TW201248908A - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device Download PDF

Info

Publication number
TW201248908A
TW201248908A TW100117625A TW100117625A TW201248908A TW 201248908 A TW201248908 A TW 201248908A TW 100117625 A TW100117625 A TW 100117625A TW 100117625 A TW100117625 A TW 100117625A TW 201248908 A TW201248908 A TW 201248908A
Authority
TW
Taiwan
Prior art keywords
layer
type semiconductor
semiconductor layer
doped region
electrode
Prior art date
Application number
TW100117625A
Other languages
Chinese (zh)
Other versions
TWI462329B (en
Inventor
Chia-Hung Huang
Shih-Cheng Huang
Po-Min Tu
Shun-Kuei Yang
Original Assignee
Advanced Optoelectronic Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Optoelectronic Tech filed Critical Advanced Optoelectronic Tech
Publication of TW201248908A publication Critical patent/TW201248908A/en
Application granted granted Critical
Publication of TWI462329B publication Critical patent/TWI462329B/en

Links

Abstract

The present invention relates to a semiconductor light emitting device including a substrate, a first-type semiconductor layer, an active layer and a second-type semiconductor layer successively formed on the substrate. The active layer partly covers the first-type semiconductor layer. A first electrode is arranged on an exposed area of the first-type semiconductor layer uncovered by the active layer. The first-type semiconductor layer includes a first doped section, a second doped section and a third doped section aligned along a direction away from the first electrode. The first doped section is below the first electrode. The second doped section is adjacent to the first doped section and sandwiched between the first and second doped sections. The doped concentration of the first doped section is lower than that of the second doped section. The doped concentration of the second doped section is lower than that of the third doped section.

Description

201248908 六、發明說明: 【發明所屬之技術領域】 [0001]本發明涉及一種半導體發光元件,尤其係一種發光二極 體元件。 【先前技術·】 [〇〇〇2]採用半導體材料製作的發光二極體(led,Light Emitting Diode) 以其 亮度高 、工作 電壓低 、功耗小 、易與 積體電路匹配、驅動簡單、壽命長等優點,從而可作為 光源而廣泛應用於照明領域。 [0003]參見圖1,發光二極體20通常包括絕緣基底21、N型半導 體層22、活性層23、P型半導體層24、N電極25和?電極 26。所述N型半導體層22形成在絕緣基底21上,所述活性 層23形成在N型半導體層22上,所述p型半導體層24形成 在活性層23上。所述N型半導體層22具有—未被活性層23 和P型半導體層24覆蓋的暴露部分,所述N電極25為一 n接 觸墊(N-contact pad)且設置在所述暴露部分上。所述 P電極26為一P接觸塾(p_c〇ntact pa(j),其設置在p型 半導體層24上且在水平方向上相對遠離n電極25。 [⑻04]根據電流優先走最短路徑的特性,當向發光二極體2〇施 加電壓時’ N電極25與P電極26之間產生的電流(圖1箭頭 所示)容易集中在水平方向上距離N電極25相對較近的NS 半導體區域部分,進而向上通過活性層23、P型半導體層 24抵達P電極26。從而使得相對靠近N電極25的活性層區 域有較大電流經過,而相對遠離N電極25的活性層區域沒 有被充分利用,導致整個發光二極體2〇的電流密度分佈 100117625 表單編號A0101 第4頁/共16頁 1002029613-0 201248908 [0005] [0006] [0007]201248908 VI. Description of the Invention: [Technical Field of the Invention] [0001] The present invention relates to a semiconductor light-emitting element, and more particularly to a light-emitting diode element. [Prior Art·] [〇〇〇2] LED (Light Emitting Diode) made of semiconductor material has high brightness, low operating voltage, low power consumption, easy matching with integrated circuits, and simple driving. It has the advantages of long life and thus can be widely used as a light source in the field of illumination. Referring to Fig. 1, a light-emitting diode 20 generally includes an insulating substrate 21, an N-type semiconductor layer 22, an active layer 23, a P-type semiconductor layer 24, an N-electrode 25, and ? Electrode 26. The N-type semiconductor layer 22 is formed on an insulating substrate 21 formed on an N-type semiconductor layer 22, and the p-type semiconductor layer 24 is formed on the active layer 23. The N-type semiconductor layer 22 has an exposed portion not covered by the active layer 23 and the P-type semiconductor layer 24, and the N-electrode 25 is an n-contact pad and is disposed on the exposed portion. The P electrode 26 is a P-contact 塾 (p_c〇ntact pa(j) which is disposed on the p-type semiconductor layer 24 and is relatively far away from the n-electrode 25 in the horizontal direction. [(8)04] Characteristics of the shortest path according to current priority When a voltage is applied to the light-emitting diode 2', a current generated between the N electrode 25 and the P electrode 26 (indicated by an arrow in FIG. 1) tends to concentrate on a portion of the NS semiconductor region which is relatively close to the N electrode 25 in the horizontal direction. And further, it reaches the P electrode 26 upward through the active layer 23 and the P-type semiconductor layer 24. Thus, a relatively large current flows through the active layer region relatively close to the N electrode 25, and the active layer region relatively far from the N electrode 25 is not fully utilized. Current density distribution resulting in 2 整个 of the entire light-emitting diode 100117625 Form No. A0101 Page 4 / Total 16 Page 1002029613-0 201248908 [0005] [0006] [0007]

[0008] 不均、發光效率較低。 有繁於此,有必要提供一種電流密度分佈均勻、發光效 率佳的半導體發光元件。 【發明内容】 以下將以實施例說明一種電流密度分佈均勻、發光效率 佳的半導體發光元件。 一種半導體發光元件,其包括沿水平方向設置的基底、 以及沿豎直方向由下而上依次疊設在基底上的第一型半 導體層、發光層及第二型半導體層,該發光層局部覆蓋 第一型半導體層,該第一型半導體層未被發光層覆蓋的 區域設置有第一電極,該第一型半導體層包括第一摻雜 區、第二摻雜區及第三摻雜區,該第一摻雜區位於第一 電極下方,該第二摻雜區、第三摻雜區沿遠離第一電極 的水平方向依次排列,該第二摻雜區與第一摻雜區相鄰 設置,該第三摻雜區與第二摻雜區相鄰設置、且該第二 摻雜區將第一摻雜區與第三掺雜區隔離開,該第一摻雜 區的摻雜濃度低於第二摻雜區,且第二摻雜區的摻雜濃 度低於第三摻雜區。 相較於先前技術,所述半導體發光元件的半導體層具有 複數個不同摻雜濃度的摻雜區域,並且,該複數個摻雜 區域中距離電極越遠的摻雜區域摻雜濃度越高,以使距 離電極越遠的摻雜區域電阻越小,從而平衡從電極經由 各摻雜區域到達發光層的各電流路徑的電阻值大小,進 而達到平均電流分佈、提高發光效率的效果。 100117625 表單編號A0101 第5頁/共16頁 1002029613-0 201248908 【實施方式】 [0009]請參見圖2,本發明第一實施例提供的半導體“ 包括沿水平方向(圖示y方向)設置的美發光疋件1 〇 土低Π、緩衝 第一型半導體層13、發光層14、第二型半導體層嘈12、 —電極16及第二電極17。該緩衝層12、第一 15、第 13、發光層14及第二型半導體層15沿软 ^半導體層 屬^方向(圖__ 向)依次疊設在基底11上。 181不X方 [0010] 碳化矽(Sic)等絕緣材料 石基底。 不貫施例中 i底11為藍寶 [0011] 該缓衝層12形成在基底11上,用於降低基底 生長的第一型半導體層13之間的晶格差異。 衝層12也可根據設計需求省略掉。 11與後續待 當然,該緩 [0012] 該第一型半導體層13形成在緩衝層12上、並具有 發光層14覆蓋的暴露部分。該第一型半導體層1 未被 πι-ν族化合物或ιι-νι族化合物。且牌+丄3可為 體在本實施 該第一型半導體層13可為具有摻雜的氮化鎵半導』中, 更進一步地,在本實施例中,該第—型半導體層層。 摻雜N型氮化鎵半導體層。 13為發 [0013] 100117625 該第一型半導體層13包括第一摻雜區13〇、第二 132及第三摻雜區134。該第—抢 〜操雜區 得雜區13〇、筮— 132及第三摻雜區134沿遠離楚 *〜捧雜區 電極16的水平大 示y方向’該y方向垂直於所述 丁不向(圖 义x方向)依次排列“ 例中’該第一摻雜區130用於承栽 J本實施 '戰第—電極16。分& 雜區130的推雜》農度低於第二捧雜 、第一推 表單編號A0101 第6頁/共16頁、區132,該第二摻雜區 1002029613-0 201248908 [0014] [0015]Ο [0016] [0017]Ο [0018] [0019] [0020] ^與第—摻雜區130相鄰並將第一摻雜區ΐ3〇與第三摻 摻^區^離開且第二換雜區132的推雜濃度低於第三 該發光層14形成在第—型半導體層13上、並局部覆蓋該 第型半導體層13。本實施例中,該發光層14為多量子 畔發光層。 該第二型半導體層丨5形成在發光層14上。該第二型半導 體層15可為IU_V族化合物或u_vm化合物。具體在本 實施例中,該第二型半導體層15可為氮化鎵半導趙層。 更進步地,在本實施例中,該第二型半導體層15為?型 氮化鎵半導體層。 該mi6形成在第—型半導體層13的、未被發光層 14覆盍的暴露部分。該第—電極16與第—型半導體層13 形成電接觸。 該第二電極17形成在第二型半導體層15上,並與該第二 型半導體層15形成電接觸。 由於第一#雜區130、第二摻雜區132及第三摻雜區134 的不同推雜濃度,使得: 1.紅由第-摻雜區丨则達發*層丨4的電流所經過的路徑 最短’具有最低_濃度的第-摻雜區130内載流子數目 最少’從而該第—摻雜區130的阻抗最大; 2·經由第二摻㈣132到達發光層14的電流所經過的路徑 較長具有較'^摻雜濃度的第二摻雜區132内載流子數目 100117625 表單編號A0101 第7頁/共16 頁 1002029613-0 201248908 較多 ’從而該第二摻雜區 132的阻抗比第一摻雜區13〇小 [0021] 3.經由第三摻雜區13 n a ^ 丨達發光層14的電流所經過的路徑 s 〃㈤摻雜濃度的第三摻雜區134内載流子數目 最多’從而該第三摻雜區134的阻抗最小。 [0022] 上述設計使得電流傳輪轉較短的雜區搭配較高的阻 抗,而電流傳輸距離較長的摻雜區搭配較低的阻抗。如 此’便可平衡從第-電極16經由各換雜區路徑到達發光 層14的電阻值,進而達到平均電流分佈、提高發光效率 的效果。[0008] Unevenness and low luminous efficiency. In view of this, it is necessary to provide a semiconductor light-emitting element having a uniform current density distribution and excellent light-emitting efficiency. SUMMARY OF THE INVENTION Hereinafter, a semiconductor light-emitting device having uniform current density distribution and excellent light-emitting efficiency will be described by way of examples. A semiconductor light emitting element comprising: a substrate disposed in a horizontal direction; and a first type semiconductor layer, a light emitting layer, and a second type semiconductor layer which are sequentially stacked on the substrate in a vertical direction from bottom to top, the light emitting layer partially covering a first type semiconductor layer, a region where the first type semiconductor layer is not covered by the light emitting layer is provided with a first electrode, and the first type semiconductor layer includes a first doping region, a second doping region, and a third doping region. The first doped region is located under the first electrode, the second doped region and the third doped region are sequentially arranged in a horizontal direction away from the first electrode, and the second doped region is adjacent to the first doped region. The third doped region is disposed adjacent to the second doped region, and the second doped region isolates the first doped region from the third doped region, and the first doped region has a low doping concentration The second doped region has a lower doping concentration than the third doped region. Compared with the prior art, the semiconductor layer of the semiconductor light emitting element has a plurality of doped regions of different doping concentrations, and the doping region of the plurality of doping regions is further away from the doping region, the higher the doping concentration is, The smaller the resistance of the doped region farther from the distance electrode, the smaller the resistance value of each current path from the electrode to each of the doped regions to the light-emitting layer, thereby achieving an effect of an average current distribution and an improvement in luminous efficiency. 100117625 Form No. A0101 Page 5 / Total 16 Page 1002029613-0 201248908 [Embodiment] [0009] Referring to FIG. 2, a semiconductor according to a first embodiment of the present invention includes a beauty disposed in a horizontal direction (the y direction of the drawing) The light-emitting element 1 is low-lying, buffering the first-type semiconductor layer 13, the light-emitting layer 14, the second-type semiconductor layer 12, the electrode 16 and the second electrode 17. The buffer layer 12, the first 15, the 13th, The light-emitting layer 14 and the second-type semiconductor layer 15 are sequentially stacked on the substrate 11 in the direction of the soft semiconductor layer (Fig. __ direction). 181 is not X square [0010] A stone substrate of an insulating material such as tantalum carbide (Sic). In the non-intermittent embodiment, the i-bottom 11 is a sapphire [0011] The buffer layer 12 is formed on the substrate 11 for reducing the lattice difference between the first-type semiconductor layers 13 for growth of the substrate. The design requirements are omitted. 11 and subsequent, of course, the first type semiconductor layer 13 is formed on the buffer layer 12 and has an exposed portion covered by the light-emitting layer 14. The first type semiconductor layer 1 is not πι - ν group compound or ιι-νι group compound. And card + 丄 3 can be in the body The first type semiconductor layer 13 may be a doped gallium nitride semiconductor. Further, in the present embodiment, the first type semiconductor layer is doped. The N type gallium nitride semiconductor layer is doped. [0013] 100117625 The first type semiconductor layer 13 includes a first doping region 13A, a second 132, and a third doping region 134. The first robbed region has a mismatch region 13〇, 筮— 132 And the third doping region 134 is arranged along the horizontal direction of the electrode 16 of the holding region y. The y direction is perpendicular to the dying direction (the x direction of the figure). The miscellaneous zone 130 is used to carry the J-implementation of the 'war-electrode 16. The sub- & miscellaneous zone 130 is less than the second hand, the first push form number A0101 page 6 / total 16 pages, the area 132, the second doping area 1002029613-0 201248908 [0014] [0017] [0020] [0020] [0020] adjacent to the first doped region 130 and the first doped region ΐ3 〇 and the third doped region ^ and second The dopant concentration of the dummy region 132 is lower than that of the third light-emitting layer 14 formed on the first-type semiconductor layer 13 and partially covers the first-type semiconductor layer 13. In this embodiment, the luminescent layer 14 is a multi-quantum luminescent layer. The second type semiconductor layer 丨5 is formed on the light emitting layer 14. The second type semiconductor layer 15 may be an IU_V compound or a u_vm compound. Specifically, in this embodiment, the second type semiconductor layer 15 may be a gallium nitride semiconductive layer. More progressively, in the present embodiment, the second type semiconductor layer 15 is? Type gallium nitride semiconductor layer. This mi6 is formed on the exposed portion of the first-type semiconductor layer 13 which is not covered by the light-emitting layer 14. The first electrode 16 is in electrical contact with the first-type semiconductor layer 13. The second electrode 17 is formed on the second type semiconductor layer 15 and is in electrical contact with the second type semiconductor layer 15. Due to the different push-mixing concentrations of the first #-doped region 130, the second doped region 132, and the third doped region 134,: 1. The red passes through the first-doped region and the current of the layer*4 The path of the shortest 'the lowest number of carriers has the lowest number of carriers in the first doped region 130' and thus the impedance of the first doped region 130 is the largest; 2. The current that passes through the second doped (tetra) 132 to reach the luminescent layer 14 The path length is longer than the doping concentration of the second doping region 132. The number of carriers in the second doping region 132 is 100117625. Form No. A0101 Page 7 / Total 16 Page 1002029613-0 201248908 More 'and thus the impedance of the second doping region 132 It is smaller than the first doping region 13 [0021] 3. The path s through the third doping region 13 na ^ to the current of the light-emitting layer 14 〃 五 (5) doping concentration in the third doping region 134 current carrying The number of sub-numbers is the largest 'so that the impedance of the third doping region 134 is the smallest. [0022] The above design allows the current transfer to a shorter cross section with a higher impedance, while the current transfer distance is longer with a lower impedance. Thus, the resistance value from the first electrode 16 to the light-emitting layer 14 via the respective replacement region paths can be balanced, thereby achieving an effect of an average current distribution and an improvement in luminous efficiency.

DD

[0023] 此外,該半導體發光元件10還可包括一夾設在發光層14 與第二型半導體層15之間的P型氮化鎵鋁層18,以作為電 子溢流阻擋層。 [0024] 圖3所示為該半導體發光元件丨〇的俯視圖。該第一電極16 包括兩個接觸墊160以及一個連接臂162。該連接臂162 位於兩個接觸墊160之間並連接該兩個接觸塾160 °該連In addition, the semiconductor light emitting device 10 may further include a P-type aluminum gallium nitride layer 18 interposed between the light emitting layer 14 and the second type semiconductor layer 15 to serve as an electron overflow barrier layer. [0024] FIG. 3 is a plan view of the semiconductor light emitting device 丨〇. The first electrode 16 includes two contact pads 160 and a connecting arm 162. The connecting arm 162 is located between the two contact pads 160 and connects the two contacts 塾 160 °

[0025] 接臂162可為條形。該第二電極17包括兩個接觸墊170、 一個連接臂172以及三個延伸臂174。該連接臂I72位於 兩個接觸塾之間並連接該兩個接觸墊17G。該三個延 伸臂174分別由所述連接臂172、及兩個接觸塾170延伸 出來4三_伸臂174延伸向所述第一電極16,從而該 兩個接觸墊π〇、〆個連接臂172以及三個延伸臂174形 成梳狀結構。該連接臂172及延伸臂174可為條形。 本實施例中,該速接臂162與連接臂172相互平行。進一 100117625 表單編號A0101 第8頁/共16頁 1002029613-0 201248908 [0026] 步的,該連接臂162與連接臂172可與三個延伸臂174的 延伸方向相垂直。 由於第一型半導體層13的摻雜濃度設計使得從第一電極 16到達發光層14的電流路徑阻抗得以平衡,從而該第一 電極16無需額外配備用於均衡電流密度的延伸臂結構, 進而減小了現有技術中Ν型接觸墊的覆蓋面積,從而可以 提升發光層14的覆蓋面積,進而提升半導體發光元件10 的亮度。 Ο [0027] fY\ 此外:1.該半導體發光元件10不局限於包括三個具有不 同摻雜濃度的摻雜區,該具有不同摻雜濃度的摻雜區可 為兩個、四個、五個或者更多,該複數個具有不同摻雜 濃度的掺雜區沿圖2所示遠離第一電極16的y方向依次排 列,且該複數個摻雜區中距離第一電極越近的搀雜區其 摻雜濃度越低;2.上述各半導體層的摻雜類型可以互換 ,例如,該第一型半導體層13可為P型半導體層、而第二 型半導體層15相應為N型半導體層。 ϋ [0028] 综上所述,本發明符合發明專利要件,爰依法提出專利 申請。惟,以上所述者僅為本發明之較佳實施例,舉凡 熟悉本案技藝之人士,在爰依本發明精神所作之等效修 飾或變化,皆應涵蓋於以下之申請專利範圍内。 [0029] 【圖式簡單說明】 圖1係先前之半導體發光元件的結構示意圖。 [0030] 圖2係本發明實施例提供的半導體發光元件結構示意圖。 [0031] 圖3係圖2所示的半導體發光元件的俯視圖。 100117625 表單編號A0101 第9頁/共16頁 1002029613-0 201248908 【主要元件符號說明】 [0032] 半導體發光元件:10 [0033] 基底:11 [0034] 緩衝層:12 [0035] 第一型半導體層:13 [0036] 發光層:14 [0037] 第二型半導體層:15 [0038] 第一電極:16 [0039] 第二電極:17 [0040] 氮化鎵鋁層:18 [0041] 第一摻雜區:130 [0042] 第二摻雜區:132 [0043] 第三摻雜區:134 [0044] 接觸墊:160,170 [0045] 連接臂:162,172 [0046] 延伸臂:174 [0047] 發光二極體:20 [0048] 絕緣基底:21 [0049] N型半導體層:22 [0050] 活性層·· 23 100117625 表單編號A0101 第10頁/共16頁 1002029613-0 201248908 [0051] P型半導體層:24 [0052] N電極:25 [0053] P電極:26[0025] The arm 162 may be in the shape of a strip. The second electrode 17 includes two contact pads 170, one connecting arm 172, and three extending arms 174. The connecting arm I72 is located between the two contact pads and connects the two contact pads 17G. The three extension arms 174 are respectively extended by the connecting arm 172 and the two contact cymbals 170, and the extension arms 174 extend toward the first electrode 16, so that the two contact pads π〇 and 连接 a connecting arm The 172 and the three extension arms 174 form a comb structure. The connecting arm 172 and the extending arm 174 can be strip-shaped. In this embodiment, the speeding arm 162 and the connecting arm 172 are parallel to each other. Further, 100117625 Form No. A0101 Page 8 of 16 1002029613-0 201248908 [0026] In the step, the connecting arm 162 and the connecting arm 172 may be perpendicular to the extending direction of the three extending arms 174. Due to the doping concentration design of the first type semiconductor layer 13, the current path impedance from the first electrode 16 to the light emitting layer 14 is balanced, so that the first electrode 16 does not need to be additionally provided with an extension arm structure for equalizing the current density, thereby reducing The coverage area of the Ν-type contact pad in the prior art is reduced, so that the coverage area of the luminescent layer 14 can be increased, thereby increasing the brightness of the semiconductor light-emitting element 10. Y [0027] fY\ In addition: 1. The semiconductor light emitting device 10 is not limited to including three doping regions having different doping concentrations, and the doping regions having different doping concentrations may be two, four, five. Or more, the plurality of doped regions having different doping concentrations are sequentially arranged along the y direction away from the first electrode 16 shown in FIG. 2, and the closer to the first electrode in the plurality of doped regions is noisy The lower the doping concentration of the region; 2. The doping type of each of the above semiconductor layers may be interchanged, for example, the first type semiconductor layer 13 may be a P type semiconductor layer, and the second type semiconductor layer 15 may be an N type semiconductor layer. . [0028] In summary, the present invention complies with the requirements of the invention patent and submits a patent application according to law. However, the above description is only the preferred embodiment of the present invention, and equivalent modifications or variations made by those skilled in the art of the present invention should be included in the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing the structure of a conventional semiconductor light-emitting element. 2 is a schematic structural view of a semiconductor light emitting device according to an embodiment of the present invention. 3 is a plan view of the semiconductor light emitting element shown in FIG. 2. 100117625 Form No. A0101 Page 9 / Total 16 Page 1002029613-0 201248908 [Description of Main Element Symbols] [0032] Semiconductor Light Emitting Element: 10 [0033] Substrate: 11 [0034] Buffer Layer: 12 [0035] First Type Semiconductor Layer : 13 [0036] Light-emitting layer: 14 [0037] Second-type semiconductor layer: 15 [0038] First electrode: 16 [0039] Second electrode: 17 [0040] Aluminum gallium nitride layer: 18 [0041] Doped region: 130 [0042] Second doped region: 132 [0043] Third doped region: 134 [0044] Contact pad: 160, 170 [0045] Connecting arm: 162, 172 [0046] Extension arm: 174 Light Emitting Diode: 20 [0048] Insulating Substrate: 21 [0049] N-Type Semiconductor Layer: 22 [0050] Active Layer·· 23 100117625 Form No. A0101 Page 10/Total 16 Page 1002029613-0 201248908 [0051 P-type semiconductor layer: 24 [0052] N-electrode: 25 [0053] P-electrode: 26

100117625 表單編號A0101 第11頁/共16頁 1002029613-0100117625 Form No. A0101 Page 11 of 16 1002029613-0

Claims (1)

201248908 七、申請專利範圍: 1 . 一種半導體發光元件,其包括沿水平方向設置的基底、以 及沿豎直方向由下而上依次疊設在基底上的第一型半導體 層、發光層及第二型半導體層,該發光層局部覆蓋第一型 半導體層,該第一型半導體層未被發光層覆蓋的區域設置 有第一電極,其改進在於: 該第一型半導體層包括第一摻雜區、第二摻雜區及第三摻 雜區,該第一摻雜區位於第一電極下方,該第二摻雜區、 第三摻雜區沿遠離第一電極的水平方向依次排列,該第二 摻雜區與第一掺雜區相鄰設置,該第三摻雜區與第二摻雜 區相鄰設置、且該第二摻雜區將第一摻雜區與第三摻雜區 隔離開,該第一掺雜區的摻雜濃度低於第二摻雜區,且第 二摻雜區的摻雜濃度低於第三摻雜區。 2 .如申請專利範圍第1項所述之半導體發光元件,其中,該 第一型半導體層未被發光層覆蓋的區域為第一摻雜區。 3. 如申請專利範圍第1項所述之半導體發光元件,其中,該 第一型半導體層為N型半導體層,該第二型半導體層為P型 半導體層。 4. 如申請專利範圍第3項所述之半導體發光元件,其中,該N 型半導體層為N型氮化鎵層,該P型半導體層為P型氮化鎵 層。 5. 如申請專利範圍第4項所述之半導體發光元件,其中,該 發光層與P型氮化鎵層之間設置有P型氮化鎵鋁層。 6. 如申請專利範圍第3項所述之半導體發光元件,其中,該 第一型半導體層各摻雜區的摻雜材料為矽。 100117625 表單編號A0101 第12頁/共16頁 1002029613-0 201248908 及體發先70件,其包括沿水平方向設置的基底、以 層二向由下而上依次4設在基底上的第-型半導體 半導二廢及第二型半導體層’該發光層局部覆蓋第-型 Τ守體層,访哲 ,, Μ第—型半導體層未被發光層覆蓋的區域設 有第-電極’其改進在於: 依㈣層包括複數個沿遠離第—電極的水平方向 的摻雜區’且該複數個摻雜區中距離第一電極越 的摻雜區播雜濃度越低。 Ο ίο 中申2利範圍第1項或第7項所述之半導體發光元件,其 條形電極包括兩個接觸塾以及連接該兩個接觸塾的 月專利範圍第8項所述之半導體發光元件,其中,該 極還包括設置在第二型半導體層上的第二電 個條形延:臂個接觸塾、一個條形連接臂以及三 兩個接觸塾#電極的條形連接臂連接第二電極的 觸塾和-個條升Γ條形延伸臂分別由第二電極的兩個接 個條形連接臂延伸出來。 如申請專利範固第9項所述之半導體發光元件,其中,第 的條形連接臂平行與第—電極的條形連接臂二 的—個條形延伸臂相互平行並垂直一 的條形連接臂。 弟一電極 100117625 表單編號Α0101 第丨3頁/共16頁 1002029613-0201248908 VII. Patent application scope: 1. A semiconductor light emitting device comprising: a substrate disposed in a horizontal direction; and a first type semiconductor layer, a light emitting layer, and a second layer which are sequentially stacked on the substrate in a vertical direction from bottom to top. a semiconductor layer partially covering the first type semiconductor layer, wherein the first type semiconductor layer is not covered by the light emitting layer is provided with a first electrode, and the improvement is that the first type semiconductor layer includes the first doping region a second doped region and a third doped region, the first doped region is located under the first electrode, and the second doped region and the third doped region are sequentially arranged in a horizontal direction away from the first electrode. The second doped region is disposed adjacent to the first doped region, the third doped region is disposed adjacent to the second doped region, and the second doped region isolates the first doped region from the third doped region The first doped region has a lower doping concentration than the second doped region, and the second doped region has a lower doping concentration than the third doped region. The semiconductor light-emitting device of claim 1, wherein the region of the first-type semiconductor layer not covered by the light-emitting layer is a first doped region. 3. The semiconductor light emitting device according to claim 1, wherein the first type semiconductor layer is an N type semiconductor layer, and the second type semiconductor layer is a P type semiconductor layer. 4. The semiconductor light-emitting device according to claim 3, wherein the N-type semiconductor layer is an N-type gallium nitride layer, and the P-type semiconductor layer is a P-type gallium nitride layer. 5. The semiconductor light-emitting device of claim 4, wherein a P-type gallium nitride aluminum layer is disposed between the light-emitting layer and the P-type gallium nitride layer. 6. The semiconductor light-emitting device of claim 3, wherein the doping material of each doped region of the first type semiconductor layer is germanium. 100117625 Form No. A0101 Page 12 of 16 1002029613-0 201248908 and 70 pieces of body hair, which include a base arranged in the horizontal direction, and a first type semiconductor provided on the substrate in a layer two direction from bottom to top. The semiconducting waste and the second type semiconductor layer 'the luminescent layer partially covers the first-type smear layer, and the sigma-type semiconductor layer is provided with a first electrode in a region not covered by the luminescent layer. The improvement is as follows: The (four) layer includes a plurality of doped regions along a horizontal direction away from the first electrode, and the doped concentration of the doped regions in the plurality of doped regions is lower from the first electrode. The semiconductor light-emitting device of the first or seventh aspect of the invention, wherein the strip-shaped electrode comprises two contact turns and the semiconductor light-emitting element according to item 8 of the patent scope of the two contact ports Wherein the pole further comprises a second electrical strip extension disposed on the second type semiconductor layer: an arm contact 塾, a strip connecting arm, and three strip contact arms of the two contact 塾# electrodes are connected to the second The contact of the electrodes and the strip-shaped extension arms of the strips are respectively extended by two strip-shaped connecting arms of the second electrode. The semiconductor light-emitting device of claim 9, wherein the strip-shaped connecting arms are parallel to the strip-shaped connecting arms of the strip-shaped connecting arms of the first electrode and are parallel to each other and vertically connected by a strip arm. Brother One Electrode 100117625 Form NumberΑ0101 Page 3/16 Page 1002029613-0
TW100117625A 2011-05-18 2011-05-19 Semiconductor light emitting device TWI462329B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011101289388A CN102790146A (en) 2011-05-18 2011-05-18 Semiconductor light emitting element

Publications (2)

Publication Number Publication Date
TW201248908A true TW201248908A (en) 2012-12-01
TWI462329B TWI462329B (en) 2014-11-21

Family

ID=47155498

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100117625A TWI462329B (en) 2011-05-18 2011-05-19 Semiconductor light emitting device

Country Status (2)

Country Link
CN (1) CN102790146A (en)
TW (1) TWI462329B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI552386B (en) * 2013-12-20 2016-10-01 新世紀光電股份有限公司 Semiconductor light emitting structure and semiconductor package structure
CN108538979A (en) * 2017-03-06 2018-09-14 美科米尚技术有限公司 Light emitting diode and its manufacturing method
CN112993110B (en) * 2019-12-17 2022-09-02 深圳第三代半导体研究院 Light-emitting diode

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW515116B (en) * 2001-12-27 2002-12-21 South Epitaxy Corp Light emitting diode structure
TWI236160B (en) * 2003-11-25 2005-07-11 Super Nova Optoelectronics Cor GaN light emitted diode with high luminescent efficiency and the manufacture method
TWI249866B (en) * 2004-09-02 2006-02-21 Formosa Epitaxy Inc Low resistance n-type contact layer structure for GaN multi-quantum well light emitting diode
TWI239668B (en) * 2004-10-21 2005-09-11 Formosa Epitaxy Inc Structure of gallium-nitride based (GaN-based) light-emitting diode with high luminance
TWI251948B (en) * 2005-07-22 2006-03-21 Genesis Photonics Inc Light-emitting diode with co-doping rough layer and manufacturing method thereof
TWI284995B (en) * 2006-03-14 2007-08-01 Genesis Photonics Inc Light emitting diode
TW200832736A (en) * 2007-01-19 2008-08-01 Genesis Photonics Inc Manufacturing method of GaN series light-emitting diode

Also Published As

Publication number Publication date
TWI462329B (en) 2014-11-21
CN102790146A (en) 2012-11-21

Similar Documents

Publication Publication Date Title
JP6162890B2 (en) Micro light emitting diode
JP5799124B2 (en) AC drive type light emitting diode
KR100706944B1 (en) Nitride semiconductor light emitting device
CN102315239B (en) Photoelectric cell
TW201037866A (en) Semiconductor and method for forming the same and flip-chip light emitting diode package structure
TWI464868B (en) Solid state light source module and array thereof
TW201324863A (en) Light emitting diode element and flip-chip light emitting diode package
TWI501427B (en) Solid state lighting devices with point contacts and associated methods of manufacturing
US10490701B2 (en) Light emitting diode chip
TWI538184B (en) Light-emitting diode array
Zhan et al. Characteristics of GaN-based high-voltage LEDs compared to traditional high power LEDs
TW201336116A (en) Light emitting diode unit and flip-chip light emitting diode packaging unit
TW201248908A (en) Semiconductor light emitting device
JP2014165498A (en) Light emitting device
KR20130087767A (en) Light emitting device
KR20130087788A (en) Light emitting device with excellent heat radiating efficiency using heat sink
CN108417680B (en) Semiconductor LED chip with high current diffusion efficiency
JP7470360B2 (en) Light emitting device, display, lighting device
KR101087970B1 (en) Semiconductor light emitting device
KR101145291B1 (en) Leds comprising electrode pattern for enhancing the efficiency
RU2570060C1 (en) High-voltage light-emitting device
KR101992152B1 (en) Light emitting device and light emitting device package
KR20120124640A (en) Light emitting diode
TWI291250B (en) Light emitting diode structure
US20130299774A1 (en) Light-emitting diode device and a method of manufacturing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees