TW201250723A - Electrical multilayer component - Google Patents

Electrical multilayer component Download PDF

Info

Publication number
TW201250723A
TW201250723A TW101108803A TW101108803A TW201250723A TW 201250723 A TW201250723 A TW 201250723A TW 101108803 A TW101108803 A TW 101108803A TW 101108803 A TW101108803 A TW 101108803A TW 201250723 A TW201250723 A TW 201250723A
Authority
TW
Taiwan
Prior art keywords
electrode
stack
internal electrodes
length
layer
Prior art date
Application number
TW101108803A
Other languages
Chinese (zh)
Other versions
TWI562174B (en
Inventor
Johann Schmidt
Original Assignee
Epcos Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos Ag filed Critical Epcos Ag
Publication of TW201250723A publication Critical patent/TW201250723A/en
Application granted granted Critical
Publication of TWI562174B publication Critical patent/TWI562174B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/18Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material comprising a plurality of layers stacked between terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/14Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors
    • H01C1/146Terminals or tapping points or electrodes specially adapted for resistors; Arrangements of terminals or tapping points or electrodes on resistors the resistive element surrounding the terminal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Thermistors And Varistors (AREA)
  • Ceramic Capacitors (AREA)

Abstract

An electrical multilayer component (1) is specified, comprising a stack (8) having the stack length B, the stack (8) having functional layers (2) and at least one first and one second internal electrode (5, 6). The first and second internal electrodes (5, 6) are respectively directly electrically conductively connected to an external contact on a side surface (91, 92) of the stack (8) and have an identical electrode length E in a direction from the first to the second internal electrode perpendicular to the layer stacking direction (S). The first internal electrode (5) is at a distance H from the second internal electrode (6) in the layer stacking direction. Furthermore, the first and second internal electrodes (5, 6) are directly adjacent to one another. In this case, the distance H, the stack length B and the electrode length E define an aspect ratio a=H/B and a relative electrode length l=E/B, wherein amin ≤ a ≤ amax holds true where amin = 20*e-11*l and amax = 150*e-9*l.

Description

201250723 六、發明說明 【發明所屬之技術領域】 本發明係詳述-種包含由功能層與配置於 部電極構成之堆疊的電多声元朱. 内 垃臨〇 為了與該等内部電極電 接:;::接點可固定於該堆叠的側面。此類 貫作例如成為多層電阻元件、多層祕電阻或多: 【先前技術】 就習知多層元件中之功能層的厚度而言,例如,多層 電容器中之介電層的厚度通常由於生產較使而難以保^ 不變。另和就習知生產方法而言,多層元件的電氣值會 因功此層的^:生產支使厚度波動而過度偏離預定所欲值。 因此,本發明係基於上述問題而研創者 【發明内容】 與特定具體實施例有關的目標之—是要詳述電多層 疋件的幾何’特別是電多層元件的内部及外部電極配置, 與習知多層元件相比,這有改良性質。 ,此目標係藉由獨立專利申請項的標的來達成。此外, -亥等彳*的的有利具體實施例及開發出現於以下的說明及附 圖。 多層70件的電氣性質有相關性,除了一些其他因素以 外,特別是,也與内部電極的幾何配置相關。多層元件中 之功能層的厚度’例如,多層電容器中之介電層的厚度通 常由於生產的支使而難以保持不變。不過,功能層的厚度 95543 4 201250723 波動會影響多層元件的電氣值’例如,多層電容器的電容 或多層電阻元件的電阻’亦即例如PTC或nTc元件。就 習知生產方法而言,為了防止多層元件的電氣值因功能層 的受生產支使厚度波動而過度偏離預定所欲值,也就是 說,為了避免對應寬鬆的公差範圍,例如預先選定隨後形 成完成元件之功能層的薄膜。作為它的替代方案,就習知 生產方法而言,實行完成元件的後續選擇,其中係清出電 軋性質過度偏離預定所欲值的元件。此外,就習知生產方 法而言,元件的電氣值也可隨後用所謂的調整來調適,例 如藉由磨掉或修整多層元件的部份。組合用於排除或至少 減少與功能層之受生產支使厚度波動有關之缺點的前述可 能性也為習知生產方法的慣例。 本發明人已發現,用本文所述的内部電極配置,可使 多層70件的電氣值(例如,多層元件的電阻及/或電容)最 大可能程度地與功能層的厚度波動無關。 根據-個具體實施例,該電多層元件由具有數個功能 層及至少一個第一及一個第二内部電極的堆疊構成。該等 功能層可為介電層或導f層,這取決於該電多層元件是否 實作成為電容器、壓敏電阻或熱敏電阻。由於有各自的性 質該等功此層決定元件的功能。例如,該等功能層可為 塑膠層或陶瓷層。 日一 ,為了製造該多層元件,—個—個地向上堆疊該等功能 日從而產生堆豐方向。相鄰功能層的介面決定該多層元 件的層平面’其係沿著該等功能制堆疊方向-個-個地 95543 201250723 向上排列。該等内部電極係配置於該等層平面令。 至配體實施例,該第一内部電極直接導電連接 配置於该堆叠之側面上的第一外部接點 接至同樣配置於該堆疊之側面上的第二外部 =二該等内部電極的外部接點配置於該堆疊的 為I讀。例如’該科部接料分別配置於該堆叠 的兩相對側面上或堆疊之一側面的不同區域上。在此,及 以下’直接導電連接,,意指内部電細t鄰外部接點因而直 接連接至料部接點。如果該外部接點配置於該堆疊的側 面,則直接導錢接至該料接點的㈣電極 該側面。 j _根據另-具體實施例,該第一及該第二内部電極有相 同的電極長度E。在此情形下,電極長度E為垂直於堆最 之層堆疊方向的第一、第二内部電極各自在由第一至第: 内部電極之方向的橫向伸展(lateralextent)。 此外’該第-内部電極與該第二内部電極在該層堆叠 方向有一距離H。特別是,這意指第一、第二内部電極酉且己 置於與堆疊之層堆疊方向垂直的兩個不同層平面,在此這 兩個層平面彼此有-距離H。較佳地,在第―、第二内部 電極之間,可存在只有—個有厚度㈣功能廣,或可存在 有總厚度Η的多個功能層^此外,該第—及該第二内部電 極係彼此直接相鄰。換言之,西己置於第…第二内部電極 之間及直接》比鄰第-、第二内部電極的該功能層或該等多 個功能層沒有其他内部電極^以下,直接相鄰的内部電極 95543 6 201250723 也被稱作彼此最接近。201250723 VI. Description of the Invention [Technical Fields of the Invention] The present invention is a detailed description of an electric multi-voice element consisting of a functional layer and a stack of electrodes disposed in a portion of the electrode. In order to electrically connect to the internal electrodes :;:: The contacts can be attached to the side of the stack. Such a composition is, for example, a multilayer resistance element, a multilayer resistance, or a plurality of: [Prior Art] In terms of the thickness of a functional layer in a conventional multilayer element, for example, the thickness of a dielectric layer in a multilayer capacitor is usually due to production It is difficult to keep the same. In addition, as far as the conventional production method is concerned, the electrical value of the multilayer component may be excessively deviated from the intended value due to fluctuations in thickness of the production layer. Accordingly, the present invention has been made in view of the above problems. [Invention] The object related to a specific embodiment is to detail the geometry of an electrical multilayer component, particularly the internal and external electrode configurations of an electrical multilayer component, and This has improved properties compared to multilayer components. This goal is achieved by the subject matter of the independent patent application. Further, advantageous embodiments and developments of -Hai et al* appear in the following description and accompanying drawings. The electrical properties of the multi-layer 70 pieces are related, in addition to some other factors, and in particular, to the geometric configuration of the internal electrodes. The thickness of the functional layer in the multilayer component 'e.g., the thickness of the dielectric layer in the multilayer capacitor is often difficult to maintain due to the production support. However, the thickness of the functional layer 95543 4 201250723 fluctuations affect the electrical value of the multilayer component 'e.g., the capacitance of the multilayer capacitor or the resistance of the multilayer resistive element', i.e., a PTC or nTc component. In the case of the conventional production method, in order to prevent the electrical value of the multilayer component from being excessively deviated from the predetermined desired value due to the thickness fluctuation of the functional layer by the production support, that is, in order to avoid a corresponding loose tolerance range, for example, pre-selection and subsequent formation are completed. A film of the functional layer of the component. As an alternative thereto, in the case of the conventional production method, a subsequent selection of the finished component is carried out, wherein the component whose electric rolling property is excessively deviated from the intended value is cleared. Moreover, in the case of conventional production methods, the electrical values of the components can then be adapted with so-called adjustments, such as by grinding or trimming portions of the multilayer component. The aforementioned possibility of combining to eliminate or at least reduce the disadvantages associated with thickness fluctuations of the functional layer by the production support is also a practice of conventional production methods. The inventors have discovered that with the internal electrode configuration described herein, the electrical values of the plurality of layers 70 (e.g., the resistance and/or capacitance of the multilayer component) can be maximized regardless of the thickness fluctuations of the functional layer. According to a particular embodiment, the electrical multilayer component is comprised of a stack having a plurality of functional layers and at least one first and one second internal electrode. The functional layers can be dielectric layers or conductive layers depending on whether the electrical multilayer component is implemented as a capacitor, varistor or thermistor. This layer determines the function of the component due to its own nature. For example, the functional layers can be plastic or ceramic layers. On the first day, in order to manufacture the multi-layered component, the functional days are stacked one by one to generate a stacking direction. The interface of adjacent functional layers determines the layer plane of the multi-layer element, which is arranged upward along the functional stacking direction - one ground 95543 201250723. The internal electrodes are arranged in the layer plane order. In the embodiment of the ligand, the first internal electrode is directly electrically connected to the first external contact disposed on the side of the stack, and is connected to the second external portion of the internal electrode disposed on the side of the stack. The points configured on the stack are I read. For example, the sections are disposed on opposite sides of the stack or on different sides of one side of the stack. Here, and below the 'direct conductive connection, it means that the internal electrical thinness is adjacent to the external contact and thus directly connected to the material contact. If the external contact is disposed on the side of the stack, the direct guiding money is connected to the side of the (four) electrode of the material contact. j _ According to another embodiment, the first and second internal electrodes have the same electrode length E. In this case, the electrode length E is a lateral extension of each of the first and second internal electrodes perpendicular to the stacking direction of the stack of the stack in the direction from the first to the first internal electrodes. Further, the first inner electrode and the second inner electrode have a distance H in the stacking direction of the layer. In particular, this means that the first and second internal electrodes are placed in two different layer planes perpendicular to the stacking direction of the stacked layers, where the two layer planes have a distance H from each other. Preferably, between the first and second internal electrodes, there may be only a plurality of functional layers having a thickness (four) function or a total thickness Η, and the first and the second internal electrodes The systems are directly adjacent to each other. In other words, Xiji is placed between the second internal electrodes and directly adjacent to the functional layers of the first and second internal electrodes or the plurality of functional layers have no other internal electrodes, and the directly adjacent internal electrodes 95543 6 201250723 is also known as the closest to each other.

根據另一具體實施例,該堆疊在由第—至第二内部電 — 極垂直於層堆疊方向的方向中有堆疊長度B。堆疊長度B , 在此為由第一至第二内部電極的方向以及與堆疊之層^疊 方向垂直的堆疊空間伸展,其中堆疊長度以堆疊二兩^ 兩相對侧面為界較佳。 距離Η、堆疊長度Β及電極長度縱橫比^盘According to another specific embodiment, the stack has a stack length B in a direction from the first to the second inner electrodes perpendicular to the layer stacking direction. The stack length B, here stretched by the direction of the first to second internal electrodes and the stacking space perpendicular to the stacking direction of the stack, wherein the stack length is preferably bounded by two opposite sides of the stack. Distance Η, stack length Β and electrode length aspect ratio ^

B £ 相對電極長度/ = 在此情形下’縱橫比α以最小縱橫比^、最大縱橫比 α_為界,也就是說,km%,其 amax=150xe,。 及 已發現,有以上定義於最小縱橫比、=2〇xe_"x/ ^比Μ50,之間的縱橫比,多層元件之電阻 錢1 地以最大可能_度與魏層之厚度波動 …關。特収’通過適當地選擇多層元件的參數Η、 E’可實現此優點。 二内實施例,該第一内部電極係以不被該第 :二t方式配置。換言之,該第-内部電極在 蓋i一二向之虛射影(imaginary projection)中沒有覆 蓋第一内。卩電極之部份區域的部份區域。 -二:另一具體實施例’該第一内部電極部份重疊該第 一内部電極。換古之,諠,^ 95543 、=之该第一内部電極在層堆疊方向之虛 201250723 個部份區域重合的至 射❼中有可與第二内部電極之至少一 少一個部份區域。 根據另一具體實施例,該多層元件包含至 及/或第二内部電極。在此情形下,該至少另一第: 第二内部電極有電極長度E。在此情形下,電極 = =^極在由第—至第二内部電極與層堆叠方向垂直的 …二此外’該元件的第一、第二内部電極在 向父替地排列。每個内部電極在所有情形下與在 y =方向最近内部電極在層堆疊方向有距離H。特別B £ Relative electrode length / = In this case, the aspect ratio α is bounded by the minimum aspect ratio ^ and the maximum aspect ratio α_, that is, km%, which is amax = 150xe. And it has been found that there is an aspect ratio defined between the minimum aspect ratio, =2〇xe_"x/^ and Μ50, and the resistance of the multilayer element is oscillating with the maximum possible _ degree and the thickness of the Wei layer. The special offer ' achieves this advantage by appropriately selecting the parameters Η, E' of the multilayer component. In the second embodiment, the first internal electrode is not disposed by the second and second modes. In other words, the first internal electrode does not cover the first inner portion in the imaginary projection of the cover i. Part of the area of the electrode. - 2: Another embodiment 'The first internal electrode portion overlaps the first internal electrode. In other words, 95, ^ 95543, = the first internal electrode in the layer stacking direction of the imaginary 201250723 partial area coincident to the ❼ there is at least one partial area that can be compared with the second internal electrode. According to another specific embodiment, the multilayer component comprises to and/or a second internal electrode. In this case, the at least another: second internal electrode has an electrode length E. In this case, the electrode ==^ pole is perpendicular to the layer stacking direction by the first to the second inner electrode. The first and second inner electrodes of the element are arranged alternately to the parent. In each case, each internal electrode has a distance H in the layer stacking direction with the inner electrode closest to the y = direction. particular

Li Γ固第—内部電極與直接相鄰的每個第二内部電極在 =叠:向有距離H,同樣每個第二内部電極與直接相鄰 的母個第—内部電極在層堆疊方向有距離Η。 _根據另—具體實施例,該元件的所有内部電極配置於 不同的功能層。特別是,這可意指對於與層堆疊方向垂直 的層平面挪豐沒有兩個或更多内部電極配置於盆中。 根據另-具體實施例’該多層元件的所有内部電極有 相冋的電極寬度。在此情形下,電極寬度為與電極長度Ε 垂直之内部電極的橫向伸展。根據另一具體實施例,所有 的内部電極有相同的電極面積。 根據另-具體實施例,該多層元件包含有數個功能声 及f少兩個自由㈣電極的堆疊與第-及第二外部接點。 。亥等自由内部電極不直接導電連接至配置於堆疊側面上的 該第-及該第二外部接點。結果,該等自由内部電極不合 一直延伸賴科部接點,反㈣著在堆4㈣與該等夕i 95543 201250723 :接:域鄰的延伸平面排列。該多層元件的每個自由内部 電極有相同的電極長度2E。 ^據另-具體實_,每個自由内部電極與在層堆疊 最近的每個自由内部電極在層堆疊方向有距離Η。 此外,每個自由内部電極有中點。在此情形下,自由 内=電極的中點位仙部f極的層平面,以中點的虛鏡像 ’該内部電極會轉變成本身。此外,每個自由内部電 =用直線可虛擬分成兩個大小相等、面積相等及長度_ 荨的部份,其中該直線貫穿自由内部電極的中點。 根據一具體實施例,在層堆疊方向直接相鄰的兩個自 由内部電極之中點垂直於層堆疊方向的距離為B,。Li Γ 第 — 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部 内部Distance Η. According to another embodiment, all internal electrodes of the component are arranged in different functional layers. In particular, this may mean that no two or more internal electrodes are disposed in the basin for the layer plane perpendicular to the layer stacking direction. According to another embodiment, all of the internal electrodes of the multilayer component have opposing electrode widths. In this case, the electrode width is a lateral extension of the internal electrode perpendicular to the electrode length Ε. According to another embodiment, all of the internal electrodes have the same electrode area. According to another embodiment, the multilayer component comprises a plurality of functional sounds and a stack of two free (four) electrodes and a first and second external contacts. . The free internal electrodes such as the hai are not directly electrically connected to the first and the second external contacts disposed on the side of the stack. As a result, the free internal electrodes do not extend all the way to the junction of the branch, and the opposite (four) is arranged in the stack 4 (4) and the extended plane of the neighborhood: 95 95 201250723: Each of the free internal electrodes of the multilayer component has the same electrode length 2E. According to another embodiment, each of the free internal electrodes has a distance Η in the layer stacking direction from each of the free internal electrodes closest to the layer stack. In addition, each free internal electrode has a midpoint. In this case, the free inner = the midpoint of the electrode is the plane plane of the centauth f pole, and the virtual mirror at the midpoint 'the internal electrode will transform into the body. In addition, each free internal power = can be virtually divided into two equal-sized, equal-area, and length-_ 荨 portions, wherein the straight line runs through the midpoint of the free internal electrode. According to a specific embodiment, the distance between the two free internal electrodes directly adjacent in the layer stacking direction is perpendicular to the layer stacking direction B.

根據另一具體實施例,距離Η、距離B,及電極長度E 疋義縱橫比 a = f與一相對電極長度 y ’其中縱橫比α在 大縱橫比《max之間,也就是說, =20><6,及 % =15〇xe-9x/。 最小縱橫比amin、最 ^min < α 成立,其中 艮虞另-具體實施例,該電多層元件包含直接導電連 接至第-或第二外部接點的至少另一内部電極。較佳地, 在此情形下’該另-内部電極與在層堆疊方向最近的每個 自由内部電極在層堆疊方向有距離Η。 根據一個具體實施例,該電多層元件包含兩個附加内 部電極’其中這兩個附加内部電極中之—個直接導電連接 至第-外部接點以及這_附加㈣電極 導電連接至帛二外部魅。 個直接 95543 9 201250723According to another embodiment, the distance Η, the distance B, and the electrode length E 疋 the aspect ratio a = f and a relative electrode length y 'where the aspect ratio α is between the large aspect ratio "max, that is, =20&gt ; <6, and % = 15〇xe-9x/. The minimum aspect ratio amin, most ^min < a holds, wherein, in another embodiment, the electrical multilayer component comprises at least one other internal electrode that is directly conductively coupled to the first or second external contact. Preferably, in this case, the other internal electrode has a distance Η in the layer stacking direction from each of the free internal electrodes in the direction in which the layers are stacked. According to a specific embodiment, the electrical multilayer component comprises two additional internal electrodes 'where one of the two additional internal electrodes is directly electrically conductively connected to the first external contact and the additional (four) electrode is electrically connected to the external charm of the second . Direct 95543 9 201250723

=象另-具體實施例,每個附加内部電極在垂直於層 為車1佳向的電極長度E方向有長度F。在此情形下,F^E 層的摊最另〃肢實知例’該電多層元件包含有數個功能 點的第二,在堆疊側面上直接導電連接至第一外部接 垃 。卩電極,在堆疊側面上直接導電連接至第二外 部tr的第二内部電極,以及不直接導電連接至上第 一外部接點的自由内部電極。 電極’該第一内部電極與該第二内部 度2Ε。 ° X。較佳地,該自由内部電極有電極長 第二一具體實施例’該自由内部電極與該第-及該 -内Μ極兩者在料疊方向有轉Η。例如, 及該第二内部電極可施加: 置於同一平面或層平面。不過,作=的t層上從而配 -及該第二内部電極也可配置於不同平面該第 與該自由内部電極在層堆疊方 ’月形下 極可配置於該堆疊的中央,也就内部電 側面有相同的距離。 -該堆登的兩相對 垂直部電極”點,其中在所有情形下, 二^方堆疊側面(外部接點在此與第一、第 4電極接觸)的自由内部電極之t點的距離為。 距離Η、距離Β,,及電極長度£定義縱横比y與相 95543 10 201250723 最大 #電極長度’其中縱橫比在最小縱橫比 縱仏比amax之間’也就是說,‘n < fl 成立,其中 =2〇Xe 1W及 amax =15〇xe—9x/。 根據另具體實施例’該電多層元件有對於功能層之 厚度波動實質不敏感的電阻及/或電容。用描述於此的内部 電極配置’有可能減少功能層受生產支使層厚度波動的負 作用口此,相較於習知元件,以用描述於此的元件而言, 甚^功能層g元件而有不同厚度波動的情形下,該等元件 仍可實現實質相同的預定想要電阻及/或預定電容。 λ根據另一具體實施例,該電多層元件的構造呈軸向對 例如’該多層元件對於-個或多個m線可呈軸向 對稱。根據另一具體實施例,該電多層元件的構造呈中心 對稱。該7L件對於元件巾點(對於元件之㈣對側面有相 同的距離)呈中心對稱為較佳。 _根據另一具體實施例,該電多層元件實作成為熱敏電 阻疋件。例如’可為NTC熱敏電阻,或PTC熱敏電阻。 根據另一具體實施例’該電多層元件實作成為厪敏電 „根據另—具體實施例,該電多I元件實作成為電容 器。 【實施方式】 泣八在不範具體實施例及附圖中,相同或作用相同的元件 Htj用相同的元件符號表示。原則上,圖中元件及彼此之 95543 201250723 寸關係並未按實際的比騎製;反而,個別的元件, 二U件及區域’可能以誇大方式圖示其厚度或大小 尺寸使㈣示更清楚及/或提供更好的理解。 :!圖根據一個示範具體實施例圖示電多 檢截面,此元件包含有沿著堆疊方向s 列之數個功能層2的堆疊8。此外,夕爲1個白上地排 内部電極5盘第二内部雷層70件1包含第- 電極6,彼等係配置於多層元件1 =:其中該等層平面由相鄰的功能層2介面決定。 用 &、,、〇 法(sintering),例如,{士、松 1 H例如形成如第1圖所示的單片體 =。Uhlc body),其中功能層2與内部電極 互連接,使得直接相鄰的功能層2之介面不再可辨別侍相 上。ΓΓΓΓ接點3、4配置於堆疊8的兩個側面91、92 替代方案ΓΓ’側面91、92為相對的側面。作為它的 在圖亍的二’例如,也可為堆4 8的相鄰側面。 fur實施例中,外部接點3、4各自覆蓋堆叠 也可f卜92°作為它的替代方案,外部接點3、4 5=之側面的部份區域或具體化成為在堆疊8 夕 上以包圍邊緣方式(edge-embracing fashi〇n) ::帽狀㈣接點。例如,藉由將物浸1導;;ΐ 了襄成該專帽狀外部接點。 接點π第=二含:直接導電地連接至第-外部 ㈣w 及直接導電地連接至第二外 桃的第二内部電極6。苐-、第二内部電極5、6有 相同的電極長“。此外,第一内部電極5與第二内= 95543 12 201250723 極6在層堆疊方向有距離H。第一内部電極5與第二内部 電極6係彼此直接相鄰。特別是,這意謂功能層2或替換 地配置於第一、第二内部電極5、6之間以及與第一、第二 内部電極5、6直接接觸的多個功能層2沒有其他内部電 極。在垂直於層堆疊方向由第一至第二内部電極的方向 中’堆疊8有堆疊長度b。 距離Η ’堆疊長度B及電極長度e定義一縱橫比α = £ Β 與一相對電極長度/ = f,其中在amin=2〇xe-lw及 α_=15〇χ’’時,、。。魏成立。 第8圖疋性圖示此一多層元件之電導率(electrical conductance ) 1/r或電容c隨著功能層之層厚度d而變化 的曲線圖。以其中内部電極配置成所謂“間隙設計”501 (也 就疋说,以不重疊方式及有間隙地配置内部電極)的習知 多層兀件而言,在此情形下,曲線A對應至典型電導率或 電谷特性曲線(capacitancepr〇file)。在‘‘間隙設計”的情形 下,形成與内部電極實質平行的電場或電流以及此類元件 的電容或電阻大致與層厚度成正比地上升。 曲線B圖示其中内部電極配置成所謂“重疊設計”5〇2 或T型设计”5〇3的習知多層元件之典型電導率或電容特 f生曲線在重豐3又叶情形下,交替地排列的内部電極各自 在層堆唛方向重豐。在重疊設計的情形下,在堆疊方向實 質形成電場或電流,也就是說,垂直於該等内部電極。τ 95543 13 201250723 series 型設計實質由兩個重疊設計的串聯連接、— 構成。該等元件的電容或電導率大約隨著層厚 度增加而非正比地遞減。 因此,以習知元件設計而言,層厚度變動直接影響該 專電祕,結果受加1支使之層厚度絲會導致 同的電氣值。 以,述於此的多層元件而言,可實現習知元件之上述 效應的疊加’如基於第8圖中之曲線z所示者。由於有特 殊的内部電極配置,如結合曲線Mb所述的,功能層之 層厚與電氣值的相依性會疊加。這可輕易看出,曲線2在 用兩條垂直虛線9 8、9 9識別的範圍内有大致平坦的曲線。 這意指描述於此之多層A件的電阻或電容在此範圍内與功 能層的受生產支使之厚度波動實質無關,特別是,對於在 上述範圍的縱橫比α是成立的。 、 第6圖圖示有不同相對電極長度/之元件的電阻尺隨 著縱橫比β而變化的曲線圖。不同的電阻曲線各有或多或 少的寬平範圍。在此範圍内,元件對於功能層的厚度波動 相對不敏感,也就是說,在此範圍内,元件的電阻在功能 層的厚度改變時只有一點變化。 第7圖圖示該範圍的寬度,其係圖示縱橫比α隨著相 對電極長度/而變化的曲線圖。數學上,該等曲線可用上 述 amin = 20xe-llx>flmax=150x 一的關係式描述。 第1圖的多層元件1以最簡單形式圖示描述於此的多 層元件,可以說它為一種基本元件。以下所示的所有其他 95543 14 201250723 =均基於此-最簡單的形式以及由該等基本元件的配置 :-第 爾又於第1圖的多層元件,其一 部電極5、“因此,多層元 、第二内 與多個第二内部電極6。第一、第二内夕部個電^—内部電極5 同的電極長度E。所有的笛 電極5、6都有相 y 所有的弟一内部電極沿著層堆晶太6 個一個向上地一致排列,也 — 隹里方向一 有偏移。同揭 ° ,匕們在層平面彼此沒 排列。所有的第二内部電極一個一個向上地一致 此外,每個内部電極各自與在層 部電極在層堆疊方向s有距離H。在第;内 電極5係以不被第一内Λ 内邛 嗲箄第心嶋6重疊的方式排列。或者, 4第:内部電極也可重疊該等第二内部電極。 層二、第 電極窗声第二内部電極5、6有相同的 又,別疋,所有内部電極有相同的面積。第2 ® =二由第1圖元件在垂直方向(也就 方向S)的夕個配置或重覆形成。 第3_示電多層元件丨的橫截面,其 電地連接至第-外部接點3的第-内部電極5’以及^ ^接導電地連接至第二外部接點4的第二内部電極…此 元件1包含不直接導電地連接至第-外部接點 及第-外部接點4的自由内部電極7。自由内部電極7 95543 15 201250723 有長度2E。第一、第二内邻 第-内邛雷太…势 邛電極5、6各有電極長度E。 :電極5與第二内部電極6配置於堆疊8的。 自由内部電極7與第—内部電極5及第 =在層堆疊方向S有轉^在所有情料,自由6= In another embodiment, each additional internal electrode has a length F in the direction of the length E of the electrode perpendicular to the layer 1 of the vehicle. In this case, the F^E layer is the most well-known embodiment. The electrical multilayer component comprises a second of several functional points, which are electrically connected directly to the first external interface on the stack side. The germanium electrode is electrically connected to the second inner electrode of the second outer portion tr directly on the side of the stack, and the free inner electrode not directly electrically connected to the upper first outer contact. The electrode 'the first internal electrode is 2 与 to the second internal level. ° X. Preferably, the free internal electrode has an electrode length. The second embodiment has a transition between the free inner electrode and the first and the inner drains in the stack direction. For example, and the second internal electrode can be applied: placed in the same plane or layer plane. However, the t-layer on the = and the second internal electrode may also be disposed on different planes. The first and the free internal electrodes may be disposed in the center of the stack at the layer stack side, and the inner portion The electrical sides have the same distance. - the two opposite vertical electrode "points" of the stack, wherein in all cases, the distance from the point t of the free internal electrode of the side of the stack (where the external contacts are in contact with the first and fourth electrodes) is. Distance Η, distance Β, and electrode length £ define the aspect ratio y and phase 95543 10 201250723 max #electrode length 'where the aspect ratio is between the minimum aspect ratio and the mediastiny ratio amax 'that is, 'n < fl is established, Wherein = 2 〇 Xe 1W and amax = 15 〇 xe - 9x /. According to another embodiment, the electrical multilayer component has resistance and/or capacitance that is substantially insensitive to thickness fluctuations of the functional layer. The configuration 'is likely to reduce the negative effect of the functional layer being affected by the thickness fluctuation of the production support layer. Compared with the conventional components, in the case of the components described herein, even the functional layer g components have different thickness fluctuations. The elements may still achieve substantially the same predetermined desired resistance and/or predetermined capacitance. λ According to another embodiment, the electrical multilayer element is constructed in an axial pair such as 'the multilayer element for one or more m' Line can be axis Symmetrical. According to another embodiment, the electrical multilayer component is constructed to be centrally symmetrical. The 7L component is preferably centered for the component point (the same distance to the side of the component (four)). In an embodiment, the electrical multilayer component is implemented as a thermistor component. For example, 'can be an NTC thermistor, or a PTC thermistor. According to another embodiment, the electrical multilayer component is implemented as a sensitized device. In another embodiment, the electrical multi-I component is implemented as a capacitor. [Embodiment] In the specific embodiment and the drawings, the same or similar elements Htj are denoted by the same reference numerals. In principle, the elements of the figure and the 95543 201250723-inch relationship between each other are not based on the actual ratio; instead, individual components, two U-pieces and regions 'may be exaggerated to illustrate their thickness or size to make (4) clearer And / or provide a better understanding. The diagram illustrates an electrical multi-section section according to an exemplary embodiment comprising a stack 8 of several functional layers 2 along the stacking direction s. In addition, on the eve of the present invention, a white inner row of internal electrodes, a fifth inner second layer of the inner layer of the red layer 70 includes a first electrode 6, which is disposed in the multilayer element 1 =: wherein the layer plane is composed of adjacent functional layers 2 The interface is decided. Using &,,, sintering, for example, {士,松1 H, for example, forms a monolithic body as shown in Fig. 1. Uhlc body), in which the functional layer 2 is interconnected with the internal electrodes, so that the interface of the directly adjacent functional layer 2 is no longer discernible. The splicing joints 3, 4 are arranged on the two sides 91, 92 of the stack 8, and the alternative sides 91 ' sides 91, 92 are opposite sides. As its two in the figure, for example, it may also be the adjacent side of the stack 48. In the fur embodiment, the external contacts 3, 4 each cover the stack and may also be 92° as an alternative thereto, and the partial areas of the sides of the external contacts 3, 4 5 = or embodied on the stack 8 Edge-embracing fashi〇n :: cap-like (four) joints. For example, by dipping the object into a guide; Contact π = 2 includes: directly conductively connected to the first-outer (four)w and the second internal electrode 6 directly electrically conductively connected to the second outer peach.苐-, the second internal electrodes 5, 6 have the same electrode length ". In addition, the first internal electrode 5 and the second inner = 95543 12 201250723 pole 6 have a distance H in the layer stacking direction. The first internal electrode 5 and the second The internal electrodes 6 are directly adjacent to each other. In particular, this means that the functional layer 2 is alternatively disposed between the first and second internal electrodes 5, 6 and in direct contact with the first and second internal electrodes 5, 6. The plurality of functional layers 2 have no other internal electrodes. The stack 8 has a stack length b in a direction perpendicular to the layer stacking direction from the first to the second internal electrodes. The distance Η 'the stack length B and the electrode length e define an aspect ratio α = £ Β with a relative electrode length / = f, where amin = 2 〇 xe - lw and α _ = 15 〇χ '', and Wei is established. Figure 8 shows the multi-layer component A graph of electrical conductance 1/r or capacitance c as a function of layer thickness d of the functional layer. The internal electrodes are configured in a so-called "gap design" 501 (that is, in a non-overlapping manner and In the case of a conventional multilayer element in which the internal electrodes are arranged in a gap, in this case Next, curve A corresponds to a typical conductivity or a capacitance curve. In the case of ''gap design'), an electric field or current substantially parallel to the internal electrodes and the capacitance or resistance of such elements are substantially The layer thickness rises in proportion. Curve B shows a typical conductivity or capacitance characteristic of a conventional multilayer component in which the internal electrodes are arranged in a so-called "overlapping design" 5〇2 or T-type design "5"3, in the case of heavy 3 and then leaves, alternating The internally arranged internal electrodes are each heavy in the stacking direction. In the case of an overlapping design, an electric field or current is substantially formed in the stacking direction, that is, perpendicular to the internal electrodes. τ 95543 13 201250723 The series connection of two overlapping designs, the composition, the capacitance or conductivity of the elements decreases approximately as the layer thickness increases rather than proportionally. Therefore, in the conventional component design, the layer thickness variation directly affects the special secret. As a result, the addition of one branch causes the layer thickness to result in the same electrical value. In the multilayer component described herein, the superposition of the above effects of the conventional component can be achieved as shown by the curve z in Fig. 8. Due to the special internal electrode configuration, as described in conjunction with curve Mb, the layer thickness of the functional layer and the electrical value depend on each other. It can be easily seen that curve 2 is using two vertical dashed lines 9 8,9 9 has a substantially flat curve within the range of identification. This means that the resistance or capacitance of the multilayer A piece described herein is in this range irrelevant to the thickness fluctuation of the functional layer of the functional layer, in particular, The aspect ratio α of the above range is established. Fig. 6 is a graph showing the resistance of the element having different relative electrode lengths as a function of the aspect ratio β. The different resistance curves each have a more or less width. Flat range. Within this range, the element is relatively insensitive to thickness fluctuations of the functional layer, that is to say, within this range, the resistance of the element changes only a little when the thickness of the functional layer changes. Figure 7 illustrates the range Width, which is a graph showing the aspect ratio α as a function of the relative electrode length. Mathematically, the curves can be described by the above relationship of amin = 20xe - llx > flmax = 150x. 1 In the simplest form, the multilayer component described herein is illustrated as a basic component. All other 95543 14 201250723 = shown below are based on this - the simplest form and by these basic The arrangement of the elements: - the multilayer element of Fig. 1 again, a portion of the electrode 5, "therefore, the multilayer element, the second inner portion and the plurality of second inner electrodes 6. The first and second inner portions of the inner electrode are the same electrode length E as the inner electrode 5. All of the flute electrodes 5, 6 have a phase y. All of the internal electrodes are aligned along the layer stacking crystals six times in a row, and the direction of the crucible is offset. At the same time, we are not aligned with each other in the plane. All of the second internal electrodes are aligned one by one. Further, each of the internal electrodes has a distance H from the layer electrodes in the layer stacking direction s. The inner electrodes 5 are arranged so as not to be overlapped by the first inner iliac crests. Alternatively, the 4th: internal electrodes may also overlap the second internal electrodes. Layer 2, the first electrode window sounds the second internal electrodes 5, 6 have the same, and other internal electrodes have the same area. The second ® = two is formed by the first element in the vertical direction (that is, the direction S) or repeatedly. a cross section of the third electric field component , electrically connected to the first inner electrode 5 ′ of the first outer contact 3 and the second inner electrode electrically connected to the second outer contact 4... This element 1 comprises a free internal electrode 7 which is not directly electrically conductively connected to the first external contact and the first external contact 4. Free internal electrode 7 95543 15 201250723 has a length of 2E. The first and second inner neighbors - the inner 邛 太 ...... 势 势 邛 邛 邛 邛 邛 邛 邛 邛 邛 邛 邛 邛 邛 邛 邛The electrode 5 and the second internal electrode 6 are disposed on the stack 8. The free internal electrode 7 and the first internal electrode 5 and the second have a turn in the layer stacking direction S.

= 與㈣8之側面91(苐—外部接點U 笛、第内部電極5直接接觸),以及與堆疊8之側㈣ ^一外部接點4在此與第二内部電極6直接 在此距離H、距離B,,及電極長度E定義一縱 検比α =多與一相對電極長度 ,Ε ^ / = $7,其中在 amin=20x#w及 %=150“’時,^也成立。 、,第3圖的多層元件丨由第丨圖元件之内部電極配置在 水平方向(也就是說,在由第—内部電極至第二内部電極 垂直於層堆疊方向S的方向)的雙重覆(double repetition ) 或串聯連接形成。 第4圖根據另一示範具體實施例圖示電多層元件工, 其係包含直接導電連接至第—外部接點3的第—内部電極 5’直接導電連接至第二外部接點4的第二内部電極6,以 及^直接導電連接至第一及第二外部接點3、4的兩個自由 内部電極7。兩個自由内部電極7各有相同的電極長度託 與中點Μ’其中在層堆疊方向相鄰的兩個自由内部電極之 中點Μ與層堆疊方向S垂直的距離等於Β,。此外,兩個 自由内部電極7在層堆疊方向s有距離η。 第一、第一内部電極5、ό在所有情形下與在層堆疊 95543 201250723 方向s最近的自由内部電極在層堆疊方向s有距離H。此 — 外,第一内部電極5與第二内部電極6垂直於層堆疊方向 S的電極長度E方向各有大於或等於E的長度F。 對於距離Η、距離B,及電極長度E,希望縱樺比 Β' 與相對電極長度,成立, Π 其中縱橫比α在最小縱橫比 咖、最大縱橫比α職之間,也就是說順成立, 其中 amin =20xe-llxj =i5〇Xe,。 第4圖的元件1概念上可由第!圖基本元件的多個水 平配置或串聯連接形成。 :據另一示範具體實施例圖示電多層元件 圃 ,η · 也/ /官7U >|干上, /、係包含多個自由内部電極7。特別是,多層元件!包含 配置於同一層平面的多個自由内部電極7,以及在所有情 ,下沿著層堆疊方向s—個—個向上地排列的多個自由内 部電極7 ’其中所有自由内部電極有相同的電極 在所有情形下沿著層堆疊方向卜個—個向上地排列的自 由内部電極7係一個-個向上地-致排列,也就是說,它 們在層平面的方向彼此沒有偏移。 此外’電多層元件1包含直接導電連接至第-外部接 =的多個第-内部電極5,以及直接導電連接至第二外部 接點4的多個第二内部電極6。 母個自由内部電極7有中點M’其t在層堆疊方 彼此最近及直接相_兩個自由㈣電極7的中點M有垂 95543 17 201250723 =堆疊方向s的距離B,。每個自由内部電極7與在層 堆豐方向S最近的每個自由内部電極 距離U。同檨,I個坌加你 疼且々门5有 门樣#個第-及母個第二内部電極·5、6盥在層 隹豐方向S最近的每㈣由内部電極7在層堆疊方向 距離H。在此情形下,對於距離H、距離B,及電極長度E, 縱橫比 Η Β' 與相對電極長度/ = f成立,其中縱橫比β在最 小縱橫比、最大縱橫比之間,也就是說,〜〆μ 成立,其中=20xe~"x/及 % =i5〇Xe-w 〇 第5圖的多層元件i概念上可由第丄圖基本元件在水 平、垂直杨的重魏置’也就是說,通過多個並行及串 聯的連接。在此情形下,以第4及5圖的元件而言,第一 及第二内部電極的長度F (其係大於或等於£)是次要的, 也就是說,特別是,不需要等於E,因為在外部接點3、4 附近區域中的電流路徑或電場分別與第一、第二内部電極 5、6實質平行。 用示範具體實施例描述的本發明不限於該等示範具 體實施例,反而是涵蓋任何新穎特徵及特徵的任何組合。 特別疋’包括申請專利範圍中之特徵的任何組合,即使此 特徵或此組合本身沒有明示於申請專利範圍或示範具體實 施例。 【圖式簡單說明】 由以下數個具體實施例及第1至8圖的說明可明白電 多層元件的其他優點及有利實施例。 95543 18 201250723 第1至5圖的橫截面圖示描述於此之 具體實施例。 ^件的不同 第6圖緣出描述於此之元件的電阻隨著縱橫比而變化 的曲線圖。 第7圖綠出縱橫比隨著相對電極長度/而變化的曲 線圖。 第8圖繪出多層元件的電阻或電容隨著功能層厚度而 變化的曲線圖。 2 3 4 5 6 7 8 要元件符號說明】 多層元件 功能層 第一外部接點 第二外部接點 第一内部電極 第二内部電極 自由内部電極 堆疊= with the side of the (four) 8 91 (苐 - external contact U flute, the first internal electrode 5 directly contact), and with the side of the stack 8 (four) ^ an external contact 4 here and the second internal electrode 6 directly at this distance H, The distance B, and the electrode length E define a longitudinal 検 ratio α = more than a relative electrode length, Ε ^ / = $7, where amin=20x#w and %=150"', ^ is also true. The multi-layer element of FIG. 3 is arranged in the horizontal direction by the internal electrodes of the second element (that is, in the direction from the first internal electrode to the second internal electrode in the direction perpendicular to the layer stacking direction S). Or formed in series. FIG. 4 illustrates an electrical multilayer component according to another exemplary embodiment, which includes a first internal electrode 5' directly electrically connected to the first external contact 3 to be directly electrically connected to the second external connection. The second internal electrode 6 of the point 4, and the two free internal electrodes 7 directly electrically connected to the first and second external contacts 3, 4. The two free internal electrodes 7 each have the same electrode length and midpoint Μ 'The two free internal electricitys that are adjacent in the stacking direction of the layers The distance between the midpoint 垂直 and the layer stacking direction S is equal to Β. Further, the two free internal electrodes 7 have a distance η in the layer stacking direction s. The first, first internal electrodes 5, ό in all cases and layers Stack 95543 201250723 The closest free internal electrode in the direction s has a distance H in the layer stacking direction s. In addition, the first internal electrode 5 and the second internal electrode 6 have a length greater than or equal to the electrode length E direction perpendicular to the layer stacking direction S. The length F of E. For the distance Η, the distance B, and the electrode length E, it is desirable to compare the length of the birch and the relative electrode length, Π where the aspect ratio α is between the minimum aspect ratio and the maximum aspect ratio α, That is, cis is established, where amin = 20xe - llxj = i5 〇 Xe, the element 1 of Fig. 4 can be conceptually formed by a plurality of horizontal or series connections of the basic elements of the Fig. Fig.: According to another exemplary embodiment The electric multilayer element 圃, η · / / 官 7U > | dry, /, comprises a plurality of free internal electrodes 7. In particular, the multilayer element! comprises a plurality of free internal electrodes 7 arranged in the same layer plane, And in all circumstances, under The layer stacking direction s—a plurality of free internal electrodes 7 ′ arranged upwardly, wherein all of the free internal electrodes have the same electrode, and in all cases, the free internal electrodes 7 arranged upward along the layer stacking direction One-to-one alignment, that is, they are not offset from each other in the direction of the layer plane. Furthermore, the 'electric multilayer element 1 comprises a plurality of first-internal electrodes 5 directly electrically connected to the first-external connection=, And a plurality of second internal electrodes 6 directly electrically connected to the second external contact 4. The female free internal electrodes 7 have a midpoint M', t being closest to each other on the layer stacking side and direct phase_two free (four) electrodes 7 The midpoint M has a vertical 95543 17 201250723 = the distance B of the stacking direction s. Each of the free internal electrodes 7 has a distance U from each of the free internal electrodes closest to the layer stacking direction S. Peer, I add you pain and the door 5 has a door #第第- and the parent second internal electrode ·5,6盥 in the layer 隹丰 direction S nearest each (four) by the internal electrode 7 in the layer stacking direction Distance H. In this case, for the distance H, the distance B, and the electrode length E, the aspect ratio Η Β ' and the relative electrode length / = f are established, wherein the aspect ratio β is between the minimum aspect ratio and the maximum aspect ratio, that is, ~〆μ is established, where =20xe~"x/ and %=i5〇Xe-w 〇The multi-layer component i of Figure 5 can be conceptually represented by the basic components of the second diagram in the horizontal and vertical yang. Through multiple parallel and serial connections. In this case, in the elements of Figures 4 and 5, the lengths F of the first and second internal electrodes (which are greater than or equal to £) are secondary, that is, in particular, need not be equal to E Because the current path or electric field in the vicinity of the external contacts 3, 4 is substantially parallel to the first and second internal electrodes 5, 6, respectively. The invention described in the exemplary embodiments is not limited to such exemplary embodiments, but rather encompasses any novel features and combinations of features. In particular, any combination of features in the scope of the patent application is included, even if the feature or the combination itself is not expressly stated in the scope of the patent application or exemplary embodiments. BRIEF DESCRIPTION OF THE DRAWINGS Other advantages and advantageous embodiments of the electrical multilayer component will be apparent from the following specific embodiments and the description of Figures 1-8. 95543 18 201250723 A cross-sectional illustration of Figures 1 through 5 is described in this specific embodiment. ^Different Parts Fig. 6 is a graph showing the resistance of the element described herein as a function of the aspect ratio. Fig. 7 is a graph showing the aspect ratio of the green out with the length of the opposite electrode. Figure 8 plots the resistance or capacitance of a multilayer component as a function of the thickness of the functional layer. 2 3 4 5 6 7 8 Description of the required components] Multilayer components Functional layer First external contact Second external contact First internal electrode Second internal electrode Free internal electrode Stack

91 92 S B B’、B”E、2E、p Η 堆疊的侧面 堆疊的側面 層堆疊方向 堆疊長度 垂直於堆疊方向的距離 電極長度 在堆疊方向的距離 95543 20125072391 92 S B B', B”E, 2E, p 侧面 Side of the stack Side of the stack Layer stacking direction Stack length Distance perpendicular to the stacking direction Electrode length Distance in the stacking direction 95543 201250723

Μ a I 内部電極的中點 縱橫比 相對電極長度 95543Μ a I midpoint of internal electrode aspect ratio relative electrode length 95543

Claims (1)

201250723 七、申請專利範圍: 1. 一種包含有數個功能層(2)與至少一個第一及一個第 一内部電極(5,6)之堆疊(8)的電多層元件(1), 其中, 該第一内部電極(5)直接導電連接至在該堆疊之 側面(91)上的第一外部接點(3)以及該第二内部電 極(6)直接導電地連接至該堆疊之側面(92)上的第 二外部接點(4), 在垂直於該層堆疊方向(S)且由該第一至該第二 内部電極(5, 6)的方向中,該第一及該第二内部電 極(5, 6)有相同的電極長度E, 該第一内部電極(5)與該第二内部電極(6)在 該層堆疊方向有一距離Η, 該第-及該第二内部電極(5,6)係彼此直接相 鄰, 在垂直於該層堆疊方向(s)且由該第一至該第二 内部電極(5,6)的方向中,該堆疊(8)有堆疊長度 B, 該距離H ’該堆4長度B及該電極長度E定義縱 立 係以不被 2.如申請專利範圍第1項所述之元件,其中’ 95543 201250723 該第二内部電極(6)重疊的方式配置該第一内部電極 (5 )。 3·如申請專利範圍第1項所述之元件,其中,該第一内 部電極(5)部份重疊該第二内部電極(6)。 4·如申請專利範圍第i項至第3項之任_項所述的元 件,其中,該元件(1)包含至少另一個第一及/或第二 内部電極(5,6),其中, — 該至少另一個第一及/或第二内部電極(5,6 電極長度E, 咏兀仵U)之該第一及該第 係沿著該層堆疊方向(S)交替地排列. 每個内部電極(5’6)在所有情形下與在該層堆 了向⑻最近的内部電極(5,6)在該層堆叠方向 有一距離H。 5.如申請專利範圍第 件,装心項之任一項所述的元 電極二;個第一内部電極(5)與多個第二内部 6 :二利範圍第1項至第5項之任-項所述的元 同層⑺。,係將所有該等内部電極(5,6)配置於不 7. 利範圍第1項至第6項之任-項所述的元 二;多=該等内部電極(5,™的· 95543 兩個白其係包含有數個功能層⑺及至少 兩個自由内部電極(7)的堆疊⑴以及第一、第: 201250723 外4接點(3 ’ 4) ’其中該等外部接點(3,4)配置於 該堆疊W的側面(91、92)上,其中,-置、 5玄等自由内部電極(7)不直接導電連接至該第一 及該第二外部接點(3,4), μ 每個自由内部電極⑺有相同的電極長度2Ε, 母個自由内部電極⑺與在該層堆疊方向⑴ 最近的每個自由内部電極⑺在該層堆疊 有距離Η, :個自由内部電極⑺有中點Μ,其中在該層堆 ι α s)直接相鄰的兩個自由内部電極(7)之尹 點Μ垂直於該料疊方向⑻的距離為β,,以及 該距離Η,該距離Β,及該電極長度£定義縱橫比 Η_ Ύ' 與相對電極長度/=_,其中 Β’ 八 在 20 xe ,15〇><^時,K仏眶成 如申請專利範圍第8項所述之元件,其中,至少裝—艾 另-内部電極(5,6),其係直接導電連接至該第一、或 最 1^卜部接點(3, 4)以及與在該層堆疊方向⑻ ^近的母個自由内部電極⑺在該層堆疊方向⑴ 有一距離Η。 h利範圍第9項所述之元件,其中,該另-内 二電:(5’6)在垂直於該層堆叠方向⑻的該電極 食度E方向有長度F,其中 立 及 9. 201250723 11. 如申請專利範圍帛8輕第10項之任一項所述的元 件,其係包含配置於同一層平面的多個自由内部電極 (7),以及在所有情形下均沿著該層堆疊方向一 個一個地向上排列的多個自由内部電極(7)。 12. —種包含堆疊(8)的電多層元件(1),該堆疊(8) 具有:數個功能層(2);直接導電連接至該堆疊⑴ 之側面(91)上之第—外部接點⑶的第—内部電極 ⑸;直接導電連接至該堆4⑴之—侧面(⑺上 之第二外部接點⑷的第二内部電極(6);以及 接導電連接至該第-及該第二外部接點(3,4)的 由内部電極(7),其中, 興孩弟二内部電極(6)配 置於同一層以及有相同的電極長度E, 該自由内部電極(7)有電極長度2E, 該自由内部電極⑺與該第一及該第二内 (5,6)在該層堆疊方向(s)有—距離& 該自由内部電極⑺有中點(M),其 部電極(7)之中點(M)與該堆 92、<^1丨 且、㈠之側面(91、 部電極^接點(3,4)在此與該第—及該第二内 ,6)接觸)垂直於該層堆最方 離為B,,,以及 隹-方向⑻的距 E定義縱橫比 5亥距離Η,該距離B”及該電極長度 a=f與相對電極長度,=4,其中, 5’’ 95543 4 201250723 在 amin =2〇xe~lw 立〇 及 “max =l5〇Xe_9></ 時201250723 VII. Patent application scope: 1. An electrical multilayer component (1) comprising a stack (8) of a plurality of functional layers (2) and at least one first and a first internal electrode (5, 6), wherein The first inner electrode (5) is directly electrically connected to the first outer contact (3) on the side (91) of the stack and the second inner electrode (6) is directly electrically conductively connected to the side of the stack (92) a second external contact (4) on the first and second internal electrodes in a direction perpendicular to the layer stacking direction (S) and from the first to the second internal electrodes (5, 6) (5, 6) having the same electrode length E, the first inner electrode (5) and the second inner electrode (6) having a distance Η in the layer stacking direction, the first and the second inner electrode (5, 6) directly adjacent to each other, in a direction perpendicular to the layer stacking direction (s) and from the first to the second internal electrodes (5, 6), the stack (8) has a stack length B, the distance H 'the length 4 of the stack 4 and the length E of the electrode define the vertical system to not be 2. The yuan as recited in claim 1 Wherein '95543201250723 second embodiment the inner electrode (6) is disposed to overlap the first internal electrode (5). 3. The component of claim 1, wherein the first inner electrode (5) partially overlaps the second inner electrode (6). 4. The component of any one of clauses i to 3, wherein the component (1) comprises at least one other first and/or second internal electrode (5, 6), wherein - the first and the first lines of the at least one other first and/or second internal electrode (5, 6 electrode length E, 咏兀仵U) are alternately arranged along the layer stacking direction (S). Each The internal electrode (5'6) has a distance H in all cases from the inner electrode (5, 6) closest to the layer 8 in this layer stacking direction. 5. The element electrode according to any one of the claims, the first electrode (5) and the plurality of second inner 6: the second inner range of the first to fifth items The meta-layer (7) described in any of the items. , all of the internal electrodes (5, 6) are arranged in the second part of the item No. 1 to Item 6 of the range of interest; more = the internal electrodes (5, TM · 95543 The two white systems comprise a plurality of functional layers (7) and a stack of at least two free internal electrodes (7) and first, first: 201250723 outer 4 contacts (3 '4) 'where the external contacts (3, 4) disposed on the side (91, 92) of the stack W, wherein the free internal electrodes (7), such as -, 5, and the like are not directly electrically connected to the first and second external contacts (3, 4) , μ each free internal electrode (7) has the same electrode length 2Ε, the parent free internal electrode (7) and each free internal electrode (7) closest to the stacking direction (1) are stacked at a distance 该, a free internal electrode (7) There is a midpoint Μ, wherein the distance between the two free internal electrodes (7) directly adjacent to the layer ι α s) is perpendicular to the stack direction (8), and the distance Η, the distance Β, and the length of the electrode is defined by the aspect ratio Η_ Ύ' and the relative electrode length /=_, where Β' eight at 20 xe , 15 <^, K仏眶 is an element as described in claim 8 of the patent application, wherein at least the AI-internal electrode (5, 6) is directly electrically connected to the first, or The most common contact points (3, 4) and the female free internal electrodes (7) near the stacking direction (8) are spaced apart by a distance Η in the layer stacking direction (1). The component of the ninth item, wherein the second-electrode: (5'6) has a length F in the direction of the electrode E in a direction perpendicular to the layer stacking direction (8), and the neutrality is 9. 201250723 11. The element according to any one of claims 10 to 10, which comprises a plurality of free internal electrodes (7) arranged in a plane of the same layer, and in all cases are stacked along the layer A plurality of free internal electrodes (7) arranged one above the other direction. 12. An electrical multilayer component (1) comprising a stack (8) having: a plurality of functional layers (2); a first external connection directly connected to a side (91) of the stack (1) a first internal electrode (5) of the point (3); a second internal electrode (6) electrically connected directly to the side of the stack 4 (1) (the second external contact (4) on the (7); and electrically connected to the first and the second The external contacts (3, 4) are composed of internal electrodes (7), wherein the internal electrodes (6) of the Xingshen two are arranged in the same layer and have the same electrode length E, and the free internal electrodes (7) have electrode lengths 2E The free internal electrode (7) and the first and second inner portions (5, 6) have a distance in the stacking direction (s) (s) & the free internal electrode (7) has a midpoint (M), and its electrode (7) The midpoint (M) is in contact with the stack 92, <^1丨, (1) side (91, the partial electrode contact (3, 4) is here with the first and the second inner, 6) The distance from the stack to the B, and, and the direction of the 隹-direction (8) defines the aspect ratio 5 Η distance Η, the distance B′′ and the length of the electrode a=f and the length of the opposite electrode = 4, wherein the 5 '955,434,201,250,723 in Amin ~ lw = 2〇xe stand square and "max = l5〇Xe_9 > < / time 件八中,該多層元件(1)的構造呈軸向對稱及/或中 心對稱。 一 13.如申請專利範圍第 件’其中,該多層 15.如申請專利範圍第1項至第14項之任一項所述的元 件’其中’該多層元件(1 )為NTC熱敏電阻、PTC 熱敏電阻、壓敏電阻或電容器元件。 95543 5In the eighth embodiment, the multilayer element (1) is constructed to be axially symmetrical and/or centrally symmetrical. The element of any one of claims 1 to 14 wherein the multilayer element (1) is an NTC thermistor, PTC thermistor, varistor or capacitor component. 95543 5
TW101108803A 2011-03-24 2012-03-15 Electrical multilayer component TWI562174B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201110014967 DE102011014967B4 (en) 2011-03-24 2011-03-24 Electrical multilayer component

Publications (2)

Publication Number Publication Date
TW201250723A true TW201250723A (en) 2012-12-16
TWI562174B TWI562174B (en) 2016-12-11

Family

ID=45930655

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101108803A TWI562174B (en) 2011-03-24 2012-03-15 Electrical multilayer component

Country Status (3)

Country Link
DE (1) DE102011014967B4 (en)
TW (1) TWI562174B (en)
WO (1) WO2012126776A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014107450A1 (en) 2014-05-27 2015-12-03 Epcos Ag Electronic component

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2976046B2 (en) * 1991-06-27 1999-11-10 株式会社村田製作所 Chip varistor
JP3060966B2 (en) * 1996-10-09 2000-07-10 株式会社村田製作所 Chip type thermistor and method of manufacturing the same
JPH10335114A (en) * 1997-04-04 1998-12-18 Murata Mfg Co Ltd Thermistor
JPH11204309A (en) * 1998-01-09 1999-07-30 Tdk Corp Laminated varistor
JP3233090B2 (en) * 1998-02-06 2001-11-26 株式会社村田製作所 High voltage multilayer capacitors
JP3498211B2 (en) * 1999-12-10 2004-02-16 株式会社村田製作所 Multilayer semiconductor ceramic electronic components
JP4418969B2 (en) * 2005-06-03 2010-02-24 株式会社村田製作所 Multilayer ceramic capacitor
JP2008311362A (en) * 2007-06-13 2008-12-25 Tdk Corp Ceramic electronic component
KR101053329B1 (en) * 2009-07-09 2011-08-01 삼성전기주식회사 Ceramic electronic components
DE102010044856A1 (en) * 2010-09-09 2012-03-15 Epcos Ag Resistor component and method for producing a resistance component

Also Published As

Publication number Publication date
TWI562174B (en) 2016-12-11
DE102011014967B4 (en) 2015-04-16
DE102011014967A1 (en) 2012-09-27
WO2012126776A1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
CN101009157B (en) Multilayer capacitor
TWI313016B (en) Laminated capacitor and manufacturing method thereof
US7046500B2 (en) Laminated ceramic capacitor
US9083301B2 (en) Balance filter
US7599166B2 (en) Multilayer chip capacitor
TW200950203A (en) Layered bandpass filter
CN102754171B (en) Ceramic multilayer device
CN104702242B (en) Frequency conversion resonance vibration circuit and variable frequency filter
JP2011181976A5 (en)
JP2009135416A (en) Lamination type chip capacitor and circuit board apparatus having the same
TWI314746B (en)
US9306529B2 (en) Resonator and band pass filter
JP6124893B2 (en) Capacitor device
JP2006210719A (en) Multilayer capacitor
US10741330B1 (en) High voltage fringe-effect capacitor
TW200418194A (en) MOS-type variable capacitance element
JP3907599B2 (en) Multilayer capacitor
TW201123231A (en) Decoupling device
JP2009152404A (en) Multilayer capacitor array
TW201250723A (en) Electrical multilayer component
JP2003168620A (en) Laminated capacitor
JP2003520424A (en) Capacitor element for power capacitor, power capacitor having the element, and metallized film for power capacitor
TWI533338B (en) Electrical multilayer component
TW200840015A (en) Semiconductor capacitor structure and layout pattern thereof
CN103077829A (en) Inner-series type self-healing capacitor serially connected with inductor and preparing method thereof