TW201251112A - Semiconductor layer system having a semipolar or m-planar group iii nitride layer and semiconductor component based thereon - Google Patents

Semiconductor layer system having a semipolar or m-planar group iii nitride layer and semiconductor component based thereon Download PDF

Info

Publication number
TW201251112A
TW201251112A TW101104163A TW101104163A TW201251112A TW 201251112 A TW201251112 A TW 201251112A TW 101104163 A TW101104163 A TW 101104163A TW 101104163 A TW101104163 A TW 101104163A TW 201251112 A TW201251112 A TW 201251112A
Authority
TW
Taiwan
Prior art keywords
layer
lattice constant
semiconductor
polar
nitride
Prior art date
Application number
TW101104163A
Other languages
Chinese (zh)
Inventor
Armin Dadgar
Alois Krost
Peter Veit
Roghaiyeh Ravash
Original Assignee
Univ Magdeburg Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Magdeburg Tech filed Critical Univ Magdeburg Tech
Publication of TW201251112A publication Critical patent/TW201251112A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02516Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02609Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The invention relates to a semiconductor layer system comprising a semipolar or m-planar group III nitride layer, wherein at least one first layer (102) having a first lattice constant and stacking faults and one second layer (104) having a second lattice constant and having a lower number of stacking faults than the first layer (102) are present, wherein a third layer (103) is disposed between the first layer (102) and the second layer (104), the third lattice constant of said third layer being different from the first lattice constant of the first layer (102). The invention further relates to a method for producing a semiconductor layer system, to a semiconductor component comprising the semiconductor layer system, and to various applications of the semiconductor layer system.

Description

201251112 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種具有至少一半極性或m面之週期 表HI族元素氮化物層的半導體層系統及一種以此為基礎的 半導體構件。 【先前技術】 基於週期表III族元素氮化物之半導體構件(尤其是 LED )在c軸方向上具有較強壓電場。壓電場的量子侷限史 塔克效應會降低LED效率,尤其是長波發射範圍内的效率 [T. Deguchi, K. Sekiguchi, A. Nakamura, T. Sota, R. Matsuo, S. Chichibu 及 S. Nakamura, Jpn. J. Appl. Phys. 38, L914 (1999)]。因此’業界致力於降低此類長波[ED或雷射器之 發光層的極化程度。舉例而言,使一般情況下指向生長方 向的晶體c軸取向發生傾斜係為其中一種解決方案,基於201251112 VI. Description of the Invention: [Technical Field] The present invention relates to a semiconductor layer system having a nitride layer of a periodic table HI element of at least half polarity or m-plane and a semiconductor member based thereon. [Prior Art] A semiconductor member (particularly an LED) based on a nitride of a group III element nitride has a strong piezoelectric field in the c-axis direction. The quantum-limited Stark effect of the piezoelectric field reduces LED efficiency, especially in the long-wave emission range [T. Deguchi, K. Sekiguchi, A. Nakamura, T. Sota, R. Matsuo, S. Chichibu and S. Nakamura, Jpn. J. Appl. Phys. 38, L914 (1999)]. Therefore, the industry is committed to reducing the degree of polarization of such long wavelengths [ED or laser light-emitting layers. For example, tilting the c-axis orientation of the crystal that is generally directed to the growth direction is one of the solutions, based on

InGaN/GaN之多量子井系統之〇軸傾角存在約為45。與90。 的最小值[A. E. Romanov, T. J. Baker,S. Nakamura 及厂呂· Speck,J. App. Phys. 100, 023522 (2006)]。然而在更小傾角 下’極化場亦已有明顯削弱,因而相對於在生長方向上無 上述效應之非極性週期表III族元素氮化物,半極性之週期 表III族元素氮化物遂成為研究重點。 非極性之週期表III族元素氮化物層原則上可用異質磊 晶法製成’例如以a面或m面SiC為基板的a取向或m取 向GaN,抑或以r面藍寶石為基板的a面GaN[P. Venn0guds 及 Z. Bougrioua,Appl_ Phys. Lett· 89, 1 11915 (2006)],但亦 201251112 可採用石夕基板[Y. Honda,Y_ Kawaguchi,T. Kato, Μ· Yamaguchi 及 N. Sawaki,in Proceedings of the InternationalThe multi-quantum well system of InGaN/GaN has a tilt angle of about 45. With 90. The minimum value [A. E. Romanov, T. J. Baker, S. Nakamura and G. Speck, J. App. Phys. 100, 023522 (2006)]. However, at a smaller tilt angle, the 'polarization field' has also been significantly weakened. Therefore, the semi-polar periodic group III element nitride 遂 has been studied with respect to the non-polar periodic table III element nitrides which have no such effect in the growth direction. Focus. The non-polar periodic group III nitride layer can in principle be made by hetero-epitaxial method, such as a- or m-oriented GaN with a-plane or m-plane SiC as a substrate, or a-plane GaN with r-plane sapphire as a substrate. [P. Venn0guds and Z. Bougrioua, Appl_ Phys. Lett 89, 1 11915 (2006)], but also 201251112 can use Shi Xi substrate [Y. Honda, Y_ Kawaguchi, T. Kato, Μ· Yamaguchi and N. Sawaki In Proceedings of the International

Workshop on Nitride Semiconductors, Nagoya, Japan, IPAP Conference Series 1, 304 (2000); T. Tanikawa, T. Hikosaka, YWorkshop on Nitride Semiconductors, Nagoya, Japan, IPAP Conference Series 1, 304 (2000); T. Tanikawa, T. Hikosaka, Y

Honda,M. Yamaguchi 及 N. Sawaki,Physica Status Solidi (c) 5,2966 (2008)]。後一種方法需在生長前實施必要處理,較 為複雜。針對該矽基板方法目前存在一種替代方法,即在 高指數Si基板上進行半極性生長,詳情請參閱相關文獻 [Roghaiyeh Ravash, Jurgen Biasing, Thomas Hempel, MartinHonda, M. Yamaguchi and N. Sawaki, Physica Status Solidi (c) 5, 2966 (2008)]. The latter method requires the necessary treatment before growth, which is more complicated. There is currently an alternative to the tantalum substrate method for semi-polar growth on high-index Si substrates. See the related literature for details [Roghaiyeh Ravash, Jurgen Biasing, Thomas Hempel, Martin

Noltemeyer,Armin Dadgar,JUrgen Christen 及 Alois Krost,Noltemeyer, Armin Dadgar, JUrgen Christen and Alois Krost,

Applied Physics Letters 95, 242101 (2009)] 〇 上述第一類非極性及半極性層較佳以異質磊晶生長方 式在異質基板上生長,此類層中一般會大量出現週期表 族元素氮化物晶體之疊層缺陷。在纖辞礦結構之晶體中多 被視為立方夾雜的疊層缺陷作用如薄量子井結構,會發出 特徵性光致螢光’其作為高效複合通道會對例如來自 InGaN/GaN多量子井系統的光致螢光造成影響。 因此’業界致力於在半極性及非極性層中澈底杜絕此 類在c軸取向材料中幾乎不會出現的疊層缺陷。然而如吾人 所知’能減少疊層缺陷數量的側向磊晶生長法(亦稱Le〇、 ELO或ELOG )並非均勻覆蓋整個晶面。 另外,此方法通常需設置兩階段生長過程以及用氧化 石夕或S ιΝ氣化矽等材料進行構造及遮蔽處理,以便能實現 選擇性生長。其中,氧化矽可以化學計量組成或近似化學 201251112 成作為Si〇2存在,或以非晶形式(例如,非晶熱8丨〇2 ) 存在或以奈米晶或聚晶或單晶形式存在。亦可使用其他 組成之氧化矽’在此情況下’該氧化矽或以非晶形式存在, 5 、〃米sa或聚晶或單晶形式存在。若使用氮化妙,則該 氮化料以化學計量組成或近似化學計量組成作為Si3N4 或以非晶形式存在,或以奈米晶或聚晶或單晶形式 亦可使用其他組成之氮化矽,在此情況下,該氮化 夕或以非阳形式存在’或以奈米晶或聚晶或單晶形式存 於須77兩階段完成,此方法迄今尚未得到認可。 【發明内容】 本發明之目的在於以簡單方式提供—種儘可能 纖鋅礦結構之半極性或非極性週期表III族元素氮化 =矣‘‘晶體,、一概念在此係指可以單晶體形式提供 内提❹Ιη^素氮化物晶體,抑或在m奈米晶結構 微曰形表111族70素11化物晶體。亦可以組織化柱狀 曰曰式扶供該週期表III族元素氮化物晶體。 统、請專利範圍第1項所述特徵之半導體層系 專利範第6項之半導體構件以及具有如申請 目的之解決方案。較佳實施明用以達成上述 包含的特徵亦w Η方式明參閱各附屬項。其中所 他技ΓΓΓ 述說明中所包含之特徵結合以產生其 案。案,而非僅限於申請專利範圍中所提出之改良方 本發明提出一種丰 丰導體層系統’包括至少-半極性或m 201251112 面之週期表III族元素氮化物層,其中,設有至少一第一層 及第二層,該第一層具有第一晶格常數及疊層缺陷,該第 一層具有第二晶格常數及數目少於該第一層之疊層缺陷, 其中,在該第一層與該第二層之間設有第三層,該第三層 的第三晶格常數不同於該第一層之第—晶格常數。 本發明進一步提出一種製造半導體層系統的方法,較 佳製U上述之半導體層系統的方法,其中,一併製造至少 一半極性或m面之週期表ΠΙ族元素氮化物層,其中,該半 導體層系統之製造至少包括: -製造第一層’該第一層具有第一晶格常數及疊層缺 陷, -製造第三層,該第三層的晶格常數不同於該第一層之 晶格常數,及 製造第二層’該第二層具有第二晶格常數及數目少於 該第一層之疊層缺陷,其中,在該第三層上製造該第二層, 從而使該第三層位於該第一層與該第二層之間。 該第三晶格常數較佳小於該第一晶格常數。進一步 地,該第三晶格常數較佳小於該第二晶格常數。進一步地, 該第二晶格常數較佳小於該第一晶格常數。根據另一技術 方案’該第—晶格常數小於該第二晶格常數。該第三晶格 常數的值尤佳介於該第一層之晶格常數值與該第二層之晶 格常數值之間。根據另一技術方案,該第三晶格常數的值 大於該第一及第二晶格常數的值。 此種半導體層系統之優點在於,該第三層(103)之層 6 201251112 厚會引起匹配偏移(Anpassungsversetzung )。Applied Physics Letters 95, 242101 (2009)] The above-mentioned first type of non-polar and semi-polar layers are preferably grown on heterogeneous substrates by heterogeneous epitaxial growth. In such layers, a large number of periodic table element nitride crystals are generally present. Stacking defects. In the crystals of the fine ore structure, the lamination defect, which is considered to be a cubic inclusion, acts as a thin quantum well structure, and emits characteristic photoluminescence, which acts as an efficient composite channel, for example, from an InGaN/GaN multi-quantum well system. The effect of photoluminescence is affected. Therefore, the industry is committed to eliminating such lamination defects that are hardly observed in c-axis oriented materials in semi-polar and non-polar layers. However, as is known, the lateral epitaxial growth method (also known as Le〇, ELO or ELOG) which reduces the number of lamination defects does not uniformly cover the entire crystal plane. In addition, this method usually requires a two-stage growth process and construction and masking with materials such as oxidized stone or S Ν gasified ruthenium to enable selective growth. Among them, cerium oxide may exist as a stoichiometric composition or an approximate chemistry 201251112 as Si〇2, or in an amorphous form (for example, amorphous heat 8丨〇2) or in the form of nanocrystals or polycrystals or single crystals. It is also possible to use other compositions of cerium oxide 'in this case' the cerium oxide is present in amorphous form, 5, glutinous rice sa or polycrystalline or single crystal form. If nitriding is used, the nitride material may exist in a stoichiometric composition or an approximately stoichiometric composition as Si3N4 or in an amorphous form, or in a nanocrystalline or polycrystalline or single crystal form, other compositions of tantalum nitride may be used. In this case, the zirconium or the non-positive form exists or is completed in two stages in the form of nanocrystals or polycrystalline or single crystals, which has not been recognized to date. SUMMARY OF THE INVENTION The object of the present invention is to provide, in a simple manner, a semi-polar or non-polar periodic group III element nitridation = 矣'' crystal of a wurtzite structure as far as possible, and a concept here means that it can be in a single crystal form. Providing an internal ❹Ι 素 素 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 , 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化 氮化It is also possible to organize columnar rafts to supply nitride crystals of Group III elements of the periodic table. The semiconductor layer of the feature described in the first aspect of the patent is the semiconductor component of the patent example 6 and has a solution as claimed. Preferred embodiments are described in order to achieve the above-mentioned features. The features contained in the technical descriptions are combined to produce the case. The invention, but not limited to the improvement proposed in the scope of the patent application, proposes a rich conductor layer system comprising at least a semi-polar or m 201251112 surface periodic group III nitride layer, wherein at least one a first layer and a second layer, the first layer having a first lattice constant and a lamination defect, the first layer having a second lattice constant and a number of lamination defects less than the lamination of the first layer, wherein A third layer is disposed between the first layer and the second layer, and the third lattice constant of the third layer is different from the first lattice constant of the first layer. The present invention further provides a method of fabricating a semiconductor layer system, preferably a method of fabricating the above semiconductor layer system, wherein at least half of a periodic or m-plane periodic lanthanide nitride layer is produced, wherein the semiconductor layer The manufacture of the system comprises at least: - fabricating a first layer 'the first layer having a first lattice constant and laminating defects, - fabricating a third layer having a lattice constant different from the lattice of the first layer Constant, and manufacturing a second layer 'the second layer having a second lattice constant and a number less than the stack defect of the first layer, wherein the second layer is fabricated on the third layer, thereby making the third A layer is between the first layer and the second layer. The third lattice constant is preferably less than the first lattice constant. Further, the third lattice constant is preferably smaller than the second lattice constant. Further, the second lattice constant is preferably smaller than the first lattice constant. According to another technical solution, the first lattice constant is smaller than the second lattice constant. The value of the third lattice constant is particularly preferably between the value of the lattice constant of the first layer and the value of the lattice constant of the second layer. According to another aspect, the value of the third lattice constant is greater than the values of the first and second lattice constants. An advantage of such a semiconductor layer system is that the thickness of the layer 6 201251112 of the third layer (103) causes a matching offset (Anpassungsversetzung).

該半導體層系、,统中較佳至少有兩層分別由一週期表I 族疋素氮化物層構成。此二層可採用相同設 111 不同設計。 了採用 進一步地,該第一及第二層較佳分別為一週期表埃 疋素氮化物層材料。根據一種改良方案,該第三層由一、 同於該第一及第二層之材料製成,亦即,該第三層不為= 期表III族元素氮化物層。根據另一改良方案,該第= 1—丨_ |〇| 樣為週期表III族元素氮化物層。 在下文中’ “層”係指一或多個具有一定組成及摻雜 的層。“層系統”則指具有不同組成及/或摻雜的層序列。 本發明所提出的半導體層系統還允許使用前述不同形 式之氧化石夕及氣化石夕。 該半導體層系統之優點在於,疊層缺陷密度減小後, 發光構件的發光性能便不會發生變化。 卷層缺陷在週期表III族元素氮化物六方晶體中多表現 為立方央雜,抑或在立方晶體中多表現為六方失雜,由於 六方材料中存在能隙偏差而被視為帶隙能量較低的量子 井’因而藉此可對發光層的光致發光特性施加影響。 從[0001]向(即六方C向)觀察,六方晶體結構之完美 晶體的疊層排序為ΑΒΑΒΑΒΑΒΑΒ·.·。若存在疊層缺陷,則 晶體部分區域會產生立方晶體結構之晶體。舉例而言,♦ 田 疊層排序為ABABABCBCBCBCBABABAB時,晶體内將出 現兩個疊層缺陷’以至於疊層排序ABC或CBA將出現兩 201251112 此即為上文所述的立方 次,從而產生立方晶體結構區域 夾雜。 此外’電荷載子遷移亦受到影響,因而除光致發光外, 電荷載子遷移亦受到不良影響。因此,疊層缺陷―般而言 不利於任何-種電氣構件,t導致表面聲波構件出現額外 聲波散射,進而導致出現不良材料特性。因此,任何構件 皆應儘量減小疊層缺陷密度。 本發明提出一種半導體層系統,其包括至少一半極性 之週期表III族元素氮化物層及/或至少_ m面之週期表ΠΙ 族元素氮化物層。其中設有至少一具有第一晶格常數之第 一層’該第一層具有疊層缺陷。 此外還a又有第二層,該第二層具有第二晶格常數及數 目少於該第一層之疊層缺陷。該第一層與該第二層之間設 有第三層,其弛豫晶格常數在疊層排序即£:向上有別於該第 一層之晶格常數。 舉例而言’該第一層可實施為GaN層,該第三層實施 為位於該第一層之上的A1N層。在此情況下,晶格失配率 約為2.4°/。。在此情況下’當實施為A1N層之第三層的層厚 例如為10 nm時’能觀察到上述效應’即第二層的疊層缺 陷密度小於第二層。當實施為A1N層之第三層的層厚遠大 於10 nm時,若低於層厚閫值則無法再觀察到此效應。第 一層與第三層間的晶格失配率愈低,則第三層之該層厚閾 值愈大。此閾值可小於或大於lOnm,具體視第一層與第三 層間之晶格失配率而定,然而一般情況下,晶格失配率愈 8 201251112 低,則該閾值愈大β 根據本發明的實施方式,該第_層及/或該第二層在該 半導體層系統中可實施為緩衝層。“緩衝層,,此__概念在 此係指在該半導體層& 體層系統所在之構件中不構成功能層的 層。舉例而言,緩衝層不椹 风增不構成p-n接面或蕭特基障壁。緩衝 層亦不構成能將構件導通之區域,例如簡稱服的場效電 晶體。緩衝層用於右其 在基板與構件之間形成過渡區以便將生 長過程中所產生之缺陷減至最少。 該第一層亦可實施為由多層構成的多層系統。 若亡述各層在晶格常數上存在差異,則其差別主要在 私生長平Φ亦稱面内。根據一種技術方案,晶格常 數在生長方向上的差異斜、、#队# 吳對桷除疊層缺陷方法之有效性無重 大影響,抑或僅產生輕微或較小影響。 形成於第-層與第二層之間的;三層起中間層作用, =晶格常數有別於下方可實施為緩衝層之第一層的晶格常 根據本發明另-實施方式,纟晶格常數上較佳有別於 層及該第二層之該第三層在該半導體層系統中採用 舱引起匹配偏移的層厚。 π 除層厚外,第三層之應變亦屬於重要參數。第三層中 出現匹配偏移後’起中間層作 , 增作用之該第三層將相對於下方 材料發生部分或完全弛豫。其結 方 认咕 衣馬,佈置於第三層之 的第二層(可實施為例如緩衝層) π 嘈)多數情況下亦相應處於 不冋於第一層之應變狀態,該坌 爽於 该第—層同樣可實施為緩衝層 201251112 且相對於第二層佈置在第三層的另一層分界面上。 該半導體層系統採用上述技術方案後,起中間層作用 之第三層及與之鄰接的層(即第一及第二層)中將產生應 力場。當疊層缺陷在生長方向上並非垂直分佈時,該應力 場能消除第二層内之疊層缺陷。起中間層作用之應變第三 層可能擇優在疊層缺陷上引起匹配偏移,此等匹配偏移能 消除佈置於第三層之上之第二層内的疊層缺陷,抑或能消 除起中間層作用之第三層與第二層間之分界面上的疊層缺 陷。此點可藉由1/6<20-23>型伯格斯向量之匹配偏移而實 現,當m面GaN上之壓迫性應變inGaN量子井引發產生疊 層缺陷時可觀察到此種匹配偏移[Alec M Fischer,zhiha〇Preferably, at least two of the semiconductor layers are composed of a periodic group I halogen nitride layer. This second layer can be used in the same design with 111 different designs. Further, the first and second layers are preferably a periodic ellipside nitride layer material, respectively. According to a further development, the third layer is made of a material which is identical to the first and second layers, that is, the third layer is not a nitride layer of the group III element. According to another refinement, the =1-丨_|〇| is a nitride layer of a group III element of the periodic table. In the following, 'layer' means one or more layers having a certain composition and doping. "Layer system" refers to a sequence of layers having different compositions and/or doping. The semiconductor layer system proposed by the present invention also allows the use of the aforementioned different forms of oxidized stone and gas fossils. The semiconductor layer system has an advantage in that the luminescent property of the light-emitting member does not change after the laminated defect density is reduced. The defect of the rolling layer is mostly expressed as a cubic dope in the hexagonal crystal of the group III element nitride, or it is represented by a hexagonal impurity in the cubic crystal. It is regarded as a low band gap energy due to the existence of the energy gap deviation in the hexagonal material. The quantum well' thus serves to influence the photoluminescence properties of the luminescent layer. From the [0001] direction (i.e., the hexagonal C direction), the stacking order of the perfect crystals of the hexagonal crystal structure is ΑΒΑΒΑΒΑΒΑΒ···. If a lamination defect is present, a portion of the crystal region will produce a crystal of a cubic crystal structure. For example, when the field stacking is ABABABCBCBCBCBABABAB, two stack defects will appear in the crystal so that the stacking order ABC or CBA will appear two 201251112, which is the cubic number described above, resulting in cubic crystals. The structure area is mixed. In addition, the charge carrier migration is also affected, so in addition to photoluminescence, charge carrier migration is also adversely affected. Therefore, lamination defects are generally not conducive to any kind of electrical component, and t causes additional acoustic wave scattering of the surface acoustic wave component, resulting in poor material properties. Therefore, any component should minimize the stack defect density. The present invention provides a semiconductor layer system comprising at least half of a periodic Group III nitride layer of a periodic table and/or a periodic layer of a lanthanide nitride layer of at least a _m plane. There is provided at least one first layer having a first lattice constant 'the first layer having a lamination defect. Further, a further has a second layer having a second lattice constant and a number of lamination defects less than the first layer. A third layer is disposed between the first layer and the second layer, and the relaxation lattice constant is in the stacking order, i.e., upwardly different from the lattice constant of the first layer. For example, the first layer can be implemented as a GaN layer, and the third layer is implemented as an A1N layer over the first layer. In this case, the lattice mismatch ratio is about 2.4 ° /. . In this case, when the layer thickness of the third layer which is implemented as the A1N layer is, for example, 10 nm, the above effect can be observed, i.e., the laminated defect density of the second layer is smaller than that of the second layer. When the layer thickness of the third layer implemented as the A1N layer is much larger than 10 nm, this effect can no longer be observed if it is lower than the layer thickness threshold. The lower the lattice mismatch between the first layer and the third layer, the greater the threshold of the layer thickness of the third layer. The threshold may be less than or greater than lOnm, depending on the lattice mismatch ratio between the first layer and the third layer. However, in general, the lattice mismatch rate is lower than 8 201251112, and the threshold value is larger β according to the present invention. In an embodiment, the first layer and/or the second layer can be implemented as a buffer layer in the semiconductor layer system. "Buffer layer, this concept refers to a layer that does not constitute a functional layer in the component in which the semiconductor layer & body layer system is located. For example, the buffer layer does not constitute a pn junction or a Schott The barrier layer does not constitute a region that can conduct the member, such as a field effect transistor. The buffer layer is used for the right to form a transition region between the substrate and the member to reduce the defects generated during the growth process to The first layer can also be implemented as a multi-layer system composed of a plurality of layers. If there is a difference in lattice constant between the layers, the difference is mainly in the plane of private growth Φ, also known as the plane. According to a technical solution, the lattice The difference in the growth direction of the constant is oblique, and #队#吴 has no significant effect on the effectiveness of the method of laminating defects, or only slightly or less. It is formed between the first layer and the second layer; The three layers function as an intermediate layer, = the lattice constant is different from the lattice of the first layer which can be implemented as a buffer layer. According to another embodiment of the present invention, the lattice constant is preferably different from the layer and the first The third layer of the second layer is In the semiconductor layer system, the layer thickness caused by the matching offset is adopted. π In addition to the layer thickness, the strain of the third layer is also an important parameter. After the matching offset occurs in the third layer, the intermediate layer is used, and the effect is increased. The three layers will partially or completely relax with respect to the underlying material. The knot is considered to be a horse, and the second layer disposed on the third layer (which can be implemented, for example, as a buffer layer) π 嘈) in most cases is correspondingly not In the strain state of the first layer, the first layer can also be implemented as a buffer layer 201251112 and on the other layer interface of the third layer with respect to the second layer. The semiconductor layer system adopts the above technical solution. Then, a stress field will be generated in the third layer functioning as the intermediate layer and the adjacent layers (ie, the first and second layers). When the laminated defects are not vertically distributed in the growth direction, the stress field can be eliminated. Stacking defects in the second layer. The strained third layer acting as the intermediate layer may preferentially cause a matching offset on the laminated defects, and the matching offsets can eliminate the stacks disposed in the second layer above the third layer. Layer defect It can eliminate the lamination defect on the interface between the third layer and the second layer which acts as the intermediate layer. This point can be realized by the matching offset of the 1/6<20-23> type Burgers vector, when m This type of matching shift can be observed when a compressive strain in a GaN on a GaN quantum well induces a lamination defect [Alec M Fischer, zhiha〇

Wu, Kewei Sun, Qiyuan Wei, Yu Huang, Ry〇ta Senda,Wu, Kewei Sun, Qiyuan Wei, Yu Huang, Ry〇ta Senda,

Daisuke hda,Motoaki Iwaya,Hiroshi Amano &FernandoA·Daisuke hda, Motoaki Iwaya, Hiroshi Amano & Fernando A·

Ponce, Applied Physics Express 2, 041002 (2009)] 〇 根據本發明的改良方案,週期表Η〗族元素氮化物晶體 在該半導體層系統中以<h〇-hl>型之半極性或非極性取向生 長,其中,h21以及120。 凡C軸傾斜偏離基板平面垂直線至少5。者,皆為半極 性層。傾角大於98。者為非極性層。較佳至少一層的傾角介 於15。與8〇。之間,此層特定言之為第二層及/或第三層。前 述效應在。軸沿<10_10>向或m向傾斜的層上最為明顯。此 點極有可能與表面原子配置及伯格斯向量具有m向分量之 最佳匹配偏移有關。相應地,<1〇_1〇>向傾斜比 < ⑽向或 a向傾斜更為有益^此點亦能在以往之試驗中觀察到。因 201251112 此,該半導體層或半導體層系統的另一有益實施方式為: 週期表III族几素氮化物晶體a<hG hi>型之半極性或非極 性取向生長,其中,以及 然而依照巾請專利範圍所述之方法,在a向即<112〇> 向傾斜或a面表面取向之情況下,若首先加速三維生長以形 成與a向或表面法線成3〇。或9〇。角之m型晶面({1〇丨 表面或<10-1〇>表面法線),則原則上亦能減小疊層缺陷密 度。將本發明之層序列設於該等晶面上,而後藉由選擇適 當之生長參數進行表面平整處理,從而形成{11_21}型表 面,其中1 2 0。 在晶體學領域,尖括弧通常用以描述等效方向。<10_10> 代表[10-10]、[-1010]、[1-100]、[·1100]、[〇11〇]及[〇11〇] 等方向’此情況下即指沿其中一方向傾斜。± 5。左右之輕微 偏差包括在内。如{11 -23 }等大括弧用以描述等效面,例如 (11-23)或(1-213)表面。Ponce, Applied Physics Express 2, 041002 (2009)] According to a further development of the invention, a periodic crystal of a nitride crystal of the group element is semi-polar or non-polar in the semiconductor layer system of the type <h〇-hl> Orientation growth, wherein h21 and 120. Where the C axis is tilted at least 5 from the vertical plane of the substrate plane. They are all semi-polar layers. The angle of inclination is greater than 98. It is a non-polar layer. Preferably, at least one of the layers has an angle of inclination of 15. With 8 baht. Between the layers, this layer is specifically referred to as the second layer and/or the third layer. The aforementioned effects are. The axis is most pronounced on the layer inclined to <10_10> to or m. This point is most likely related to the surface atomic configuration and the best matching offset of the Burgers vector with m-direction components. Accordingly, <1〇_1〇> is more advantageous for tilting the < (10) to or a direction tilt. This point can also be observed in previous experiments. Another beneficial embodiment of the semiconductor layer or semiconductor layer system is: 201251, 12, a semi-polar or non-polar orientation growth of a group III nitride crystal a<hG hi> of the periodic table, wherein, and In the method described in the patent scope, in the case where the a direction is <112〇> is oriented toward the inclined or a-plane surface, the three-dimensional growth is first accelerated to form a normal with the a-direction or the surface normal. Or 9〇. The m-shaped crystal face of the corner ({1〇丨 surface or <10-1〇> surface normal) can also reduce the stacking defect density in principle. The layer sequence of the present invention is placed on the crystal faces, and then surface smoothing is performed by selecting appropriate growth parameters to form a {11_21} type surface, of which 1 2 0 . In the field of crystallography, pointed brackets are often used to describe the equivalent direction. <10_10> represents the directions [10-10], [-1010], [1-100], [·1100], [〇11〇], and [〇11〇], in which case it refers to one direction tilt. ± 5. A slight deviation from left to right is included. Braces such as {11 -23 } are used to describe equivalent faces, such as (11-23) or (1-213) surfaces.

所送入的本發明層的沈積溫度亦可低於下方緩衝層之 沈積溫度。此點在低溫Α1Ν或GaN層領域為公知技術[η. Amano, M. Iwaya, T. Kashima, Μ. Katsuragawa, I. Akasaki, JThe deposition temperature of the layer of the present invention fed may also be lower than the deposition temperature of the underlying buffer layer. This point is well known in the field of low temperature Α1Ν or GaN layers [η. Amano, M. Iwaya, T. Kashima, Μ. Katsuragawa, I. Akasaki, J

Han,S. Hearne,J. A. Floro,E. Chason 及 J. Figie: Jpn. J.Han, S. Hearne, J. A. Floro, E. Chason and J. Figie: Jpn. J.

Appl. Phys. 3 7, L1540 (1998)]。如吾人所知,此類層能改良 c軸取向層之材料品質且可作為無裂紋層用於矽基板上的 GaN[Armin Dadgar, Jurgen Biasing, Annette Diez, Assadullah Alam, Michael Heuken 及 Alois Krost, Jpn. J. Appl. Phys. 3 9, LI 183 (2000)]。然而,疊層缺陷課題與^軸 201251112 取向層無關,因為沒有實際意義。因此,迄今為止尚未有 將此類層用於針對性減小疊層缺陷密度之公知技術。 虽Α1層(即晶格常數較小的層,如GaN )有助於減小 疊層缺陷密度。先前技術同樣未曾將中間層尤其是富Ai中 間層應用於藍寶石基板’因為富A1中間層會引發劇烈磨 縮’從而導致生長後晶圓彎曲度極大。如[R〇ghaiyeh Ravash,Appl. Phys. 3 7, L1540 (1998)]. As is known to us, such layers can improve the material quality of the c-axis oriented layer and can be used as a crack-free layer for GaN on germanium substrates [Armin Dadgar, Jurgen Biasing, Annette Diez, Assadullah Alam, Michael Heuken and Alois Krost, Jpn J. Appl. Phys. 3 9, LI 183 (2000)]. However, the problem of lamination defects is not related to the orientation layer of the 20121112, because it has no practical meaning. Therefore, there has been no known technique for using such layers to specifically reduce the density of lamination defects. Although Α1 layer (i.e., a layer having a small lattice constant such as GaN) contributes to the reduction of the stack defect density. The prior art also did not apply the intermediate layer, especially the Ai-rich intermediate layer, to the sapphire substrate 'because the A1 rich intermediate layer would cause severe hardening' resulting in a very high wafer curvature after growth. Such as [R〇ghaiyeh Ravash,

Jurgen Biasing, Thomas Hempel, Martin Noltemeyer, ArminJurgen Biasing, Thomas Hempel, Martin Noltemeyer, Armin

Dadgar,Jtirgen Christen 及 Alois Krost,Applied PhysicsDadgar, Jtirgen Christen and Alois Krost, Applied Physics

Letters 95, 242101 (2009)]所述,用緩衝A1N層實現矽基板 上的層,可最大程度地避免矽基板開裂,亦能防止回融腐 钱(一種會摧毀生長層的Ga-Si反應)’但無法消除疊層缺 陷。石夕基板上的富A1緩衝層一般情況下有助於減少回融腐 姓反應。 根據該半導體層系統的另一有益實施方式,晶格常數 不同於該第一及第二層之該第三層的生長溫度比例如可實 施為緩衝層之該第一層的生長溫度低至少1〇〇 根據一種 技術方案,該第三層的製造及生長溫度比該第二層之製造 及生長溫度低至少100 κ。此等低溫層較佳基於A1N或 AlGaN,或曰,其在弛豫狀態下的晶格常數較佳小於周圍材 料。該等低溫層例如可為由單層A旧、A1GaN,A1InN或 AllnGaN構成的層’考慮採用化學計量層。但亦可採用亞化 學計量或超化學計量組成的層。此點原則上亦可在AUn(}aN 材料系統中實現。除實施為單層的層外,亦可使用由疊層 構成的層,其中,此疊層可由用上述材料構成的層堆疊而 12 201251112 成边等單層及該疊層的其,一層 設置濃度梯度,多層或所有層t皆可 濃度梯度。該濃声说择 而』曰大之A丨濃度的 该遘度梯度可離散分佈, 的 生—疋變化,亦可& 隹層刀界面處發 洛^ f某—層、多層或所有層 續分佈。此外亦可有層的生長方向連 摻雜處理,從而Γ 層'多層或所有層進行 他類型的原子。材# 亦存在明確量之其 材科内可能存在少詈榦暂 個原子百分比沾汹断 雜質’例如不超過1 厚度約為10 nm且赫r M β 種實施例,生長出 m且被GaN層包圍之αιν中 層後,疊層缺陷密度大“的第三 性看,還是從穿策_ν带 ^至於無淪從光致發光特 顯微影像看,實施為GaN層之第 有疊層缺陷°為了測定錢發光特性,需 儀及光U射…25㈣波長進行激勵,而後用光譜 儀及先感測器以波長解析方式測量強度。 該半==實施方式’實施為中間層的該第三層在 故“ 佈置在該第三層上之第二層之晶 格常數的晶格常數生長。其φ 、中’該第二層可實施為緩衝層。 t第二層亦可實施為某一構件之功能層。該第二層例如可 為摻雜層’此情況下較佳為η型摻雜層。 因此f施為中間層之該第三層以小於佈置在該第三 層上之第二層之晶格當齡Μ Θ 吊數的晶格常數生長,此為另一種有 助於有效減小疊層缺陷穷择Μ 立增缺陷在度的實施方式。該第三層例如由 Α1Ν構成,位於GaN緩衝層形式之第一層與第二層之間。 該第及第_層中的其中—層或兩層可為化學計量組成或 201251112 近似化子汁量組成。若此二層為六方晶體結構,則亦可採 用非化學計量組成。 該第一層原則上可實施為低溫層且由與該第三層周圍 較佳實施為緩衝層的一或兩層相同之材料構成,其前提 才於第層及/或第二層生長過程中之溫度變化,實 施為中間層之該第二層生長所需的溫度變化使得較佳實施 為緩衝層之該第一層及/或該第二層發生應變,使得生長於 其上、實施為低溫層的第三層至少部分弛豫,即在相應溫 度下〃有不同應變狀態,在異質基板上生長當溫度變化超 過300 K時即為此種情況。“他豫”在匕一概念在此係指晶 體中部分同調分界面上產生匹配偏移4生弛豫的層不必 完全弛豫,即可部分應變。當所選層厚使得層弛豫已經開 始’但尚未達到匹配偏移密度能使材料完㈣豫之臨界值 時’即為此種情況。完全弛豫可能引發島狀生長,進而導 致表面粗Μ度大張’多數情況下此為不理想狀況。溫差亦 有可能導致應力產生。舉例而言,基板層系統會在冷卻後 引發應變。當層或基板層㈣發生^夠程度之熱誘發應變 時,生長於其上的層即使在名義相同組成情況下亦可能發 生部分弛豫,目為’溫度下降時生長亦會發生變化,較佳 體現為有利於弛豫之輕度島狀生長。 用倒易空間圖法辨識弛豫或至少部分弛豫狀態。χ射線 繞射法乃是最簡單之測定應變狀態與晶格參數的方法。可 藉由theta-2theta掃描測定繞射角,若反射率已知,則可\ 疋層或層系統之相關晶格參數。藉此可測定晶格參數的^ 201251112 同分量(c或a晶格參數),具體視所選反射率(相對於表 面法線對稱或不對稱)而定。此外還可藉由與不對稱反射 率相關之倒易空間圖(亦稱recipr〇cal space maps)測定某 一層相對於另一層之弛豫度。透過測得晶格參數及/或倒易 二間圖旎可靠確定各層之晶格參數與弛豫度之間的對應關 係此類應用式測定方法例如由” Stress Relaxation in Low-Strain AlInN/GaN Bragg Mirrors"; P.Moser, J.Biasing, A.Dadgar, T.Hempel, J. Christen, A.Krost, Japanese Journal of Applied Physics 50 (2〇u) 〇31〇〇2 及,Anis〇tr〇pic structural and opncal properties of a-plane (110) AlInN nearly-lattice-matsched toGaN", M.Laskar, T. Ganguli, A.Rahman. A_ Arora,N.Hatui 等人;Applied Physics Letter 98, 181108 (201 1); doi 10.1063/1.3583457 揭露。 一般而言’在僅部分減少疊層缺陷之情況下,在實施 為緩衝層之上部第二層之後再佈置一中間層乃是有益之 舉。亦可多次重複上述之半導體層系統,例如可再設置一 與上緩衝層鄰接之中間層。 依照先前技術,矽基板不太適用於本發明之應用,因 為’半極性或非極性層在矽上生長要求基板經繁複處理, 抑或直接在特殊的基板取向上生長,極易引起開裂及強烈 之回融腐蝕。唯採用較為複雜之製程控制方能加以避免。 就目前而言’在如sic或藍寶石等基板上能獲得更佳之材 料品質’而材料品質對構件效率有決定性作用。然而,此 點並不排除前述層之使用。 15 201251112 本發明另一實施方式提供—種半導體構件,纟包括至 少-半導體層系統’該半導體層系統具有半極性或m面之 週期表III族元素氣化物層,包括至少一第一層及第二層, 該第一層具有帛—晶格常數及疊層缺陷,該帛二層具有第 二晶格常數及數目少於該第_層之疊層缺陷,丨中,在該 第層與》亥第—層之間設有第三層,其㈣晶格m I 層排序即c向上有別於該第—層之晶格常數。 ,本發明之半導體構件基於或包含此種用作緩衝結構之 +導體層系統,如中請專利範圍所述,在該構件中,在亦 起作用層或作用區之各層之前生長一本發明之半導體層系 統0 另種較佳半導體構件為一發光半導體構件。根據一 種技術方案’發射! 8㈣至2⑻nm波長範圍的光。若涉及 0.68 eV InNi 62 eV剔之週期表m族元素氮化物,則 發射自近紅外至υν光譜的光^此種半導體構件例如可包含 半極性之週期表111族元素氮化物層,該週期表III族元素 氮化物層具有一位於構件作用區之前的層,此層具有其他 晶格常數。 上述半導體構件例如可為LED或雷射器,該LED在其 用於配電及接觸的下部區域亦包含至少一本發明之半導體 層系統。但較佳在構件之功能部分不設此半導體層系統, 以便將電阻維持在最低水平。 生長方法可採用任何一種能產生磊晶層的方法。其中 匕括簡稱為MBE的分子束磊晶法,簡稱為HVPE的氫化物 16 201251112 氣相mi簡稱為PLE或濺鑛法的脈衝雷射沈積。 斤產生之半導體層系統或半導體構件依具體性質可應 用於不同領域,例如央路如 ,νω 、 ^例如先發射體、電晶體、二極體、太陽電 池、表面波或體波構件或微機電系統。 【實施方式】 下文將參照附圖對本發明其他的有益技術方案及特徵 進行詳細說明。其中所揭露的實施例應被視為用以說明本 :明’而非用以限制本發明。下述特徵亦可與其他附圖及 則述說明中所包含之特徵結合以產生其他技術方案。 圖1為本發明構建於基板100上之半導體層系統的杜 構圖’其包括晶種層101 ’實施為緩衝層的第一層1〇2,實 施為中間層的_ 103以及位於該第三層之上、實施為 上緩衝層的第二層104,該第二層疊層缺陷減少或無叠層缺 陷。 隨後以該半導體層系統為基礎生長—包含η型及ρ型 區域以及位於兩區域間之多量子井結構的led結構。 第-及第三層102丨1〇3不必由同一種材料構成。原 則上若無中間| 1()3亦能實現結構生長,因為不同層— 及104若能實現有效應變,便亦能實現減輕及降低疊層缺 陷密度之目的。然而’最佳結果的取得方法為:第三層1〇3 在該半導體層系統中的生長溫度比第一層1〇2之生長溫度 低至少100K,並且,第^ 103在生長溫度下以小於上方 第二層1 04之晶格常數進行生長。 下文將以此種中間層為例對半導體層系統的生長進行 17 201251112 說明。 在9N純度之氫氣下以11 〇〇°C左右的溫度進行烘焙後, 在約530°C之溫度下藉有機金屬氣相磊晶法 (MOVPE/MOCVD)在合適基板1 00如(1 0-1 0)取向藍寶石 上生長一厚度約為25 nm的GaN晶種層101,該晶種層包 含7N純度之三曱基鎵及7N純度的氨作為氣體源。隨後加 熱至1050 °C左右並在Η:載氣及氨氣下進行為時2分鐘左右 之短時回火處理。隨後在提供三甲基鎵之情況下生長一厚 度約為1 μιη的GaN層作為第一層i 〇2。該第一層例如具有 (10-13)型擇優取向,用XRD法測量該取向。亦有可能出現 其他擇優取向’具體視所用基板及所選製程參數而定。理 想情況下隨後將生長溫度下降至800。(:左右並生長一厚度 、-勺為10nm的A1N層作為第三層1〇3,該層含有三甲基紹作 為鋁源。加熱後再生長一幾乎無疊層缺陷的GaN層。該第 層1 04亦可已構成半導體構件之第一功能層。此半導體 構件之特徵較佳在於半極性之週期表ηι族元素氮化物層且 其位於構件作用區之前的層具有其他晶格常數。事實表 明’亦可使用純度低於製造上述半導體層系統時所用之氣 體純度的氣體。 π乐二貫狐例 <只犯捫亇形式马第三層1 〇3的 中間層在與前面第一層丨02相同的、、田 一 邳丨j的皿度下生長。倘若該第 二層同樣為A1N,則其生長厚度較佳大於 又序没牧性大於1 〇 nm,以便能取 得相似之疊層缺陷減少效果。此第二 乐一層103之厚度一般約 馬 2〇 nm。 201251112 第二實施例係從銘濃度逐步或連續分級的AlGaN層中 生長出第二實施例中第三層103形式之中間層。在此情況 下’該AlGaN層之厚度應當遠大於10 nm,以便減小會導 致匹配偏移的應變。 第二層103形式之中間層通常可由AiGaInN構成,但 亦可添加B、As及/或P及/或其他元素,尤其是元素週期表 ΙΠ及V族元素,但不對隨後之生長產生明顯的有益影響。 添加”此一概念在此係指,相應所添加之元素濃度大於i 個原子百分比。除添加元素外,亦可用上述元素及其他任 意原子進行摻雜。其組成亦可在厚度方向上發生變化,亦 即’該中間層可由多個不同組成的薄層構成。 如[Roghaiyeh Ravash, Jtirgen Blasing,Th〇mas Hempel,Letters 95, 242101 (2009)], using a buffered A1N layer to achieve a layer on the germanium substrate, can minimize the cracking of the germanium substrate, and also prevent back-melting and decay (a kind of Ga-Si reaction that will destroy the growth layer). 'But it is impossible to eliminate laminate defects. The A1-rich buffer layer on the Shixi substrate generally helps to reduce the back-melting rot reaction. According to another advantageous embodiment of the semiconductor layer system, the growth temperature of the third layer different from the first layer and the second layer is at least 1 lower than the growth temperature of the first layer which can be implemented as a buffer layer. According to one technical solution, the third layer has a manufacturing and growth temperature that is at least 100 κ lower than the manufacturing and growth temperature of the second layer. These low temperature layers are preferably based on A1N or AlGaN, or germanium, which preferably have a lower lattice constant in the relaxed state than the surrounding material. The low temperature layer may be, for example, a layer composed of a single layer of A, A1GaN, AlInGaN or AllnGaN, using a stoichiometric layer. However, it is also possible to use a sub-chemical or super-stoichiometric layer. In principle, this can also be achieved in the AUn (} aN material system. In addition to the layer which is embodied as a single layer, a layer composed of a laminate can also be used, wherein the laminate can be stacked by layers of the above materials. 201251112 A single layer such as a side layer and a layer of the layer, a concentration gradient is set in one layer, and a concentration gradient can be obtained in a plurality of layers or all layers t. The concentration gradient can be discretely distributed. The growth of the 疋-疋, can also be &; 界面 刀 界面 ^ ^ ^ f f f f f f f f f f f layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer layer The layer carries out his type of atom. Material # also has a definite amount of material in the material family. There may be less 詈 暂 暂 暂 暂 暂 暂 暂 暂 暂 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' After the middle layer of αιν, which grows m and is surrounded by the GaN layer, the third layer of the defect density is large, or the GaN layer is formed from the photo-luminous microscopic image. The first layer has a defect. In order to measure the luminescent properties of the money, And the light U-shooting ... 25 (four) wavelength excitation, and then the intensity is measured by wavelength analysis using a spectrometer and a first sensor. The half == embodiment of the third layer implemented as an intermediate layer is "disposed on the third layer" The lattice constant of the lattice constant of the second layer is grown. The second layer of φ, ′′ can be implemented as a buffer layer. The second layer can also be implemented as a functional layer of a component. It may be a doped layer 'in this case, preferably an n-type doped layer. Therefore, the third layer, which is applied as an intermediate layer, is smaller than the lattice of the second layer disposed on the third layer. The lattice constant growth of the number is another embodiment that contributes to effectively reducing the defect of the stack defect. The third layer is composed of, for example, Α1Ν, which is located in the first layer of the GaN buffer layer form. Between the second layer and the first layer or the two layers may be a stoichiometric composition or a 201251112 approximation of the amount of juice. If the two layers are hexagonal crystal structures, non-chemical may also be used. Metering composition. The first layer can in principle be implemented as a low temperature layer and Preferably, the layer is formed as one or two layers of the same material of the buffer layer, and the premise is that the temperature change during the growth of the first layer and/or the second layer is implemented as the growth of the second layer of the intermediate layer. The change in temperature is such that the first layer and/or the second layer of the buffer layer are preferably strained such that the third layer grown thereon and implemented as a low temperature layer at least partially relaxes, ie at a corresponding temperature Different strain states, which grow on a heterogeneous substrate when the temperature changes by more than 300 K. This is the case where the "hehe" concept produces a matching offset 4 in the homogenous interface of the crystal. The layer does not have to be fully relaxed, ie it can be partially strained. This is the case when the selected layer thickness causes the layer relaxation to begin 'but the matching offset density has not yet reached the critical value of the material. Complete relaxation may cause island growth, which in turn leads to a large surface roughness. In most cases, this is an undesirable condition. Temperature differences can also cause stress. For example, the substrate layer system will induce strain after cooling. When the layer or the substrate layer (4) is subjected to a sufficient degree of heat-induced strain, the layer grown thereon may partially relax even under the same nominal composition, and the growth is also changed when the temperature is lowered. It is embodied as a light island-like growth that is conducive to relaxation. The reciprocal or at least partially relaxed state is identified by the reciprocal space map method. X-ray diffraction is the simplest method for determining strain state and lattice parameters. The diffraction angle can be determined by theta-2theta scan, and if the reflectance is known, the relevant lattice parameters of the layer or layer system can be used. From this, the same component of the lattice parameter ^ 201251112 (c or a lattice parameter) can be determined, depending on the selected reflectance (symmetric or asymmetrical with respect to the surface normal). In addition, the relaxation of a layer relative to another layer can be determined by a reciprocal space map (also known as recipr〇cal space maps) associated with asymmetric reflectance. Correspondence between the lattice parameters and the relaxation of each layer is reliably determined by measuring the lattice parameters and/or the reciprocal two-dimensional map. Such an applied measurement method is, for example, " Stress Relaxation in Low-Strain AlInN/GaN Bragg". Mirrors"; P.Moser, J.Biasing, A.Dadgar, T.Hempel, J. Christen, A.Krost, Japanese Journal of Applied Physics 50 (2〇u) 〇31〇〇2 and, Anis〇tr〇pic Structural and opncal properties of a-plane (110) AlInN nearly-lattice-matsched to GaN", M.Laskar, T. Ganguli, A.Rahman. A_ Arora, N.Hatui et al; Applied Physics Letter 98, 181108 (201 1 Doi 10.1063/1.3583457. Generally speaking, in the case of only partially reducing the number of lamination defects, it is advantageous to arrange an intermediate layer after implementing the second layer above the buffer layer. The semiconductor layer system described above may, for example, be further provided with an intermediate layer adjacent to the upper buffer layer. According to the prior art, the germanium substrate is less suitable for the application of the present invention because the growth of the semi-polar or non-polar layer on the crucible requires the substrate to pass through. Troublesome processing, or Directly grown on a special substrate orientation, it is easy to cause cracking and strong back-melting corrosion. Only complicated process control can be avoided. For now, 'better materials can be obtained on substrates such as sic or sapphire. Quality 'material quality is decisive for component efficiency. However, this does not preclude the use of the aforementioned layers. 15 201251112 Another embodiment of the present invention provides a semiconductor component, including at least a semiconductor layer system a vapor layer of a Group III element of a periodic table having a semipolar or m-plane, comprising at least a first layer having a 帛-lattice constant and a lamination defect, and a second layer having a second crystal The lattice constant and the number are less than the stacking defects of the first layer, and a third layer is disposed between the first layer and the first layer, and the (4) lattice m I layer is sorted, that is, the c direction is different from The lattice constant of the first layer. The semiconductor component of the present invention is based on or comprises such a +conductor layer system for use as a buffer structure, as described in the scope of the patent, in which the layer is also active or The layers were grown before the zone with a semiconductor layer of the invention is another kind of system 0 is preferably a member of the semiconductor light emitting semiconductor component. According to a technical solution 'launch! Light in the wavelength range of 8 (four) to 2 (8) nm. If a 0.68 eV InNi 62 eV reticle periodic group m element nitride is emitted, the light emitted from the near infrared to υ ν spectrum may comprise, for example, a semipolar periodic group 111 nitride layer of a periodic table, the periodic table The Group III nitride layer has a layer located before the active region of the member, which layer has other lattice constants. The semiconductor component may for example be an LED or a laser which also comprises at least one semiconductor layer system of the invention in its lower region for power distribution and contact. Preferably, however, the semiconductor layer system is not provided in the functional portion of the component to maintain the electrical resistance at a minimum level. The growth method can be any method that produces an epitaxial layer. Among them, the molecular beam epitaxy method referred to as MBE, referred to as hydride of HVPE 16 201251112 gas phase mi is referred to as PLE or pulsed laser deposition by sputtering method. The semiconductor layer system or semiconductor component produced by the jin can be applied to different fields depending on the specific properties, such as the central road such as νω, ^ for example, the emitter, the transistor, the diode, the solar cell, the surface wave or the bulk wave member or the microelectromechanical device. system. [Embodiment] Hereinafter, other advantageous technical solutions and features of the present invention will be described in detail with reference to the accompanying drawings. The embodiments disclosed herein are to be considered as illustrative and not restrictive. The features described below may also be combined with other figures and features included in the description to yield other technical solutions. 1 is a schematic view of a semiconductor layer system constructed on a substrate 100 of the present invention, which includes a seed layer 101' implemented as a buffer layer, a first layer 〇2, an intermediate layer _103, and a third layer Above, implemented as a second layer 104 of an upper buffer layer, the second layer stack has reduced or no lamination defects. It is then grown on the basis of the semiconductor layer system - a led structure comprising n-type and p-type regions and a multi-quantum well structure between the two regions. The first and third layers 102丨1〇3 do not have to be composed of the same material. In principle, if there is no intermediate | 1 () 3 can also achieve structural growth, because different layers - and 104 can achieve effective strain, it can also achieve the purpose of reducing and reducing the stack defect density. However, the best result is obtained by the third layer 1〇3 in the semiconductor layer system having a growth temperature lower than the growth temperature of the first layer 1〇2 by at least 100K, and the first 103 being less than the growth temperature. The lattice constant of the second layer 104 above is grown. The growth of the semiconductor layer system will be described below using such an intermediate layer as an example 17 201251112. After baking at a temperature of about 11 〇〇 °C under 9N purity hydrogen, the organic metal vapor phase epitaxy (MOVPE/MOCVD) is applied at a temperature of about 530 ° C on a suitable substrate such as (1 0- 1 0) An GaN seed layer 101 having a thickness of about 25 nm is grown on the oriented sapphire, and the seed layer contains 7N-purity trimethyl gallium and 7N-purity ammonia as a gas source. Then, it is heated to about 1050 °C and tempered in a short time of about 2 minutes under Η: carrier gas and ammonia gas. Subsequently, a GaN layer having a thickness of about 1 μm was grown as the first layer i 〇 2 while providing trimethyl gallium. The first layer has, for example, a preferred orientation of the type (10-13), which is measured by the XRD method. It is also possible that other preferred orientations will depend on the substrate used and the process parameters selected. Ideally, the growth temperature will then drop to 800. (: A layer of A1N having a thickness of -10 nm is grown as a third layer 1〇3, which contains trimethyl sulphide as an aluminum source. After heating, a GaN layer having almost no lamination defects is regenerated. Layer 104 may also constitute the first functional layer of the semiconductor component. This semiconductor component is preferably characterized by a semi-polar periodic ηι group nitride layer and its layer prior to the functional region of the component has other lattice constants. It is indicated that it is also possible to use a gas having a purity lower than that of the gas used in the manufacture of the above semiconductor layer system. π 乐 贯 狐 & 只 只 只 只 只 第三 第三 第三 第三 第三 第三 第三 第三 第三 第三 第三 第三 第三 第三 第三 第三 第三 第三丨02 is the same, and the growth of the field is the same. If the second layer is also A1N, the growth thickness is preferably greater than the order of no grazing greater than 1 〇nm, so that a similar laminate can be obtained. The defect reduction effect. The thickness of the second layer 103 is generally about 2 〇 nm. 201251112 The second embodiment is formed by growing the layer of the third layer 103 in the second embodiment from the layered or successively graded AlGaN layer. Layer. In this case 'The thickness of the AlGaN layer should be much larger than 10 nm in order to reduce the strain which would result in a matching offset. The intermediate layer in the form of the second layer 103 can usually be composed of AiGaInN, but B, As and/or P and/or P and/or Other elements, especially the Periodic Table of the Elements and the Group V elements, do not have a significant beneficial effect on subsequent growth. Adding this concept means that the concentration of the element added is greater than i atomic percentages. In addition, the above elements and any other atoms may be doped. The composition may also vary in the thickness direction, that is, 'the intermediate layer may be composed of a plurality of thin layers of different compositions. For example [Roghaiyeh Ravash, Jtirgen Blasing, Th 〇mas Hempel,

Martin Noltemeyer,Armin Dadgar,Jtirgen Christen 及 A1〇is Krost,Applied Physics Letters 95, 242101 (2009)]所述,具 有AIN層的層在光致發光方面仍具有明顯指向疊層缺陷的 疊層缺陷誘發發光特性。A1N層在此用以抑制仍為三維生長 之緩衝層下部的回融腐蝕。中間層在近似平面層上生長, 極有可能為有效減少疊層缺陷之決定性因素,另見圖2。 圖2為圖1所示半導體層系統之穿透式電子顯微影 像。其中,沿對角線或垂直於e軸分佈的亮線2G5即為疊層 缺陷。若A1N層為非平面層(具體見元件符號2〇6 ),則此 範圍外亦可能繼續出現叠層缺陷(具體見元件符號2〇7)。 其原因可能在於面取向不佳,但亦可能在於生長在面上的 A1N層厚度過小。然而,在第一層2〇2或的非平面表面 19 201251112 生長第三層2 0 3或1 0 3在任何悟 1J匱况下皆不利於疊層缺陷之 減少,尤其是當該粗糙表面具有多個不同面角且該等面角 分量差異極大時 '然而,藉由以明確方式製成且經優化之 三維生長結構,並且使該等結構具有明確的面 長出第三層 可成功生 103或203型的優化層 。舉例而言,前述實施 方式所提及之在名義a面取向 結構。Martin Noltemeyer, Armin Dadgar, Jtirgen Christen and A1〇is Krost, Applied Physics Letters 95, 242101 (2009)], the layer with the AIN layer still has a lamination defect-induced luminescence that clearly points to the lamination defect in terms of photoluminescence. characteristic. The A1N layer is here used to suppress back-reduction corrosion of the lower portion of the buffer layer which is still three-dimensionally grown. The growth of the intermediate layer on the approximately planar layer is highly likely to be a decisive factor in effectively reducing stack defects, see also Figure 2. Figure 2 is a transmission electron micrograph of the semiconductor layer system of Figure 1. Among them, the bright line 2G5 distributed along the diagonal or perpendicular to the e-axis is a lamination defect. If the A1N layer is a non-planar layer (see component symbol 2〇6 for details), lamination defects may continue to occur outside this range (see component symbols 2〇7 for details). The reason may be that the surface orientation is not good, but it may also be that the thickness of the A1N layer grown on the surface is too small. However, the growth of the third layer 2 0 3 or 1 0 3 in the first layer 2〇2 or the non-planar surface 19 201251112 is not conducive to the reduction of the lamination defect, especially when the rough surface has a plurality of different face angles and the difference in the angular components of the faces is extremely large. 'However, the three-dimensional growth structure which is made in an unambiguous manner and optimized, and which has a clear face and a third layer can be successfully generated 103 Or an optimized layer of type 203. For example, the nominal a-plane orientation structure referred to in the foregoing embodiments.

GaN上的°1面表面即為此等 圆叭間早說 圖1為半導體層系鲚 _ 不祝之結構不意圖;及 圖2為半導體層系纪— 截面圖。 、、’ ?透式電子顯微影像中的結構 【主要元件符號說明 100 : 基板 101, 201 : 晶種層 102, 202 : 第— 層 103, 203 : 第三 層/中間層 104, 204 : 第二 ‘層 205 : 亮線 206 : 元件符號 207 : 元件符號 20The surface of the °1 surface on GaN is said to be between the horns. Fig. 1 is a semiconductor layer system _ _ does not wish the structure is not intended; and Fig. 2 is a semiconductor layer system - sectional view. ,, '? Structure in Transmissive Electron Microscopic Image [Main Component Symbol Description 100: Substrate 101, 201: Seed Layer 102, 202: First Layer 103, 203: Third Layer/Intermediate Layer 104, 204: Second 'Layer 205 : Bright line 206 : Component symbol 207 : Component symbol 20

Claims (1)

201251112 七、申請專利範圍: 1.-種半導體層系統,包括半極性或m面之週期表出 族元素氮化物層,其中,設有至少一第一層(ι〇2)及第二 層(104) ’該第一層具有第一晶格常數及疊層缺陷,該第 二層具有第二晶格常數及數目少於該第一層(1〇2)之疊層 缺陷’其中’在該第一層(102)與該第二層(1〇4):間 設有第三層(1〇3),該第三層的第三晶格常數不同於該; 一層(102)之第一晶格常數。 2·如申請專利範圍帛i項之半導體料統,其特徵在 於,該第三層(103)之層厚引起匹配偏移。 3.如申請專利範圍第i或2項之半導體層系統,其特徵 在於,該第三晶格常數小於該第一晶格常數。 4·如别述申請專利範圍中任一項之半導體層系統,其特 徵在於,該第三晶格常數小於佈置於該第三層(1〇3)之上 之第二層(1 04 )的第二晶格常數。 ,5.如别述申請專利範圍中任一項之半導體層系統,其特 徵在於,週期表111族元素氮化物晶體以&lt;h〇-hi&gt;型之半極性 或非極性取向生長,其中,1以及1^0。 6 _種半導體構件’包括至少一較佳如前述申請專利範 圍中任-項之半導體層系統,該半導體層系統具有至少一 半極性或m面之週期表m族元素氮化物層且包括至少一第 層(102)及第二層(104),該第一層具有第—晶格常數 及疊層缺陷’ t亥第二層具有第二晶格常數及數目少於該第 )之疊層缺陷,其中,在該第一層(丨〇2)與該 21 201251112 第二層(104)之間設有第三層(103),該第三層的第三晶 格常數不同於該第一層(102)之第一晶格常數。 7.如申請專利範圍第6項之半導體構件,其特徵在於, 該半導體構件在1.8 μηι至200 nm範圍内發光。 8 · —種製造半導體層系統,較佳製造如前述申請專利範 圍中任一項之半導體層系統的方法,其中,一併製造至少 一半極性或m面之週期表III族元素氮化物層,其中,該半 導體層系統之製造至少包括: 製造第一層(102),該第一層具有第一晶格常數及疊 層缺陷, 製造第二層(103),該第三層(1〇3)的晶格常數不同 於該第一層(1 〇2 )之晶格常數,及 製造第二層(104)’該第二層具有第二晶格常數及數 目少於該第-層(102)之疊層缺陷,其中,在該第三層上 製造該第二層(104),從而使該第三層(1〇3)位於該第一 層(102)與該第二層(1〇4)之間。 項之方法,其特徵在於,該第三 第二層(102)之製造溫度低至 9.如申請專利範圍第8 層(103 )的製造溫度比該 少 100 K。 9項之方法,其特徵在於, 層上之第二層(104 )之晶 10.如申請專利範圍第8或 該第三層(103)以小於該第三 格常數的晶格常數生長。 圍 H.住卞等體層系統之應用或 中任一項之包括如前述申請專利 述申請專利範 —項之半導體 22 201251112 層系統的半導體構件之應用,應用於 光發射體, 電晶體, 二極體, 太陽電池, 表面波或體波構件及/或 微機電系統。 八、圖式: (如次頁) 23201251112 VII. Patent application scope: 1. A semiconductor layer system comprising a semi-polar or m-plane periodic table nitride element nitride layer, wherein at least one first layer (ι 2) and a second layer are provided ( 104) 'the first layer has a first lattice constant and a lamination defect, the second layer has a second lattice constant and a number of lamination defects less than the first layer (1〇2) A third layer (1〇3) is disposed between the first layer (102) and the second layer (1〇4), the third lattice constant of the third layer is different from the first layer (102) Lattice constant. 2. The semiconductor system of claim ii, characterized in that the layer thickness of the third layer (103) causes a matching offset. 3. The semiconductor layer system of claim i or 2, wherein the third lattice constant is less than the first lattice constant. A semiconductor layer system according to any one of the preceding claims, characterized in that the third lattice constant is smaller than the second layer (104) disposed above the third layer (1〇3) The second lattice constant. 5. The semiconductor layer system according to any one of the claims, wherein the nitride crystal of the group 111 element of the periodic table is grown in a semi-polar or non-polar orientation of the type <h〇-hi>, wherein 1 and 1^0. A semiconductor layer structure comprising at least one semiconductor layer system as claimed in any of the preceding claims, the semiconductor layer system having at least half of a polar or m-plane periodic periodicity m-group nitride layer and comprising at least one a layer (102) and a second layer (104) having a first lattice constant and a lamination defect, wherein the second layer has a second lattice constant and the number of lamination defects is less than the number of laminations, Wherein a third layer (103) is disposed between the first layer (丨〇2) and the second layer (104) of the 21 201251112, and the third layer has a third lattice constant different from the first layer ( 102) The first lattice constant. 7. The semiconductor component of claim 6, wherein the semiconductor component emits light in the range of 1.8 μηι to 200 nm. A method of fabricating a semiconductor layer system, preferably a method of fabricating a semiconductor layer system according to any one of the preceding claims, wherein at least half of the polar or m-plane periodic group III nitride layer is produced, wherein The fabrication of the semiconductor layer system includes at least: fabricating a first layer (102) having a first lattice constant and a lamination defect, and fabricating a second layer (103), the third layer (1〇3) The lattice constant is different from the lattice constant of the first layer (1 〇 2 ), and the second layer (104) is fabricated. The second layer has a second lattice constant and the number is less than the first layer (102) a stacking defect, wherein the second layer (104) is fabricated on the third layer such that the third layer (1〇3) is located in the first layer (102) and the second layer (1〇4) )between. The method of the present invention is characterized in that the third second layer (102) has a manufacturing temperature as low as 9. The manufacturing temperature of the eighth layer (103) of the patent application is less than 100 K. The method of item 9, characterized in that the crystal of the second layer (104) on the layer is grown as a lattice constant smaller than the third lattice constant as in the eighth or third layer (103) of the patent application. The application of the semiconductor component of the semiconductor system of the semiconductor system 22 201251112 layer system, such as the application of the body layer system of the above-mentioned application, is applied to a light emitter, a transistor, a diode Body, solar cell, surface wave or bulk wave component and / or MEMS. Eight, the pattern: (such as the next page) 23
TW101104163A 2011-02-10 2012-02-09 Semiconductor layer system having a semipolar or m-planar group iii nitride layer and semiconductor component based thereon TW201251112A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011011043.7A DE102011011043B4 (en) 2011-02-10 2011-02-10 Semiconductor layer system with a semipolar or m-planar group III nitride layer system and a semiconductor component based thereon

Publications (1)

Publication Number Publication Date
TW201251112A true TW201251112A (en) 2012-12-16

Family

ID=45787152

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101104163A TW201251112A (en) 2011-02-10 2012-02-09 Semiconductor layer system having a semipolar or m-planar group iii nitride layer and semiconductor component based thereon

Country Status (3)

Country Link
DE (1) DE102011011043B4 (en)
TW (1) TW201251112A (en)
WO (1) WO2012107214A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132746A1 (en) * 2015-02-20 2016-08-25 国立大学法人名古屋大学 THIN-FILM SUBSTRATE, SEMICONDUCTOR DEVICE AND MANUFACTURING METHOD THEREFOR, DEPOSITION APPARATUS, DEPOSITION METHOD AND GaN TEMPLATE

Also Published As

Publication number Publication date
DE102011011043A1 (en) 2012-08-16
DE102011011043B4 (en) 2019-12-19
WO2012107214A1 (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5896442B2 (en) Group III nitride film growth method
JP5451280B2 (en) Wurtzite crystal growth substrate, manufacturing method thereof, and semiconductor device
US8916906B2 (en) Boron-containing buffer layer for growing gallium nitride on silicon
US7687293B2 (en) Method for enhancing growth of semipolar (Al,In,Ga,B)N via metalorganic chemical vapor deposition
JP5079361B2 (en) Method for forming AlGaN crystal layer
JP5270348B2 (en) Method for promoting growth of semipolar (Al, In, Ga, B) N by metalorganic chemical vapor deposition
WO2012012010A2 (en) High efficiency ultraviolet light emitting diode with band structure potential fluctuations
JP4652888B2 (en) Method for manufacturing gallium nitride based semiconductor multilayer structure
TW200419652A (en) Growth of reduced dislocation density non-polar gallium nitride by hydride vapor phase epitaxy
JP2009505377A (en) Semiconductor laminated structure, method for forming the same, and light emitting device
TW200810155A (en) ZnO-based semiconductor element
JP2006518104A (en) Buffer structure for silicon substrate modification
JP6966063B2 (en) Crystal substrate, ultraviolet light emitting device and their manufacturing method
JP2010056555A (en) Semiconductor structure and method for manufacturing the same
TW201251112A (en) Semiconductor layer system having a semipolar or m-planar group iii nitride layer and semiconductor component based thereon
Kida et al. Metalorganic vapor phase epitaxy growth and study of stress in AlGaN using epitaxial AlN as underlying layer
US20140183579A1 (en) Miscut semipolar optoelectronic device
Li et al. Metalorganic chemical vapour deposition (MOCVD) growth of GaN on foundry compatible 200 mm Si
Suresh Kumar et al. Dependence of the V/III Ratio on Indium Incorporation in InGaN Films Grown by Metalorganic Vapour Phase Epitaxy
Lv et al. Structure of Interlayer on Si (111) Substrate Effect on GaN Film