of the refractive index of the encapsulant surrounding the source. Because of the limited optical spread of many optical devices, it is often preferred to encapsulate a light source (e.g., an LED) in a low refractive index material such as air. In some optical devices, LEDs are used to excite wavelength converting materials such as phosphors or semiconductor wavelength converters. Many phosphor and semiconductor wavelength converters are more efficient when immersed in a package having a relatively high refractive index. Also, semiconductor wavelength converters can be expensive or contain hazardous materials, or both expensive and contain hazardous materials. Under such conditions, it may be desirable to immerse the wavelength converter in a medium having a higher refractive index to reduce the desired area. The disclosed apparatus has high optical efficiency in which the LED is in a low refractive index envelope and the phosphor is in a package having a higher refractive index while substantially not increasing the light spread of the system.

在一些狀況下,LED發射藍光(或UV光),且反射器將藍色LED光反射至磷光體層上。藍色LED光之一部分可與由磷光體發射之較長波長光組合以提供寬頻輸出光束,例如,具有白色外觀之光。在一些狀況下,LED及/或磷光體可安置於基板上,且LED與磷光體彼此緊鄰地黏著或附著至基板。在一特定實施例中,基板可為可撓性基板或剛性基板,且可包括上面沈積有磷光體之透明區,如別處所描述。 In some cases, the LED emits blue light (or UV light) and the reflector reflects the blue LED light onto the phosphor layer. One portion of the blue LED light can be combined with the longer wavelength light emitted by the phosphor to provide a broadband output beam, such as light having a white appearance. In some cases, the LEDs and/or phosphors can be disposed on the substrate, and the LEDs and phosphors are adhered or attached to the substrate in close proximity to one another. In a particular embodiment, the substrate can be a flexible substrate or a rigid substrate, and can include a transparent region on which the phosphor is deposited, as described elsewhere.

為了達成本文中所提供之描述之目的,「彩色光」及「波長光譜光」兩者皆意欲意謂具有可能與特定色彩(若可為人眼所見)相關之波長光譜範圍的光。更一般的術語「波長光譜光」指代可見光及其他波長光譜之光,包括(例如)紅外光。 For the purposes of the description provided herein, both "color light" and "wavelength spectral light" are intended to mean light having a range of wavelengths that may be associated with a particular color (if visible to the human eye). The more general term "wavelength spectral light" refers to light of visible light and other wavelengths of light, including, for example, infrared light.

就此而言,「發光二極體」或「LED」指代發射光(不管 是可見光、紫外光或是紅外光)之二極體。「發光二極體」或「LED」包括以「LED」(習知或超輻射種類)出售之不連貫封閉或囊封的半導體裝置。「LED晶粒」為呈其最基本形式(亦即,呈藉由半導體處理程序製造之個別組件或晶片的形式)之LED。 In this regard, "light emitting diode" or "LED" refers to emitting light (regardless of It is a diode of visible light, ultraviolet light or infrared light. "Light Emitting Diodes" or "LEDs" include discontinuously enclosed or encapsulated semiconductor devices sold as "LEDs" (known or super-radiated). "LED dies" are LEDs in their most basic form (i.e., in the form of individual components or wafers fabricated by semiconductor processing procedures).

在一些狀況下,LED可為能夠發射UV光子之短波長LED。一般而言,LED可由任何合適的材料組成,諸如有機半導體或無機半導體,包括諸如Si或Ge之第IV族元素;諸如InAs、AlAs、GaAs、InP、AlP、GaP、InSb、AlSb、GaSb、GaN、AlN、InN之III-V族化合物及III-V族化合物之合金(諸如,AlGaInP及AlGaInN);諸如ZnSe、CdSe、BeSe、MgSe、ZnTe、CdTe、BeTe、MgTe、ZnS、CdS、BeS、MgS之II-VI族化合物及II-VI族化合物之合金,或上文列出之化合物中之任一者的合金。 In some cases, the LED can be a short wavelength LED capable of emitting UV photons. In general, the LED can be composed of any suitable material, such as an organic semiconductor or an inorganic semiconductor, including a Group IV element such as Si or Ge; such as InAs, AlAs, GaAs, InP, AlP, GaP, InSb, AlSb, GaSb, GaN , AlN, InN III-V compound and III-V compound alloy (such as AlGaInP and AlGaInN); such as ZnSe, CdSe, BeSe, MgSe, ZnTe, CdTe, BeTe, MgTe, ZnS, CdS, BeS, MgS An alloy of a Group II-VI compound and a Group II-VI compound, or an alloy of any of the compounds listed above.

在一些狀況下,LED可包括一或多個p型及/或n型半導體層、可包括一或多個電位井及/或量子井之一或多個作用層、緩衝層、基板層及頂置板層。 In some cases, the LED can include one or more p-type and/or n-type semiconductor layers, can include one or more potential wells and/or one or more active layers of a quantum well, a buffer layer, a substrate layer, and a top Plate layer.

在一些狀況下,LED可包括CdMgZnSe合金,該合金具有化合物ZnSe、CdSe及MgSe作為其三個組份。在一些狀況下,Cd、Mg及Zn中之一或多者(尤其是Mg)在合金中之濃度可為零且因此可不在合金中。舉例而言,LCD可進一步包括可用以將光自一波長轉換至另一波長之光轉換元件(LCE)。在一些狀況下,LCE可包括能夠發射紅光之Cd0.70Zn0.30Se量子井或能夠發射綠光之Cd0.33Zn0.67Se 量子井。作為另一實例,LED及/或LCE可包括Cd、Zn、Se及(視情況)Mg之合金,在該狀況下,合金系統可藉由Cd(Mg)ZnSe表示。作為另一實例,LED及/或LCE可包括Cd、Mg、Se及(視情況)Zn之合金。在一些狀況下,量子井LCE之厚度在約1 nm至約100 nm或約2 nm至約35 nm之範圍中。 In some cases, the LED may include a CdMgZnSe alloy having the compounds ZnSe, CdSe, and MgSe as its three components. In some cases, one or more of Cd, Mg, and Zn (especially Mg) may be zero in the alloy and thus may not be in the alloy. For example, the LCD can further include a light conversion element (LCE) that can be used to convert light from one wavelength to another. In some cases, the LCE may include a Cd0.70Zn0.30Se quantum well capable of emitting red light or a Cd0.33Zn0.67Se capable of emitting green light. Quantum well. As another example, the LED and/or LCE may comprise an alloy of Cd, Zn, Se, and (as appropriate) Mg, in which case the alloy system may be represented by Cd(Mg)ZnSe. As another example, the LEDs and/or LCEs can include alloys of Cd, Mg, Se, and (as appropriate) Zn. In some cases, the thickness of the quantum well LCE is in the range of from about 1 nm to about 100 nm or from about 2 nm to about 35 nm.

在一些狀況下,半導體LED或LCE可經n摻雜或p摻雜,其中摻雜可藉由任何合適的方法且藉由包括任何合適的摻雜劑來實現。在一些狀況下,LED及LCE係來自同一半導體族。在一些狀況下,LED及LCE係來自兩個不同的半導體族。舉例而言,在一些狀況下,LED為III-V族半導體裝置且LCE為II-VI族半導體裝置。在一些狀況下,LED包括AlGaInN半導體合金且LCE包括Cd(Mg)ZnSe半導體合金。LCE一般可為磷光體,諸如在有機黏合劑中、在無機黏合劑中之磷光體粒子,或可為諸如ZnSe或ZnS化合物之半導體。 In some cases, the semiconductor LED or LCE can be n-doped or p-doped, wherein doping can be achieved by any suitable method and by including any suitable dopant. In some cases, the LEDs and LCEs are from the same semiconductor family. In some cases, LEDs and LCEs come from two different semiconductor families. For example, in some cases, the LEDs are III-V semiconductor devices and the LCEs are II-VI semiconductor devices. In some cases, the LED includes an AlGaInN semiconductor alloy and the LCE includes a Cd(Mg)ZnSe semiconductor alloy. The LCE can generally be a phosphor, such as a phosphor particle in an organic binder, in an inorganic binder, or can be a semiconductor such as a ZnSe or ZnS compound.

LCE可藉由任何合適的方法(諸如,藉由諸如熱熔黏著劑之黏著劑、焊接、壓力、熱或此等方法之任何組合)安置於對應的電致發光元件上或附著至該電致發光元件。合適的熱熔黏著劑之實例包括半晶質聚烯烴、熱塑性聚酯及丙烯酸系樹脂。 The LCE can be disposed on or attached to the corresponding electroluminescent element by any suitable method, such as by an adhesive such as a hot melt adhesive, soldering, pressure, heat, or any combination of such methods. Light-emitting element. Examples of suitable hot melt adhesives include semicrystalline polyolefins, thermoplastic polyesters, and acrylic resins.

在一特定實施例中,LED晶粒可由一或多個第III族元素及一或多個第V族元素(III-V族半導體)之組合形成。合適的III-V族半導體材料之實例包括諸如氮化鎵之氮化物及諸 如磷化鎵銦之磷化物。亦可使用其他類型之III-V族材料以及來自週期表之其他族的無機材料。組件或晶片可包括適合於施加電力以對裝置供給能量之電接點。實例包括導線接合、捲帶式自動接合(TAB)或覆晶接合。通常按晶圓尺度形成組件或晶片之個別層及其他功能元件,且接著可將完成之晶圓分割成個別零部件以得到許多LED晶粒。LED晶粒可經組態以用於表面黏著、板上晶片或其他已知黏著組態。藉由在LED晶粒及相關聯之反射杯上形成聚合物囊封物來製造一些封裝LED。為了達成本申請案之目的,「LED」亦應被視為包括通常被稱作OLED之有機發光二極體。 In a particular embodiment, the LED die can be formed from a combination of one or more Group III elements and one or more Group V elements (Group III-V semiconductors). Examples of suitable III-V semiconductor materials include nitrides such as gallium nitride and Such as phosphide indium phosphide. Other types of III-V materials as well as inorganic materials from other families of the periodic table can also be used. The component or wafer may include electrical contacts adapted to apply electrical power to supply energy to the device. Examples include wire bonding, tape automated bonding (TAB) or flip chip bonding. The individual layers and other functional components of the component or wafer are typically formed on a wafer scale, and the completed wafer can then be divided into individual components to yield a plurality of LED dies. LED dies can be configured for surface bonding, on-board wafers, or other known adhesive configurations. Some packaged LEDs are fabricated by forming a polymer encapsulant on the LED dies and associated reflective cups. For the purposes of this application, "LED" should also be considered to include organic light-emitting diodes commonly referred to as OLEDs.

在一特定實施例中,磷光體可為諸如以II-VI族為基礎之系統之半導體或基於氮化物、硫化物、硒化物及氧化鋁之磷光體,如別處所描述。磷光體可為包括涵蓋紅光、綠光或藍光光譜之一或多個波長範圍的寬頻發射器,或磷光體可具有覆蓋(例如)光譜之綠光部分的中等頻寬,或磷光體可為窄頻帶發射器。在一些狀況下,磷光體層可為光學上薄的,意謂磷光體層透射激勵波長之5%至50%的或更佳地透射光之5%至30%。在一些狀況下,磷光體層可包括一種以上類型之磷光體以使得經降頻轉換之光包括一個以上波長之光。 In a particular embodiment, the phosphor can be a semiconductor such as a Group II-VI based system or a phosphor based on nitride, sulfide, selenide, and alumina, as described elsewhere. The phosphor may be a broadband emitter comprising one or more wavelength ranges covering the red, green or blue spectrum, or the phosphor may have a medium bandwidth covering, for example, the green portion of the spectrum, or the phosphor may be Narrowband transmitter. In some cases, the phosphor layer can be optically thin, meaning that the phosphor layer transmits 5% to 50% or more preferably 5% to 30% of the transmitted light. In some cases, the phosphor layer can include more than one type of phosphor such that the downconverted light includes more than one wavelength of light.

本發明允許無需囊封之LED源之光展量匹配以達成良好效率。在一些狀況下,LED源可囊封於具有在約1.0與約1.2之間或大約1.0(亦即,空氣)的折射率之材料中。在一 些狀況下,LED源之可准許驅動電流密度具有限制。在一些狀況下,磷光體可在高功率密度下操作,且為了達成泵激系統之較高效率,一般較佳地使用囊封物將磷光體以光學方式耦接至主要光學器件。 The present invention allows for light spread matching of LED sources that do not require encapsulation to achieve good efficiency. In some cases, the LED source can be encapsulated in a material having a refractive index between about 1.0 and about 1.2 or about 1.0 (ie, air). In a In some cases, the LED source may have a limit on the drive current density. In some cases, the phosphor can operate at high power densities, and in order to achieve higher efficiency of the pumping system, it is generally preferred to use an encapsulant to optically couple the phosphor to the primary optic.

在一特定實施例中,LED源之區域顯著大於磷光體之區域,且聚焦光學器件可用以增加對磷光體進行照明之角範圍,該磷光體可藉由特定囊封物耦接至聚焦光學器件,該囊封物之折射率高於圍繞LED之材料的折射率。在一些狀況下,囊封物可具有在約1.2與約1.6之間或在約1.4與約1.5之間的折射率或(例如)約1.41之折射率。 In a particular embodiment, the area of the LED source is significantly larger than the area of the phosphor, and focusing optics can be used to increase the angular extent of illumination of the phosphor, which can be coupled to the focusing optics by a particular encapsulant The envelope has a higher refractive index than the material surrounding the LED. In some cases, the encapsulant can have a refractive index between about 1.2 and about 1.6 or between about 1.4 and about 1.5 or a refractive index of, for example, about 1.41.

在一些狀況下,囊封之磷光體的光展量可(例如)藉由使用錐形桿將來自LED源之光聚集至磷光體上而與未囊封之LED匹配。錐形桿可以光學方式耦接至準直光學器件,或可與準直光學器件分離達一氣隙。磷光體可藉由諸如聚二甲矽氧之囊封物材料以光學方式耦接至錐形桿之較窄基底。在一些狀況下,可代替錐形桿來使用複合抛物面聚光器(CPC)。CPC或錐形桿可由玻璃或塑膠製成。磷光體可藉由諸如聚二甲矽氧之材料而接合至錐形桿或CPC,該材料之折射率為約1.2或更高,較佳為1.4或更高。 In some cases, the etendue of the encapsulated phosphor can be matched to the unencapsulated LED, for example, by using a tapered rod to concentrate light from the LED source onto the phosphor. The tapered rod can be optically coupled to the collimating optics or can be separated from the collimating optics by an air gap. The phosphor can be optically coupled to the narrower substrate of the tapered rod by an encapsulating material such as polydimethyl oxyhydroxide. In some cases, a compound parabolic concentrator (CPC) can be used instead of a tapered rod. The CPC or tapered rod can be made of glass or plastic. The phosphor may be bonded to the tapered rod or CPC by a material such as polydimethyl oxyhydroxide having a refractive index of about 1.2 or higher, preferably 1.4 or higher.

圖1展示根據本發明之一態樣之照明系統100的橫截面示意圖。在圖1中,照明系統100包括集光光學器件105,集光光學器件105包括第一透鏡元件110及第二透鏡元件120。集光光學器件105包括光輸入表面114及垂直於光輸入表面114之光軸102。第一光源140安置於面向光輸入表 面114之光射出表面104上。光輸出區170經安置成緊鄰第一光源140在光射出表面104上。在一些狀況下,光輸出區170及第一光源140中之一者安置於光軸102上且彼此緊鄰。在一些狀況下,光輸出區170及第一光源140中之每一者自光軸102移位,且彼此緊鄰。然而,第一光源140及光輸出區170一般安置成緊密接近於光軸102,使得可維持自第一光源140發射且導引至光輸出區170之光的準直角。圖1展示略高於光軸102之第一光源140及安置於光軸102上之光輸出區170的配置。在一些狀況下,第二光源(圖中未展示)可安置於自光射出表面104移除之位置處以導引第二光直接朝向光轉換區170。 1 shows a cross-sectional schematic view of an illumination system 100 in accordance with an aspect of the present invention. In FIG. 1, illumination system 100 includes a collection optics 105 that includes a first lens element 110 and a second lens element 120. The collection optics 105 includes a light input surface 114 and an optical axis 102 that is perpendicular to the light input surface 114. The first light source 140 is disposed on the light input table Light from face 114 exits surface 104. The light output region 170 is disposed in close proximity to the first light source 140 on the light exit surface 104. In some cases, one of the light output region 170 and the first light source 140 is disposed on the optical axis 102 and in close proximity to one another. In some cases, each of the light output region 170 and the first light source 140 is displaced from the optical axis 102 and is in close proximity to one another. However, the first source 140 and the light output region 170 are generally disposed in close proximity to the optical axis 102 such that the collimation angle of light emitted from the first source 140 and directed to the light output region 170 can be maintained. 1 shows a configuration of a first light source 140 that is slightly above the optical axis 102 and a light output region 170 disposed on the optical axis 102. In some cases, a second source (not shown) can be disposed at a location removed from the light exit surface 104 to direct the second light directly toward the light conversion region 170.

任何合適的基板可用於光射出表面104,且可包括導電層或跡線以將電力載送至LED。較佳地,基板亦具有相對高之導熱率及相對低之熱阻以便有效地將熱載離LED及/或磷光體層,以便維持LED及/或磷光體層之較低操作溫度。為了促進此等較低操作溫度,基板可包括合適的散熱片或熱耦接至合適的散熱片,例如,相對厚之銅層、鋁層或其他合適的金屬層或其他導熱材料(圖中未展示)層。在一些狀況下,基板可為或包含諸如金屬鏡之高反射性表面、具有介電塗層以增強反射率之金屬鏡,或諸如微孔聚酯或二氧化鈦填充聚合物之漫反射表面,或諸如3MTM VikuitiTM增強型鏡面反射反射器(ESR)膜之多層光學膜。基板亦可為或包含本文中別處所論述之基板中的任一者。 Any suitable substrate can be used for the light exiting surface 104 and can include a conductive layer or trace to carry electrical power to the LED. Preferably, the substrate also has a relatively high thermal conductivity and a relatively low thermal resistance to effectively carry heat away from the LED and/or phosphor layer in order to maintain a lower operating temperature of the LED and/or phosphor layer. To facilitate such lower operating temperatures, the substrate may comprise a suitable heat sink or be thermally coupled to a suitable heat sink, for example, a relatively thick copper layer, an aluminum layer or other suitable metal layer or other thermally conductive material (not shown) Show) layer. In some cases, the substrate can be or comprise a highly reflective surface such as a metal mirror, a metal mirror with a dielectric coating to enhance reflectivity, or a diffuse reflective surface such as a microporous polyester or titanium dioxide filled polymer, or such as 3M TM Vikuiti TM reflector enhanced specular reflector (ESR) multilayer optical film of the film. The substrate can also be or comprise any of the substrates discussed elsewhere herein.

基板可包括介電層。合適的介電層包括聚酯、聚碳酸 酯、液晶聚合物及聚醯亞胺。合適的聚醯亞胺包括可根據商標名稱KAPTON而可購自DuPont、根據商標名稱APICAL而可購自Kaneka Texas corporation、根據商標名稱SKC Kolon PI而可購自SKC Kolon PI Inc.及根據商標名稱UPILEX及UPISEL而可購自Ube Industries的彼等聚醯亞胺。可根據商標名UPILEX S、UPILEX SN及UPISEL VT購得之聚醯亞胺(皆可購自Ube Industries,Japan)在許多應用中尤為有利。此等聚醯亞胺係由諸如聯二鄰苯二甲酸二酐(BPDA)及對苯二胺(PDA)之單體製成。 The substrate can include a dielectric layer. Suitable dielectric layers include polyester, polycarbonate Esters, liquid crystal polymers and polyimine. Suitable polyimines include those available from DuPont under the trade name KAPTON, from Kaneka Texas corporation under the trade name APICAL, from SKC Kolon PI Inc. under the trade name SKC Kolon PI and under the trade name UPILEX And UPISEL are available from Ube Industries for their polyimine. Polyimines available under the trade names UPILEX S, UPILEX SN and UPISEL VT (both available from Ube Industries, Japan) are particularly advantageous in many applications. These polyimines are made from monomers such as biphenyl phthalic anhydride (BPDA) and p-phenylenediamine (PDA).

適合用於所揭示之實施例中的例示性可撓性基板之額外設計細節可見於以下共同擁有的美國專利申請案中:2010年11月3日申請之題為「Flexible LED Device and Method of Making」的美國申請案61/409,796(代理人案號66938US003);2010年11月3日申請之題為「Flexible LED Device for Thermal Management and Method of Making」的美國申請案61/409,801(代理人案號67018US002);2010年12月29日申請之題為「Remote Phosphor LED Constructions」的美國申請案61/428034(代理人案號67006US002);及2010年12月29日申請之題為「LED Color Combiner」的美國申請案61/428038(代理人案號67010US002)。 Additional design details of an exemplary flexible substrate suitable for use in the disclosed embodiments can be found in the commonly-owned U.S. Patent Application, entitled: "Flexible LED Device and Method of Making", filed on November 3, 2010. US Application No. 61/409,796 (Attorney Docket No. 66938US003); US Application No. 61/409,801, entitled "Flexible LED Device for Thermal Management and Method of Making", filed on November 3, 2010 (Attorney Docket No.) 67018US002); US Application 61/428034 (Attorney Docket No. 67006US002) entitled "Remote Phosphor LED Constructions", filed on December 29, 2010; and "LED Color Combiner", filed on December 29, 2010 US Application 61/428038 (Attorney Docket No. 67010US002).

在一特定實施例中,照明系統100進一步包括反射器132,反射器132係沿著光軸102安置成面向集光光學器件105,使得第一透鏡元件110及第二透鏡元件120處於反射 器132與光輸入表面114之間。反射器132可安置成與光軸成傾斜角φ,且可為能夠反射第一色彩光141且透射所有其他色彩光之雙向色反射器。反射器132可替代地為寬頻反射器,諸如寬頻鏡。 In a particular embodiment, illumination system 100 further includes a reflector 132 disposed along optical axis 102 to face collection optics 105 such that first lens element 110 and second lens element 120 are in reflection Between the 132 and the light input surface 114. The reflector 132 can be disposed at an oblique angle φ to the optical axis and can be a bidirectional color reflector that is capable of reflecting the first color light 141 and transmitting all other color lights. Reflector 132 can alternatively be a broadband reflector, such as a wideband mirror.

在一特定實施例中,集光光學器件105可為用以使自第一光源140發射之光準直的光準直光學器件105。光準直光學器件105可包括單透鏡光準直器(圖中未展示)、雙透鏡光準直器(圖中展示)、繞射光學元件(圖中未展示)或其組合。雙透鏡光準直器具有第一透鏡元件110,第一透鏡元件110包括經安置成與光輸入表面114相對之第一凸表面112。第二透鏡元件120包括面向第一凸表面112之第二表面122及與第二表面122相對之第三凸表面124。第二表面122可選自凸表面、平坦表面及凹表面。 In a particular embodiment, the collection optics 105 can be a light collimating optic 105 that collimates light emitted from the first source 140. Light collimating optics 105 can include a single lens optical collimator (not shown), a dual lens optical collimator (shown in the figures), a diffractive optical element (not shown), or a combination thereof. The dual lens optical collimator has a first lens element 110 that includes a first convex surface 112 disposed opposite the light input surface 114. The second lens element 120 includes a second surface 122 facing the first convex surface 112 and a third convex surface 124 opposite the second surface 122. The second surface 122 can be selected from a convex surface, a flat surface, and a concave surface.

可追蹤來自第一光源140之第一色彩光141穿過照明系統100之路徑。第一色彩光141包括在第一光傳播方向上行進之第一中心光線142a及在第一輸入光準直角θ1i內之射線錐,射線錐之邊界由第一邊界光線144a、146a表示。第一中心光線142a係在大體上平行於光軸102之方向上自第一光源140射出從而至光輸入表面114中,穿過第一透鏡元件110、第二透鏡元件120,且自反射器132反射以使得第一中心反射光線142b與光軸102重合,如圖1中所展示。第一邊界光線144a、146a中之每一者係在大體上與光軸102成第一輸入光準直角θ1i之方向上射出從而至光輸入表面114中,穿過第一透鏡元件110、第二透鏡元件120,且自反射 器132反射以使得第一邊界反射光線144b、146b在重新進入光準直光學器件105之前分別大體上平行於光軸102,如所展示。如可自圖1看出,光準直光學器件105用以使自第一光源140傳遞至反射器132之第一色彩光141準直。 The path of the first color light 141 from the first source 140 through the illumination system 100 can be tracked. The first color light 141 includes a first center ray 142a traveling in the first light propagation direction and a ray cone within the first input light collimation angle θ1i, the boundary of the ray cone being represented by the first boundary ray 144a, 146a. The first central ray 142a exits from the first source 140 in a direction generally parallel to the optical axis 102 and into the light input surface 114, through the first lens element 110, the second lens element 120, and from the reflector 132. The reflection is such that the first central reflected light 142b coincides with the optical axis 102, as shown in FIG. Each of the first boundary ray 144a, 146a exits in a direction substantially at a first input light collimation angle θ1i with the optical axis 102 to the light input surface 114, through the first lens element 110, the second Lens element 120, and self-reflecting The 132 is reflected such that the first boundary reflected rays 144b, 146b are substantially parallel to the optical axis 102, respectively, as re-entered the light collimating optics 105, as shown. As can be seen from FIG. 1, the light collimating optics 105 are used to collimate the first color light 141 that is transmitted from the first source 140 to the reflector 132.

第一中心光線142a及第一邊界光線144a、146a中之每一者自反射器132反射,且作為基本上平行於光軸102且在一些狀況下集中於光軸102上(例如,如圖1中所展示)的準直光線行進回從而穿過光準直光學器件105。在如圖1中所展示之一特定實施例中,準直光線會聚以作為具有第一輸出準直角θ1o之第一輸出光線148穿過光輸出區170而射離照明系統100。 Each of the first central ray 142a and the first boundary ray 144a, 146a is reflected from the reflector 132 and is substantially parallel to the optical axis 102 and, in some cases, concentrated on the optical axis 102 (eg, FIG. 1) The collimated light rays shown in the process travel back through the light collimating optics 105. In a particular embodiment as shown in FIG. 1, the collimated light converges to exit the illumination system 100 through the light output region 170 as a first output ray 148 having a first output collimation angle θ1o.

在一特定實施例中,輸入準直角θ1i可與輸出準直角θ1o相同,且與第一光源140相關聯之射出光學器件(圖中未展示)可將此等輸入準直角限於在以下範圍中的角度:在約10度與約80度之間,或在約10度與約70度之間,或在約10度與約60度之間,或在約10度與約50度之間,或在約10度與約40度之間,或在約10度與約30度之間,或更小角度。在一些狀況下,可製造光準直光學器件105及反射器132以使得輸出準直角θ1o可相同,且實質上亦等於輸入準直角θ1i。在一特定實施例中,輸入準直角中之每一者的範圍在約60度至約70度之間,且輸出準直角之範圍亦在約60度至約70度之間。 In a particular embodiment, the input collimation angle θ1i can be the same as the output collimation angle θ1o, and the exit optics associated with the first source 140 (not shown) can limit the input collimation angles to the following ranges. Angle: between about 10 degrees and about 80 degrees, or between about 10 degrees and about 70 degrees, or between about 10 degrees and about 60 degrees, or between about 10 degrees and about 50 degrees, or Between about 10 degrees and about 40 degrees, or between about 10 degrees and about 30 degrees, or less. In some cases, the light collimating optics 105 and the reflector 132 can be fabricated such that the output collimation angles θ1o can be the same and substantially equal to the input collimation angle θ1i. In a particular embodiment, each of the input collimation angles ranges from about 60 degrees to about 70 degrees, and the output collimation angle ranges from about 60 degrees to about 70 degrees.

圖2A展示根據本發明之一態樣的圖1中所展示之照明系統100之光輸出區170附近組態的示意圖。圖2A中所展示之 元件104至170中之每一者對應於先前已描述的圖1中所展示之相同編號元件。在圖2A中,光輸出區170包括安置於光射出表面104之可見透明區106上的由囊封物155圍繞之磷光體150。囊封物155之折射率大於如別處所描述之圍繞第一光源140的材料之折射率。囊封物155可為先前所描述之囊封材料中之任一者,諸如聚二甲矽氧。在一些狀況下,囊封物155可完全填充光射出表面104與光輸入表面114之間的間隔。在一些狀況下,囊封物155可替代地製造為包括彎曲表面156(如圖2A中所展示)之透鏡以將射離光輸入表面114之反射光線142b、144b、146b聚焦至磷光體150上。在由磷光體150截取之後,反射光線142b、144b、146b之主要部分經波長降頻轉換以作為具有輸出準直角θ1o之輸出光線148而射離照明系統100。 2A shows a schematic diagram of a configuration near the light output region 170 of the illumination system 100 shown in FIG. 1 in accordance with an aspect of the present invention. Shown in Figure 2A Each of the elements 104-170 corresponds to the same numbered elements shown in Figure 1 that have been previously described. In FIG. 2A, light output region 170 includes phosphor 150 surrounded by encapsulant 155 disposed on visible transparent region 106 of light exit surface 104. The index of refraction of the encapsulant 155 is greater than the refractive index of the material surrounding the first source 140 as described elsewhere. The encapsulant 155 can be any of the encapsulating materials previously described, such as polydimethylox. In some cases, the encapsulant 155 can completely fill the gap between the light exit surface 104 and the light input surface 114. In some cases, the encapsulant 155 can alternatively be fabricated as a lens that includes a curved surface 156 (as shown in FIG. 2A) to focus the reflected light 142b, 144b, 146b that is incident on the light input surface 114 onto the phosphor 150. . After being intercepted by phosphor 150, a substantial portion of reflected light 142b, 144b, 146b is wavelength downconverted to exit illumination system 100 as output ray 148 having an output collimation angle θ1o.

圖2B展示根據本發明之一態樣的圖1中所展示之照明系統100之光輸出區170附近組態的示意圖。圖2B中所展示之元件104至170中之每一者對應於先前已描述的圖2A中所展示之相同編號元件。在圖2B中,光輸出區170進一步包括經安置成鄰近於可見透明區106之錐形桿107。錐形桿107可為別處所描述之錐形桿中之任一者,且可具有反射表面或拋光表面以實現自該等表面之TIR。錐形桿107經組態以輸送且進一步聚集輸出光線148,使得具有第二輸出準直角θ2o之輸出光線148射離照明系統100。在一些狀況下,第二輸出準直角θ2o可與輸入準直角θ1i相同。 2B shows a schematic diagram of the configuration of the vicinity of the light output region 170 of the illumination system 100 shown in FIG. 1 in accordance with an aspect of the present invention. Each of the elements 104-170 shown in Figure 2B corresponds to the same numbered elements shown in Figure 2A that have been previously described. In FIG. 2B, light output region 170 further includes a tapered rod 107 disposed adjacent to visible transparent region 106. The tapered rod 107 can be any of the tapered rods described elsewhere, and can have a reflective surface or a polished surface to achieve TIR from the surfaces. The tapered rod 107 is configured to deliver and further concentrate the output ray 148 such that the output ray 148 having the second output collimation angle θ2o is directed away from the illumination system 100. In some cases, the second output collimation angle θ2o may be the same as the input collimation angle θ1i.

圖2C展示根據本發明之一態樣的圖1中所展示之照明系 統100之光輸出區170附近組態的示意圖。圖2C中所展示之元件104至170中之每一者對應於先前已描述的圖2A中所展示之相同編號元件。在圖2C中,光輸出區170進一步包括經安置成鄰近於可見透明區106之CPC 108。CPC 108可為別處所描述之CPC中之任一者,且可具有反射表面或拋光表面以實現自該等表面之TIR。CPC 108經組態以輸送且進一步聚集輸出光線148,使得具有第三輸出準直角θ3o之輸出光線148射離照明系統100。在一些狀況下,第三輸出準直角θ3o可與輸入準直角θ1i相同。 2C shows the illumination system shown in FIG. 1 in accordance with an aspect of the present invention. Schematic diagram of the configuration near the light output area 170 of the system 100. Each of the elements 104-170 shown in Figure 2C corresponds to the same numbered elements shown in Figure 2A that have been previously described. In FIG. 2C, light output region 170 further includes a CPC 108 disposed adjacent to visible transparent region 106. The CPC 108 can be any of the CPCs described elsewhere, and can have reflective or polished surfaces to achieve TIR from such surfaces. The CPC 108 is configured to deliver and further concentrate the output light 148 such that the output light 148 having the third output collimation angle θ3o is directed away from the illumination system 100. In some cases, the third output collimation angle θ3o may be the same as the input collimation angle θ1i.

圖2D展示根據本發明之一態樣的圖1中所展示之照明系統100之光輸出區170附近的示意圖。圖2D中所展示之元件104至170中之每一者對應於先前已描述的圖1中所展示之相同編號元件。在圖2D中,光輸出區170包括安置於光射出表面104之可見透明區106上的由囊封物155圍繞之磷光體150。囊封物155之折射率大於如別處所描述之圍繞第一光源140的材料之折射率。囊封物155可為先前所描述之囊封材料中之任一者,諸如聚二甲矽氧。囊封物155呈經安置成鄰近於可見透明區106之錐形桿107之形式,且磷光體150安置於錐形桿107之窄端處。錐形桿107可為別處所描述之錐形桿中之任一者,且可具有反射表面或拋光表面以實現自該等表面之TIR。錐形桿107經組態以輸送且進一步聚集反射光線142b、144b、146b,使得反射光線142b、144b、146b作為具有第四輸出準直角θ4o之輸出光線148而射離照明系統100。在一些狀況下,第四輸出準直角θ4o可 與輸入準直角θ1i相同。 2D shows a schematic view of the vicinity of the light output region 170 of the illumination system 100 shown in FIG. 1 in accordance with an aspect of the present invention. Each of the elements 104-170 shown in Figure 2D corresponds to the same numbered elements shown in Figure 1 that have been previously described. In FIG. 2D, light output region 170 includes phosphor 150 surrounded by encapsulant 155 disposed on visible transparent region 106 of light exit surface 104. The index of refraction of the encapsulant 155 is greater than the refractive index of the material surrounding the first source 140 as described elsewhere. The encapsulant 155 can be any of the encapsulating materials previously described, such as polydimethylox. The encapsulant 155 is in the form of a tapered rod 107 disposed adjacent to the visible transparent region 106, and the phosphor 150 is disposed at the narrow end of the tapered rod 107. The tapered rod 107 can be any of the tapered rods described elsewhere, and can have a reflective surface or a polished surface to achieve TIR from the surfaces. The tapered rod 107 is configured to transport and further concentrate the reflected light 142b, 144b, 146b such that the reflected light 142b, 144b, 146b exits the illumination system 100 as the output light 148 having a fourth output collimation angle θ4o. In some cases, the fourth output collimation angle θ4o can It is the same as the input collimation angle θ1i.

圖2E展示根據本發明之一態樣的圖1中所展示之照明系統100之光輸出區170附近的示意圖。圖2E中所展示之元件104至170中之每一者對應於先前已描述的圖1中所展示之相同編號元件。在圖2E中,光輸出區170包括安置於光射出表面104之可見透明區106上的由囊封物155圍繞之磷光體150。囊封物155之折射率大於如別處所描述之圍繞第一光源140的材料之折射率。囊封物155可為先前所描述之囊封材料中之任一者,諸如聚二甲矽氧。囊封物155呈經安置成鄰近於可見透明區106之CPC 108之形式,且磷光體150安置於CPC 108之窄端處。CPC 108可為別處所描述之CPC中之任一者,且可具有反射表面或拋光表面以實現自該等表面之TIR。CPC 108經組態以輸送且進一步聚集反射光線142b、144b、146b,使得反射光線142b、144b、146b作為具有第五輸出準直角θ5o之輸出光線148而射離照明系統100。在一些狀況下,第五輸出準直角θ5o可與輸入準直角θ1i相同。 2E shows a schematic diagram of the vicinity of the light output region 170 of the illumination system 100 shown in FIG. 1 in accordance with an aspect of the present invention. Each of the elements 104-170 shown in Figure 2E corresponds to the same numbered elements shown in Figure 1 that have been previously described. In FIG. 2E, light output region 170 includes phosphor 150 surrounded by encapsulant 155 disposed on visible transparent region 106 of light exit surface 104. The index of refraction of the encapsulant 155 is greater than the refractive index of the material surrounding the first source 140 as described elsewhere. The encapsulant 155 can be any of the encapsulating materials previously described, such as polydimethylox. The encapsulant 155 is in the form of a CPC 108 disposed adjacent to the visible transparent region 106, and the phosphor 150 is disposed at the narrow end of the CPC 108. The CPC 108 can be any of the CPCs described elsewhere, and can have reflective or polished surfaces to achieve TIR from such surfaces. The CPC 108 is configured to transport and further concentrate the reflected rays 142b, 144b, 146b such that the reflected rays 142b, 144b, 146b exit the illumination system 100 as output rays 148 having a fifth output collimation angle θ5o. In some cases, the fifth output collimation angle θ5o may be the same as the input collimation angle θ1i.

圖3展示根據本發明之一態樣之影像投影器1的示意圖。影像投影器1包括能夠射出部分準直之光輸出24從而使其至可選均勻化極化轉換器模組30中之照明器模組10,在可選均勻化極化轉換器模組30中,部分準直之光輸出24被轉換成均勻極化光45,該極化光射離可選均勻化極化轉換器模組30且進入影像產生器模組50。影像產生器模組50輸出影像光65,該影像光65進入投影模組70,在投影模組70中 影像光65變成投射影像光80。 Figure 3 shows a schematic diagram of an image projector 1 in accordance with one aspect of the present invention. The image projector 1 includes a illuminator module 10 capable of emitting a partially collimated light output 24 to an optional homogenizing polarization converter module 30, in an optional uniformized polarization converter module 30, The partially collimated light output 24 is converted into uniformly polarized light 45 that is directed away from the optional uniformized polarization converter module 30 and into the image generator module 50. The image generator module 50 outputs image light 65, and the image light 65 enters the projection module 70 in the projection module 70. The image light 65 becomes the projected image light 80.

在一態樣中,照明器模組10包括經由照明系統100中之光準直光學器件105輸入的輸入光源,如別處所描述。照明系統100產生作為部分準直之光輸出24而射離照明器模組10之光輸出,如別處所描述。 In one aspect, illuminator module 10 includes an input source that is input via light collimating optics 105 in illumination system 100, as described elsewhere. Illumination system 100 produces a light output that is emitted from illuminator module 10 as a partially collimated light output 24, as described elsewhere.

在一態樣中,輸入光源為非極化的,且部分準直之光輸出24亦為非極化的。部分準直之光輸出24可為包含一個以上波長光譜之光的多色組合光。為了達成本文中所提供之描述之目的,「色彩光」及「波長光譜光」兩者皆意欲意謂具有可與特定色彩(若可為人眼所見)相關之波長光譜範圍之光。更一般的術語「波長光譜光」指代可見光及其他波長光譜之光,包括(例如)紅外光。 In one aspect, the input source is non-polarized and the partially collimated light output 24 is also non-polar. The partially collimated light output 24 can be a multi-color combined light that includes light of more than one wavelength spectrum. For the purposes of the description provided herein, both "color light" and "wavelength spectral light" are intended to mean light having a wavelength spectrum that is relevant to a particular color (if visible to the human eye). The more general term "wavelength spectral light" refers to light of visible light and other wavelengths of light, including, for example, infrared light.

根據一態樣,每一輸入光源包含一或多個發光二極體(LED)。可使用各種光源,諸如雷射、雷射二極體、有機LED(OLED)及非固態光源(諸如,具有適當集光器或反射器之超高壓(UHP)鹵素或氙氣燈)。可用於本發明中之光源、光準直器、透鏡及光積分器進一步描述於(例如)已公開之美國專利申請案第US 2008/0285129號,該申請案之揭示內容之全文包括於本文中。 According to one aspect, each input source comprises one or more light emitting diodes (LEDs). Various light sources can be used, such as lasers, laser diodes, organic LEDs (OLEDs), and non-solid state light sources (such as ultra high voltage (UHP) halogen or xenon lamps with appropriate concentrators or reflectors). Light sources, optical collimators, lenses, and optical integrators that can be used in the present invention are further described in, for example, the published U.S. Patent Application Serial No. US 2008/0285129, the disclosure of which is incorporated herein in its entirety. .

在一態樣中,可選均勻化極化轉換器模組30包括能夠將非極化部分準直之光輸出24轉換成均勻極化光45的極化轉換器40。可選均勻化極化轉換器模組30可進一步包括透鏡42之單體陣列,諸如別處所描述之透鏡的可選單體FEA,其可均勻化作為均勻極化光45而射離可選均勻化極化轉換 器模組30之部分準直之組合色彩光輸出24且改良該光輸出的均勻性。與可選均勻化極化轉換器模組30相關聯之可選FEA之代表性配置描述於(例如)以下專利中:同在申請中之題為「FLY EYE INTEGRATOR POLARIZATION CONVERTER」的美國專利第61/346183號(代理人案號66247US002,2010年5月19日申請)、題為「POLARIZED PROJECTION ILLUMINATOR」的美國專利第61/346190號(代理人案號66249US002,2010年5月19日申請),及題為「COMPACT ILLUMINATOR」的美國專利第61/346193號(代理人案號66360US002,2010年5月19日申請)。 In one aspect, the optional uniformization polarization converter module 30 includes a polarization converter 40 that is capable of converting the non-polarized portion collimated light output 24 into uniformly polarized light 45. The optional uniformization polarization converter module 30 can further include a single array of lenses 42, such as the optional single-body FEA of the lens described elsewhere, which can be homogenized as uniformly polarized light 45 and can be selectively homogenized. Polarization conversion The partially modular combination of the color modules 24 outputs a color light output 24 and improves the uniformity of the light output. A representative configuration of an optional FEA associated with the optional homogenizing polarization converter module 30 is described, for example, in the following patent: U.S. Patent No. 61, entitled "FLY EYE INTEGRATOR POLARIZATION CONVERTER" in the same application. /346183 (Attorney Docket No. 66247US002, filed May 19, 2010), U.S. Patent No. 61/346,190, entitled "POLARIZED PROJECTION ILLUMINATOR" (Attorney Docket No. 66249US002, filed on May 19, 2010), And U.S. Patent No. 61/346,193, entitled "COMPACT ILLUMINATOR" (Attorney Docket No. 66360US002, filed on May 19, 2010).

在一態樣中,影像產生器模組50包括極化分光器(PBS)56、代表性成像光學器件52、54及空間光調變器58,上述各者合作以將均勻極化光45轉換成影像光65。合適的空間光調變器(亦即,影像產生器)先前已描述於(例如)以下文獻中:美國專利第7,362,507號(Duncan等人)、第7,529,029號(Duncan等人)、美國公開案第2008-0285129-A1號(Magarill等人),以及PCT公開案第WO2007/016015號(Duncan等人)。在一特定實施例中,均勻極化光45為源自可選FEA之每一透鏡的發散光。在穿過成像光學器件52、54及PBS 56之後,均勻極化光45變成均勻地對空間光調變器進行照明之成像光60。在一特定實施例中,來自可選FEA中之透鏡中之每一者的發散光線束中之每一者對空間光調變器58之主要部分進行照明,使得個別發散射線束彼此重疊。 In one aspect, image generator module 50 includes a polarizing beam splitter (PBS) 56, representative imaging optics 52, 54 and a spatial light modulator 58 that cooperate to convert uniformly polarized light 45 Image light 65. Suitable spatial light modulators (i.e., image generators) have been previously described, for example, in U.S. Patent Nos. 7,362,507 (Duncan et al.), 7,529,029 (Duncan et al.), U.S. Publication No. 2008-0285129-A1 (Magarill et al.), and PCT Publication No. WO2007/016015 (Duncan et al.). In a particular embodiment, uniformly polarized light 45 is divergent light from each lens of the optional FEA. After passing through imaging optics 52, 54 and PBS 56, uniformly polarized light 45 becomes imaging light 60 that uniformly illuminates the spatial light modulator. In a particular embodiment, each of the diverging ray bundles from each of the lenses in the optional FEA illuminates a major portion of the spatial light modulator 58 such that the individual scatter beams collide with each other.

在一態樣中,投影模組70包括可用以將影像光65投射為投射光80之代表性投影光學器件72、74、76。合適的投影光學器件72、74、76先前已描述且係熟習此項技術者所熟知的。 In one aspect, projection module 70 includes representative projection optics 72, 74, 76 that can be used to project image light 65 as projected light 80. Suitable projection optics 72, 74, 76 have been previously described and are well known to those skilled in the art.

以下為本發明之實施例之清單。 The following is a list of embodiments of the invention.

項目1為一種照明系統,其包含:一發光二極體(LED),其安置於一基板上且經組態以沿一第一傳播方向射出一第一光束從而使該第一光束穿過一準直光學器件;一反射器,其經安置以將該第一光束反射回從而穿過該準直光學器件;一囊封之磷光體,其緊鄰該LED而安置於該基板之一可見光透明區上,該囊封之磷光體經安置以截取該第一光束;其中該第一光束之一主要部分係藉由該囊封之磷光體降頻轉換以變成傳播穿過該可見光透明區之一第二光束。 Item 1 is an illumination system comprising: a light emitting diode (LED) disposed on a substrate and configured to emit a first light beam in a first propagation direction such that the first light beam passes through a Collimating optics; a reflector disposed to reflect the first beam back through the collimating optics; an encapsulated phosphor disposed adjacent to the LED in a visible light transparent region of the substrate The encapsulated phosphor is disposed to intercept the first light beam; wherein a major portion of the first light beam is down-converted by the encapsulated phosphor to become propagated through one of the visible light transparent regions Two beams.

項目2為項目1之照明系統,其中該磷光體包含一囊封之磷光體。 Item 2 is the illumination system of item 1, wherein the phosphor comprises an encapsulated phosphor.

項目3為項目1之照明系統,其中該囊封之磷光體包含具有在約1.2與約1.6之間的一折射率之一囊封物。 Item 3 is the illumination system of item 1, wherein the encapsulated phosphor comprises an encapsulant having a refractive index between about 1.2 and about 1.6.

項目4為項目2或項目3之照明系統,其中該囊封之磷光體包含具有在約1.4與約1.5之間的一折射率之一囊封物。 Item 4 is the illumination system of item 2 or item 3, wherein the encapsulated phosphor comprises an encapsulation having a refractive index between about 1.4 and about 1.5.

項目5為項目1至項目4之照明系統,其進一步包含在該LED與該準直光學器件之間的一低折射率材料,該低折射率材料具有在約1.0與約1.2之間的一折射率。 Item 5 is the illumination system of item 1 to item 4, further comprising a low refractive index material between the LED and the collimating optic, the low refractive index material having a refraction between about 1.0 and about 1.2 rate.

項目6為項目5之照明系統,其中該低折射率材料為空 氣。 Item 6 is the lighting system of item 5, wherein the low refractive index material is empty gas.

項目7為項目1至項目6之照明系統,其中該第一光束包含在該第一傳播方向之一第一準直角內傳播的第一光線。 Item 7 is the illumination system of item 1 to item 6, wherein the first light beam comprises a first light ray propagating within one of the first alignment angles of the first propagation direction.

項目8為項目1至項目7之照明系統,其中該第二光束包含在與該第一傳播方向相反之一第二傳播方向之一第二準直角內傳播的第二光線。 Item 8 is the illumination system of item 1 to item 7, wherein the second light beam comprises a second light ray propagating within a second collimation angle of one of the second propagation directions opposite the first propagation direction.

項目9為項目1至項目8之照明系統,其進一步包含安置於該囊封之磷光體與該準直光學器件之間的一聚焦光學元件,該聚焦光學元件能夠聚集該第一光束。 Item 9 is the illumination system of item 1 to item 8, further comprising a focusing optic disposed between the encapsulated phosphor and the collimating optic, the focusing optic capable of focusing the first beam.

項目10為項目9之照明系統,其中該聚焦光學元件包含一錐形玻璃桿或一複合抛物面聚光器(CPC)。 Item 10 is the illumination system of item 9, wherein the focusing optical element comprises a tapered glass rod or a compound parabolic concentrator (CPC).

項目11為項目1至項目10之照明系統,其中該磷光體包含聚二甲矽氧囊封物。 Item 11 is the illumination system of item 1 to item 10, wherein the phosphor comprises a polydimethyl sulfoxide encapsulation.

項目12為項目1至項目11之照明系統,其中該準直光學器件包含一光軸,且該LED或該囊封之磷光體中之至多一者係安置於該光軸上。 Item 12 is the illumination system of item 1 to item 11, wherein the collimating optics comprises an optical axis, and at least one of the LED or the encapsulated phosphor is disposed on the optical axis.

項目13為項目1至項目12之照明系統,其中該反射器為一寬頻反射器。 Item 13 is the lighting system of item 1 to item 12, wherein the reflector is a broadband reflector.

項目14為項目1至項目13之照明系統,其進一步包含經安置以直接朝向該磷光體射出一第三光束之一第二LED。 Item 14 is the illumination system of item 1 to item 13, further comprising a second LED disposed to directly emit a third beam toward the phosphor.

項目15為一種影像投影器,其包含:一照明系統,其包含:一發光二極體(LED),其安置於一基板上且經組態以沿一第一傳播方向射出一第一光束從而使該第一光束穿過一準直光學器件;一反射器,其經安置以將該第一光束反 射回從而穿過該準直光學器件;一磷光體,其緊鄰該LED而安置於該基板之一可見光透明區上,該磷光體經安置以截取該第一光束;其中該第一光束之一主要部分係藉由該磷光體降頻轉換以變成傳播穿過該可見光透明區之一第二光束;一極化轉換器,其能夠將該第二光束轉換成具有一第一極化方向之一第三光束;一成像器,其經安置以截取該第一極化方向之該第二光束;及投影光學器件。 Item 15 is an image projector comprising: an illumination system comprising: a light emitting diode (LED) disposed on a substrate and configured to emit a first light beam in a first propagation direction thereby Passing the first beam through a collimating optic; a reflector disposed to reverse the first beam Shooting back through the collimating optics; a phosphor disposed adjacent to the LED on a visible light transparent region of the substrate, the phosphor being disposed to intercept the first beam; wherein the first beam The main portion is down-converted by the phosphor to become a second light beam propagating through one of the visible light transparent regions; a polarization converter capable of converting the second light beam into one having a first polarization direction a third beam; an imager positioned to intercept the second beam of the first polarization direction; and projection optics.

除非另有指示,否則說明書及申請專利範圍中所使用之表示特徵大小、量及物理性質之所有數字應被理解為由術語「約」予以修正。因此,除非有相反指示,否則前述說明書及所附申請專利範圍中所闡述之數值參數為可取決於由熟習此項技術者利用本文中所揭示之教示來設法獲得之所要性質而變化的近似值。 All numbers expressing feature sizes, quantities and physical properties used in the specification and claims are to be understood as being modified by the term "about" unless otherwise indicated. Accordingly, unless otherwise indicated, the numerical parameters set forth in the foregoing description and the appended claims are intended to be <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> dependent on the desired properties sought to be obtained by those skilled in the art using the teachings disclosed herein.

本文中所引用之所有參考案及公開案係以在本發明中全文引用之方式明確地併入本文中,除非該等參考案及公開案可能與本發明直接抵觸。雖然本文中已說明且描述特定實施例,但一般熟習此項技術者將瞭解,在不脫離本發明之範疇的情況下,多種替代及/或等效實施可替代所展示及描述之特定實施例。本申請案意欲涵蓋本文中所論述之特定實施例之任何調適或變化。因此,希望本發明僅受申請專利範圍及其等效物限制。 All of the references and publications cited herein are expressly incorporated herein by reference in their entirety in their entirety in their entirety, unless the same reference While a particular embodiment has been illustrated and described herein, it will be understood by those skilled in the art . This application is intended to cover any adaptations or variations of the specific embodiments discussed herein. Therefore, it is intended that the invention be limited only

1‧‧‧影像投影器 1‧‧‧Image projector

10‧‧‧照明器模組 10‧‧‧ illuminator module

24‧‧‧部分準直之光輸出 24‧‧‧Partial collimated light output

30‧‧‧可選均勻化極化轉換器模組 30‧‧‧Optional Uniform Polarization Converter Module

40‧‧‧極化轉換器 40‧‧‧Polarization converter

42‧‧‧透鏡之單體陣列 42‧‧‧Lens array of lenses

45‧‧‧均勻極化光 45‧‧‧Uniformly polarized light

50‧‧‧影像產生器模組 50‧‧‧Image Generator Module

52‧‧‧成像光學器件 52‧‧‧ imaging optics

54‧‧‧成像光學器件 54‧‧‧ imaging optics

56‧‧‧極化分光器(PBS) 56‧‧‧Polarized Beam Splitter (PBS)

58‧‧‧空間光調變器 58‧‧‧Space light modulator

60‧‧‧成像光 60‧‧‧ imaging light

65‧‧‧影像光 65‧‧‧Image light

70‧‧‧投影模組 70‧‧‧Projection Module

72‧‧‧投影光學器件 72‧‧‧Projection optics

74‧‧‧投影光學器件 74‧‧‧Projection optics

76‧‧‧投影光學器件 76‧‧‧Projection optics

80‧‧‧投射影像光 80‧‧‧Projected image light

100‧‧‧照明系統 100‧‧‧Lighting system

102‧‧‧光軸 102‧‧‧ optical axis

104‧‧‧光射出表面/元件 104‧‧‧Light shot surface/component

105‧‧‧集光光學器件/光準直光學器件 105‧‧‧Light collecting optics / light collimating optics

106‧‧‧可見透明區 106‧‧‧ visible transparent area

107‧‧‧錐形桿 107‧‧‧Conical rod

108‧‧‧複合抛物面聚光器(CPC) 108‧‧‧Composite parabolic concentrator (CPC)

110‧‧‧第一透鏡元件 110‧‧‧First lens element

112‧‧‧第一凸表面 112‧‧‧First convex surface

114‧‧‧光輸入表面 114‧‧‧Light input surface

120‧‧‧第二透鏡元件 120‧‧‧second lens element

122‧‧‧第二表面 122‧‧‧ second surface

124‧‧‧第三凸表面 124‧‧‧ Third convex surface

132‧‧‧反射器 132‧‧‧ reflector

140‧‧‧第一光源 140‧‧‧First light source

141‧‧‧第一色彩光 141‧‧‧First color light

142a‧‧‧第一中心光線 142a‧‧‧First Center Light

142b‧‧‧第一中心反射光線 142b‧‧‧The first center reflects light

144a‧‧‧第一邊界光線 144a‧‧‧First boundary light

144b‧‧‧第一邊界反射光線 144b‧‧‧First boundary reflected light

146a‧‧‧第一邊界光線 146a‧‧‧First boundary light

146b‧‧‧第一邊界反射光線 146b‧‧‧First boundary reflected light

148‧‧‧第一輸出光線 148‧‧‧ first output light

150‧‧‧磷光體 150‧‧‧phosphor

155‧‧‧囊封物 155‧‧‧Encapsulation

156‧‧‧彎曲表面 156‧‧‧Bend surface

170‧‧‧光輸出區/元件 170‧‧‧Light output area/component

圖1展示照明系統之橫截面示意圖;圖2A至圖2E展示照明系統之光輸出區附近組態之示意 圖;及圖3展示影像投影器之示意圖。 Figure 1 shows a schematic cross-sectional view of the illumination system; Figures 2A to 2E show schematic representations of the configuration near the light output area of the illumination system Figure 3 and Figure 3 show a schematic of an image projector.

100‧‧‧照明系統 100‧‧‧Lighting system

102‧‧‧光軸 102‧‧‧ optical axis

104‧‧‧光射出表面/元件 104‧‧‧Light shot surface/component

105‧‧‧集光光學器件/光準直光學器件 105‧‧‧Light collecting optics / light collimating optics

110‧‧‧第一透鏡元件 110‧‧‧First lens element

112‧‧‧第一凸表面 112‧‧‧First convex surface

114‧‧‧光輸入表面 114‧‧‧Light input surface

120‧‧‧第二透鏡元件 120‧‧‧second lens element

122‧‧‧第二表面 122‧‧‧ second surface

124‧‧‧第三凸表面 124‧‧‧ Third convex surface

132‧‧‧反射器 132‧‧‧ reflector

140‧‧‧第一光源 140‧‧‧First light source

141‧‧‧第一色彩光 141‧‧‧First color light

142a‧‧‧第一中心光線 142a‧‧‧First Center Light

142b‧‧‧第一中心反射光線 142b‧‧‧The first center reflects light

144a‧‧‧第一邊界光線 144a‧‧‧First boundary light

144b‧‧‧第一邊界反射光線 144b‧‧‧First boundary reflected light

146a‧‧‧第一邊界光線 146a‧‧‧First boundary light

146b‧‧‧第一邊界反射光線 146b‧‧‧First boundary reflected light

148‧‧‧第一輸出光線 148‧‧‧ first output light

170‧‧‧光輸出區/元件 170‧‧‧Light output area/component

Claims (15)

一種照明系統,其包含:一發光二極體(LED),其安置於一基板上且經組態以沿一第一傳播方向射出一第一光束從而使該第一光束穿過一準直光學器件;一反射器,其經安置以將該第一光束反射回從而穿過該準直光學器件;一磷光體,其緊鄰該LED而安置於該基板之一可見光透明區上,該磷光體經安置以截取該第一光束;其中該第一光束之一主要部分係藉由該磷光體降頻轉換以變成傳播穿過該可見光透明區之一第二光束。 An illumination system comprising: a light emitting diode (LED) disposed on a substrate and configured to emit a first light beam in a first propagation direction to pass the first light beam through a collimating optics a device; a reflector disposed to reflect the first beam back through the collimating optics; a phosphor disposed adjacent to the LED and disposed on a visible light transparent region of the substrate, the phosphor Positioning to intercept the first beam; wherein a major portion of the first beam is down-converted by the phosphor to become a second beam propagating through one of the visible regions of the visible light. 如請求項1之照明系統,其中該磷光體包含一囊封之磷光體。 The illumination system of claim 1 wherein the phosphor comprises an encapsulated phosphor. 如請求項2之照明系統,其中該囊封之磷光體包含具有在約1.2與約1.6之間的一折射率之一囊封物。 The illumination system of claim 2, wherein the encapsulated phosphor comprises an encapsulant having a refractive index between about 1.2 and about 1.6. 如請求項2之照明系統,其中該囊封之磷光體包含具有在約1.4與約1.5之間的一折射率之一囊封物。 The illumination system of claim 2, wherein the encapsulated phosphor comprises an encapsulant having a refractive index between about 1.4 and about 1.5. 如請求項1之照明系統,其進一步包含在該LED與該準直光學器件之間的一低折射率材料,該低折射率材料具有在約1.0與約1.2之間的一折射率。 The illumination system of claim 1, further comprising a low refractive index material between the LED and the collimating optic, the low refractive index material having a refractive index between about 1.0 and about 1.2. 如請求項5之照明系統,其中該低折射率材料為空氣。 The illumination system of claim 5, wherein the low refractive index material is air. 如請求項1之照明系統,其中該第一光束包含在該第一傳播方向之一第一準直角內傳播的第一光線。 The illumination system of claim 1, wherein the first light beam comprises a first light ray propagating within a first collimation angle of the first propagation direction. 如請求項1之照明系統,其中該第二光束包含在與該第 一傳播方向相反之一第二傳播方向之一第二準直角內傳播的第二光線。 The illumination system of claim 1, wherein the second light beam is included in the first a second ray propagating within one of the second directions of propagation opposite the second direction of propagation. 如請求項1之照明系統,其進一步包含安置於該磷光體與該準直光學器件之間的一聚焦光學元件,該聚焦光學元件能夠聚集該第一光束。 The illumination system of claim 1, further comprising a focusing optical element disposed between the phosphor and the collimating optic, the focusing optical element capable of focusing the first beam. 如請求項9之照明系統,其中該聚焦光學元件包含一錐形玻璃桿或一複合抛物面聚光器(CPC)。 The illumination system of claim 9, wherein the focusing optical element comprises a tapered glass rod or a compound parabolic concentrator (CPC). 如請求項1之照明系統,其中該磷光體包含聚二甲矽氧囊封物。 The illumination system of claim 1, wherein the phosphor comprises a polydimethyl sulfonate encapsulant. 如請求項1之照明系統,其中該準直光學器件包含一光軸,且該LED或該磷光體中之至多一者係安置於該光軸上。 The illumination system of claim 1, wherein the collimating optics comprises an optical axis, and at least one of the LEDs or the phosphor is disposed on the optical axis. 如請求項1之照明系統,其中該反射器為一寬頻反射器。 The illumination system of claim 1, wherein the reflector is a broadband reflector. 如請求項1之照明系統,其進一步包含經安置以直接朝向該磷光體射出一第三光束之一第二LED。 The illumination system of claim 1, further comprising a second LED disposed to directly emit a third beam toward the phosphor. 一種影像投影器,其包含:一照明系統,其包含:一發光二極體(LED),其安置於一基板上且經組態以沿一第一傳播方向射出一第一光束從而使該第一光束穿過一準直光學器件;一反射器,其經安置以將該第一光束反射回從而穿過該準直光學器件;一磷光體,其緊鄰該LED而安置於該基板之一可見 光透明區上,該磷光體經安置以截取該第一光束;其中該第一光束之一主要部分係藉由該磷光體降頻轉換以變成傳播穿過該可見光透明區之一第二光束;一極化轉換器,其能夠將該第二光束轉換成具有一第一極化方向之一第三光束;一成像器,其經安置以截取該第一極化方向之該第二光束;及投影光學器件。 An image projector comprising: an illumination system comprising: a light emitting diode (LED) disposed on a substrate and configured to emit a first light beam in a first propagation direction to cause the first a beam of light passes through a collimating optics; a reflector disposed to reflect the first beam back through the collimating optics; a phosphor adjacent the LED and disposed on one of the substrates a light-transparent region, the phosphor is disposed to intercept the first light beam; wherein a main portion of the first light beam is down-converted by the phosphor to become a second light beam propagating through one of the visible light transparent regions; a polarization converter capable of converting the second beam into a third beam having a first polarization direction; an imager positioned to intercept the second beam in the first polarization direction; Projection optics.
TW101116975A 2011-05-12 2012-05-11 Remote phosphor converted LED TW201305480A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201161485165P 2011-05-12 2011-05-12

Publications (1)

Publication Number Publication Date
TW201305480A true TW201305480A (en) 2013-02-01

Family

ID=47139881

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101116975A TW201305480A (en) 2011-05-12 2012-05-11 Remote phosphor converted LED

Country Status (2)

Country Link
TW (1) TW201305480A (en)
WO (1) WO2012154431A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013162939A2 (en) 2012-04-25 2013-10-31 3M Innovative Properties Company Two imager projection device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2783238B2 (en) * 1996-02-09 1998-08-06 日本電気株式会社 IR signal communication device
US7070300B2 (en) * 2004-06-04 2006-07-04 Philips Lumileds Lighting Company, Llc Remote wavelength conversion in an illumination device
US7445340B2 (en) * 2005-05-19 2008-11-04 3M Innovative Properties Company Polarized, LED-based illumination source
JP4824400B2 (en) * 2005-12-28 2011-11-30 株式会社トプコン Ophthalmic equipment
JP4662183B2 (en) * 2008-04-16 2011-03-30 カシオ計算機株式会社 Light source device and projector

Also Published As

Publication number Publication date
WO2012154431A2 (en) 2012-11-15
WO2012154431A3 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
JP5166871B2 (en) Light emitting diode device
EP3365598B1 (en) Lighting device for example for spot lighting applications
TWI447947B (en) Light emitting devices with improved light extraction efficiency
CN108235720B (en) Optical device for generating high brightness light
JP6396419B2 (en) Light emitting device having wavelength conversion element
US20070284565A1 (en) Led device with re-emitting semiconductor construction and optical element
TW200817821A (en) LED illumination system with polarization recycling
TW201033961A (en) LED displays
US20120217519A1 (en) Method and structure for encapsulating solid-state light emitting chip and light sources using the encapsulation structure
CN107017326B (en) Conversion device
JP2009540615A (en) LED device having re-emitting semiconductor structure and optical element
JP2018517918A (en) High brightness light emitting device
US20110057557A1 (en) Projection led module and method of making a projection led module
US10403800B1 (en) Remote wavelength-converting member and related systems
US20080123343A1 (en) Light source device, image display device, optical element and manufacturing method thereof
TW201314967A (en) Remote phosphor polarization converter
TW201300697A (en) Optical structure for remote phosphor LED
KR101299764B1 (en) Optical projection device
TW201305480A (en) Remote phosphor converted LED
US20150098239A1 (en) Lighting device with remote down-converting material
US20100053560A1 (en) Led package having improved light coupling efficiency for an optical system and method of manufacture thereof
EP3306392B1 (en) Illumination system and projection apparatus
CN109424943B (en) Wavelength conversion device and laser fluorescence conversion type light source
US8040040B2 (en) Light source and method of providing a bundle of light
TWI833971B (en) Laser device