TW201251256A - A power receiver and a contactless electrical power transmission system using same - Google Patents
A power receiver and a contactless electrical power transmission system using same Download PDFInfo
- Publication number
- TW201251256A TW201251256A TW101108093A TW101108093A TW201251256A TW 201251256 A TW201251256 A TW 201251256A TW 101108093 A TW101108093 A TW 101108093A TW 101108093 A TW101108093 A TW 101108093A TW 201251256 A TW201251256 A TW 201251256A
- Authority
- TW
- Taiwan
- Prior art keywords
- circuit
- power
- power receiving
- voltage
- driving
- Prior art date
Links
- 230000005540 biological transmission Effects 0.000 title claims abstract description 16
- 239000004065 semiconductor Substances 0.000 claims description 27
- 238000006243 chemical reaction Methods 0.000 claims description 20
- 230000005611 electricity Effects 0.000 claims description 11
- 239000000428 dust Substances 0.000 claims description 6
- 239000004020 conductor Substances 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 2
- 208000027534 Emotional disease Diseases 0.000 claims 1
- 230000005669 field effect Effects 0.000 claims 1
- 239000003990 capacitor Substances 0.000 description 8
- 239000013078 crystal Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 206010011469 Crying Diseases 0.000 description 3
- 241000219112 Cucumis Species 0.000 description 3
- 235000015510 Cucumis melo subsp melo Nutrition 0.000 description 3
- FJJCIZWZNKZHII-UHFFFAOYSA-N [4,6-bis(cyanoamino)-1,3,5-triazin-2-yl]cyanamide Chemical compound N#CNC1=NC(NC#N)=NC(NC#N)=N1 FJJCIZWZNKZHII-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 241000282994 Cervidae Species 0.000 description 1
- 208000001613 Gambling Diseases 0.000 description 1
- 241000270666 Testudines Species 0.000 description 1
- 229910001570 bauxite Inorganic materials 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 210000004508 polar body Anatomy 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/02—Conversion of ac power input into dc power output without possibility of reversal
- H02M7/04—Conversion of ac power input into dc power output without possibility of reversal by static converters
- H02M7/06—Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F38/00—Adaptations of transformers or inductances for specific applications or functions
- H01F38/14—Inductive couplings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/005—Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00308—Overvoltage protection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive or capacitive transmission systems
- H04B5/70—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
- H04B5/79—Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for data transfer in combination with power transfer
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/4815—Resonant converters
- H02M7/4818—Resonant converters with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Rectifiers (AREA)
Abstract
Description
201251256 六、發明說明: 【發明所屬之技術領域】 【0 0 〇 1】 本發明係關於一種,在充雷哭位 電子機器等之電力接收裝置間,以非:二於攜帶式 觸式電力傳送系統,特別是關於以力之非接 【先前技術】 【0 0 〇 2】 傳逆自if給電裝置對複數電力接收裝置以非接觸的太— 之電獻r作為整流電=ί:⑽ [專利文獻;1 【0 0 0 3】 專利文獻1日本頂號公報,實施_㈣ 【發明内容】 [本發明所欲解決的問題] 【◦ 0 0 4】 等^而,專利文獻1之電力接收裝置,具有電力之利用效率低 【0 0 0 5】 士發明之目的在於,提供—種可謀求提 免力接收裝置。 免力之利用效率之 [解決問題之技術手段] 201251256 【00〇6】 ^發明提供之第1電力接收裝置,具備; 裝置電Ϊ,於ϊί觸式電力傳送系統中接收自給電 電路所接收之振電容器;整流電路,將該電力接收天線 天線電路之電:接妆^流,頻率變換電路,供變換該電力接收 電路; 率所用,以及驅動電路,驅動該頻率變換 該電力接收天線電路具有2個端子; 器路之2個該端子間; ^該電力接收天線電路之27‘;;^接具端子’分別 輪出端子,輸出整流過之直流電^子連接,接私子;以及整流 該頻率變換電路具備; 路之—方的端子相連接·笛? 抗,—知與該電力接收天線電 之另—方的端子相連接;’以及該電力接收天線電路 抗的另*7端與該第2阻抗的另關電路,連接於該第1阻 該半導體開闕電路,具有 由 有對該中心分接頭為對稱之電. 分接頭,且具 頭接地端子相連接; 半導體開闕電路為⑽。出而子連接並因應該直流電塵使該 [00 0 7] 置 it’本發瞧之第2 €力接繼,如第1電力街 器 該第1阻抗與該第2阻抗為具有彼此相等之靜電容量的電容 【0008】 接收ίί: ir提供之第3電力接收裝置,如第1或第2電力 該轉電路,若自該整流輪㈣子細之該錢魅達到既 201251256 定値則使該半導體開關電路為0N。 【0009】 置,^本發明提供之第4電力接收裝置,如第3電力接收裝 iS:路為壓ί變動感測用的稽納二極體; 【〇^"〇『°哀稽納—極體之崩潰電壓。 置,本發明提供之第5電力接收裝置,如第4電力接收裝 陽極,與該半導體開關電路相連接。 置,^:本發·供之第6電力接收裝置,如第4電力接收裝 連接於該稽納二i體:動電壓產生電路 極體動該半導體^於該稽納二 置,轉嶋❿電力梅置,㈣6電力接收裝 產生電路’於輸出人關針具有滞後現象。 置,=,’她提㈣δ電域咖,如第6電力接收裝 驅動㉝開納二極體崩潰時將脈衝作為該 置二本發,供购力—電力接收裝 及歸生電路,產縫準電屋·以 導體開闕電路。_基丰·及該整流過之直流電該^ 【0014】 201251256 之二ίί明Ϊΐ之第1G電力接收裝置,如第1至第8任- 射2個猶的卿_d施ci 5亥2個FET的間極互相電性連接; s亥2個FET的源極互相連接; ’自該源極間之連接點引出。 此外’本發明提供之第U雷 之電力接收裝置,其中, 、置,如弟1至第8任一 開關電路至少具有2個ηρη型的雙極性電曰體. 该2個雙極性電晶體的基極互相電性 阳體, 該2個雙極性電晶體的射極互相連接;, ,:心分接頭,自該射極間之連 【0016】 此外,本發明提供之第丨非接觸 至第11任―之電力接收裝置、以及給具備:第1 [本發明之效果] [0017] 一依本叙明,使用單相橋式整流電路 a♦— 提高接收到之電力的利用效率。 、’、仙电。猎此,可 [0018] 以具有對t心分接頭為對稱之電路 電路。此外’對電力接收天線電路將電^員率變換 (正成分β負波形(負成分)進敕Μ正波形 接收頻率係為共振電路之共振頻率,並.々乂ι另,電力 之電力接收天線電路。 〃振電路包含用於接收電力 [0019] 201251256 將頻率變換電路之半導體 與整流電路的接地端子連接(亦^包路的電路中點(中心分接頭) 電路產生的整流後電壓之接地電位此使中心^分接頭之電位與整流 關電路之驅動用而準備另外二二通)°藉此,不必為半導體開 【0020】 的%源系統。 於驅動電路設置稽納二極體,將发, 動感測用的元件使用。藉此,與僅將為整流後直流電壓之變 況比較,容易控制頻率變換電&的動^流後的直流電壓分壓之情 【實施方式】 [實施本發明之最佳形態] 【0 0 2 2】 " (第1實施形態) 參考圖1 ’本發明第1實施形態 、 具備:非接觸充電器等之給署“、、接觸式電力傳送系統1〇〇 傳送來之電力的電力接收裝置2^。、以及接收自給電裝置1〇 【0023】 、° 從电袈置ίο具備··給電天綠恭 Η,與給電天線電路12相連接^ 2給,力;以及控制部 【0 0 24】 ’、座生父流磁場所用 電力接收裝置20,具備:電力接 裝置10傳送來之電力;電容哭^接,天線電路32,接收自給電 之2個端子La、Lb間;整流電°路如連f於電力接收天線電路32 接收之電力予以整流,,平^=4〇將=力接收天線電路幻所 滑化;負_,供給情化 整流之電力平 力接收天線電路32中的電力接;轉換電路,供變換電 動頻率變換電路7〇。此—構成巾,',以及购電路80,驅 器34、及頻率變換電路70組成之共振 線電路32二電容 J力接收天線電路32中的電力接^^ ϋ振^率φ為實質上 _ 率之 201251256 力最完整地接收的頻率。 【0025】 本實施形態之整流電路4〇, .橋式整流電路。整流電路4〇 H用4個二極體而構成之單相 力接收天線電路32之2個端子L輸入端子Via、Vib,分別與電 有輸出整流後的直流電麼二'Lb連接。整流電路40,更具 直流電壓其接地電位之接地以及輸出整流後的 %,為電容器,其兩端與整流輸本實施形態之平流電路 【0026】 出而子Vd及接地端子GND連接。 負載60,模擬搭载電力 轉換器等的系統負載。倉恭^叹忒置20之電子機器其DC—DC 若負载60為重負載之狀態中使電況變為,負一載或重負载。 力接收頻率與給電裝置1〇側】 效率為最向(將初始之電 邀變得過高。此-情況,本實^負载60變輕時電力接收電 電力接收電塵減低,而變換頻=币’由於將供給至負载60之 電力接收天線電路32之共振電Hi路7G之狀態,藉此將包含 初始値偏移。藉此,電力接 〔、/、振頻率(電力接收頻率)自 【0 0 27】 I不變得比需要以上更高。 詳而言之,本實施形態之頻 72a、第2阻抗72b、半導 換电路7〇具備:第1阻抗 瓜與第2阻抗72b 電,、及電阻76。第!阻抗 1阻抗72a之-端與電力接收天線電路2皮 之靜電容量。第 阻抗72b之-端與電力接收天線^路32咖而子La相連接;第2 體開關電路74,連接於第i阻^^ 32的Lb相連接。半導 另一端。半導體開關電路74,且、端與第2阻抗72b的 CT,且具有對中心分接頭CT為對之辛心之中心分接頭 解’頻率變換電路7G亦具有對電、=構t如同自此之理 關電路74之中心分接頭CT)為對稱之'=況,為半導體開 產生供使半導體開關電路74為成。電阻76,用於 '中的中心分接頭ct,與整流電路形態 201251256 【0028】 圖不之,導體開關電路Μ,具有2個嫩的贈 d職以 效電晶體伽、灿°此等聰4a、州具有内接二 炻S ^ 74b的閑極G互相電性連接,FET74a、74b的源 s°盥πττϋ生連接。上述之中心分接頭CT,自FET74a的源極 74h、M Vi μ ς ώ源極S之連接點引出。電阻76,連接於FET74a、 74b的源極S與閘極g之間。 【0029】 j 之頻率交換電路70 ’在FET74a、74b為ON時與為201251256 VI. Description of the Invention: [Technical Field to Be Invented by the Invention] [0 0 〇1] The present invention relates to a type of contact-type power transmission between a power receiving device such as a charging and crying electronic device. The system, especially regarding the force of the connection [prior technology] [0 0 〇 2] transmission from the if power supply device to the multiple power receiving device with non-contact power - as the rectification power = ί: (10) [patent Document [1] [0 0 0 3] Patent Document 1 Japanese Top Publication, Implementation _ (4) [Disclosure] [Problems to be Solved by the Invention] [◦ 0 0 4], etc., the power receiving device of Patent Document 1 , the use of electricity is inefficient [0 0 0 5] The purpose of the invention is to provide a kind of device that can be used to improve the force. [Technical means for solving the problem] 201251256 [00〇6] The first power receiving device provided by the invention is provided with the device power receiving device received by the self-power feeding circuit in the ϊί-contact power transmission system a vibrating capacitor; a rectifying circuit, the power receiving antenna antenna circuit: a makeup stream, a frequency converting circuit for converting the power receiving circuit; a rate used, and a driving circuit for driving the frequency conversion of the power receiving antenna circuit having 2 2 terminals; 2 between the terminals of the device; ^ 27' of the power receiving antenna circuit;; ^ connector terminal 'rounds the terminal separately, outputs the rectified DC electric connection, connects the private sub-; and rectifies the frequency The conversion circuit is provided; the terminal of the road is connected to the flute? Reacting, - knowing that the other terminal of the power receiving antenna is connected; and the other circuit of the power receiving antenna circuit and the second circuit are connected to the first circuit The open circuit has a power tap that is symmetrical to the center tap, and the head ground terminal is connected; the semiconductor open circuit is (10). Out of the sub-connection and in response to the DC dust, the [00 0 7] is set to 'the second power of the hairpin, such as the first electric street, the first impedance and the second impedance are equal to each other. The capacitance of the electrostatic capacitance [0008] receives the third power receiving device provided by ίί: ir, such as the first or second power conversion circuit, and if the voltage from the rectifying wheel (four) is equal to the 201251256, the semiconductor switch is made The circuit is 0N. [0009] The fourth power receiving device provided by the present invention, such as the third power receiving device iS: the circuit is a sinusoidal diode for voltage fluctuation sensing; [〇^"〇"°哀稽纳— The breakdown voltage of the polar body. The fifth power receiving device provided by the present invention is connected to the semiconductor switching circuit as the fourth power receiving anode. In the second power receiving device of the present invention, the fourth power receiving device is connected to the second power receiving device, and the dynamic voltage generating circuit is driven by the body of the semiconductor device. Power Mei set, (4) 6 power receiving and generating circuit 'has a hysteresis in the output pin. Set, =, 'She mentions (4) δ electric domain coffee, such as the 6th power receiving device drive 33 Kaina diode collapses when the pulse is used as the two hair, the purchasing power - power receiving and returning circuit, production seam Quasi-electrical house, circuit with a conductor. _Jifeng·and the rectified DC power ^ [0014] 201251256 bis The first 1G power receiving device, such as the 1st to 8th - shooting 2 yue qing _d Shi ci 5 Hai 2 The interpoles of the FETs are electrically connected to each other; the sources of the two FETs are connected to each other; 'from the connection point between the sources. In addition, the present invention provides a power receiving device of a U-ray, wherein, the switching circuit of any one of the first to the eighth has at least two ηρη-type bipolar electric bodies. The two bipolar transistors The bases are mutually electrically positive, and the emitters of the two bipolar transistors are connected to each other; , , : a heart tap, connected from the emitter [0016] In addition, the present invention provides a third contactless 11: The power receiving device and the device are provided: [First effect of the present invention] [0017] According to the present description, the single-phase bridge rectifier circuit a♦ is used to improve the utilization efficiency of the received power. , ', Xiandian. Hunt this, [0018] to have a circuit circuit that is symmetrical to the t-core tap. In addition, 'the power receiving antenna circuit converts the electric power rate (positive component β negative waveform (negative component) into the positive waveform receiving frequency is the resonant frequency of the resonant circuit, and 々乂ι, the power receiving antenna of the electric power Circuit. The oscillating circuit includes receiving power [0019] 201251256 Connecting the semiconductor of the frequency converting circuit to the ground terminal of the rectifier circuit (also the ground potential of the rectified voltage generated by the circuit midpoint (center tap) circuit of the circuit Therefore, the potential of the center tap and the driving of the rectifying circuit are used to prepare another two-pass). Therefore, it is not necessary to open the [0020] % source system for the semiconductor. The use of the components for dynamic sensing, thereby comparing the change of the DC voltage after rectification, and easily controlling the DC voltage division after the frequency conversion electric current & [Embodiment] [Implementation] MODE FOR CARRYING OUT THE INVENTION [1st Embodiment] Referring to Fig. 1 'A first embodiment of the present invention, a non-contact charger or the like is provided, and a contact type power transmission is provided. The power receiving device 2 that transmits the power from the system 1 and the self-powered device 1〇[0023], and the power supply device are provided with the power supply antenna circuit 12 ^2, force; and control unit [0 0 24] ', the power receiving device 20 used for the parental magnetic field, includes: the power transmitted from the power connection device 10; the capacitor is crying, the antenna circuit 32, receiving the self-powered Between the two terminals La and Lb; the rectified electric path is rectified by the power received by the power receiving antenna circuit 32, and the flat ^=4〇==the force receiving antenna circuit is slid; the negative _, the supply is emotional The rectified electric power is connected to the power connection in the antenna circuit 32; the conversion circuit is provided for converting the electric frequency conversion circuit 7〇. This constitutes a resonance of the towel, ', and the purchased circuit 80, the driver 34, and the frequency conversion circuit 70. The power connection φ of the line circuit 32 in the two-capacitance J-force receiving antenna circuit 32 is the most completely received frequency of the 201251256 force of the substantial _ rate. [0025] The rectifier circuit of the present embodiment is 〇. Bridge rectifier circuit The two terminals L input terminals Via and Vib of the single-phase force receiving antenna circuit 32, which are composed of four diodes, are respectively connected to the DC-reacted DCs that are rectified by the output. The rectifier circuit 40 has a DC. The grounding of the grounding potential of the voltage and the % after the output rectification are capacitors, and the two ends of the voltage are connected to the rectifying circuit of the embodiment of the present invention, and the sub-Vd and the ground terminal GND are connected. The load 60 is simulated, and the power converter is mounted. The system load. Cang Gong sighs the electronic machine of the 20th DC-DC. If the load 60 is in the state of heavy load, the electric condition becomes negative, negative load or heavy load. Force receiving frequency and power supply device 1 side] Efficiency is the most important (the initial power invitation becomes too high. This - situation, the actual ^ load 60 becomes lighter when the power receiving electric power receives the electric dust reduction, and the conversion frequency = The coin 'supplied to the state of the resonant electric Hi path 7G of the power receiving antenna circuit 32 of the load 60, thereby including the initial 値 offset. Thereby, the power connection [, /, the vibration frequency (power receiving frequency) from [ 0 0 27] I does not become higher than necessary. In detail, the frequency 72a, the second impedance 72b, and the half-conversion circuit 7A of the present embodiment include: the first impedance melon and the second impedance 72b are electrically connected, And the resistor 76. The impedance of the first impedance of the impedance 72a is connected to the electrostatic capacitance of the power receiving antenna circuit 2. The end of the impedance 72b is connected to the power receiving antenna 32, and the second body is switched. 74, connected to the Lb phase of the ith resistor 32. The other end of the semiconductor, the semiconductor switch circuit 74, and the CT of the second impedance 72b, and has the center of the heart of the center tap CT The tap solution 'frequency conversion circuit 7G also has the opposite power, = t is the same as the power 74 of the center tap CT) of symmetrical '= condition, is generated for the semiconductor switch of the semiconductor switching circuit 74 into. Resistor 76, used for 'center tap ct', and rectification circuit form 201251256 [0028] Figure, conductor switch circuit Μ, with 2 tender gifts to serve the effect of the crystal gamma, can ° such Cong 4a The state has a connection between the idle poles G of the inscribed two 炻S^74b, and the sources s°盥πττ of the FETs 74a, 74b are connected. The center tap CT described above is taken from the connection point of the source 74h of the FET 74a and the source of the M Vi μ ώ 。. A resistor 76 is connected between the source S of the FETs 74a, 74b and the gate g. [0029] The frequency switching circuit 70' of j is when the FETs 74a, 74b are ON.
=率=路同7之0=具體而W 、 、 之荨效電路,成為將FET74a、74b之若干導 及第2阻抗似串聯的電路。另—方面 電容與第1阻抗瓜及第2阻 ί4在於電力接收天線電路32的端子La、Lb間之阻 變得相異。本實施形態中,如同上述,贈t、71 力 f%電力接收效率為最高,故使FET74a、74 意地將電力接收效率降低。 、J 了田 【0030】 相ΪΪ電路80 ’決定在何種情況下驅動頻率變換電路7〇之半導 ==ΐ—驅動電路80,感測整流後的直流糙之ii 而進灯+導體開關電路74之on/off切換。 【0031】 ' 如同自此之理解,驅動電路80,連接於整流電路4〇的整 出端子Vd與半導體開關電路74之間。具體而言,本實= rate = 0 is the same as 7 = the specific circuit of W, , is a circuit that connects several of the FETs 74a, 74b and the second impedance. On the other hand, the capacitance and the first impedance melon and the second resistance 4 are different in the resistance between the terminals La and Lb of the power receiving antenna circuit 32. In the present embodiment, as described above, the weight t and the power f% power receiving efficiency are the highest, so that the FETs 74a and 74 intentionally reduce the power receiving efficiency. , J Tian [0030] Phased circuit 80 'determines under what circumstances drive the frequency conversion circuit 7 半 semi-conducting == ΐ - drive circuit 80, sense rectified DC rough ii and enter the lamp + conductor switch The on/off switching of circuit 74. [0031] 'As understood from now on, the drive circuit 80 is connected between the output terminal Vd of the rectifier circuit 4A and the semiconductor switch circuit 74. Specifically, this is
=動=80,僅由整流後直流之變動感測用的稽納二^ s構成。稽納一極體ZDs的陰極與整流電路40的整流輸 vd相連接,稽納二極體ZDs的陽極與半導體開闕電:H FET74a、74b的閘極G相連接。 "^、 201251256 【0032】 整流後的直流電厨芒泛 即,若稽納二極體^ 内二極體ZDs之崩潰電壓以上(亦 率變換電路7〇,於带 /貝則自驅動電路80將電壓供給至頻 將此時電阻76之兩^ 兩端產生電壓。此處,本實施形態中, 極間電壓Vgs以上,定^ Ff 的閘極—源 將稽納二極體ZDs之鹿、、主♦ H & 為〇N。本實施形態中’ 電力接收電壓㈣力接收電壓,故 【0033】 頻率自初始値偏移而降低接收電力。 所:負況中即便給電電力變高電力接收電 形(b)。 力接收电二艾传尚於必要以上的情 【0034】 (弟2實施1形態) 102,除/電力接!置月形態的非接觸式電力傳送系統 ί f1 ^罐的非接觸式電力__ ^= 等之構成要素省略說明。亦即,以下禮斜考付唬,對此 動作的差異魏行綱。下斟轉電路82與依據其之 【0035】 如圖3所示,驅動電路82且備:餐 ,稽納二極伽以及_產生,以 電路92係於_二極體ZDs赌日枝生,f ^ 之驅動電4 (本實施形態中為使FET74a 电路74 =實施形態同樣地對稽納二極體ZDs的陰極施加1^)直^ 電遷。亦即,積納二極體瓜的陰極與整流輸出端子^目^: 201251256 二與第1實施形態同異,不與 與頻之間設體现的陽極 之,:動出入具有滞後現象。詳而言 亦被作為電晶體ΐ1τΓ之之間。亦即,整流後的直流電屬 體丁η的基極與接地之間;‘==;^且曰二,2電晶 接地之間。電晶體丁r2的基極盥電日的Trl的射極與 與電晶體Tr2的集極相連接;稽二ϋ’ZDP的陰極 稽納二極體取極與電與接地連接。 ZDC的陽極與半導體開關電路曰74相連接Γ連接;稽納二極體 【0 0 3 7】 稽納—極體ZDs —崩潰,則於雷曰雜T, 電_,制限電晶體W的基極電壓。 體別的射極對於接地之電 為係在電晶 被供給至電晶體w _之情況。4Λϋχ上的電壓, 稽納二極體ZDs崩潰時,供給使電电〇=·^4,以於 進行選擇。 电日日體Trl為ON的電壓之方式 【0038】 晶體%為〇n,電 ^tP.R3 , ° ! ί5 电阻奶更大。此外,將電阻R5設定 12 201251256 為遠較電阻R2更小的倍。具體而言 IY2為0FF時,電晶體M的射 而電晶體 =,且R5之兩端產生的電‘ ==1 電 θ , 糸乂自電晶體Tr2流入電阻R5夕+、ώ c i 疋故,電晶體Trl的射極電 =之电而決定。= motion = 80, which consists only of the numerometric two s for the sense of change of the DC after rectification. The cathode of the Zener ZDs is connected to the rectified input vd of the rectifier circuit 40, and the anode of the Zener diode ZDs is connected to the gate of the semiconductor: the gate G of the H FETs 74a, 74b. "^, 201251256 [0032] After rectifying the DC kitchen, the voltage is above the breakdown voltage of the Zener diode 2D (also the rate conversion circuit 7〇, in the belt / Bayer self-driving circuit 80 When the voltage is supplied to the frequency, a voltage is generated across the two ends of the resistor 76. Here, in the present embodiment, the gate voltage of the Ff is greater than or equal to the gate voltage Vgs, and the source of the gate is the deer of the Zener diode ZDs. The main ♦ H & is 〇 N. In the present embodiment, the power receiving voltage (four) force receives the voltage, so [0033] the frequency is reduced from the initial 値 to reduce the received power. In the negative state, even if the power supply is high, the power is received. Electric shape (b). Force receiving electric two Ai Chuan is more than necessary [0034] (Different 2 implementation 1 form) 102, except / power connection! Moon-shaped non-contact power transmission system ί f1 ^ can The description of the components of the non-contact power __^= is omitted, that is, the following slanting test is performed, and the difference between the actions is Wei Xinggang. The squat circuit 82 and the corresponding [0035] are as shown in FIG. The driving circuit 82 is provided with: a meal, a second-order gamma, and a _ generation, with a circuit 92 The diode ZDs are gambling, and the driving power of f ^ (in the present embodiment, the FET 74a circuit 74 = the same applies to the cathode of the Zener diode ZDs). The cathode and the rectifying output terminal of the semiconductor diode are: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ It is also used as the transistor ΐ1τΓ, that is, between the base of the rectified DC electric body ηη and the ground; '==;^ and 曰2, 2 between the electric crystal ground. The emitter of the ferrule of the base 盥 日 与 is connected to the collector of the transistor Tr2; the cathode of the Z ϋ 'ZDP is connected to the pole and the ground and the ground. 74 phase connection ; connection; 纳 二 【 【 [0 0 3 7] 稽 — 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极 极The electricity for grounding is the case where the electric crystal is supplied to the transistor w _. The voltage on the 4 Λϋχ, when the Zener diode ZDs collapses, the supply makes the electric current =·^4, in order to make a selection. The electric day Trl is the voltage of the ON method [0038] The crystal % is 〇n, the electric ^tP.R3, ° ! ί5 The resistance milk is larger. In addition, the resistance R5 is set. 12 201251256 is much smaller than the resistance R2. Specifically, when IY2 is 0FF, the transistor M is emitted and the transistor is =, and the electricity generated at both ends of R5 is '==1 θ, 糸乂 from the transistor Tr2 flows into the resistor R5 ++, ώ ci, and therefore, the emitter of the transistor Tr1 is electrically determined.
時相異。®此,電晶體T f H^:體Trl為0N時與為〇FFThe time is different. ® This, transistor T f H^: when the body Trl is 0N and is 〇FF
時(亦即,電自。㈣為ONTime (ie, electricity from. (4) is ON
變為OFF (亦即,電曰_ ^ 與電晶體Μ自0N 【0 0 3 9】 自 變為0以時)相異。 本實施形態中,此時的電i設定為較ϋ半之電屢。 ON而必要之電歷更低。因此 導體開關电路74為 率維持為初始値。 日曝Tr2為0N時’電力接收頻 【0040】 若稽納二極體ZDs崩潰而電晶體公2 決定之電齡由稽納二鋪z皮供^1以=二 幾ί;一,一稽納二極體 可確貫地使半導體關電路 本形恶中, 二極體ZDp決定之輕—供給 ^’以稽納 sr為。N ’施行供減低電力接收電 【0041】 如同上述,因電晶體Tr2為〇FF時 壓相當小,故電晶體Trl之間倍 ^且^之兩端產生的電 ™所需要之電晶體Trl的基極〜射^ ^為=開關電晶體 由使電晶體Tr2變為0FF而降低H二:H °因此,藉 201251256 將^曰體Trl保持為0N之狀態,但基極—射極 則電晶體Trl變為〇FF,雷曰舻Tr9料或ηνΓ BE—受小 峰带政π μ仏λ i 體變為〇N。亦即,驅動電壓產 生私路92的輸入(對電晶體m的基極施加之 ^ j 現象。因此,並非反應由於稽納二 =地進行電力接收電叙減低後,可將電力接收頻率回復 <ls» [0042] *如此地,本實施形態中,使驅動電壓產生電路92的輸出入呈 有滯後現象,故在稽納二極體ZDs崩潰時對於頻率變換 ^ 之半導體開關電路74 ’至電力接收鮮調整之效果出現為止之 ,,供給幾近一定之電壓。因此,依本實施形態,可確地 半導體開關電路74之驅動。 、施订 【0043] 另,若整流後的直流電壓之值成為極高的値,則有半導體開 關電路74損壞的疑慮。因此,本實施形態中,使稽納二極體2〇 之崩潰電壓較構成半導體開關電路74之FET74a、74b的耐電塵更 低。因此’即便整流後的直流電壓漸變高,仍可避免對FE丁74a、 74b施加高電壓而造成破壞等情況。 【0 044】 (第3實施形態) 參考圖4,則本發明第3實施形態的非接觸式電力傳送系統 1〇4 ’除了電力接收裝置24之驅動電路84的構成以外,具備與上 述第1實施形.態的非接觸式電力傳送系統100 (參每圖1 )相同之 構成。將圖1與圖4中共通之構成要素賦予相同參考符號,對此 等之構成要素省略說明。亦即,以下僅對驅動電路84與根據其之 動作的差異等進行說明。 〃 【0045】 本實施形態之驅動電路84,與第2實施形態相同,具備驅動 201251256 電壓產生電路94。然而,稽納二炻駚山、主+ 施形態的驅動電壓產生電路92,相對於第2實 導·關電路%, ==94,係將電壓脈衝供給予頻率變換電㈣之半導體 【0 0 4 6】 -";^/rRr4rcr t: ;r 〇ρι ZD2。 00 C1,以及2個稽納二極體ZD卜 【0 0 4 7】 算放壓電路,經分壓之電壓被供給至運 位其下 +奶輸出之分龜的變^航亦可抑制自分壓電路⑽ 【0 0 48】 〇p^Rr^tT,R^ 5 ^ 施密T輪出之矩形波積;,成為成3電路。於積分電路將自 【0049】 則經電大^0P3作為比較器使用。稽納二極體瓜-崩潰 〇?3 基準電== 而將脈衝波形祕η,脈衝寬度觸 【〇〇5〇】 15 201251256 接收S變ίί:將半導體開關電路74脈衝驅動,而可將電力 【0051】 (第4實施形態) 祕參除 =接非接觸式電力傳送系统 述第1實施形態的非接觸式電力傳送系^構成以外,具備與上 構成。將圖1與圖5中共通之構成要素賦:(荼,1)相同之 等之構成要素省略說明予相同參考符號,對此 動作的差異等進行綱。丨^下僅對驅動電路86與依據其之 【0 0 5 2】 本具知形悲之驅動電路86具備:基準带 基準電壓;以及滞後比較器98,因舞基路%,產生 行半導體開關電路74之,驅動。’“錢®及整流後的電壓施 【0 0 5 3】 斤示,電阻R1與電㈣,構成將電源電塵^塵之二:路 ^刀堅之電源電麼,作為基準電壓被供,给予運二哭二-^ ^端子:電阻R3與電隨,構成將 “ tTf交 準電麗更高時’運算放大器0p使半導 帮率之$敕0N'f此’施行供減低電力接收電麗所用的電 後藉由施行電力接收電壓之減低使整流 乂土準電堡為一足値以下時,運算放大器ορ,使半導體 Ξ ==F。:此一一定?/係以電阻R5決定。亦= 丨、Γ~大為op具有坪後現象。藉此,可防止因雜訊等 之裰小龟壓差而使運算放大器〇p動作。 【0 0 5 4】 201251256 八姐以ΐ,雖揭露複數實施形態對本發明進行具體地說明,但本 电明亚未限定於此等實施形態。 【0055】 例如,上述實施形態中頻率變換電路70,雖皆為一段,但亦 電路7G並聯。此—情財,亦可使各頻率 ίΐί 時讀目異並將電力接收電壓之控制分為複數 【0056】 你田上述之頻率變換電路7Q雖具備FET74a、⑽,但亦可 使用例如雙極性電晶體取代FET74a、74b。 【0 0 5 7】 ^^而言,如圖6所示,頻率變換電路17〇具備:第工阻 172a Μ弟2阻抗l72b '半導體開關電路174、 限制電阻178。1巾,筮!阳产m Γ 包丨且以及電流 八二^ / 抗72a、第2阻抗172b及電阻176, 刀別?第1阻k 72a、第2阻抗72b及電阻76相同。 【0058】 174 ^ ;77; ? ;12 ^ ^ ^ t 174a . B互相带神查與雙極性電晶體174b的基極 曰浐雙極㈣晶體174a的射極E與雙極性電 3卜=fE亦互相電性連接,自其連_|出中; ZD同樣的機能。電流聞電阻178,於稽納二極體 電^用 制往雙極性電晶體咖、174㈣基極B流通之 【0059】 可將具有此一半導體開關♦ ΐ々1 u X μ + 述之==施形態電路17°與上 (弟5實施形態) 上述實施形態中,雖以防μ + + 丨方止電力接收裝置之過電壓為主要目 201251256 的,但本發明之實施形態並不限於此。以下說明之第5 调整電路常數,以將第2至第4實施形態中的整流後電 ^ 望^定電塵輸出。電路構成可與第2至第4實施形態相 = ^ 5) ’ ^ W整流後使用"極體與平滑電容器進行電 【0061】 正々丨〔後笔塵之最大値可依稽納二極體z£)s之崩潰電摩却_ — 此外’驅動產生電路92、94 (參考圖3及圖Μ於=: 有滯後現象因而使整流後電壓保持於一定電壓範圍内。、八具 [0062] (4 高’則f納二極體ZDs崩潰,使FET74a, 二考圖3 4)為ON,阻抗切換,整流後電壓下降。 2低’則稽納崩潰被解除,使FET74a、74b為0Fn查 整流後電壓上升。由此—動作使阻抗循 ’ 此一循環中保持於一定電壓範圍内。 換正机後电壓在 【0063】 被伴:弋?,配置於整流電路4。之後,檢·流後電壓。 於-心圍内之整流後電壓,介由二極 2 ,電壓變動減少。藉此,可將更齡之 換器等之負載60。 &仏叛出4主DC-DC轉 【0064] 本構成由於可輪出穩定之定電壓, + 路。此外’無關負載之大小,可成為於 ^輪出電 負载不包含電壓轉換部之構成。’ ' ^、益等之系毵 [產業上利用性] 【0 0 6 5】 本發明,例如,可應用於供搭 恭 5位相機等之可攜式電子機器的蓄5池充2刮鬍刀、 傳送系統。 田甩,也兄电所用之非接觸式電力 18 201251256 【圖式簡單說明】 【〇〇21】 t% 構成=意t發明第1實施形態的非接觸式電力值〜 圖2顯干pn 孝遊系統之1 電 力接收輯圖之ί接觸式電力傳送系_的給電電力與 構成的示意圖。弟2㈣恶的非接觸式電力傳送系統之電路 構成白 發明第3實施形態的非接觸式電力傳送系統之㈣ 構成:ί意明弟4貫施形態的非接觸式電力傳送系統之電路 圖6顯示電力接嶋㈣頻機電路之變形例的圖。 【主要元件符號說明】 【0066】 10給電裝置 12給電天線電路 14控制部 20、22、24、26電力接收裝置 32電力接收天線電路 34電容器 2整流電路(單相橋式整流電路) 50平流電路 60負載 7〇、170頻率變換電路 72a、172a第1阻抗(電容器) 72b、172b第2阻抗(電容器) 74、174半導體開關電路 19 201251256 74a ' 74b FET 76、176 電阻 80、82、84、86驅動電路 92、94驅動電壓產生電路 96基準電壓產生電路 98滯後比較器 100、102、104、106非接觸式電力傳送系統 174a、174b雙極性電晶體 178電流限制電阻 C1電容器 CT中心分接頭 GND接地端子Turns OFF (that is, the power _ ^ differs from the transistor 0 from 0N [0 0 3 9] to 0). In the present embodiment, the electric i at this time is set to be more than half of the electric power. ON and the necessary electrical calendar is lower. Therefore, the conductor switching circuit 74 maintains the initial rate. When the daily exposure Tr2 is 0N, the power receiving frequency [0040] If the JDs of the Zener diode collapses and the transistor is determined by the transistor 2, the battery age is determined by the second shop. The nano-polar body can make the semiconductor circuit in a true shape, and the diode ZDp determines the light-supply ^' to satisfy the sr. N 'Execution for reducing power receiving power [0041] As described above, since the voltage is relatively small when the transistor Tr2 is 〇FF, the transistor Tr1 required for the electric TM generated at both ends of the transistor Tr1 The base-to-e^^^===================================================================================================== Trl becomes 〇FF, Thunder Tr9 material or ηνΓ BE—becomes a small peak with a π μ仏λ i body and becomes 〇N. That is, the driving voltage generates an input of the private path 92 (the phenomenon of applying the j to the base of the transistor m. Therefore, it is not the reaction that the power receiving frequency is restored after the power receiving is reduced by the second=== ; ls» [0042] In this embodiment, the output of the driving voltage generating circuit 92 is hysteresis, so that the semiconductor switching circuit 74' of the frequency conversion is broken when the Zener diode ZDs collapses. Since the effect of the power reception fresh adjustment occurs, the voltage is supplied to a certain voltage. Therefore, according to the embodiment, the semiconductor switch circuit 74 can be driven. [0043] In addition, if the rectified DC voltage is When the value becomes extremely high, there is a fear that the semiconductor switching circuit 74 is damaged. Therefore, in the present embodiment, the breakdown voltage of the Zener diode 2 is lower than that of the FETs 74a and 74b constituting the semiconductor switching circuit 74. Therefore, even if the DC voltage after rectification is gradually increased, it is possible to avoid damage caused by applying a high voltage to the FE keels 74a and 74b. [0 044] (Third embodiment) Referring to Fig. 4, In addition to the configuration of the drive circuit 84 of the power receiving device 24, the non-contact power transmission system 1A' of the third embodiment of the present invention includes the non-contact power transmission system 100 of the first embodiment. 1) The same components as those in FIG. 1 and FIG. 4 are denoted by the same reference numerals, and the description of the components is omitted. That is, only the difference between the drive circuit 84 and the operation thereof will be described below.驱动 [0045] The drive circuit 84 of the present embodiment is provided with a voltage generating circuit 94 for driving the 201251256 as in the second embodiment. However, the driving voltage generating circuit 92 of the second and second modes is compared with The second real-time turn-off circuit %, ==94, which is a semiconductor that supplies a voltage pulse to the frequency conversion electric (4) [0 0 4 6] -";^/rRr4rcr t: ;r 〇ρι ZD2. 00 C1, and 2 The singular diode ZD [0 0 4 7] is the discharge voltage circuit, the voltage of the partial pressure is supplied to the lower position of the lower part + the output of the milk is also suppressed by the self-dividing circuit (10) 【0 0 48】 〇p^Rr^tT,R^ 5 ^ The moment of Shimi T Shape wave product;, into a 3 circuit. In the integration circuit will be used from [0049] through the electric large ^0P3 as a comparator. Jenus diode melon - collapse 〇? 3 reference electricity == and the pulse waveform secret η , pulse width touch [〇〇5〇] 15 201251256 Receive S change ίί: The semiconductor switch circuit 74 is pulse-driven, and the power can be [0051] (Fourth Embodiment) Secrets = Non-contact power transmission system The non-contact power transmission system of the first embodiment has a configuration other than the above. The constituent elements common to the drawings in Fig. 1 and Fig. 5 are denoted by the same reference numerals, and the differences between the operations and the like are omitted. Only the drive circuit 86 and the drive circuit 86 according to the [0 0 5 2] have a reference band reference voltage; and a hysteresis comparator 98, which generates a row semiconductor due to the dance base %. The switch circuit 74 is driven. '"Money® and rectified voltage application [0 0 5 3] kg, resistance R1 and electricity (four), constitute the power supply dust 2: the power of the road ^ knife firmly, as the reference voltage is supplied, Give the second crying two -^ ^ terminal: the resistor R3 and the electric follow-up, the composition will be "tTf when the electric current is higher" operational amplifier 0p so that the semi-conducting rate of $ 敕 0N 'f this 'implementation for reducing power receiving electricity After the electricity used by Li, the operational amplifier ορ, so that the semiconductor Ξ == F, is caused by the reduction of the power receiving voltage and the rectification of the bauxite. : This must be determined by the resistor R5. Also = 丨, Γ ~ Great for op has a post-Ping phenomenon. Thereby, it is possible to prevent the operational amplifier 〇p from operating due to a small turtle pressure difference such as noise. [0 0 5 4] 201251256 The present invention will be specifically described with reference to a plurality of embodiments, but the present invention is not limited to the embodiments. For example, in the above-described embodiment, the frequency conversion circuit 70 is a one-stage, but the circuit 7G is also connected in parallel. This - the wealth, can also make the frequency ί ΐ 时 读 并将 并将 并将 并将 并将 并将 并将 并将 并将 并将 并将 并将 并将 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 【 The crystals replace the FETs 74a, 74b. [0 0 5 7] ^^, as shown in Fig. 6, the frequency conversion circuit 17A includes: the first work resistance 172a, the second brother's impedance l72b 'the semiconductor switch circuit 174, the limit resistor 178. 1 towel, 筮! The yoke m Γ package and the current octa 2 / / 72a, the second impedance 172b and the resistor 176, the first resistor k 72a, the second impedance 72b and the resistor 76 are the same. [0058] 174 ^ ;77; ? ; 12 ^ ^ ^ 174a . B with each other and the base of the bipolar transistor 174b 曰浐 bipolar (four) crystal 174a of the emitter E and bipolar electricity 3 b = fE They are also electrically connected to each other, since they are connected to the _|; ZD has the same function. The current sense resistor 178, which is used in the bipolar transistor, and the 174 (four) base B is circulated [0059]. The semiconductor switch ♦ ΐ々1 u X μ + can be described as == In the above-described embodiment, the overvoltage of the power supply device is prevented from being the main target 201251256. However, the embodiment of the present invention is not limited thereto. In the fifth embodiment, the circuit constant is adjusted to output the electric dust after the rectification in the second to fourth embodiments. The circuit configuration can be compared with the second to fourth embodiments. ^ ^ 5) ' ^ W is rectified and used. "Pole body and smoothing capacitor are used to perform electricity. [0061] 正々丨[The maximum amount of the latter dust can be determined by the second pole. The collapse of the body z£)s is __ In addition, the 'drive generation circuit 92, 94 (refer to Figure 3 and Figure = =: there is hysteresis, so that the rectified voltage is maintained within a certain voltage range., eight [0062] ] (4 high 'f, the F-diode ZDs collapse, so that FET74a, the second test 3 4) is ON, the impedance is switched, and the voltage after rectification drops. 2 Low' then the load collapse is released, making the FET74a, 74b 0Fn After the rectification, the voltage rises. Therefore, the action keeps the impedance in a certain voltage range during the cycle. After the change of the machine, the voltage is [0063] accompanied by: 弋?, and is placed in the rectifier circuit 4. After that, check After the current is rectified, the voltage after rectification in the core is reduced by the voltage of the two poles. Therefore, the load of the older converter can be 60. & 仏 4 4 4 4 4 4 4 4 4 4 4 4 4 4 [0064] This configuration is capable of rotating a stable constant voltage, + way. In addition, the size of the irrelevant load can be changed to ^ wheel The electric load does not include the configuration of the voltage conversion unit. ' ', system of benefits, etc. [Industrial use] [0 0 6 5] The present invention can be applied, for example, to a portable camera such as a 5-position camera. The electric machine's storage tank 5 charge 2 razor and conveying system. Tian Hao, also the non-contact power used by the electrician 18 201251256 [Simple description of the diagram] [〇〇21] t% composition = meaning t invention first implementation The form of non-contact power value ~ Figure 2 shows the pn filial system 1 power receiving map ί contact power transmission system _ power supply and structure diagram. Brother 2 (four) evil non-contact power transmission system circuit (4) Configuration of the non-contact power transmission system according to the third embodiment of the present invention: FIG. 6 is a diagram showing a modification of the power supply (four) frequency machine circuit. [Main component symbol description] [0066] 10 power feeding device 12 power feeding antenna circuit 14 control unit 20, 22, 24, 26 power receiving device 32 power receiving antenna circuit 34 capacitor 2 rectifier circuit (single-phase bridge rectifier circuit) 50 advection circuit 60 7〇, 170 frequency conversion circuits 72a, 172a first impedance (capacitor) 72b, 172b second impedance (capacitor) 74, 174 semiconductor switching circuit 19 201251256 74a ' 74b FET 76, 176 resistor 80, 82, 84, 86 drive Circuit 92, 94 Drive Voltage Generation Circuit 96 Reference Voltage Generation Circuit 98 Hysteresis Comparator 100, 102, 104, 106 Contactless Power Transfer System 174a, 174b Bipolar Transistor 178 Current Limiting Resistor C1 Capacitor CT Center Tap GND Ground Terminal
La、Lb 端子 ΟΡ、ΟΡ1〜OP3 運算放大器 R1〜R9 電阻La, Lb terminal ΟΡ, ΟΡ1~OP3 operational amplifier R1~R9 resistor
Trl、Tr2 電晶體Trl, Tr2 transistor
Via、Vib輸入端子Via, Vib input terminal
Vd整流輸出端子 ZDp、ZDc、ZD卜ZD2稽納二極體 ZDs (變動感測用的)稽納二極體 S源極 G閘極 20Vd rectified output terminal ZDp, ZDc, ZD Bu ZD2 Jenus diode ZDs (for sensing) Gena diode S source G gate 20
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011053378 | 2011-03-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW201251256A true TW201251256A (en) | 2012-12-16 |
Family
ID=46798322
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101108093A TW201251256A (en) | 2011-03-10 | 2012-03-09 | A power receiver and a contactless electrical power transmission system using same |
Country Status (6)
Country | Link |
---|---|
US (1) | US20130342026A1 (en) |
JP (1) | JP5324009B2 (en) |
KR (1) | KR20130050365A (en) |
CN (1) | CN103262389A (en) |
TW (1) | TW201251256A (en) |
WO (1) | WO2012121371A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10079514B2 (en) | 2013-07-02 | 2018-09-18 | Renesas Electronics Corporation | Electric power receiving device and non-contact power supply system |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10236720B2 (en) * | 2013-09-26 | 2019-03-19 | Semiconductor Components Industries, Llc | Wireless power transfer system and driving method thereof |
WO2015151492A1 (en) * | 2014-04-02 | 2015-10-08 | 株式会社デンソー | Non-contact power supply device and non-contact power supply system |
CN105576840A (en) * | 2014-11-11 | 2016-05-11 | 苏州银蕨电力科技有限公司 | Self-induction electricity taking circuit for smart power grid sensing device |
US10581284B2 (en) * | 2014-12-16 | 2020-03-03 | Samsung Electronics Co., Ltd. | Wireless charger and wireless power receiver |
US11075515B2 (en) * | 2018-06-05 | 2021-07-27 | Nuvolta Technologies (Hefei) Co., Ltd. | Overvoltage protection device and method thereof |
US11277036B2 (en) * | 2018-07-18 | 2022-03-15 | Mitsubishi Electric Corporation | Rectenna controller and rectenna apparatus including the same |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06284048A (en) * | 1993-03-24 | 1994-10-07 | Hirano Sangyo:Kk | Remote controlled measuring instrument |
JPH0785233A (en) * | 1993-09-17 | 1995-03-31 | Citizen Watch Co Ltd | Data carrier |
US6459218B2 (en) * | 1994-07-13 | 2002-10-01 | Auckland Uniservices Limited | Inductively powered lamp unit |
JP3392016B2 (en) * | 1996-09-13 | 2003-03-31 | 株式会社日立製作所 | Power transmission system and power transmission and information communication system |
EP0886232B1 (en) * | 1997-06-20 | 2007-09-05 | Hitachi, Ltd. | Reader and/or writer apparatus, power feeding system, and communication system |
FR2792130B1 (en) * | 1999-04-07 | 2001-11-16 | St Microelectronics Sa | ELECTROMAGNETIC TRANSPONDER WITH VERY CLOSE COUPLING OPERATION |
JP2001005938A (en) * | 1999-04-19 | 2001-01-12 | Denso Corp | Non-contact ic card |
US6442434B1 (en) * | 1999-10-19 | 2002-08-27 | Abiomed, Inc. | Methods and apparatus for providing a sufficiently stable power to a load in an energy transfer system |
JP3737372B2 (en) * | 2001-02-26 | 2006-01-18 | 株式会社日立製作所 | Current transformer input type power supply |
US7521890B2 (en) * | 2005-12-27 | 2009-04-21 | Power Science Inc. | System and method for selective transfer of radio frequency power |
WO2010032603A1 (en) * | 2008-09-19 | 2010-03-25 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and wireless tag using the same |
JP5290014B2 (en) * | 2009-03-19 | 2013-09-18 | ソニーモバイルコミュニケーションズ株式会社 | RFID module and portable device |
US8830637B2 (en) * | 2010-08-31 | 2014-09-09 | Texas Instruments Incorporated | Methods and apparatus to clamp overvoltages for alternating current systems |
-
2012
- 2012-03-09 WO PCT/JP2012/056121 patent/WO2012121371A1/en active Application Filing
- 2012-03-09 KR KR1020137007498A patent/KR20130050365A/en not_active Application Discontinuation
- 2012-03-09 TW TW101108093A patent/TW201251256A/en unknown
- 2012-03-09 JP JP2013500693A patent/JP5324009B2/en not_active Expired - Fee Related
- 2012-03-09 CN CN2012800042200A patent/CN103262389A/en active Pending
- 2012-03-09 US US14/004,123 patent/US20130342026A1/en not_active Abandoned
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10079514B2 (en) | 2013-07-02 | 2018-09-18 | Renesas Electronics Corporation | Electric power receiving device and non-contact power supply system |
Also Published As
Publication number | Publication date |
---|---|
US20130342026A1 (en) | 2013-12-26 |
KR20130050365A (en) | 2013-05-15 |
CN103262389A (en) | 2013-08-21 |
JPWO2012121371A1 (en) | 2014-07-17 |
JP5324009B2 (en) | 2013-10-23 |
WO2012121371A1 (en) | 2012-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201251256A (en) | A power receiver and a contactless electrical power transmission system using same | |
JP5922651B2 (en) | Wireless power receiver, wireless power feeder | |
JP5346028B2 (en) | Multiphase induction power supply system | |
US9391535B2 (en) | Received power conversion device for resonant wireless charging system | |
EP3002863A1 (en) | Single inductor dc-dc converter with regulated output, energy storage and energy harvesting system | |
WO2010026528A2 (en) | Inductive charger and charging method | |
CN103762844B (en) | There is the anti exciting converter of forward converter reset clamp | |
JP2013532461A (en) | Circuit of contactless inductive power transmission system | |
EP2942856A1 (en) | Magnetic field energy harvesting device | |
JP2015198572A (en) | Protection system against reverse battery connection | |
WO2018074144A1 (en) | Power supply circuit | |
TWI332309B (en) | Switching power supply circuit | |
US20090103333A1 (en) | Circuit arrangement and method for converting an alternating voltage into a rectified voltage | |
US9755456B1 (en) | Control circuit for wireless power | |
JP2010529831A (en) | Power converter and power combiner for power limited power supply | |
US20030227364A1 (en) | Power transforming apparatus with multiple parallel-connected transformers | |
WO2019109950A1 (en) | Boosting circuit, power supply device and portable electric energy system | |
TW201110503A (en) | Method and circuit for energizing an electrical device | |
Rodriguez et al. | A simple passive 390 mV ac/dc rectifier for energy harvesting applications | |
Resali et al. | Comparison of energy harvesting power management techniques and application | |
US20050073866A1 (en) | Boost converters, power supply apparatuses, electrical energy boost methods and electrical energy supply methods | |
JP3280649B2 (en) | Energy transfer device, charging device and power supply device | |
JPH09182322A (en) | Non-contact type electric power transmission device | |
TWI680624B (en) | Start-up apparatus for battery management circuit and battery management system having the same | |
CN108521151B (en) | Starting device of battery management circuit and battery management system with same |