TW201250009A - Aluminium alloy, manufacturing process thereof and aluminium alloy sheet manufacturing process - Google Patents

Aluminium alloy, manufacturing process thereof and aluminium alloy sheet manufacturing process Download PDF

Info

Publication number
TW201250009A
TW201250009A TW100120207A TW100120207A TW201250009A TW 201250009 A TW201250009 A TW 201250009A TW 100120207 A TW100120207 A TW 100120207A TW 100120207 A TW100120207 A TW 100120207A TW 201250009 A TW201250009 A TW 201250009A
Authority
TW
Taiwan
Prior art keywords
aluminum alloy
intermetallic compound
aluminum
iron
sheet
Prior art date
Application number
TW100120207A
Other languages
Chinese (zh)
Other versions
TWI413696B (en
Inventor
Chung-Yi Yu
Han-Cheng Shih
Jiunn-Ren Su
Ching-Sheng Chan
Ching-Chung Lu
Original Assignee
China Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Steel Corp filed Critical China Steel Corp
Priority to TW100120207A priority Critical patent/TWI413696B/en
Publication of TW201250009A publication Critical patent/TW201250009A/en
Application granted granted Critical
Publication of TWI413696B publication Critical patent/TWI413696B/en

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

An aluminum alloy and manufacturing processes of the aluminum alloy and an aluminum alloy sheet are disclosed. The aluminum alloy includes a plurality of compositions. By weight percentage, the compositions are 0.30 to 0.60 wt% of Fe, 0.05 to 0.20 wt% of Si, 0.01 to 0.03 wt% of Ti, 0.0004 to 0.0012 wt% of B, 0.05 to 0.2 wt% of Cu, at most 0.3 wt% of inevitable impurities, and an remainder which is composed of Al. The weight percentages of the Fe and Si meet the inequality (Fe wt%/Si wt%) > 4.0. Furthermore, these compositions form a first and a second intermetallic compounds, wherein chemical formulas of the first and the second intermetallic compounds are Al6Fe and Al3Fe respectively. The weight ratio of the first and the second intermetallic compounds meets the inequality 0.13 < (Al6Fe/Al3Fe) < 1.25.

Description

201250009 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種鋁合金以及製造鋁合金與鋁合金 片材之製程,且特別是有關於一種包含化學式分別為Al6Fe 與Al3Fe之二介金屬化合物之鋁合金及其製造製程與其片 材之製造方法。 【先前技術】 鋁合金經過陽極處理後,具備有多項優良之特點,故 可應用於眾多不同的領域中,例如,經陽極處理之鋁合金 中可具備有質地輕薄、抗腐蝕性佳、成形性好、外觀優美 且兼具時尚感等特點,因此被廣泛地應用於3C產品之外 殼、建築帷幕牆、化妝品盒及燈罩等民生用品上。 然而,經陽極處理之鋁合金材料主要問題在於,其經 陽極處理之後,表面色澤雖然均勻,但有偏黃的現象,而 在視覺上,產品色澤偏黃容易讓人產生老舊與廉價的感 覺,進而影響消費者的購買意願;相對的,若產品色澤偏 藍,則能給予人一種高質感的感受。 在鋁合金中,根據製程的不同,其所包含之析出相亦 有所不同。由於不同的析出相具有不同的電化學電位,因 此,在經陽極處理之後,其氧化皮膜會呈現不同的色澤, 例如析出相之化學式為Al3Fe或AlmFe時,其氧化皮膜色 澤偏黃,而當析出相之化學式為Al6Fe時,其氧化皮膜色 澤偏藍。 在習知之技術中,為了獲得所需之表面色澤的鋁合金 201250009 材,主要係控制鋁合金中雜質鐵(Fe)與石夕(si)的含量’並利 • 用添加微量的合金元素[例如鎮(Mg)、鉻(Cr)與錳(Μη)]來辅 . 助改變或穩定析出相’藉以獲得所需的表面色澤。 此外,在習知之技術中’銘合金產品(通常為鋁胚)在 進行一系列之軋延製程之前’須經過高溫均質化處理。而 在高溫均質化的過程中’會將各種析出相(化學式為 Al3Fe、AlmFe或Al6Fe)轉化成Al3Fe。再者’高溫均質化處 理一般係以燃燒天然氣的方式進行’故容易排放大量溫室 氣體,並耗費大量之能源。 根據以上所述,習知技術之缺點在於,由於高溫均質 化將各種析出相轉化成AbFe,故使得最終經陽極處理之鋁 合金產品之表面色澤依舊偏黃;此外,高溫均質化需耗費 大量之能源,提高生產成本。 【發明内容】 因此’本發明之目的係在提供一種鋁合金以及製造紹 合金與鋁合金片材之製程’可使得經陽極處理之後铭合金 表面色澤偏藍,且無需進行高溫均質化處理,進而避免耗 費大量之能源。 根據本發明之一實施例,提供一種鋁合金。此銘人金 包含以下以重量百分比(wt%)計之多個成分,其中此此成分 為:0.30〜0.60 wt%之鐵、0.05〜0.20 wt%之矽、〇 〇1〜〇 &amp; 之鈦(Ti)、0.0004〜0.0012 wt%之硼(B)、〇.〇5〜〇 2 之銅 . (Cu)、0.3 wt%以下之不可避免之不純物、以及由叙所組成 之殘部。而其中鐵與矽之重量百分比滿足不等式(鐵wt%/ 201250009 石夕wt%)&gt;4。此外’上述之成分組成第一與第二介金屬化 合物’其中第一介金屬化合物之化學式為Al6Fe,第二介金 屬化合物之化學式為Al3pe,且第一介金屬化合物與第二介 金屬化合物之重量比滿足不等式〇丨3&lt;(Al6Fe/Al3Fe)&lt;1 25。 根據本發明之另一實施例,提供一種製造鋁合金之製 程。此製程包含製備熔融鋁合金,以及以預定速度澆鑄上 述熔融铭合金’並於澆鑄過程中以預定水量提供冷卻水至 炼融銘合金,藉以形成鋁合金。上述熔融鋁合金包含以下 以重量百分比計之多個成分,此些成分為:〇.30〜〇.6〇 wt〇/0 之鐵、0.05 〜0.20 wt% 之矽、o.oi 〜0.03 wt% 之鈦、 0.0004〜0.0012 wt°/〇之硼、〇.〇5〜0.2 wt%之銅、0.3 wt%以下 之不可避免之不純物、以及由鋁所組成之殘部,而鐵與矽 之重量百分比滿足不等式(鐵wt%/矽wt%)&gt;4。此外,上 述預定速度為每分鐘40公厘(mm)至每分鐘70 mm,而預 定水量為每小時200立方公尺(m3)至每小時300 m3。再者, 上述成分於鋁合金中組成第一與第二介金屬化合物,其中 第一介金屬化合物之化學式為Al6Fe,第二介金屬化合物之 化學式為Alje,且第一與第二介金屬化合物之重量比滿足 不等式 0.13〈(Al6Fe/Al3Fe)&lt;1.25。 根據本發明之又一實施例,提供一種製造鋁合金片材 之製程。此製程包含製備鋁胚;於第一預定溫度軋延上述 銘胚,以獲得熱札延紹板,其中第一預定溫度為350°C至 500°C,且於第一預定溫度軋延上述鋁胚之裁減量為5〇%至 80% ;於室溫軋延上述熱軋延鋁板,以獲得冷軋延銘片, 其中於室溫軋延上述熱軋延銘板之裁剪減量為至 201250009 80%,以及於第一預疋溫度對上述冷軋延鋁片進行退火製 程,以獲得鋁合金片材,其中第二預定溫度為之㈨^至4〇〇 。(:,且退火製程持續之時間為丨小時至12小時。此外,上 述鋁胚係由鋁合金所組成,其中鋁合金包含以下以重量百 分比計之多個成分,此些成分為:〇.30〜0.60 wt%之鐵、 0.05〜0.20 wt/ο之石夕、0.01 〜〇.〇3 wt%之鈦、0.0004〜0.0012 wt%之硼、㈣5〜0.2 wt%之鋼、〇 3 wt%以下之不可避免之 不純物、以及由鋁所組成之殘部。在上述鋁合金中,鐵與 矽之重量百分比滿足不等式(鐵wt%/矽wt%)&gt;4,且其成 分組成第一與第一介金屬化合物,第一介金屬化合物之化 學式為AUFe ’第二介金屬化合物之化學式為Al3Fe。上述 第一介金屬化合物與第二介金屬化合物之重量比滿足不等 式 〇 。 本發明之優點為’由於無需進行高溫均質化處理, Al6Fe不會被轉化成Al3Fe,冷軋後之鋁合金片材所含介金 屬化合物仍滿足不等式〇.1 .25 ’使得經陽 極處理之鋁合金產品之表面色澤偏藍,從而提供使用者一 種高質感的感受’提升產品之競爭力。此外,同樣由於無 需進行高温均質化處理,故無需耗費大量之能源,同時可 縮短製稃所需時間,可有效降低整體之生產成本。 【實施方式】 根據本發明之一實施例,為了使經過陽極處理之鋁合 金產品具備高質感之表面色澤(偏藍),以期能夠提升產品 之競爭力,鋁合金必須具備如以下表一所列示之成分,其 201250009 中各成分係以重量百分比(wt%)做計算。此外,鋁合金亦允 許存在不可避免之不純物。 表 一成分 Fe wt% 0.30-0.60201250009 VI. Description of the Invention: [Technical Field] The present invention relates to an aluminum alloy and a process for manufacturing an aluminum alloy and an aluminum alloy sheet, and particularly relates to a second metal containing a chemical formula of Al6Fe and Al3Fe, respectively. Aluminum alloy of compound and manufacturing process thereof and method for producing the same. [Prior Art] After the anode treatment of aluminum alloy, it has many excellent characteristics, so it can be applied to many different fields. For example, the anodized aluminum alloy can have light texture, good corrosion resistance and formability. Good, beautiful appearance and fashionable, it is widely used in 3C product shells, architectural curtain walls, cosmetic boxes and lampshades. However, the main problem of the anodized aluminum alloy material is that after the anode treatment, although the surface color is uniform, it has a yellowish phenomenon, and visually, the yellow color of the product tends to make the old and cheap feeling. , in turn, affecting consumers' willingness to purchase; in contrast, if the color of the product is blue, it can give people a feeling of high quality. In aluminum alloys, the precipitation phase contained in the aluminum alloy varies depending on the process. Since different precipitated phases have different electrochemical potentials, the oxide film will exhibit different color after the anode treatment. For example, when the chemical formula of the precipitated phase is Al3Fe or AlmFe, the color of the oxide film is yellowish, and when precipitated, When the chemical formula of the phase is Al6Fe, the color of the oxide film is blue. In the conventional technology, in order to obtain the desired surface color of the aluminum alloy 201250009, the main content is to control the content of impurities iron (Fe) and shixi (si) in the aluminum alloy' and to add a small amount of alloying elements [for example] Town (Mg), chromium (Cr) and manganese (Mn) help to change or stabilize the precipitate phase 'to obtain the desired surface color. In addition, in the prior art, the alloys of the alloys (usually aluminum embryos) are subjected to high temperature homogenization prior to a series of rolling processes. In the process of high-temperature homogenization, various precipitation phases (chemical formula: Al3Fe, AlmFe or Al6Fe) are converted into Al3Fe. Furthermore, 'high-temperature homogenization treatment is generally carried out by burning natural gas', so that it is easy to emit a large amount of greenhouse gases and consumes a large amount of energy. According to the above, a disadvantage of the prior art is that the surface of the finally anodized aluminum alloy is still yellowish due to the high temperature homogenization to convert various precipitated phases into AbFe; in addition, high temperature homogenization requires a large amount of Energy, increase production costs. SUMMARY OF THE INVENTION Therefore, the object of the present invention is to provide an aluminum alloy and a process for manufacturing the alloy and the aluminum alloy sheet, which can make the surface of the alloy have a blue color after the anode treatment, and does not require high-temperature homogenization treatment. Avoid spending a lot of energy. According to an embodiment of the invention, an aluminum alloy is provided. The inscription gold comprises the following components in weight percentage (wt%), wherein the composition is: 0.30~0.60 wt% iron, 0.05~0.20 wt% bismuth, 〇〇1~〇& (Ti), 0.0004 to 0.0012% by weight of boron (B), 〇.〇5~〇2 of copper. (Cu), an inevitable impurity of 0.3 wt% or less, and a residue consisting of the legend. And the weight percentage of iron and strontium satisfies the inequality (iron wt% / 201250009 Shi Xi wt%) &gt; 4 . Further, 'the above components constitute the first and second intermetallic compounds' wherein the chemical formula of the first intermetallic compound is Al6Fe, the chemical formula of the second intermetallic compound is Al3pe, and the weight of the first intermetallic compound and the second intermetallic compound The ratio satisfies the inequality 〇丨3&lt;(Al6Fe/Al3Fe)&lt;1 25. According to another embodiment of the present invention, a process for manufacturing an aluminum alloy is provided. The process comprises preparing a molten aluminum alloy and casting the above-mentioned molten alloy at a predetermined speed and supplying cooling water to the smelting alloy in a predetermined amount of water during the casting process, thereby forming an aluminum alloy. The above molten aluminum alloy comprises the following components in a weight percentage, such as: 〇.30~〇.6〇wt〇/0 of iron, 0.05~0.20 wt% of 矽, o.oi ~0.03 wt% Titanium, 0.0004~0.0012 wt°/〇 boron, 〇.〇5~0.2 wt% copper, 0.3 wt% or less unavoidable impurities, and a residue composed of aluminum, and the weight percentage of iron and bismuth meets Inequality (iron wt% / 矽 wt%) &gt; 4. Further, the predetermined speed is 40 mm (min) per minute to 70 mm per minute, and the predetermined water amount is 200 m3 (m3) per hour to 300 m3 per hour. Furthermore, the above components constitute the first and second intermetallic compounds in the aluminum alloy, wherein the chemical formula of the first intermetallic compound is Al6Fe, the chemical formula of the second intermetallic compound is Alje, and the first and second intermetallic compounds The weight ratio satisfies the inequality 0.13 < (Al6Fe/Al3Fe) &lt; 1.25. According to still another embodiment of the present invention, a process for manufacturing an aluminum alloy sheet is provided. The process comprises preparing an aluminum embryo; rolling the above-mentioned imprinted embryo at a first predetermined temperature to obtain a hot Zalesau plate, wherein the first predetermined temperature is 350 ° C to 500 ° C, and rolling the aluminum at the first predetermined temperature The amount of cut of the embryo is 5〇% to 80%; the hot rolled aluminum sheet is rolled at room temperature to obtain a cold rolled sheet, wherein the cutting reduction of the hot rolled sheet is measured at room temperature to 201250009 80% And annealing the cold rolled aluminum sheet to the first pre-twisting temperature to obtain an aluminum alloy sheet, wherein the second predetermined temperature is (9) to 4 〇〇. (:, and the annealing process lasts for a period of from 丨hour to 12 hours. Further, the above-mentioned aluminum germ system is composed of an aluminum alloy, wherein the aluminum alloy contains the following components in weight percentage, and these components are: 〇.30 ~0.60 wt% of iron, 0.05~0.20 wt/ο of Shixi, 0.01~〇.〇3 wt% of titanium, 0.0004~0.0012 wt% of boron, (iv) 5~0.2 wt% of steel, 〇3 wt% or less An unavoidable impurity and a residue composed of aluminum. In the above aluminum alloy, the weight percentage of iron and bismuth satisfies the inequality (iron wt%/矽wt%) &gt; 4, and its composition first and first The metal compound, the chemical formula of the first intermetallic compound is AUFe 'The chemical formula of the second intermetallic compound is Al3Fe. The weight ratio of the first intermetallic compound to the second intermetallic compound satisfies the inequality 〇. The advantage of the present invention is 'because no need For high-temperature homogenization treatment, Al6Fe is not converted into Al3Fe, and the intermetallic compound contained in the cold-rolled aluminum alloy sheet still satisfies the inequality 〇1.5.25', so that the surface color of the anodized aluminum alloy product is blue. thereby It provides users with a high-quality feeling to enhance the competitiveness of the product. In addition, since high-temperature homogenization is not required, it does not require a large amount of energy, and the time required for manufacturing can be shortened, thereby reducing the overall production cost. [Embodiment] According to an embodiment of the present invention, in order to make the anodized aluminum alloy product have a high-quality surface color (blue), in order to enhance the competitiveness of the product, the aluminum alloy must have the following Table 1 The ingredients shown in 201250009 are calculated by weight percentage (wt%). In addition, aluminum alloys are allowed to have unavoidable impurities. Table 1 composition Fe wt% 0.30-0.60

分 B wt% 0.0004〜0.0012 成分 A1 wt%Points B wt% 0.0004~0.0012 Ingredients A1 wt%

Ti 0.05 〜0.20Ti 0.05 ~ 0.20

Cu 0.05 〜0.2 0.01-0.03 不叮避 &lt;0.3 免之不 純物 ___L--—___Cu 0.05 ~ 0.2 0.01-0.03 Not evading &lt;0.3 Free of impurities ___L---___

'^ I 在本實施例之鋁合金中,Fe、Si、Ti、B、以及Cu之 含量係如以上表一所示,除了以上五種元素之外,鋁合金 尚包含有重量百分比小於〇·3 wt°/〇之不可避免之不純物,以 及由A1所組成之其他部分(殘部)。 此外,在上述本實施例之鋁合金之多種成分中,鐵與 矽之重量百分比滿足不等式(鐵wt%/矽再者, 上述之多種成分組成第一介金屬化合物與第'一介金屬化合 物,其中第一介金屬化合物之化學式為Al/e ’第二介金屬 化合物之化學式為Al3Fe;第一介金屬化合物為本實施例之 鋁合金的表面析出物,或本實施例之銘合金之析出相為 AleFe,藉此使得鋁合金經陽極處理後之表面色澤偏藍,以 提供使用者高表面質感之感受;另外’在本實施例中’上 述第一介金屬化合物與第二介金屬化合物之重量比更滿足 不等式 0.13&lt;(Al6Fe/Al3Fe)&lt;1.25。 前述鋁合金所含成分及含量限定之理由敘述如下。 在本實施例之鋁合金中,添加適量的Fe,其目的在於 201250009 提高鋁合金產品之強度,同時可形成上述化學式為Al6Fe 之第一介金屬化合物,藉此使得經陽極處理後之最終鋁合 金產品之表面色澤偏藍,進而提供使用者高表面質感之感 受。當以含量過低(低於0.30 wt%)時,則無法有效提供鋁 合金產品適當的強度。當Fe含量過高(高於0.6 wt%)時, 則鋁合金耐蝕性不佳,且表面質感亦偏暗。故在本發明中, Fe之§里較佳為〇 3〇 wt%至0.60 wt%。 在本貫施例之紹合金卡,添加適量的Si,其目的除可 提高鋁合金產品之強度外,同時亦可調整控制鋁合金之析 出相Al0Fe的形成,藉此使得如上所述之最終鋁合金產品 之表面色澤偏藍。當Si含量過低(低於〇.05 wt%)時,則鋁 合金產品中鋁之含量增加,造成整理生產成本的增加。當'^ I In the aluminum alloy of the present embodiment, the contents of Fe, Si, Ti, B, and Cu are as shown in Table 1 above, except for the above five elements, the aluminum alloy still contains a weight percentage less than 〇· 3 wt ° / 〇 inevitable impurities, and other parts of the A1 (residue). Further, in the various components of the aluminum alloy of the present embodiment, the weight percentage of iron and bismuth satisfies an inequality (iron wt%/矽, and the plurality of components described above constitute the first intermetallic compound and the first intermetallic compound, wherein The chemical formula of the first intermetallic compound is Al/e 'the chemical formula of the second intermetallic compound is Al3Fe; the first intermetallic compound is the surface precipitate of the aluminum alloy of the present embodiment, or the precipitated phase of the alloy of the present embodiment is AleFe, whereby the surface of the aluminum alloy after the anodization is blued to provide a feeling of high surface texture of the user; and 'in this embodiment' the weight ratio of the first intermetallic compound to the second intermetallic compound Further, the inequality 0.13 &lt;(Al6Fe/Al3Fe)&lt;1.25 is satisfied. The reason for the limitation of the components and contents of the aluminum alloy is as follows. In the aluminum alloy of the present embodiment, an appropriate amount of Fe is added, and the purpose is to increase the aluminum alloy in 201250009. The strength of the product can simultaneously form the first intermetallic compound of the above formula Al6Fe, thereby making the final aluminum alloy product after the anode treatment The surface is blue in color, which provides the user with a high surface texture. When the content is too low (less than 0.30 wt%), the aluminum alloy product cannot be effectively provided with an appropriate strength. When the Fe content is too high (above 0.6) When the wt%), the aluminum alloy has poor corrosion resistance and the surface texture is also dark. Therefore, in the present invention, Fe is preferably 〇3〇wt% to 0.60 wt%. The alloy card is added with an appropriate amount of Si for the purpose of improving the strength of the aluminum alloy product, and also adjusting the formation of the precipitation phase Al0Fe of the aluminum alloy, thereby making the surface color of the final aluminum alloy product as described above blue. When the Si content is too low (less than 〇.05 wt%), the aluminum content in the aluminum alloy product increases, resulting in an increase in the cost of finishing production.

Si含量過高(高於0.20 wt%)時,除有最終銘合金產品之表 面色澤偏黃之缺料,齡金之雜性亦不佳。故在本發 明中’ Si之含量較佳為〇 〇5 wt〇/〇至〇 2〇 wt〇/〇。 至於在本發明之鋁合金中添加適量的Ή,其目的在於 細化鋁合金中之晶粒。當Ti含量過低(低於〇 〇l wt%)時,、 將,致I呂合金產品中產生粗晶與混晶等情形,使得銘合金 產品經陽極處理後,表面產生帶狀條紋的缺陷。當Ti含量 過高(高於0.03 wt%)時,則容易產生粗大的AVn析出相, 進而使得鋁合金產品經陽極處理後,表面產生線狀條紋的 缺陷。故在本發明中,Ti之含量較佳為〇 〇1 wt%至〇 〇3 wt%。 在本實施例中,需於鋁合金中添加適量的B ,其目的 主要係用來細化鋁合金中之晶粒。當B含量過低(低於 201250009 0.0004 wt/〇)時’將導致鋁合金產品 情形,使㈣金產品二St I狀條紋的缺陷。當B含量過高(高於〇.〇〇12wt%) 口主易曰產生結團的™3粗大顆粒,進而使得鋁合金產 口面、”呈^極處理後產生線狀條紋的缺陷。故在本發明 中 B 之 3 里較佳為 〇 〇〇〇4 wt%至 0.0012 wt〇/〇。 ^至於在鋁合金中添加適量的Cu,其主要目的係用以提 冋鋁合金產品之強度,同時增加鋁合金產品之亮度。當Cu 含量過低(低於0.05 wt%)時’則效果不彰。當cu含量過高 (高於0.2 wt%)時,則鋁合金產品容易產生嚴重腐蝕。故在 本發明中’ Cu之含量較佳為〇 〇5 wt%至〇 2 wt〇/〇。 請參照第1圖,其係繪示製造鋁合金(鑄胚)之製程的 流程圖’用以製造上述之鋁合金。製造紹合金之製程1〇〇 係開始於步驟102 ’製備溶融紹合金。炼融紹合金包含有 實質等同於上述鋁合金之多個成分,亦即:0.30〜0.60 wt°/〇 之鐵、0.05〜0.20 wt%之石夕、0.01〜0.03 wt%之鈦、 0.0004〜0.0012 wt%之硼、〇.〇5〜0.2 wt%之銅、0.3 wt%以下 之不可避免之不純物、以及由鋁所組成之殘部。此外,鐵 與矽之重量百分比亦滿足不等式(鐵wt%/矽wt%)&gt;4。 完成步驟102之後,製造鋁合金之製程100繼續進行 步驟104,以預定速度澆鱗上述熔融鋁合金。並於澆鑄過 程中以預定水量提供冷卻水至熔融鋁合金,藉以形成鋁合 金。上述澆鑄之預定速度為每分鐘40 mm至每分鐘70 mm,而預定水量則為每小時200 m3至每小時300 m3。 而在完成步驟104之後,上述之多個成分於鋁合金中 201250009 組成第一介金屬化合物與第二介金屬化合物’其中第一介 ,金屬化合物之化學式為A^Fe’第二介金屬化合物之化學气 -為Alje。而經陽極處理之後,銘合金之表面可具雋偽藍^ 色澤。此外’上述第一介金屬化合物與該二介金屬化入物 之重量比亦滿足不等式O.UqA^e/A^eK1.25。 ° 請參照第2圖’其係繪示製造紹合金片材之製程的# 程圖,用以將上述之銘合金所組成之銘胚軋延成銥合金$ 材。在製造鋁合金片材之製程200中’首先進行步嵊202, 以製備鋁胚。其中’銘胚係由上述之紹合金所組戍,亦g I呂合金包含:0.30〜0.60 wt%之鐵、0.05〜0.20 wt%之石夕 0.01 〜0·03 wt%之鈦、0.0004〜0.0012 wt〇/❶之硼、0.0S〜〇 2 〇 之銅、0.3 wt%以下之不可避免之不純物、以及由lg所組成 之殘部。上述成分中之鐵與矽之重量百分比同樣滿足以上 所述之不等式(鐵〜%/矽wt%)&gt;4。而上述成分所紐成之 第一與第二介金屬化合物之化學式分別為Al6Fe與Ai3Fe, 其中第一介金屬化合物與第二介金屬化合物之重量比滿足 上述之不等式 〇.13&lt;(A16Fe/A13Fe)&lt;1.25。 接著進行步驟204 ’以於第一預定溫度軋延上述之鋁 胚,藉此獲得熱軋延鋁板。在步驟204之中,第一預定溫 度為500°C至350°C,且上述於第一預定溫度軋延紹胚之裁 減量為50%至80%。 在完成上述之步驟204之後,製造鋁合金片材之製程 200繼續進行步驟206,於室溫軋延上述之熱軋延紹板,藉 此獲得冷軋延鋁片’其中於室溫軋延熱軋延鋁板之裁減量 為 50%至 80%。 201250009 最後,製造鋁合金片材之製程200進行步驟2〇8,^ 於第二預定溫度對上述冷軋延鋁片進行退火製程,藉此 得鋁合金片材。上述第二預定溫度可為2〇〇^石Μ。。曰此獲 L至400 C,且 退火製程持續之時間可為1小時至12小時。 以下則以實際之實施例與比較例更具體地說明本發 明,惟本發明的範圍不受此些實施例之限制。° 製備紹合金板材 實施例 首先,於溫度740°C熔化鋁回收錠,以製備溶气紹人 金。調配上述熔融鋁合金之組成成分,使犋 :’ σ 乂评熔融鋁合金中 鐵所佔之重量百分比為〇.54wt%,石夕所佔之舌 百 比 0.06wt% ’而鈦所佔之重量百分比為〇.〇2 *''' uzwt/。’硼所佔之重When the Si content is too high (above 0.20 wt%), in addition to the lack of material in the surface of the final alloy product, the goldiness of the age is also poor. Therefore, the content of Si in the present invention is preferably from 〇 5 wt 〇 / 〇 to 〇 2 〇 wt 〇 / 〇. As for the addition of an appropriate amount of niobium to the aluminum alloy of the present invention, the purpose is to refine the crystal grains in the aluminum alloy. When the Ti content is too low (below 〇〇l wt%), it will cause coarse crystals and mixed crystals in the I-alloy product, so that the surface of the alloy will be strip-shaped after the anode treatment. . When the Ti content is too high (greater than 0.03 wt%), coarse AVN precipitates are easily generated, and the aluminum alloy product is subjected to anodization to cause defects in linear stripes on the surface. Therefore, in the present invention, the content of Ti is preferably from wt 1 wt% to 〇 〇 3 wt%. In this embodiment, an appropriate amount of B is added to the aluminum alloy for the purpose of refining the crystal grains in the aluminum alloy. When the B content is too low (below 201250009 0.0004 wt / 〇), it will lead to the case of aluminum alloy products, making the defects of (4) gold products two St I-like stripes. When the B content is too high (higher than 〇.〇〇12wt%), the mouth is easy to produce agglomerated TM3 coarse particles, which in turn causes the aluminum alloy to produce a defect in the surface of the mouth, which results in a linear stripe after treatment. In the present invention, B is preferably 〇〇〇〇4 wt% to 0.0012 wt〇/〇. ^ As for adding an appropriate amount of Cu to the aluminum alloy, the main purpose is to improve the strength of the aluminum alloy product. At the same time, the brightness of the aluminum alloy product is increased. When the Cu content is too low (less than 0.05 wt%), the effect is not good. When the cu content is too high (above 0.2 wt%), the aluminum alloy product is prone to severe corrosion. Therefore, in the present invention, the content of Cu is preferably from 〇〇5 wt% to 〇2 wt〇/〇. Please refer to Fig. 1, which is a flow chart showing the process for manufacturing an aluminum alloy (casting embryo). The above-mentioned aluminum alloy is manufactured. The process for manufacturing the alloy begins with the preparation of the molten alloy in step 102. The smelting alloy contains a plurality of components substantially equivalent to the above aluminum alloy, namely: 0.30~0.60 wt° / bismuth iron, 0.05~0.20 wt% of Shixi, 0.01~0.03 wt% of titanium, 0.0004~0.0012 wt% of boron, 〇5~0.2 wt% copper, 0.3 wt% or less unavoidable impurities, and a residue composed of aluminum. In addition, the weight percentage of iron and bismuth also satisfies the inequality (iron wt%/矽wt%)&gt; 4. After the step 102 is completed, the process for manufacturing the aluminum alloy 100 proceeds to step 104 to squash the molten aluminum alloy at a predetermined speed, and supplies cooling water to the molten aluminum alloy in a predetermined amount of water during the casting process, thereby forming an aluminum alloy. The casting speed is 40 mm per minute to 70 mm per minute, and the predetermined water volume is 200 m3 per hour to 300 m3 per hour. After completing step 104, the above components are first formed in the aluminum alloy 201250009. The intermetallic compound and the second intermetallic compound 'the first one, the chemical formula of the metal compound is A^Fe', the chemical gas of the second intermetallic compound is Alje. After the anodizing, the surface of the alloy can be pseudo-pseudo Blue^ color. In addition, the weight ratio of the first intermetallic compound to the dimetallated material also satisfies the inequality O.UqA^e/A^eK1.25. ° Please refer to Fig. 2 Shao He The process of the gold sheet is used to roll the inscription of the above-mentioned Ming alloy into a niobium alloy. In the process of manufacturing an aluminum alloy sheet 200, first step 202 is performed to prepare aluminum. Embryo. Among them, the 'Ming embryo is composed of the above-mentioned alloys, and the g Ilu alloy contains: 0.30~0.60 wt% of iron, 0.05~0.20 wt% of Shixi 0.01~0·03 wt% of titanium, 0.0004 ~0.0012 wt〇/❶ boron, 0.0S~〇2 〇 copper, 0.3 wt% or less unavoidable impurities, and residues consisting of lg. The weight percentage of iron and bismuth in the above components also satisfies the above inequality (iron ~%/矽wt%)&gt;4. The chemical formulas of the first and second intermetallic compounds formed by the above components are Al6Fe and Ai3Fe, respectively, wherein the weight ratio of the first intermetallic compound to the second intermetallic compound satisfies the above inequality 〇.13&lt;(A16Fe/A13Fe) ) &lt;1.25. Next, step 204' is performed to roll the aluminum preform described above at a first predetermined temperature, thereby obtaining a hot rolled aluminum plate. In step 204, the first predetermined temperature is from 500 ° C to 350 ° C, and the reduction in the above-described predetermined temperature is 50% to 80%. After the above step 204 is completed, the process for manufacturing the aluminum alloy sheet 200 is continued to proceed to step 206, and the hot rolled extension sheet is rolled at room temperature, thereby obtaining a cold rolled aluminum sheet, wherein the heat is rolled at room temperature. The reduction of rolled aluminum sheets is 50% to 80%. 201250009 Finally, the process for manufacturing an aluminum alloy sheet 200 is subjected to an annealing process of the cold rolled aluminum sheet at a second predetermined temperature in a step 2 to obtain an aluminum alloy sheet. The second predetermined temperature may be 2 〇〇^ Μ. . This is obtained from L to 400 C, and the annealing process can last from 1 hour to 12 hours. In the following, the present invention will be more specifically described by way of actual examples and comparative examples, but the scope of the invention is not limited by the examples. ° Preparation of the alloy sheet Example First, the aluminum recovery ingot was melted at a temperature of 740 ° C to prepare a dissolved gas. The composition of the above-mentioned molten aluminum alloy is adjusted so that the weight percentage of iron in the molten aluminum alloy is 〇.54wt%, and the proportion of the tongue occupied by Shixi is 0.06wt%' and the weight of titanium The percentage is 〇.〇2 *''' uzwt/. 'Bronze's weight

量百分比為0.0010 wt%,銅所佔之重眚X 王里曰分比為0.19 Wf/o ’不可避免之不純物所佔之重量百分比為,其 餘則為銘。此外,上述鐵與石夕之重量百分比等於9。 以每分鐘大於40 mm之速度洗鱗上述炫融紹合金,並 提供每小時300立方公尺之冷卻水至熔融鋁合金,以產出 由紹合金組成之祕。在此-!呂胚中’上述成分於銘合金 中組成化學式為Al0Fe之第一介金屬化合物,以及化學式 為Alje之第二介金屬化合物。此外,上述第一介金屬化 合物與第二介金屬化合物之重量比為125。 隨後於500°C之第-預定溫度開始軋延上述紹胚,以 獲知·熱軋延鋁板,平均裁減量為65%(共道次軋延,每 道次都相㈤)。接著於室溫軋延上述熱軋延㉝板,以獲得冷 軋延銘片’累積多道次之軋延後,裁減量為8G%。然後將 12 201250009 此^軋延糾置放在綱。c之第二預定 小時之退火製程’以獲得铭合金片 片材進行陽極處理,以獲得最終之銘合边 上述最終之鋁合金產品之主 : 1976 (L*a*b”色差公切冑祈出相以及根據CIE 中。 式所以之色差值係列示以下表二 比較例一 二與製程條件裝備比較例-之 合金產口。w 處以獲得比較例-之最終銘 鐵與石夕的重曰與上,實施例之差異在於 ,實施例之 例二之鐵二==.=和一’而比較 程中之紹齡要㈣成為析^可知’在比鮮卜之中’製 處理後,最終紹合金產=:面,相,且其成品經陽極 關之析出相與色差值請二面表色r佳’呈濃黃色,相 比較例二 材,:二二::把例中之步驟製備比較例二之銘合金片 苴 /丁 °二理’以獲得比較例二之最終鋁合金產品, 命比較例二與實施例之合金成分係完全相同。比較例二 :上述實施例之差異在於鑄造參數不同,在實施例之中, 係以每分鐘大於4〇 mm之速度澆鑄熔融鋁合金,而在比較 例一之中,對應之鑄造參數為每分鐘小於40 mm;此外, 經分析後可知,在比較例二之中,製程中之鋁胚主要相組 成為Alje相,且冶金軋延之成品經陽極處理後,最終鋁 13 201250009 合金產品之表面色澤不佳,偏黃色,相關之析出相與色差 值列示於以下表二中。 比較例三 以上述實施例之中的步驟與製程條件製備比較例三之 鋁合金片材,並進行陽極處理,以獲得比較例三之最終鋁 合金產品,其中比較例三與實施例之合金成分係完全相 同;比較例三與上述實施例之差異在於,實施例三於製程 中所獲得之鋁胚在尚未進行上述之熱軋延或冷軋延製程之 前,先進行高溫均質化處理。此外,經分析後可知,在比 較例三之中,製程中之鋁胚主要相組成為Al3Fe相,且冶 金軋延之成品經陽極處理後,最終鋁合金產品之表面色澤 不佳,偏黃色,相關之析出相與色差值列示於以下表二中。 表二 主要析出相 色差值 色澤 L* a* b* 實施例 Al6Fe 86 -0.47 0.2 偏藍 比較例一 a -Al-Fe-Si 84 -0.47 2.55 濃黃 比較例二 Al3Fe 86 -0.41 1.3 偏黃 比較例三 Al3Fe 86 -0.38 1.1 偏黃 在CIE 1976 (L*a*b*)色差公式中,L*之色差值係規範 產品表面色澤的明亮度,數值越大表示色澤越明亮,反之 則越黑暗。而a*之色差值係用以規範產品表面色澤偏紅或 偏綠,數值越大表示色澤越偏向紅色,反之則越偏向綠色。 至於b*之色差值係用以規範產品表面色澤偏黃或偏藍,數 值越大表示色澤越偏向黃色,反之則越偏向藍色。 201250009 根據以上表二所示之内容可知,在比較例一中,由於 鐵與矽的重量百分比小於2,使得鋁胚之主要析出相為α -Al-Fe-Si相,進而使得比較例一之最終鋁合金產品表面色 澤之b*色差值(2.55)遠大於實施例之最終紹合金產品表面 色澤的b*色差值(0.2),故比較例一之最終鋁合金產品表面 色澤過度偏黃。 而在比較例二之中,由於製程參數的不同,比較例二 之最終鋁合金產品表面色澤之b*色差值(1.3)仍遠大於實施 例之最終鋁合金產品表面色澤的b*色差值(0.2),故比較例 二之最終鋁合金產品表面色澤仍然偏黃。 至於在比較例三之中,由於在熱軋延前,先對鋁胚進 行高溫均質化處理,故使得主要析出相為Al3Fe相。因此, 在進行陽極處理之後,比較例三之最終鋁合金產品表面色 澤之b*色差值(1.1)仍遠大於實施例之最終鋁合金產品表面 色澤的b*色差值(0.2),比較例三之最終鋁合金產品表面色 澤依然偏黃。 综合以上所述可知,透過控制鋁合金中之合金成分、 控制製造鋁合金的製程參數以及控制鋁合金片材製程中之 熱軋裁減量與冷軋裁減量’可使得最終經陽極處理之鋁合 金片材之b*色差值小於0.2,亦即最終之鋁合金產品之表 面色澤能夠給予使用者一種色澤偏藍且高質感的感受。此 外,以上所述之本發明之製程具體地係可應用於如1〇⑻系 之鋁陽極處理材之中,以提升產品本身之競爭力。 雖然本發明已以實施方式揭露如上,然其並非用以限 定本發明’任何熟習此技藝者’在不脫離本發明之精神和 201250009 範圍内,當可作各種之更動與潤飾,因此本發明之保護範 圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為了能夠對本發明之觀點有較佳之理解,請參照上述 之詳細說明並配合相應之圖式。要強調的是,根據工業之 標準常規,附圖中之各種特徵並未依比例繪示。事實上, 為清楚說明上述實施例,可任意地放大或縮小各種特徵之 尺寸。相關圖式内容說明如下: 第1圖係繪示根據本發明之一實施例之製造鋁合金鑄 胚之製程的流程圖。 第2圖係繪示根據本發明之一實施例之製造鋁合金片 材之製程的流程圖。 【主要元件符號說明】 100 :製造鋁合金之製程 102 :步驟 104 :步驟 200 :製造鋁合金片材之製程 202 :步驟 204 :步驟 206 :步驟 208 :步驟 16The percentage of the amount is 0.0010 wt%, and the weight of copper is 10.19 Wf/o. The percentage of weight of the unavoidable impurities is the same as that of the impurities. In addition, the weight percentage of the above iron and Shi Xi is equal to 9. The above-mentioned dazzling alloy is washed at a speed of more than 40 mm per minute, and 300 cubic meters of cooling water per hour is supplied to the molten aluminum alloy to produce the secret of the alloy. here-! In the above-mentioned component Yuming alloy, the first intermetallic compound of the formula Al0Fe and the second intermetallic compound of the formula Alje are formed. Further, the weight ratio of the first intermetallic compound to the second intermetallic compound is 125. Subsequently, the above-mentioned blank was started to be rolled at the first-predetermined temperature of 500 ° C to obtain a hot-rolled aluminum plate, and the average reduction was 65% (co-roll rolling, phase (5) per pass). Then, the above-mentioned hot rolled sheet 33 was rolled at room temperature to obtain a cold rolled sheet. After a cumulative multi-pass rolling, the amount of cut was 8 G%. Then put 12 201250009 this ^ rolling delay correction on the outline. The second predetermined hour of the annealing process of 'c" obtains the alloy sheet of the alloy for anodizing to obtain the final title of the final aluminum alloy product: 1976 (L*a*b) color difference cut The phase difference and the color difference series according to CIE are shown in the following Table 2 Comparative Example 1 and the process conditions equipment comparison example - the alloy production port. w to obtain the comparative example - the final Ming and Shi Xi's heavy 曰The difference between the above and the embodiment is that the iron of the second example of the embodiment is two ==.= and one', and the age of the comparison process is required to be (4) become the analysis of the product. Production =: noodles, phase, and the phase difference between the phase and the color of the finished product through the anode. Please look at the two sides of the color, the color is good, the color is thicker, compared with the second sample, the second two: the comparison of the steps in the example Example 2: Ming alloy sheet 苴 / 丁°二理' to obtain the final aluminum alloy product of Comparative Example 2, the comparative example 2 is identical to the alloy composition of the example. Comparative Example 2: The difference of the above embodiment lies in the casting parameters Different, in the embodiment, it is greater than 4〇mm per minute The molten aluminum alloy was cast at a speed, and in the first comparative example, the corresponding casting parameter was less than 40 mm per minute; in addition, after analysis, it was found that in the second comparative example, the main phase composition of the aluminum embryo in the process was Alje phase. After the anode of the metallurgical rolled product is subjected to anodization, the surface color of the final aluminum 13 201250009 alloy product is poor and yellowish, and the relevant precipitation phase and color difference are listed in the following Table 2. Comparative Example 3 is the above embodiment. The aluminum alloy sheet of Comparative Example 3 was prepared and subjected to anodization to obtain the final aluminum alloy product of Comparative Example 3, wherein Comparative Example 3 and the alloy composition of the Example were identical; Comparative Example 3 The difference from the above embodiment is that the aluminum embryo obtained in the third embodiment is subjected to high-temperature homogenization treatment before the hot rolling or cold rolling process described above is performed. Further, after analysis, it is known that In the third example, the main phase composition of the aluminum embryo in the process is Al3Fe phase, and the surface of the metallurgical rolled product is anodized, and the surface color of the final aluminum alloy product is not good. Yellow, the relevant precipitation phase and color difference are listed in the following Table 2. Table 2 Main precipitation color difference color color L* a* b* Example Al6Fe 86 -0.47 0.2 Blue contrast example a -Al-Fe -Si 84 -0.47 2.55 Concentrated yellow Comparative Example 2 Al3Fe 86 -0.41 1.3 Yellowish Comparative Example 3 Al3Fe 86 -0.38 1.1 Yellowish In the CIE 1976 (L*a*b*) color difference formula, the color difference of L* Standardize the brightness of the surface color of the product. The higher the value, the brighter the color, and the darker the color. The difference in color of a* is used to regulate the surface color of the product to be reddish or greenish. The larger the value, the more the color is red. Otherwise, the more green, the more. As for the color difference of b*, it is used to regulate the yellow or blue color of the surface of the product. The larger the value, the more the color is yellow, and the more the blue color. 201250009 According to the contents shown in Table 2 above, in Comparative Example 1, since the weight percentage of iron and bismuth is less than 2, the main precipitate phase of the aluminum embryo is the α-Al-Fe-Si phase, thereby making the comparative example 1 The b* color difference (2.55) of the surface color of the final aluminum alloy product is much larger than the b* color difference (0.2) of the surface color of the final alloy product of the embodiment, so the surface color of the final aluminum alloy product of Comparative Example 1 is excessively yellowish. . In Comparative Example 2, the b* color difference (1.3) of the surface color of the final aluminum alloy product of Comparative Example 2 is still much larger than the b* color difference of the surface color of the final aluminum alloy product of the example in the second embodiment due to the difference in process parameters. The value (0.2), so the surface color of the final aluminum alloy product of Comparative Example 2 is still yellowish. As for the third comparative example, since the aluminum embryo is subjected to high-temperature homogenization treatment before the hot rolling, the main precipitate phase is the Al3Fe phase. Therefore, after the anodizing treatment, the b* color difference (1.1) of the surface color of the final aluminum alloy product of Comparative Example 3 is still much larger than the b* color difference (0.2) of the surface color of the final aluminum alloy product of the embodiment, and comparison is made. The surface color of the final aluminum alloy product of Example 3 is still yellowish. In summary, as described above, the final anodized aluminum alloy can be obtained by controlling the alloy composition in the aluminum alloy, controlling the process parameters for manufacturing the aluminum alloy, and controlling the hot rolling reduction and the cold rolling reduction in the aluminum alloy sheet process. The b* color difference of the sheet is less than 0.2, that is, the surface color of the final aluminum alloy product can give the user a feeling of bluish color and high texture. Further, the process of the present invention described above is specifically applicable to an aluminum anode treatment material such as a 1 〇 (8) system to enhance the competitiveness of the product itself. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and the invention may be modified and modified without departing from the spirit of the invention and 201250009. The scope of protection is subject to the definition of the scope of the patent application attached. BRIEF DESCRIPTION OF THE DRAWINGS In order to provide a better understanding of the present invention, reference is made to the above detailed description and the accompanying drawings. It is emphasized that the various features in the drawings are not drawn to scale in accordance with the standard of the industry. In fact, the dimensions of the various features may be arbitrarily enlarged or reduced in order to clearly illustrate the above embodiments. The related drawings are described as follows: Fig. 1 is a flow chart showing a process for manufacturing an aluminum alloy casting according to an embodiment of the present invention. Figure 2 is a flow chart showing the process of manufacturing an aluminum alloy sheet according to an embodiment of the present invention. [Main component symbol description] 100: Process for manufacturing aluminum alloy 102: Step 104: Step 200: Process for manufacturing aluminum alloy sheet 202: Step 204: Step 206: Step 208: Step 16

Claims (1)

201250009 七、申請專利範圍: 1. 一種鋁合金,包含以下以重量百分比(wt%)計之複 數個成分,其中該些成分為:0.30〜0.60 wt%之鐵、〇.〇5〜0.20 wt%之矽、0.01 〜0.03 wt%之鈦、0.0004〜0.0012 wt%之硼、 0.05〜0.2 wt%之銅、0.3 wt%以下之不可避免之不純物、以 及由鋁所組成之殘部; 其中該鐵與該矽之重量百分比滿足不等式4&lt;(鐵wt〇/0/ 石夕wt%); 其中該些成分組成一第一介金屬化合物與一第二介金 屬化合物,其中該第一介金屬化合物之化學式為Al6Fe,該 第二介金屬化合物之化學式為Alje,且該第一介金屬化合 物與該第二介金屬化合物之重量比滿足不等式 0.13&lt;(Al6Fe/Al3Fe)&lt;1.25。 2. —種製造鋁合金之製程,包含: 製備一熔融鋁合金,其中該熔融鋁合金包含以下以重 量百分比(wt%)計之複數個成分,該些成分為:〇3〇〜〇6〇 wt0/。之鐵、0.05〜0.20 wt% 之石夕、0.01 〜〇.〇3 wt% 之欽、 0.0004〜0.0012 wt%之硼、0.05〜0.2 wt%之銅、〇 3 wt%以下 之不可避免之不純物、以及由鋁所組成之殘部,該鐵與該 矽之重量百分比滿足不等式4&lt;(鐵树%/矽wt%);以及 以一預定速度澆鑄該熔融鋁合金,並於澆鑄過程中以 一預定水量提供一冷卻水至該熔融鋁合金,藉以形成一銘 合金,其中該預定速度為每分鐘40公厘至每分鐘公厘, 該預定水量為每小時200立方公尺至每小時3〇〇立方公尺; 17 201250009 其中該些成分於該I呂合金中組成一第一介金屬化合物 與一第二介金屬化合物,其中該第一介金屬化合物之化學 式為Al6Fe,該第二介金屬化合物之化學式為Al3Fe,且該 第一介金屬化合物與該第二介金屬化合物之重量比滿足不 等式 0.13&lt;(Al6Fe/Al3Fe)&lt;1.25。 3. —種製造鋁合金片材之製程,包含: 製備一鋁胚,其中該鋁胚係由一鋁合金所組成,該鋁 合金包含以下以重量百分比(wt%)計之複數個成分,該些成 分為:0.30〜0.60 wt%之鐵、0.05〜0.20 wt%之矽、0.01 〜0.03 wt%之鈦、0.0004〜0.0012 wt%之硼、0.05〜0.2 wt%之銅、0.3 wt%以下之不可避免之不純物、以及由鋁所組成之殘部; 其中該鐵與該矽之重量百分比滿足不等式(鐵wt%/矽 wt%)〉4 ;其中該些成分組成一第一介金屬化合物與一第二 介金屬化合物,該第一介金屬化合物之化學式為Al6Fe,該 第二介金屬化合物之化學式為Al3Fe,且該第一介金屬化合 物與該第二介金屬化合物之重量比滿足不等式 0.13&lt;(Al6Fe/Al3Fe)&lt;1.25 ; 於一第一預定溫度軋延該鋁胚,以獲得一熱軋延鋁 板,其中該第一預定溫度為350°C至500°C,於該第一預定 溫度軋延該鋁胚之裁減量為50%至80% ; 於室溫軋延該熱軋延鋁板,以獲得一冷軋延鋁片,於 室溫軋延該熱軋延鋁板之裁減量為50%至80% ;以及 於一第二預定溫度對該冷軋延鋁片進行一退火製 程,以獲得一鋁合金片材,其中該第二預定溫度為200°C 201250009 至400°C,該退火製 程持續 之時間為1小時至12小時 4.如胡求項3所述之製造鋁合金片材之製程,更包含: 於該退火製程之後’對該銘合金片材進行陽極處理, 使得該鋁合金片材以CIE I976 (L*a*b*)色差公式計算所得 之b*色差值小於〇·2。201250009 VII. Patent application scope: 1. An aluminum alloy comprising the following components in weight percentage (wt%), wherein the components are: 0.30~0.60 wt% of iron, 〇.〇5~0.20 wt% Thereafter, 0.01 to 0.03 wt% of titanium, 0.0004 to 0.0012 wt% of boron, 0.05 to 0.2 wt% of copper, 0.3 wt% or less of unavoidable impurities, and a residue composed of aluminum; wherein the iron and the The weight percentage of ruthenium satisfies inequality 4 &lt; (iron wt 〇 / 0 / Shi Xi wt%); wherein the components constitute a first intermetallic compound and a second intermetallic compound, wherein the chemical formula of the first intermetallic compound is Al6Fe, the chemical formula of the second intermetallic compound is Alje, and the weight ratio of the first intermetallic compound to the second intermetallic compound satisfies the inequality 0.13 &lt; (Al6Fe/Al3Fe) &lt; 1.25. 2. A process for manufacturing an aluminum alloy, comprising: preparing a molten aluminum alloy, wherein the molten aluminum alloy comprises the following plurality of components in weight percent (wt%), the components are: 〇3〇~〇6〇 Wt0/. Iron, 0.05~0.20 wt% of Shixi, 0.01~〇.〇3 wt% of Qin, 0.0004~0.0012 wt% of boron, 0.05~0.2 wt% of copper, 〇3 wt% or less of unavoidable impurities, And a residue composed of aluminum, the weight percentage of the iron and the crucible satisfying inequality 4 &lt; (iron tree % / 矽 wt%); and casting the molten aluminum alloy at a predetermined speed, and a predetermined amount of water during the casting process Providing a cooling water to the molten aluminum alloy to form an alloy, wherein the predetermined speed is from 40 mm per minute to minutes, and the predetermined amount of water is from 200 cubic meters per hour to 3 cubic meters per hour. 17 201250009 wherein the components form a first intermetallic compound and a second intermetallic compound in the Ilu alloy, wherein the chemical formula of the first intermetallic compound is Al6Fe, and the chemical formula of the second intermetallic compound is Al3Fe, and the weight ratio of the first intermetallic compound to the second intermetallic compound satisfies the inequality 0.13 &lt; (Al6Fe/Al3Fe) &lt; 1.25. 3. A process for producing an aluminum alloy sheet, comprising: preparing an aluminum embryo, wherein the aluminum germ system is composed of an aluminum alloy, the aluminum alloy comprising the following plurality of components in weight percent (wt%), Some components are: 0.30~0.60 wt% iron, 0.05~0.20 wt% bismuth, 0.01~0.03 wt% titanium, 0.0004~0.0012 wt% boron, 0.05~0.2 wt% copper, 0.3 wt% or less. An impurity that is avoided, and a residue composed of aluminum; wherein the weight percentage of the iron and the crucible satisfies an inequality (iron wt%/矽wt%)>4; wherein the components constitute a first intermetallic compound and a second a metal intermetallic compound, the chemical formula of the first intermetallic compound is Al6Fe, the chemical formula of the second intermetallic compound is Al3Fe, and the weight ratio of the first intermetallic compound to the second intermetallic compound satisfies the inequality 0.13&lt;(Al6Fe) /Al3Fe)&lt;1.25; rolling the aluminum blank at a first predetermined temperature to obtain a hot rolled aluminum plate, wherein the first predetermined temperature is 350 ° C to 500 ° C, and rolling at the first predetermined temperature The aluminum embryo is cut by 50% to 80%; rolling at room temperature Rolling the aluminum sheet to obtain a cold rolled aluminum sheet, rolling the hot rolled aluminum sheet at room temperature by 50% to 80%; and subjecting the cold rolled aluminum sheet to a second predetermined temperature An annealing process to obtain an aluminum alloy sheet, wherein the second predetermined temperature is 200 ° C 201250009 to 400 ° C, and the annealing process lasts for 1 hour to 12 hours. 4. As described in Hu. The manufacturing process of the aluminum alloy sheet further comprises: after the annealing process, the anode alloy sheet is anodized so that the aluminum alloy sheet is calculated by the CIE I976 (L*a*b*) color difference formula. *The color difference is less than 〇·2.
TW100120207A 2011-06-09 2011-06-09 Aluminium alloy, manufacturing process thereof and aluminium alloy sheet manufacturing process TWI413696B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100120207A TWI413696B (en) 2011-06-09 2011-06-09 Aluminium alloy, manufacturing process thereof and aluminium alloy sheet manufacturing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100120207A TWI413696B (en) 2011-06-09 2011-06-09 Aluminium alloy, manufacturing process thereof and aluminium alloy sheet manufacturing process

Publications (2)

Publication Number Publication Date
TW201250009A true TW201250009A (en) 2012-12-16
TWI413696B TWI413696B (en) 2013-11-01

Family

ID=48139157

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100120207A TWI413696B (en) 2011-06-09 2011-06-09 Aluminium alloy, manufacturing process thereof and aluminium alloy sheet manufacturing process

Country Status (1)

Country Link
TW (1) TWI413696B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI565809B (en) * 2015-04-15 2017-01-11 中國鋼鐵股份有限公司 Method for manufacturing aluminum alloy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0971831A (en) * 1995-09-01 1997-03-18 Sky Alum Co Ltd Gray-colored aluminum alloy sheet little in yellowish and reddish color tone after anodic oxidation treatment and its production
JP3830301B2 (en) * 1999-03-31 2006-10-04 株式会社神戸製鋼所 Aluminum alloy plate and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI565809B (en) * 2015-04-15 2017-01-11 中國鋼鐵股份有限公司 Method for manufacturing aluminum alloy

Also Published As

Publication number Publication date
TWI413696B (en) 2013-11-01

Similar Documents

Publication Publication Date Title
JP7051700B2 (en) Aluminum alloy with high strength and aesthetic appeal
CN103834836B (en) A kind of die casting reflectal and production method thereof
CN105189795B (en) Aluminum alloy plate having high-strength alumite coating film for electronic equipment frame and manufacturing method of aluminum alloy plate
CN107805746B (en) A kind of 5005H34 aluminum alloy plate materials and its production method
CN104372207B (en) A kind of soldering 4004 aluminium alloys
CN108642344B (en) Preparation method of aluminum alloy for aerosol bottle cap
CN106011533B (en) A kind of fastness simulating golden colour Cu alloy material and preparation method thereof
JPS6035424B2 (en) Manufacturing method of aluminum alloy plate for drawing forming
CN107338375A (en) A kind of 6 line aluminium alloys and its processing method
WO2021070890A1 (en) Aluminum alloy material
CN109554591B (en) 5-series alloy plate strip for card support and manufacturing method thereof
TW201250009A (en) Aluminium alloy, manufacturing process thereof and aluminium alloy sheet manufacturing process
CN105803275A (en) Aluminum alloy sheet material for thin ring-pull can cover and preparation method
JP6857535B2 (en) High-strength aluminum alloy plate with excellent formability, bendability and dent resistance and its manufacturing method
JPS58126967A (en) Manufacture of hard aluminum alloy plate having low directional property
TWI464276B (en) Aluminum-magnesium alloy sheet for anode and method of making the same
JPS5918469B2 (en) Method for producing aluminum alloy plate with excellent bright alumite properties and strength
TWI565809B (en) Method for manufacturing aluminum alloy
CN114700366B (en) Al-Mg alloy thin plate and rolling method for reducing earing rate of Al-Mg alloy thin plate
TWI683016B (en) Method for manufacturing aluminum alloy sheet
TW201606086A (en) High surface quality aluminum alloy sheet and fabricating method thereof
JPH0387329A (en) Aluminum alloy material for baking finish and its manufacture
WO2021070889A1 (en) Aluminum alloy material
TWI463017B (en) Enamel excellent high-forming cold-rolled enamel steel
JP3305517B2 (en) Method for producing colored aluminum alloy, aluminum alloy material, and aluminum alloy material having reddish milky white anodic oxide film

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees