TW201248655A - Nanowire preparation methods, compositions, and articles - Google Patents

Nanowire preparation methods, compositions, and articles Download PDF

Info

Publication number
TW201248655A
TW201248655A TW101111190A TW101111190A TW201248655A TW 201248655 A TW201248655 A TW 201248655A TW 101111190 A TW101111190 A TW 101111190A TW 101111190 A TW101111190 A TW 101111190A TW 201248655 A TW201248655 A TW 201248655A
Authority
TW
Taiwan
Prior art keywords
atom
metal
ion
compound
carbon
Prior art date
Application number
TW101111190A
Other languages
Chinese (zh)
Inventor
David R Whitcomb
William D Ramsden
Doreen C Lynch
Original Assignee
Carestream Health Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/326,356 external-priority patent/US8613887B2/en
Priority claimed from US13/420,635 external-priority patent/US20120183435A1/en
Application filed by Carestream Health Inc filed Critical Carestream Health Inc
Publication of TW201248655A publication Critical patent/TW201248655A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0547Nanofibres or nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/62Whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/14Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions the crystallising materials being formed by chemical reactions in the solution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Catalysts (AREA)
  • Powder Metallurgy (AREA)

Abstract

Methods of producing metal nanowires, compositions, and articles are disclosed. Such methods allow production of metal nanowires with reproducibly uniform diameter and length, even in the presence of catalyst concentration variation. Such metal nanowires are useful for electronics applications.

Description

201248655 六、發明說明: 【先前技術】 銀奈米線體(10-200寬高比)之一般製備方法為人們 JL ' 口。多見’例如,C/z 隱 /„ί·以.2009,作 60,γ Xla,Y. Xi〇ng,B Lim,S E Skrabalak,該文獻在此以引用 . 之方式全部併入本文。該等製備方法一般使用?62+或Cu2+ 離子「催化」奈米線體形成,而非其他形態。然而,具有 期望的長度及寬度之銀奈米線體的受控製備方法不為人們 所知。例如,Fe2+產生多種長度或厚度,而Cu2 +產生對於 許多應用而言太厚之奈米線體。 使用鐵或銅時’通常將其提供為金屬鹵化物鹽FeCl2或201248655 VI. Description of the invention: [Prior Art] The general preparation method of the silver nanowire body (10-200 aspect ratio) is the JL 'mouth. See, for example, C/z 隐/ ί ί., 2009, 60, γ Xla, Y. Xi〇ng, B Lim, SE Skrabalak, which is hereby incorporated by reference in its entirety. Other preparation methods generally use ?62+ or Cu2+ ions to "catalyze" the formation of nanowires, rather than other forms. However, controlled preparation of silver nanowires having the desired length and width is not known. For example, Fe2+ produces a variety of lengths or thicknesses, while Cu2+ produces nanowires that are too thick for many applications. When using iron or copper, it is usually provided as a metal halide salt FeCl2 or

CuCl2。參見’例如,b. Wiley等人,2004, < 1733-1739及 Κ·Ε. Korte 等人,乂 Mah. C/zem., 2008,/5, 437°已於奈米線體合成中使用其他金屬鹵化物鹽。參 見,例如 ’ J. Jiu,K. Murai,D_ Kim,K. Kim,K.Suganuma, Mai. C/zew. ά P/^.,2009,//么 333,其涉及NaCl、 CoCl2、CuCl2、NiCl2及 ZnCl2 ;及 S. Nandikonda於 2010年 8 月9曰在美國阿拉巴馬州奥本大學(Auburn University)發表 . 的理學碩 士論文「Microwave Assisted Synthesis of SilverCuCl2. See, for example, b. Wiley et al., 2004, < 1733-1739 and Κ·Ε. Korte et al., 乂Mah. C/zem., 2008,/5, 437° have been used in nanowire synthesis. Other metal halide salts. See, for example, 'J. Jiu, K. Murai, D_ Kim, K. Kim, K. Suganuma, Mai. C/zew. ά P/^., 2009, // 333, which relates to NaCl, CoCl2, CuCl2. NiCl2 and ZnCl2; and S. Nandikonda were published at Auburn University, Alabama, USA on August 9, 2010. Master of Science in Microwave Assisted Synthesis of Silver

Nanorods」,其涉及 NaCl、KC1、MgCl2、CaCl2、 MnCl2、CuCl2及FeCl3。KBr之使用已揭示於(例如)D. Chen 等人,《/. Maier. 5W.Maier. 2011,入 6-13 ; L. Hu 等人,iVtmo, 2010, 入 2955-2963 ;及 C. Chen 等人,iVaA7〇iec/mo/og&gt;&gt;, 2006,77, 3933 中。NaBr之使用已 163192.doc 201248655 揭示於(例如)L. Zhou 等人,2009, 153102。亦參見 S. Murali 等人,«发wm//-, 2010, 11176-83,Z. C. Li 等人,Micro ά 2011, &lt;5⑺,90-93 ;及B. J. Wiley等人,则z&gt;, 2005, 2人 8077。 曰本專利申請公開案2009-1 55674揭示SnCl4之使用。美 國專利申請公開案2〇1〇/〇148132揭示他0:卜1&lt;:(:1、€3(:12、 MgCl2及ZnCl2之使用。美國專利申請公開案2〇〇8/〇21〇〇52 及2011/0048170揭示四級銨氣化物之使用。 【發明内容】 至少一第一實施例提供方法,其包括提供能夠形成至少 一種齒離子之至少一種化合物,其中該化合物包含至少一 第一原子,鍵結於該至少一第一原子之至少一個鹵素原子 及鍵結於該至少一第一原子之至少一個碳原子;及於該至 少一種化合物或該至少一種齒離子中至少一者的存在下將 至少一第一金屬離子還原成至少一第一金屬。在該等方法 中’該至少-第-原子與該至少一個函素原子之電負度差 異之絕對值可能大於約〇.4域林單位(pauling unh)及小於 約2.0個鲍林單位,且該還原係於不存在原子序不同於該 至)-第-金屬離子之原子序的任何金屬離子情況 ν-ϊ- · 在該等方法中’該至少一第一眉 第原子了(例如)包含以下至 乂 -者.蝴原子、氣原子、碟原子、石夕原子、硫原子 原子或碳原子。或,在一此情 “ 一丨月况下,该至少一第一 包含以下至少一者:硼原 ^ ° 峨原子'石夕原子或碳原子。 163I92.doc 201248655 在一些情況下,該至少一種齒離子可(例如)包含至少一 氯離子、溴離子或蛾離子。或,在一些情況下,該至少一 種鹵化物可包含至少一氯離子或溴離子。 在至少一些實施例中,該至少一種化合物可包含至少一 種碳陽離子。舉例而言’該碳陽離子可為一級碳陽離子、 二級碳陽離子或三級碳陽離子。 該至少一種化合物之非限定性實例為二乙基二氣矽烷、 本膦醢一氣、二氯苯基蝴院及三苯基氣曱烧。 在至少一些實施例中,該等方法更可包括藉由該至少一 種化合物之溶劑分解來形成該至少一第一函離子。溶劑分 解可(例如)包含以下一或多種:水解、醇解、醣解、酸 解、胺解或氨解。 在至少一些情況下,該至少一第一金屬可(例如)包含至 少-種IUPAC第11族元素或至少一種禱幣金屬。示範性至 少一第一金屬為銀。 其他實施例提供由該等方法產生之至少一第一金屬。其 他實施例提供包含由該等方法產生之至少—第一金屬之奈 只㈣的乃沄,具包括提供包含能夠形成 至少—㈣離子之4量的至少—種有機Μ化合物之组 trr該組合物存在下將至少一第一金屬離子還原成 二第-金屬’其中該還原係於不存在原子序不同於該 二第-金屬離子之原子序的任何金屬離子情況下進 订。該至少—種有機W化合物可(例如)包含鍵結於至少 163192.doc 201248655 個鹵素原子之至少一個石夕 皁子,或鍵結於至少兩個鹵素 原子之至少一個矽原子。哕 至夕一種齒離子可(例如)包含 離子。該至少—第+ Μ㈣ = 第11族70素或至少―金屬離 :種銀離子。該至少一種有機”化合物可(例如)包含鍵 結於至少一個齒素原子之矽 原子’其中該矽原子亦鍵結於 至少一個碳原子,或該至少— 種有機矽画化合物可包含鍵 結於至少一個南素原子之矽原 席子其中該矽原子亦鍵結於 至少兩個碳原子,或該至少一錄 夕種有機矽鹵化合物可(例如) 包含一乙基二氣梦院。 在至少—些實施例中,該等方法更包括藉由以下至少一 者來調節齒化物產生率:選擇該至少一種有機矽齒化合 物、選擇該至少-種有機石夕函化合物於該組合物中之量, 或選擇執行該還原所處之至少一個溫度。 其他實施例更提供根據該等實施例產生之至少一第一金 屬產品。該等產品可(例如)包含至少m線體。 其他實施例更提供包含根據該等實施例產生之至少一第 一金屬產品之物品。該等物品可(例如)包含電子裝置。 至少-第三實施例提供方法,其包括提供包含能夠形成 至少-種齒離子之至少-種化合物的組合物,#中該化合 物包含以下至少一者:硼原子、氮原子、磷原子硫原^ 或硒原子;及,於該組合物存在下將至少一第一金屬離子 還原成至少一第一金屬離子,其中該還原係於不存在原子 序不同㈣至少-第-金屬冑子之原子序的任何金屬離子 163l92.doc 201248655 清況下進行。該化合物可(例如)包含鍵結於至少一個鹵素 原子及鍵結於至少一個碳原子之至少一第一原子。該第二 原子可(例如)包含以下至少一者:硼原子、氮原子磷原 子、硫原子或硒原子。示範性至少一種化合物為笨膦醯二 氯。在至少一些實施例中,該至少一種齒離子包含至少一 氣離子。該至少一第一銀金屬離子可(例如)包含至少一種 IUPAC第11族元素或至少一種鑄幣金屬離子,諸如(例如) 銀離子。 在至少一些實施例中,該等方法更可包括藉由以下至少 一者來調節函化物產生率··選擇該至少一種化合物、選擇 該至少一種化合物於該組合物中之量,或選擇執行該還原 所處之至少一個溫度。 在至少一些實施例中,該還原可於至少一第二金屬或金 屬離子之存在下發生,該至少一第二金屬或金屬離子之原 子序不同於該至少一第一金屬離子之原子序。 其他貫施例k供由該專方法產生之至少一第一金屬產 品。該產品可(例如)包含至少一種奈米線體。 其他實施例提供包含由該等方法產生之至少一第一金屬 產品之物品。 至少一第四實施例包含方法,其包括提供一定量之至少 一種有機函化合物’其中該化合物能夠形成至少一種碳陽 離子及至少一種i離子’及於該組合物存在下將該至少一 第一金屬離子還原成至少一第一金屬,其中該還原係於不 存在原子序不同於該至少一第一金屬離子之原子序的任何 163192.doc 201248655 金屬離子情況下進行。 在至/一些實施例中,該至少一種有機齒化合物可包含 鍵、-口於S 7㈤_素原子以及藉由至少一個碳-碳鍵鍵結 於至)-個芳環之碳原子。或,該碳原子可鍵結於至少一 個齒素原子以及藉由至少兩個碳·碳鍵鍵結於至少兩個芳 環。或,該碳原子可鍵結於一㈣素原子以及藉由三個 碳-碳鍵鍵結於三個芳環。該化合物可(例如)包含三苯基氣 甲烷。 在至少一些實施例中,該至少一種碳陽離子包含至少一 種二級碳陽離子或三級碳陽離子,或該至卜種碳陽離子 包含至少一種三級碳陽離子。 在一些情況下,該至少一種商離子包含氣離子或溴離 子,或該至少一種齒離子包含至少一氣離子。 在至少一些實施例中,該等方法更可包括藉由以下至少 -者來調節齒化物產生率:選擇該至少一種有機幽化合 物、選擇該至少一種有機齒化合物於該組合物中之量,或 選擇執行該還原所處之至少一個溫度。 八他實施例&amp;供由該等方法產生之至少一第一金屬產 品。該產品可(例如)包含至少一種奈米線體。 其他實施例提供包含由該等方法產生之至少一第一金屬 產品之物品。 參閱圖式說明、圖式、發明内容、示範性實施例、實例 及隨後之申請專利範圍,可以更好地理解該等實施例及其 他變化及修改例。所提供之任何實施例僅以舉例說明之方 163192.doc 201248655 式給出。其他内在可達成之合意目標及優勢可由熟習此項 技術者思及或顯而易知。本發明由隨附之申請專利範圍界 定。 【實施方式】 在本文件中所提及之所有公開案、專利及專利文件均在 此以引用之方式全部併入本文,如同個別地以引用之方式 併入一般。 2011年12月15曰申請之標題為NANOWIRE PREPARATION METHODS, COMPOSITIONS, AND ARTICLES之美國專利申 請案第13/326,356號;2011年5月23曰申請之標題為 NANOWIRE PREPARATION METHODS, COMPOSITIONS, AND ARTICLES之美國臨時申請案第61/488,936號;2011 年1月14日申請之標題為NANO WIRE PREPARATION METHODS, COMPOSITIONS, AND ARTICLES之美國臨時 申請案第61/432,615號;2011年5月23曰申請之標題為 NANOWIRE PREPARATION METHODS, COMPOSITIONS, AND ARTICLES之美國臨時申請案第61/488,811號;2011 年5月23曰申請之標題為NANOWIRE PREPARATION METHODS, COMPOSITIONS,AND ARTICLES之美國臨時 申請案第61/488,814號;及2011年6月23曰申請之標題為 NANOWIRE PREPARATION METHODS, COMPOSITIONS, AND ARTICLES之美國臨時申請案第61/500,155號,所有 申請案在此以引用之方式全部併入本文。 至少一些實施例提供方法,其於金屬離子還原中使用能 163192.doc 201248655 夠形成至少一種齒離子之至少—種化合物,其中該還原係 於該至少一種化合物或該至少一種函離子存在下發生。該 等化合物包含鍵結於至少一個碳原子及鍵結於至少一個齒 素原子之至少-第-原+。該至少—第—原子與該至少一 個齒素原子之間的鍵可稱為「極性共價」鍵,就本申請而 言,其意義為該至少一第一原子與該至少一個_素原子之 電負度差異之絕對值大於約〇 4個鲍林單位及小於約2 〇個 鮑林單位。該等方法可允許(例如)金屬奈米線體之產生, 即便ϋ亥至少一種化合物之濃度存在操作間可變性 mn variability),該等金屬奈米線體仍具有可再生之均一 厚度及長度。 金屬離子及金屬產品 一些實施例提供包括將金屬離子還原成金屬之方法。該 等金屬離子可稱為「可還原金屬離子」,意義為能夠在一 些反應條件設定下還原成金屬之金屬離子。在該等方法 中,金屬離子可(例如)包含至少一種IUPA(:第丨丨族元素之 離子或至少一種鑄幣金屬離子。鑄幣金屬離子為一或多種 鑄幣金屬之離子,該或該等鑄幣金屬包括銅、銀及金。在 一些情況下,該等金屬離子可以鹽形式提供。例如,銀陽 離子可(例如)以硝酸銀形式提供。 在該等實施例中,該至少—種金屬為該至少一種金屬離 子能夠還原成之金屬。例如,銀為銀陽離子能夠還原成之 金屬。 包含碳、由素及極性共價鍵之化合物 163192.doc •10· 201248655 -些實施例提供方法,其包括於至少一種化合物或齒離 子存在下將金屬離子還原成金屬,其中該化合物包含鍵妹 於至少一個碳原子及鍵結於至少一個齒素原子之至少一= -原子中該至少-第-原子與該至少—㈣素原子之 . 間的鍵為「極性共價」鍵,就本申請而言,其意義為該至 . 少一第一原子與該至少一個_素原子之電負度差異之絕對 值大於約0.4個鮑林單位及小於約2 〇個鮑林單位。在一此 實施例中,該還原係於不存在原子序不同於該至少—第一 金屬離子之原子序的任何金屬離子情況下進行。該還原係 於不存在以下者之離子情況下進行:鹼金屬、鹼土金屬' 過渡金屬、後過渡金屬、主族金屬及稀土金屬。 於金屬離子還原中使用該等化合物可允許提供齒離子, 而無需提供觸媒金屬陽離子或其他非質子性陽離子。在傳 統奈米線體合成方法中,函離子係由觸媒金屬陽離子或其 他非質子性陽離子來提供,該等觸媒金屬陽離子或其他非 質子性陽離子之化學計量比率由帶_素化合物之性質決 定。雖然不希望受理論之約束,但咸信該等陽離子之存在 可影響形成奈米線體之能力及所形成之奈米線體之形態 . 學。實情為’本申請案之方法及組合物可提供金屬奈米線 - 體,即便該至少一種化合物之濃度存在操作間可變性,該 等金屬奈米線體仍具有可再生之均一厚度及長度。 在該等方法中,該至少一第一原子可(例如)包含以下至 少一者:硼原子、氮原子、磷原子、矽原子、硫原子、硒 原子或碳原子。或’在一些情況下,該至少一第一原子可 163192.doc -11 - 201248655 包含以下至少一者:硼原子、磷原子、矽原子或碳原子。 在-些情況下,該至少-種齒離子可(例如)包含至少一 氣離子、祕子或破離子。或,在—些情況下,該至少_ 種鹵化物可包含至少一氣離子或漠離子。 該至少-種化合物之非限定性實例為二乙基二氣矽烷、 苯膦醯二氣、二氣苯基硼烷及三苯基氣甲烷。 該至少-種化合物之其他非限定性實例為具有以下化學 式之化合物·· RxSiXy ’其中x+y=4且y非零;化合物 RxBXy,其中0广3且丫不為零;硼氮炔HA心,盆中 X中非零;RxPXy’其中x+y=3j_y非零;“叫,其 中x+y=3且y非零;醯基函RC〇x; RxCXy,其中χ+&quot;且y 非零™CXy,其中x+y+z=4,且皆非零。在該 :式中’ X表示齒素原子且尺表示烷基、經取代之烷基、 芳基或經取代之芳基。經取代之烧基或芳基可包含函素、 烷氧基部分、胺及類似部分。 在至少-些實施例中,該至少—種化合物可能夠形成至 少-種碳陽離子及至少-種幽離子。該化合物可(例如)包 含鍵結於至少—個齒素原子以及藉由至少一個碳-碳鍵鍵 結於至少-個芳環之碳原子;或該化合物可(例如)包含鍵 結於至少素原子以及藉由至少兩個碳.碳鍵鍵結於 至少兩個方環之碳原子;或該化合物可(例如)包含鍵結於 一個鹵素原子以及藉由三個碳·碳鍵鍵結於三個芳環之碳 原子。在-些情況下,該碳陽離子可包含至少—種二級碳 陽離子或三級碳陽離子’或該至少一種碳陽離子包含至少 163 ] 92.doc •12· 201248655 一種三級碳陽離子。該化合物可(例如)包含三笨基氣 烧。 曱 溶劑分解 在至少-些實施例中,該等方法更可包括藉由該至少一 種化合物之溶劑分解來形成該至少H離子。溶劑分 解為-類親核取代,其中該親核劑為溶劑分子。溶劑分解 可(例如)包含以下-或多種:水解、醇解、醣解、酸解、 胺解或氨解。 在一些實施例中,溶劑分解可於反應混合物中執行,該 反應混合物可(例如)包含一或多種多元醇,諸如(例如 一醇、丙二醇、丁二醇、甘油、糖、碳水化合物及類似 物0 該至少一種化合物之溶劑分解可提供_離子而不會同時 引入觸媒金屬離子或其他非質子性陽離子。在不希望由理 論約束之情況下,咸信該至少_第—原子與至少—個齒素 原子之間的極性共價鍵之溶劑分解引起函離子及質子 子性陽離子之產生。 — 藉由移除齒離子與#質子性陽離子之間的冑统化學計量 鍵聯,可能於存在降低之非質子性陽離子水平的情況下乃 至存在很少或不存在非質子性陽離子的情況下還原金屬離 子。 奈米結構、奈米結構、奈米線體及物品 在些實施例中,由該等方法形成之金屬產品為奈米結 構,諸如一維奈来結構。奈米結構為具有至少一種小於 163192.doc •13- 201248655 300 nm之「奈米尺度」尺寸之結構。該等奈米結構之實例 為奈米柱、奈米線體、奈米管、奈米錐、奈米棱柱、奈米 板及其類似物。「-維」奈米結構具有比其他兩個奈米尺 度尺寸大得多的一個尺寸,諸如(例如)大至少約1〇或至少 約100或至少約200或至少約1 〇〇〇倍。 在些情況下,s玄等一維奈米結構可包含奈米線體。奈 米線體為一維奈米結構,其中兩個較短尺寸(厚度尺寸)小 於300 nm,較佳小於1〇〇 nm,而第三尺寸(長度尺寸)大於 1微米,較佳大於10微米,並且寬高比(長度尺寸與兩個厚 度尺寸中較大者之比)大於五。除其他可能用途之外,奈 米線體在電子裝置中用作導體或在光學裝置中用作元件。 在一些該等應用中’銀奈米線體為較佳的。 5亥等方法可用以製備除奈米線體外的奈米結構,諸如 (例如)奈米立方體、奈米柱、奈米錐、奈米管及其類似 物。奈米線體及其他奈米結構產品可以併入物品中諸如 電子顯示器、觸控螢屏、可檇式電話、行動電話、電腦顯 示器、膝上型電腦、平板電腦、購買點資訊站(point_of_ purchase kiosks)、音樂播放機、電子遊戲、電子圖書閱讀 器、透明電極、太陽電池、發光二極體、其他電子裝置、 醫學成像裝置、醫學成像媒介及其類似物。 製備方法 一種製備奈米結構(諸如,例如奈米線體)之常用方法為 「多元醇」方法。該方法描述於例如/«/. 2009,料,60,Y. Xia,γ. xiong,B.Lim,S.E.Skrabalak I63192.doc 14 201248655 中,s亥文獻在此以引用之方# + + + 八全邛併入本文。該方法通常 將金屬陽離子(諸如,例如鈒陪雜4 娘陽離子)還原成所要的金屬奈 米結構產物’諸如’例如銀奈米線體。該還原可在反應混 合物中進行’該混合物可(例如)包含一或多種多元醇,諸 如(例如)乙二醇(EG)、丙二醇、丁二醇'甘油、糖'破水 化合物及其類似物;-或多種保護劑,諸如(例如)聚乙稀 吡咯啶酮(亦稱為聚乙烯吡咯啶酮或pvp)、其他極性聚合 物或共聚物、表面活性劑、酸及其類似物;及一或多種金 屬離子。如此項技術中已知,該等及其他組分可用於該等 反應混合物中。該還原可(例如)在約12〇t至約19〇£&gt;c或約 80°C至約190°C之一或多個溫度下進行。 示範性實施例 2011年1月14日申請之標題為似1^〇\¥肥?1^八11八1'1(^ METHODS,COMPOSITIONS,AND ARTICLES之美國臨時申請 案第61/432,615號在此以引用之方式全部併入本文,其揭 示以下14個非限定性示範性實施例: A. —種方法,其包括: 提供包含一疋量之至少一種有機石夕_化合物之組合物, 該化合物能夠形成至少一種έ離子;及 於該組合物存在下將至少一第一金屬離子還原成至少一 第一金屬。 Β.如實施例Α之方法,其中該至少一種有機矽齒化合物 包含鍵結於至少一個_素原子之至少一個矽原子。 C.如實施例A之方法,其中該至少一種有機矽齒化合物 163192.doc -15- 201248655 一個矽原子。 種南離子包含至少 第 金屬離子包含 —第一金屬離子包含 —第一金屬離子包含 包含鍵結於至少兩個鹵素原子之至少 D·如實施例A之方法,其中該至少 一氣離子。 E. 如實施例A之方法,其中該至少 至少一種IUPAC第11族元素。 F. 如實施例A之方法,其中該至少 至少一種鑄幣金屬離子。 G. 如實施例A之方法,其中該至少 至少一種銀離子。 H. 種有機矽函化合物 如實施例A之方法,其中該至少一 包含鍵結於至少-個齒素原子之石夕原+,該砂原子亦鍵結 於至少一個碳原子。 J. 如實施例A之方法’其中該至少—種有機矽齒化合物 包含鍵結於至少-個函素原子之石夕原+,該石夕原子亦鍵結 於至少兩個碳原子。 K. 如實施例A之方法,其中該至少一種有機石夕函化合物 包含二乙基二氣矽烷。 L·如實施例A之方法’更包括藉由以下至少一者來調節 函化物產生率:選擇該至少一種有機矽齒化合物選擇該 至少-種有機梦i化合物於該組合物中之量,或選擇執行 該還原所處之至少一個溫度。 M.至少一第一金屬產品,其係根據實施例a之方法產 生。 N. 如實施例Μ之至少一第 一金屬產品,該至少一種產品 163i92.doc 201248655 包含至少一種奈米線體。 p. 一種物品,其包含根據實施例M之至少一第一金屬產 品。Nanorods, which relates to NaCl, KC1, MgCl2, CaCl2, MnCl2, CuCl2, and FeCl3. The use of KBr has been disclosed, for example, by D. Chen et al., /. Maier. 5W. Maier. 2011, 6-13; L. Hu et al, iVtmo, 2010, 2955-2963; and C. Chen Et al., iVaA7〇iec/mo/og&gt;&gt;, 2006, 77, 3933. The use of NaBr has been disclosed in 163192.doc 201248655, for example, by L. Zhou et al., 2009, 153102. See also S. Murali et al., «Wom//-, 2010, 11176-83, ZC Li et al., Micro ά 2011, &lt;5(7), 90-93; and BJ Wiley et al., z&gt;, 2005, 2 people 8077. The use of SnCl4 is disclosed in Japanese Patent Application Publication No. 2009-1 55674. U.S. Patent Application Publication No. 2〇1〇/〇148132 discloses that he is 0:Bu 1&lt;:(:1, €3 (:12, MgCl2, and ZnCl2 use. US Patent Application Publication No. 2/8/〇21〇〇) 52 and 2011/0048170 disclose the use of a quaternary ammonium vapor. [Invention] At least a first embodiment provides a method comprising providing at least one compound capable of forming at least one tooth ion, wherein the compound comprises at least a first atom And at least one halogen atom bonded to the at least one first atom and at least one carbon atom bonded to the at least one first atom; and in the presence of at least one of the at least one compound or the at least one tooth ion Reducing at least one first metal ion to at least one first metal. In these methods, the absolute value of the difference in electronegativity between the at least -th atom and the at least one element atom may be greater than about 〇.4 domain forest Unit (pauling unh) and less than about 2.0 Pauling units, and the reduction is in the absence of any metal ion in the atomic order different from the atomic order of the to-metal ion ν-ϊ- in these methods in The at least one first eyebrow atom has, for example, the following: a butterfly atom, a gas atom, a dish atom, a stone atom, a sulfur atom or a carbon atom. And wherein the at least one first comprises at least one of: a boron atom, a 峨 atom, a stone atom or a carbon atom. 163I92.doc 201248655 In some cases, the at least one tooth ion may, for example, comprise at least one chloride ion Or bromide ion or mothium ion. Or, in some cases, the at least one halide may comprise at least one chloride ion or bromide ion. In at least some embodiments, the at least one compound may comprise at least one carbocation. The carbocation may be a primary carbocation, a secondary carbocation or a tertiary carbocation. Non-limiting examples of the at least one compound are diethyldioxane, phosphine monohydrate, dichlorophenyl butterfly and three The phenyl gas is calcined. In at least some embodiments, the methods further comprise forming the at least one first functional ion by solvolysis of the at least one compound. (for example) comprising one or more of the following: hydrolysis, alcoholysis, glycolysis, acidolysis, amine hydrolysis or aminolysis. In at least some instances, the at least one first metal may, for example, comprise at least one IUPAC Group 11 An element or at least one prayer metal. An exemplary at least one first metal is silver. Other embodiments provide at least one first metal produced by the methods. Other embodiments provide at least a first metal produced by the methods奈奈 (4), which comprises providing a group trr comprising at least one type of organic cerium compound capable of forming at least - (iv) ions, and reducing at least one first metal ion to a di-metal in the presence of the composition. Wherein the reduction is carried out in the absence of any metal ion having an atomic sequence different from the atomic order of the di-metal ion. The at least one organic W compound may, for example, comprise at least one litmus bonded to at least 163192.doc 201248655 halogen atoms, or at least one germanium atom bonded to at least two halogen atoms. A tooth ion can, for example, contain ions. The at least - the + Μ (4) = the 11th group of 70 or at least - metal ion: silver ions. The at least one organic "compound may, for example, comprise a ruthenium atom bonded to at least one dentate atom, wherein the ruthenium atom is also bonded to at least one carbon atom, or the at least one organic ruthenium compound may comprise a bond At least one of the ruthenium atoms of the ruthenium atom, wherein the ruthenium atom is also bonded to at least two carbon atoms, or the at least one organic quinone organic halogen compound may, for example, comprise an ethyl oxime. At least - In some embodiments, the methods further comprise adjusting the rate of tooth formation by at least one of: selecting the at least one organic carious compound, selecting the amount of the at least one organic stone compound in the composition, Or selecting at least one temperature at which the reduction is performed. Other embodiments further provide at least one first metal product produced according to the embodiments. The products may, for example, comprise at least an m-line body. Other embodiments further include An article of at least one first metal product produced according to the embodiments. The articles may, for example, comprise an electronic device. At least - the third embodiment provides a method It comprises providing a composition comprising at least one compound capable of forming at least one type of tooth ion, wherein the compound comprises at least one of: a boron atom, a nitrogen atom, a phosphorus atom sulphide or a selenium atom; and, in the combination Reducing at least one first metal ion into at least one first metal ion in the presence of a substance, wherein the reduction is in the absence of any metal ion having an atomic order different from the atomic order of the (four) at least - metal-pores. 163l92.doc 201248655 The compound may, for example, comprise at least a first atom bonded to at least one halogen atom and bonded to at least one carbon atom. The second atom may, for example, comprise at least one of the following: a boron atom, a nitrogen An atomic phosphorus atom, a sulfur atom or a selenium atom. An exemplary at least one compound is a stupid phosphine dichloride. In at least some embodiments, the at least one tooth ion comprises at least one gas ion. The at least one first silver metal ion can be Containing at least one IUPAC Group 11 element or at least one coin metal ion such as, for example, silver ions. In at least some embodiments, The method may further comprise adjusting the rate of formation of the compound by at least one of: selecting the at least one compound, selecting the amount of the at least one compound in the composition, or selecting at least one temperature at which the reduction is performed. In at least some embodiments, the reduction can occur in the presence of at least one second metal or metal ion, the atomic sequence of the at least one second metal or metal ion being different from the atomic sequence of the at least one first metal ion. The embodiment k provides at least one first metal product produced by the method. The product may, for example, comprise at least one nanowire body. Other embodiments provide at least one first metal product produced by the methods. At least a fourth embodiment comprises a method comprising providing an amount of at least one organofunctional compound 'wherein the compound is capable of forming at least one carbocation and at least one i ion' and at least one in the presence of the composition Reducing a metal ion to at least a first metal, wherein the reducing is in the absence of an atomic sequence different from the at least one first Performed at any 163192.doc 201248655 metal ions where the metal ions of atomic number. In some/some embodiments, the at least one organic tooth compound may comprise a bond, a S 7 (f)-atom atom, and a carbon atom bonded to the --aryl ring by at least one carbon-carbon bond. Alternatively, the carbon atom may be bonded to at least one dentate atom and bonded to at least two aromatic rings by at least two carbon-carbon bonds. Alternatively, the carbon atom may be bonded to one (tetra) atom and bonded to the three aromatic rings by three carbon-carbon bonds. The compound may, for example, comprise triphenylmethane. In at least some embodiments, the at least one carbocation comprises at least one secondary carbocation or tertiary carbocation, or the caronion comprises at least one tertiary carbocation. In some cases, the at least one commercial ion comprises a gas ion or a bromine ion, or the at least one tooth ion comprises at least one gas ion. In at least some embodiments, the methods further comprise adjusting the rate of tooth formation by at least one of selecting the at least one organic compound, selecting the amount of the at least one organic tooth compound in the composition, or Select at least one temperature at which the reduction is performed. Eight other embodiments & at least one first metal product produced by such methods. The product can, for example, comprise at least one nanowire body. Other embodiments provide an article comprising at least one first metal product produced by such methods. The embodiments and other variations and modifications can be better understood from the following description of the drawings, drawings, drawings, Any of the examples provided are given by way of example only 163192.doc 201248655. Other intrinsic achievable goals and advantages may be considered or apparent to those skilled in the art. The invention is defined by the scope of the appended patent application. [Embodiment] All of the publications, patents, and patent documents mentioned in this specification are hereby incorporated by reference in their entirety in their entirety in their entirety herein The title of the application for December 15, 2011 is NANOWIRE PREPARATION METHODS, COMPOSITIONS, AND ARTICLES, US Patent Application No. 13/326,356; May 23, 2011, the title of the application is NANOWIRE PREPARATION METHODS, COMPOSITIONS, AND ARTICLES Application No. 61/488,936; application dated January 14, 2011 titled NANO WIRE PREPARATION METHODS, COMPOSITIONS, AND ARTICLES US Provisional Application No. 61/432,615; May 23, 2011 application titled NANOWIRE PREPARATION METHODS, COMPOSITIONS, AND ARTICLES US Provisional Application No. 61/488,811; May 23, 2011, titled NANOWIRE PREPARATION METHODS, COMPOSITIONS, AND ARTICLES US Provisional Application No. 61/488,814; and 2011 The title of the application is the US Provisional Application No. 61/500,155, the disclosure of which is incorporated herein by reference. At least some embodiments provide methods for using at least one species of at least one tooth ion capable of forming at least one tooth ion in metal ion reduction, wherein the reduction occurs in the presence of the at least one compound or the at least one functional ion. The compounds comprise at least - first-original + bonded to at least one carbon atom and bonded to at least one dentate atom. The bond between the at least-first atom and the at least one acant atom may be referred to as a "polar covalent" bond, for the purposes of the present application, the meaning of the at least one first atom and the at least one _ atom The absolute value of the difference in electronegativity is greater than about 4 Pauling units and less than about 2 Pauling units. Such methods may allow, for example, the production of a metal nanowire, even if the concentration of at least one compound in the 存在 has an inter-operability variability mn variability, the metal nanowires still have a uniform thickness and length that can be regenerated. Metal Ions and Metal Products Some embodiments provide a method that includes the reduction of metal ions to metals. These metal ions may be referred to as "reducible metal ions", and are meaning metal ions which can be reduced to metals under the setting of some reaction conditions. In such methods, the metal ion may, for example, comprise at least one IUPA (: ion of a steroid element or at least one coin metal ion. The coin metal ion is an ion of one or more coin metal, or the coin metal Including copper, silver and gold. In some cases, the metal ions may be provided in the form of a salt. For example, the silver cation may be provided, for example, in the form of silver nitrate. In these embodiments, the at least one metal is the at least one Metal ions can be reduced to a metal. For example, silver is a metal that a silver cation can be reduced into. A compound comprising carbon, a metal and a polar covalent bond 163192.doc • 10· 201248655 - some embodiments provide a method comprising at least Reduction of a metal ion to a metal in the presence of a compound or a tooth ion, wherein the compound comprises a bond to at least one carbon atom and is bonded to at least one of the at least one ac tooth atom, the at least one - atom and the at least - (4) The atomic bond is the "polar covalent" bond. For the purposes of this application, the meaning is as follows. One less atom and the The absolute value of the electronegativity difference of one less atom is greater than about 0.4 Pauling units and less than about 2 Pauling units. In this embodiment, the reduction is in the absence of an atomic sequence different from the at least— The metal ion of the first metal ion is carried out in the case of any metal ion. The reduction is carried out in the absence of ions of the following: alkali metal, alkaline earth metal 'transition metal, late transition metal, main group metal and rare earth metal. The use of such compounds in metal ion reduction allows for the provision of tooth ions without the need to provide catalytic metal cations or other aprotic cations. In conventional nanowire synthesis methods, the functional ion is composed of a catalytic metal cation or other aprotic Provided by a cation, the stoichiometric ratio of the catalytic metal cation or other aprotic cation is determined by the nature of the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The ability of the rice noodle and the shape of the nanowire formed. Learned. The method and composition of the present application can provide gold. Nanowire-body, even if the concentration of the at least one compound has inter-operability variability, the metal nanowires have a uniform thickness and length that can be regenerated. In the methods, the at least one first atom can For example) comprising at least one of: a boron atom, a nitrogen atom, a phosphorus atom, a helium atom, a sulfur atom, a selenium atom or a carbon atom. Or 'in some cases, the at least one first atom may be 163192.doc -11 - 201248655 Including at least one of: a boron atom, a phosphorus atom, a germanium atom or a carbon atom. In some cases, the at least one species of tooth ions may, for example, comprise at least one gas ion, a secret ion or a breaking ion. In this case, the at least one halide may comprise at least one gas ion or a desert ion. Non-limiting examples of the at least one compound are diethyl dioxane, phenylphosphine dioxane, diphenyl borane and three Phenyl methane. Other non-limiting examples of such at least one compound are compounds having the formula: RxSiXy 'where x+y=4 and y are non-zero; compound RxBXy, wherein 0 is 3 and 丫 is not zero; boron azide HA core , X is non-zero in the basin; RxPXy' where x+y=3j_y is non-zero; "call, where x+y=3 and y are non-zero; 醯base function RC〇x; RxCXy, where χ+&quot; and y are not Zero TMCXy, where x+y+z=4, and both are non-zero. In the formula: 'X represents a dentate atom and the sizing represents an alkyl group, a substituted alkyl group, an aryl group or a substituted aryl group. The substituted alkyl or aryl group may comprise a functional group, an alkoxy moiety, an amine, and the like. In at least some embodiments, the at least one compound may be capable of forming at least one carbocation and at least one species. The compound may, for example, comprise a carbon atom bonded to at least one dentate atom and bonded to at least one aromatic ring by at least one carbon-carbon bond; or the compound may, for example, comprise a bond at least a carbon atom and a carbon atom bonded to at least two square rings by at least two carbon. carbon bonds; or the compound may, for example, comprise a bond to one And a carbon atom bonded to the three aromatic rings by three carbon-carbon bonds. In some cases, the carbocation may comprise at least one secondary carbon cation or tertiary carbon cation or at least one The carbocation comprises at least 163] 92.doc • 12· 201248655 A tertiary carbocation. The compound may, for example, comprise a tribasic gas. 曱 Solvent decomposition In at least some embodiments, the methods may include Forming the at least H ion by solvolysis of the at least one compound. The solvolysis is a nucleophilic substitution, wherein the nucleophile is a solvent molecule. The solvolysis can, for example, comprise the following - or more: hydrolysis, alcoholysis, Glycation, acidolysis, amidolytic or aminolysis. In some embodiments, solvolysis can be carried out in a reaction mixture, which can, for example, comprise one or more polyols, such as (eg, monool, propylene glycol, butyl) Glycols, glycerol, sugars, carbohydrates, and the like. The solvolysis of the at least one compound provides _ ions without introducing catalytic metal ions or other aprotic cations simultaneously. In the case where it is not desired to be bound by theory, the solvolysis of the polar covalent bond between at least the _--atom and at least one dentate atom causes the generation of a functional ion and a proton cation. By reducing the stoichiometric linkage between the tooth ion and the #proton cation, it is possible to reduce the metal ion in the presence of reduced levels of aprotic cations or even the presence or absence of aprotic cations. Nanostructures, Nanostructures, Nanowires, and Articles In some embodiments, the metal product formed by such methods is a nanostructure, such as a one-dimensional Neil structure. The nanostructure has at least one less than 163192. .doc •13- 201248655 300 nm "nanoscale" size structure. Examples of such nanostructures are nanopillars, nanowires, nanotubes, nanocones, nanoprisms, nanoplates and the like. The "-dimensional" nanostructure has a size that is much larger than the other two nanometer sizes, such as, for example, at least about 1 inch or at least about 100 or at least about 200 or at least about 1 inch. In some cases, the s-dimensional one-dimensional nanostructure may comprise a nanowire body. The nanowire body is a one-dimensional nanostructure, wherein two shorter dimensions (thickness dimensions) are less than 300 nm, preferably less than 1 〇〇 nm, and the third dimension (length dimension) is greater than 1 micron, preferably greater than 10 micrometers. And the aspect ratio (the ratio of the length dimension to the larger of the two thickness dimensions) is greater than five. The nanowire body acts as a conductor in an electronic device or as an element in an optical device, among other possible uses. In some such applications, 'silver nanowires are preferred. A method such as 5H can be used to prepare a nanostructure other than the nanowire, such as, for example, a nanocube, a nanocolumn, a nanocone, a nanotube, and the like. Nanowires and other nanostructured products can be incorporated into items such as electronic displays, touch screens, portable phones, mobile phones, computer monitors, laptops, tablets, point-of-sale information stations (point_of_ purchase Kiosks), music players, video games, e-book readers, transparent electrodes, solar cells, light-emitting diodes, other electronic devices, medical imaging devices, medical imaging media, and the like. Method of Preparation One common method of preparing a nanostructure (such as, for example, a nanowire) is the "polyol" method. The method is described, for example, in /«/.2009, s., 60, Y. Xia, γ. xiong, B. Lim, SESkrabalak I63192.doc 14 201248655, the sib document hereby cited by the party # + + + eight Fully incorporated into this article. The process typically reduces a metal cation (such as, for example, a ruthenium 4 cation) to a desired metal nanostructure product &apos;such as, for example, a silver nanowire. The reduction can be carried out in the reaction mixture. The mixture can, for example, comprise one or more polyols such as, for example, ethylene glycol (EG), propylene glycol, butanediol 'glycerol, sugar' water-breaking compounds and the like; - or a plurality of protective agents such as, for example, polyvinylpyrrolidone (also known as polyvinylpyrrolidone or pvp), other polar polymers or copolymers, surfactants, acids and the like; A variety of metal ions. These and other components can be used in the reaction mixture as is known in the art. The reduction can be carried out, for example, at a temperature of from about 12 Torr to about 19 Å &gt; c or at a temperature of from about 80 ° C to about 190 ° C. EXEMPLARY EMBODIMENT The title of the application on January 14, 2011 is like 1^〇\¥肥? </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; A. A method comprising: providing a composition comprising at least one organophosphate compound capable of forming at least one cerium ion; and reducing at least one first metal ion in the presence of the composition The method of embodiment, wherein the at least one organic carious compound comprises at least one germanium atom bonded to at least one of the atoms. C. The method of embodiment A, wherein the at least An organic carious compound 163192.doc -15- 201248655 a germanium atom. The species south ion comprises at least a metal ion comprising - the first metal ion comprises - the first metal ion comprises at least D comprising a bond to at least two halogen atoms The method of embodiment A, wherein the at least one gas ion. E. The method of embodiment A, wherein the at least one IUPAC group 11 element. F. as in Example A The method, wherein the at least one coin metal ion. G. The method of embodiment A, wherein the at least one silver ion. H. The organic oxime compound, such as the method of embodiment A, wherein the at least one comprises a bond At least one of the fangs atoms of the yttrium atom +, the sand atom is also bonded to at least one carbon atom. J. The method of embodiment A wherein the at least one organic carious compound comprises a bond to at least one letter The cerium atom of the prime atom is bonded to at least two carbon atoms. K. The method of embodiment A, wherein the at least one organic stone compound comprises diethyl dioxane. The method of embodiment A further comprises adjusting the rate of formation of the compound by at least one of: selecting the at least one organic caries compound to select the amount of the at least one organic compound in the composition, or selecting to perform At least one temperature at which the reduction is performed. M. at least one first metal product produced according to the method of embodiment a. N. at least one first metal product of the embodiment, the at least one product 163i92.doc 201248655 comprises at least one nanowire body. p. An article comprising at least one first metal product according to embodiment M.

2011年5月23曰申請之標題為NANO WIRE PREPARATION METHODS’ COMPOSITIONS, AND ARTICLES之美國臨時申 請案第61/488,814號在此以y用之方式全部併入本文,其 揭示以下12個非限定性示範性實施例: Q. —種方法’其包括: 提供包含能夠形成至少,離子之至少一種化合物之 組合物,該化合物包含以下至少—者:删原子、氣原子、 碟原子、硫原子或砸原子;及 、 於該組合物存在下將至少一第一 弟金屬離子還原成至少一 第一金屬。 乂 R.如實施例Q之方法,其中該.w u ΰ 3¾¾、结於至,丨 個鹵素原子及鍵結於至少一個碳原子之至少一 S·如實施例R之方法,其中該至少一第一:一原子。 至少-者1原子、氮原子、磷原子、硫原^包含以下 T.如實施例Q之方法,其中該至少 ^原子。 醢二氯。 化合物包含笨鱗 U :實施例Q之方法’其中該至少, 一氣離子。 。含至少 V.如實施例Q之方法,其中該至少一第 至少一種IUPAC第U族元素。 屬離子包含 w.如實施㈣之方法,其 屬離子包含 163l92.doc -17· 201248655 至少一種鑄幣金屬離子。 其中該至少一第一金屬離子包含 X.如實施例Q之方法 至少一種銀離子。 Y. 如實施例Q之方法,更包括: 藉由以下至少—去A — 布來凋郎齒化物產生率:選擇該至少一 種化合物、選擇兮5 ,丨、 A 夕~~種化合物於該組合物中之量,戍 選擇執㈣還原所處之至少—個溫度。 〆 Z. 如實施例Q之方法,其中該還原係於原子序不同於該 至/第-金屬離子之原子序之至少__第二金屬或金屬離 子存在下發生。 AA.至少一第一金屬產品,其係根據實施例q之方法產 生。 AB. 如實施例AA之至少一第一金屬產品,該至少一種產 品包含至少一奈米線體。 AC. —種物品,其包含如實施例aa之至少一第一金屬產 品。 2011年6月23曰申請之標題為NANO WIRE PREPARATION METHODS,COMPOSITIONS,AND ARTICLES之美國臨時申 請案第61/500,155號在此以引用方式全部併入本文,其揭 示以下17個非限定性示範性實施例: AD. —種方法,其包括: 提供包含至少一第一原子及至少一第二原子之至少—種 化合物’該至少一第一原子包含至少一種IUPAC第13族原 子且該至少一第二原子包含至少一種_素原子;及 •18· 163I92.doc 201248655 於該至少一第一原子存在下將至少一第一金屬離子還原 成至少一第一金屬。 AE.如實施例AD之方法,其中該至少一第一金屬離子包 含至少一種鑄幣金屬離子。 • AF.如實施例AD之方法,其中該至少一第一金屬離子包 含至少一種IUPAC第11族元素之離子。 AG. 如實施例AD之方法,其中該至少一第一金屬離子包 含至少一種銀離子。 AH. 如實施例AD之方法,其中該至少一第一原子包含 棚。 AJ. 如實施例AD之方法,其中該至少一第二原子包含以 下至少一者:氣、溴或碘。 AK. 如實施例AD之方法,其中該至少一第二原子包含 氣。 A L.如實施例AD之方法,其中該化合物包含至少一個棚- 碳鍵。 AM.如實施例AD之方法,其中該化合物包含至少一個硼- 鹵素鍵。 - AN.如實施例AD之方法,其中該化合物包含至少一個硼- . 碳鍵及至少一個硼-鹵素鍵。 AP. 如實施例AD之方法,其中該化合物包含二氣苯基硼 烷。 AQ. 如實施例AD之方法,其中該還原係於該至少一第二 原子存在下進行。 163192.doc -19- 201248655 AR. 如實施例AD之方法,其中該還原係於一或多種保護 劑或多元醇存在下進行。 AS. 根據實施例AD之至少一第一金屬。 AT. 至少一種物品,其包含如實施例AS之至少一第一金 屬。 AU. 如實施例AT之物品,其中該至少一第一金屬包含一 或多種奈米線體、奈米立方體、奈米柱、奈米錐或奈米 管。 AV. 如實施例AT之物品,其包含以下至少一者:電子顯 示器、觸控螢幕、可攜式電話、行動電話、電腦顯示器、 膝上型電腦、平板電腦、購買點資訊站、音樂播放機、電 視、電子遊戲、電子圖書閱讀器、透明電極、太陽能電 池、發光二極體、電子裝置、醫學成像裝置,或醫學成像 媒介。 2011年5月23日申請之標題為NANO WIRE PREPARATION METHODS,COMPOSITIONS,AND ARTICLES之美國臨時申 請案第61/488,811號在此以引用之方式全部併入本文,其 揭示以下14個非限定示範性實施例: AW. —種方法,其包括: 提供包含一定量之至少一種有機齒化合物之組合物,該 化合物能夠形成至少一種碳陽離子及至少一種li離子;及 於該組合物存在下將至少一第一金屬離子還原成至少一 第一金屬。 AX. 如實施例AW之方法,其中該至少一種碳陽離子包含 163192.doc •20· 201248655 至少一種二級碳陽離子或三級碳陽離子。 AY. 如實施例AW之方法’其中該至少一種碳陽離子包含 至少一種三級碳陽離子。 AZ. 如實施例AW之方法’其中該至少一種_離子包含至 少一氣離子。 BA.如實施例AW之方法,其中該至少一第一金屬離子包 含至少一種IUPAC第11族元素。 ΒΒ.如實施例AW之方法’其中該至少一第一金屬離子包 含至少一種鑄幣金屬離子。 BC.如實施例AW之方法,其中該至少一第一金屬離子包 含至少一種銀離子。 BD.如實施例AW之方法,#中該至少—種有機自化合物 包含鍵結於至少一個i素原子之碳原子,該碳原子亦藉由 至少一個碳·碳鍵鍵結於至少一個芳環。 種有機函化合物 該碳原子亦藉由 BE·如實施例AW之方法,其中該至少一 包含鍵結於至少一個鹵素原子之碳原子, 至少兩個碳-碳鍵鍵結於至少兩個芳環。 BF.如實施例AW之方法, 包含三苯基氣甲烷。 其令該至少一種有機齒化合物 BG.如實施例AW之方法,更包括. 藉由以下至少一者來調節鹵仆4 P图化物產生率:選擇該至少一 種有機齒化合物、選擇該至少一 種有機函化合物於該組合 物中之量,或選擇執行該還原 疋屌所處之至少一個溫度。 BH·至少一第一金屬產品,其 具係根據實施例AW之方法產 163192.doc •21 · 201248655 生。 BJ. 如實施例BH之至少一第一金屬產品,該至少一種產 品包含至少一種奈米線體。 BK. —種物品,其包含如實施例BH之至少一第一金屬產 品。 2011年12月15日申請之標題為NANOWIRE PREPARATION METHODS,COMPOSITIONS,AND ARTICLES之美國申請案 第13/326,356號在此以引用之方式全部併入本文,其揭示 以下10個非限定性示範性實施例: BL. —種方法,其包括: 提供能夠形成至少一種齒離子之至少一種化合物,該化 合物包含至少一第一原子、鍵結於該至少一第一原子之至 少一個iS素原子及鍵結於該至少一第一原子之至少一個碳 原子;及 於該至少一化合物或該至少一種函離子中至少一者的存 在下將至少一第一金屬離子還原成至少一第一金屬, 其中該至少一第一原子與該至少一個鹵素原子之電負度 差異之絕對值大於約0.4個鮑林單位及小於約2 〇個鮑林單 位。' BM. 如實施例BL之方法,其中該至少一第一原子包含以 下至少一者:硼原子、氮原子、磷原子、矽原子、硫原 子、硒原子或碳原子》 BN·如實施例BL之方法,其中該至少一第一原子包含以 下至少一者:硼原子、磷原子、矽原子或碳原子❶ 163192.doc •22- 201248655 BP. 如實施例BL之方法,更包括藉由該至少一種化合物 之溶劑分解來形成該至少一種鹵離子。 BQ. 如實施例BL之方法,其中該至少一種鹵離子包含至 少一氣離子或溴離子。 BR. 如實施例BL之方法,其中該至少一種化合物能夠形 成至少一種碳陽離子。 B S.如實施例B L之方法,其中該至少一種化合物包含以 下至少一者:二乙基二氣矽烷、苯膦醯二氣、二氣苯基硼 烷或三苯基甲基氯。 BT.如實施例BL之方法,其中該至少一第一金屬包含至 少一種IUPAC第11族元素或至少一種鑄幣金屬。 B U.如實施例B L之方法,其中該至少一第一金屬包含 銀。 BV. 至少一種奈米線體,其包含根據實施例BL之方法產 生之至少一第一金屬。 2011年5月23日申請之標題為NANO WIRE PREPARATION METHODS, COMPOSITIONS,AND ARTICLES之美國臨時申 請案第61/48 8,936號在此以引用之方式全部併入本文,其 揭示以下18個非限定性示範性實施例: BW. —種方法,其包括: 提供包含非金屬觸媒之組合物,該非金屬觸媒包含矽; 及 於該非金屬觸媒存在下將至少一第一金屬離子還原成至 少一第一金屬。 163192.doc -23- 201248655 BX.如實施例BW之方法,其中該非金屬觸媒包含鍵結於 至少一個碳原子之至少一個石夕原子。 BY.如實施例BW之方法’其中該非金屬觸媒包含鍵結於 至少兩個碳原子之至少一個石夕原子。 其中該至少-彳时原子鍵結於 其中該至少-個⑪原子鍵結於 其中該至少一個矽原子鍵結於 其中該至少-個發料鍵結於 B Z.如實施例B W之方法 至少一個齒素原子。 CA.如實施例BW之方法 至少兩個齒素原子。 CB.如實施例BW之方法 至少一個氧原子。 CC,如實施例BW之方法 至少兩個氧原子。 CD. 如實施例BW之方法 至少一個氫原子。 CE. 如實施例BW之方法 至少兩個氣原子。 其中該至少—㈣原子鍵結於 其中該至少-個石夕原子鍵結於 CF. 如實施例bw之方法,其中該至. x 亥至;一種非金屬觸媒i 含鍵結於至少一個鹵素原子之矽屌 s , y ,該W子亦鍵結2 至少一個碳原子。 CG. 如實施例BW之方法,其中該至少— 含鍵結於至少-個❹原子^原子, 制… 至少兩個碳原子。 -夕原子亦鍵結方 CH. 如實施例BW之方法,其中該 含二乙基二氯石夕炫。 種非金屬觸媒包 163192.doc -24- 201248655 CJ. 如實施例BW之方法’其中該至少一第一金屬離子包 含至少一種IUPAC第11族元素。 CK. 如實施例BW之方法’其中該至少一第一金屬離子包 含至少一種鑄幣金屬離子。 CL. 如實施例BW之方法,其中該至少一第一金屬離子包 含至少一種銀離子。 CM_至少一第一金屬產品,其係根據實施例BW之方法產 生。 CN.如實施例CM之至少一第一金屬產品,該至少一種產 品包含至少一種奈米線體。 CP. 一種物品,其包含如實施例CM之至少一第一金屬產 品。 實例 實例1 向含有280 mL乙二醇(EG)之500 mL反應燒瓶令添加0.20 g新鮮製備之二乙基二氣矽烷於EG中之52 mM溶液及3.3 g 之乙醯丙酮鐵(II)於乙二醇(EG)中之3 mM溶液。在室溫及 100 rpm機械攪拌下,使用玻璃吸管,藉由將n2向溶液中 鼓泡至少2小時使該溶液剝離至少一些溶解氣體。(該操作 後續稱為「脫氣」。)將0.77 Μ聚乙稀&quot;比η各咬酮(pvp,重量 平均分子量55,000)於EG中及0.25 M AgN03於EG中之溶液 由N2脫氣,隨後各製備20 mL注射器。將反應混合物在n2 下加熱至145 C ’隨後經由12 口控鐵敗龍(Teflon)注射器 針’以恆定速率經25分鐘添加AgN〇3及PVP溶液。將反應 163192.doc •25· 201248655 於145°C下保持90分鐘,且隨後使其冷卻至周圍溫度。 圖1展示銀奈米線體產品之光學顯微照片。 實例2 使用TEFLON®氟聚合物管,將含有280 mL乙二醇(EG) 之500 mL反應燒瓶由N2脫氣,同時於100 rpm下攪拌2小 時。向該EG添加0.10 g新鮮製備之苯膦醯二氣於EG中之 0.40 Μ溶液及3.3 g之乙醯丙酮鐵(II)於EG中之3 mM溶液。 隨後收回氟聚合物管以提供淨化速率〇·5 L/min之圍包該反 應燒瓶頂部空間之氮氣。將0.84 Μ聚乙烯吡咯啶酮(PVP, 重量平均分子量55,000)於EG中及0.25 M AgN03於EG中之 溶液由N2脫氣,隨後各製備20 mL注射器》將反應混合物 在N2下加熱至155°C,隨後經由12 口徑TEFLON®氟聚合物 注射器針,以恆定速率經25分鐘添加AgN03及PVP溶液。 將該反應於155°C下保持90分鐘,且隨後使其冷卻至周圍 溫度。 圖2展示未純化銀奈米線體產品之光學顯微照片。 實例3 將含有280 mL乙二醇(EG)之500 mL反應燒瓶藉由使氮 鼓泡穿過該反應燒瓶之内容物來脫氣隔夜。向該燒瓶中添 加於EG中之1.3 g新鮮製備之31 mM二氣苯基硼烷。將該反 應混合物在氮氣下加熱至145°C。將0.77 Μ聚乙烯吡咯。定 酮(PVP,重量平均分子量55,000)於EG中及0.25 M AgN〇3 於EG中之儲備溶液由氮氣脫氣。製備PVP及AgN〇3溶液之 20 mL注射器且隨後經由12 口徑TEFLON®氟聚合物注射器 163192.doc •26· 201248655 針,將溶液以恆定速率經25分鐘添加至反應燒瓶。將該反 應混合物於145°C下保持90分鐘,且隨後使其冷卻至周圍 溫度。 圖3展示銀奈米線體產品之光學顯微照片。 實例4 向含有280 mL乙二醇(EG)之500 mL反應燒瓶中添加2.5 g新鮮製備之二乙基二氯矽烷於EG中之81 mM溶液。在室 溫及100 rpm機械攪拌下,使用TEFLON®氟聚合物管,藉 由將A向溶液中鼓泡隔夜使該溶液脫氣。(該操作後續稱 為使「脫氣」。)將0.84 Μ聚乙烯吡咯啶酮(PVP,重量平均 分子量55,000)於EG中及0.25 M AgN03於EG中之溶液由ν2 脫氣’隨後各製備20 mL注射器。將反應混合物在ν2下加 熱至145°C ’隨後經由12口徑TEFLON®氟聚合物注射器針 以恆定速率經25分鐘添加AgN03及PVP溶液。將該反應於 145 C下保持90分鐘,隨後使其冷卻至周圍溫度。 圖4展示銀奈米線體產品之光學顯微照片。基於至少1〇〇 個線體之量測值’該等奈米線體具有64 9±16 5 nm之平均 直徑及15·5± μηι之平均長度。 實例5-7 變化所使用t 一乙基-氣石夕院/EG觸媒溶液之量及濃度 來重複實例4之程序。該等結果連同實例4之結果一起示於 表I中在所測5式之觸媒溶液範圍内,平均直徑及長度變 化程度最小。 實例8(比較) 163192.doc •27- 201248655 向500 mL反應燒瓶添加280 mL乙二醇(EG)及1.4 g新鮮 製備之於EG中之15 mM IrCl3.3H2〇分散液。在室溫及1〇〇 rpm機械攪拌下’使用玻璃吸管,藉由將&amp;向溶液中鼓泡2 小時使該溶液脫氣。0.25 M AgN〇3於EG中及0.84 Μ聚乙稀 。比咯啶酮(PVP)於EG中之儲備溶液亦藉由將沁向該等溶液 鼓泡至少60分鐘而脫氣。將兩個注射器各裝入mL AgN〇3及PVP溶液。將反應混合物在A下加熱至155¾,且 經由12 口徑TEFLON®氟聚合物注射器針,以恆定速率經Μ 分鐘添加AgNO;}及PVP溶液。將該反應於i55°C下保持90分 鐘,隨後使其冷卻至室溫。 圖5展示反應60 min後之反應混合物。可見奈米粒子、 微粒與僅少量之短奈米線體。 實例9(比較) 使用2.9 g新鮮製備之KdrCU於EG中之7.〇 mM分散液替 代IrCl3*3H2〇分散液,重複實例8之程序。替代155。〇,於 145°C下進行反應。 圖6展示反應90 min後之反應混合物。可見僅少量之精 細奈米線體。 實例10(比較) 使用2.3 g新鮮製備之ΐη(:13·4Η2〇於eg中之7〇 mM分散 液替代Ιγ(:13·3Η2〇分散液,重複實例8之程序。 圖7展示反應90 min後之反應混合物β無可見之_米線 體。 實例11(比較) 163192.doc -28 · 201248655 向100 mL反應燒瓶添加50 mL乙二醇(EG)及0.29 g之於 EG中之7.0 mM AuC13。在室溫及100 rpm機械攪拌下,使 用玻璃吸管,藉由將N2向溶液中鼓泡2小時使該溶液脫 氣。0.25 M AgN03於EG中及0.84 Μ聚乙烯吡咯啶酮(PVP) 於EG中之儲備溶液亦藉由將Ν2向該等溶液中鼓泡至少60 分鐘而脫氣。將兩個注射器各裝入3 mL AgN03及PVP溶 液。將該反應混合物在N2下加熱至145°C,且經由20 口徑 TEFLON®氟聚合物注射器針,以恆定速率經25分鐘添加 AgN03及PVP溶液。將該反應於145°C下保持150分鐘,隨 後使其冷卻至室溫。 反應15、30、60、90 120及150 min後所取之樣本似乎僅 具有奈米粒子而無奈米線體。 實例12(比較) 將含有300 mL乙二醇(EG)、2.2 g聚乙烯吡咯啶酮(PVP, 重量平均分子量55,000)及9.2 mg四氣化铪雙(四氫呋喃)加 合物之500 mL反應燒瓶在室溫下使用經由TEFLON®氟聚 合物管引入液體表面下方之氮氣來脫氣隔夜。隨後,將該 管自液體收回以提供大約0.5 L/min之圍包該反應燒瓶頂部 空間之氮氣,之後將該攪動之燒瓶加熱至145°C。0.50 Μ AgN03於EG中之儲備溶液亦由氮氣脫氣,且隨後製備經脫 氣溶液之20 mL注射器。隨後,經由12 口徑TEFLON®氟聚 合物注射器針,以恆定速率經25分鐘添加AgN03溶液。隨 後,將該燒瓶保持溫度60分鐘,之後使其冷卻降溫至周圍 溫度。 163192.doc •29- 201248655 圖8展示奈米線體產品之光學顯微照片,基於1〇〇個線體 之量測值,該奈米線體產品具有253.5±133.0 nm之平均直 徑及8_7±5·5 μιη之平均長度。 實例13(比較) 使用6.9 mg四氣化锆雙(四氫呋喃)加合物替代含铪加合 物,重複實例12之程序。圖9展示銀奈米線體產品之光學 顯微照片,基於100個線體之量測值,該銀奈米線體產品 具有147.3±50.0 nm之平均直徑及15·6±12 〇 ^爪之平均長 度。 實例14(比較) 使用9.9 mg氣化鈕(V)重複實例12之程序。圖1〇展示銀 奈米線體產品之光學顯微照片,基於1 〇〇個線體之量測 值’該銀奈米線體產品具有2 1 5±11 9 nm之平均直徑及 10.6±6.5 μιη之平均長度。 實例15 向含有280 mL乙二醇(EG)之500 mL反應燒瓶中添加7.3 mg三苯基氣甲烷及3.3 g之乙醯丙酮鐵(π)於乙二醇(EG)中 之3 mM溶液。使用玻璃吸管,將反應混合物由n2脫氣, 同時在100 rpm下攪拌2小時。將〇.77 Μ聚乙烯吡咯啶酮 (PVP)於EG中及0.25 M AgN〇3於EG中之溶液由Ν2脫氣,隨 後各製備20 mL注射器《將反應混合物在ν2下加熱至 155°C,隨後經由12 口徑TEFLON®氟聚合物注射器針,以 怪定速率經25分鐘添加AgN03及PVP溶液。將該反應於 145°C下保持90分鐘,隨後使其冷卻至周圍溫度。 163192.doc -30- 201248655 圖11展示銀奈米線體產品之光學顯微照片。 實例16 除使用〇.16 §新鮮製備之氣化节基於EG中之0.27 Μ溶液 替代三苯基氯曱烷外,重複實例15之程序。在該等條件 下,觀察到銀奈米線體開始形成,然而隨後形成形狀不規 則之銀奈米線體,其傾向於聚結成群。 圖1 2展示該反應產品之光學顯微照片。 實例17 使用表面下TEFLON®氟聚合物管引入之氮氣將含有28〇 mL乙二醇(EG)之5〇〇 mL反應燒瓶脫氣。隨後,向燒瓶添 加1.0 g之二乙基二氣矽烷於EG中之81 mM溶液。隨後收回 氟聚合物管以提供流速大約0.5 L/min之圍包氮氣。將該反 應混合物加熱至145°C同時在100 rpm下攪拌。將0.77 Μ聚 乙烯。比咯啶酮(PVP)於EG中及0.25 M AgN03於EG中之溶液 由氮氣脫氣’隨後各製備20 mL注射器。隨後,經由12 口 徑TEFLON®氟聚合物注射器針,以恆定速率經25分鐘添加 AgN〇3及PVP溶液。將該反應於1451下保持90分鐘,隨後 使其冷卻至周圍溫度。 圖13展示銀奈米線體產品之光學顯微照片。 實例18 使用2.5 g之二乙基二氣矽烷於EG中之81 mM溶液替代上 文使用之1.0 g,重複實例17之程序。圖14展示銀奈米線體 產品之光學顯微照片。 實例19 163192.doc 201248655 使用5.0 g之二乙基二氣矽烷於EG中之81 mM溶液替代上 文使用之1.0 g,重複實例17之程序。圖15展示銀奈米線體 產品之光學顯微照片。 表I 實例 所使用之Et2SiCl2溶液 平均直徑(nm) 平均長度〇im) 4 2.5 g之0_81 mM 65 16 5 5.0 g之0.81 mM 68 14 6 η 4.4 g之0·45 mM 62 14 / 1.0 g之0.81 mM 60 13 【圖式簡單說明】 圖1展示實例1之銀奈米線體產品之光學顯微照片。 圖2展示實例2之銀奈米線體產品之光學顯微照片。 圖3展示實例3之銀奈米線體產品之光學顯微照片。 圖4展示實例4之銀奈米線體產品之光學顯微照片。 圖5展示比較實例8之反應產品之光學顯微照片。 圖6展示比較實例9之反應產品之光學顯微照片。 圖7展示比較實例10之反應產品之光學顯微照片。 圖8展示比較實例12之反應產品之光學顯微照片。 圖9展示比較實例13之反應產品之光學顯微照片。 圖10展示比較實例14之反應產品之光學顯微照片。 圖11展示實例15之銀奈米線體產品之光學顯微照片。 圖12展示實例16之銀奈米線體產品之光學顯微照片。 圖13展示實例17之銀奈米線體產品之光學顯微照片。 圖14展示實例18之銀奈米線體產品之光學顯微照片。 圖15展示實例19之銀奈米線體產品之光學顯微照片。 163192.doc • 32·U.S. Provisional Application No. 61/488,814, the entire disclosure of which is hereby incorporated by reference in its entirety in its entirety in its entirety in its entirety in Embodiments: Q. A method comprising: providing a composition comprising at least one compound capable of forming at least an ion, the compound comprising at least one of: an atom, a gas atom, a dish atom, a sulfur atom or a germanium atom And reducing at least one first metal ion to at least one first metal in the presence of the composition. R. The method of embodiment Q, wherein the wu ΰ ⁄ 结 结 结 丨 丨 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素 卤素One: one atom. At least one of a 1 atom, a nitrogen atom, a phosphorus atom, and a sulfur atom comprises the following T. The method of Embodiment Q, wherein the at least ^ atom. Bismuth dichloride. The compound comprises a staggered scale U: the method of Example Q wherein the at least one gas ion. . Containing at least V. The method of embodiment Q, wherein the at least one at least one IUPAC Group U element. The genus ion contains w. As in the method of (4), the genus ion contains at least one coin metal ion of 163l92.doc -17· 201248655. Wherein the at least one first metal ion comprises X. at least one silver ion as in the method of embodiment Q. Y. The method of embodiment Q, further comprising: selecting at least one compound by selecting at least one of the following: selecting at least one compound, selecting 兮5, 丨, A 夕~~ compound in the combination The amount of matter, 戍 choose to hold (4) to restore at least one temperature. 〆 Z. The method of embodiment Q, wherein the reduction occurs in the presence of at least a second metal or metal ion having an atomic sequence different from the atomic sequence of the to/metal ion. AA. At least one first metal product produced according to the method of Example q. AB. The at least one first metal product of embodiment AA, the at least one product comprising at least one nanowire. AC. An article comprising at least one first metal product as in Example aa. U.S. Provisional Application Serial No. 61/500,155, the entire disclosure of which is hereby incorporated by reference in its entirety in its entirety in its entirety in its entirety in Example: AD. A method comprising: providing at least one compound comprising at least a first atom and at least a second atom, wherein the at least one first atom comprises at least one IUPAC Group 13 atom and the at least one second The atom comprises at least one atom of a sulphate; and 18 163 I92.doc 201248655 reduces at least one first metal ion to at least one first metal in the presence of the at least one first atom. AE. The method of embodiment AD, wherein the at least one first metal ion comprises at least one coin metal ion. AF. The method of embodiment AD, wherein the at least one first metal ion comprises ions of at least one IUPAC Group 11 element. The method of embodiment AD, wherein the at least one first metal ion comprises at least one silver ion. AH. The method of embodiment AD, wherein the at least one first atom comprises a shed. AJ. The method of embodiment AD, wherein the at least one second atom comprises at least one of: gas, bromine or iodine. AK. The method of embodiment AD, wherein the at least one second atom comprises a gas. A L. The method of embodiment AD, wherein the compound comprises at least one shed-carbon bond. AM. The method of embodiment AD, wherein the compound comprises at least one boron-halogen bond. The method of embodiment AD, wherein the compound comprises at least one boron-. carbon bond and at least one boron-halogen bond. AP. The method of embodiment AD, wherein the compound comprises diphenylphenylborane. AQ. The method of embodiment AD, wherein the reducing is carried out in the presence of the at least one second atom. 163192.doc -19- 201248655 AR. The method of embodiment AD, wherein the reducing is carried out in the presence of one or more protecting agents or polyols. AS. At least one first metal according to embodiment AD. AT. At least one article comprising at least one first metal of embodiment AS. AU. The article of embodiment AT, wherein the at least one first metal comprises one or more nanowires, nanocubes, nanopiles, nanocones or nanotubes. AV. The article of embodiment AT, comprising at least one of: an electronic display, a touch screen, a portable telephone, a mobile phone, a computer display, a laptop, a tablet, a point of purchase information station, a music player , television, video games, e-book readers, transparent electrodes, solar cells, light-emitting diodes, electronic devices, medical imaging devices, or medical imaging media. The U.S. Provisional Application Serial No. 61/488,811, filed on May 23, 2011, which is hereby incorporated by reference in its entirety in its entirety in its entirety in Example: A method. The method comprising: providing a composition comprising a quantity of at least one organic tooth compound capable of forming at least one carbocation and at least one li ion; and at least one in the presence of the composition A metal ion is reduced to at least a first metal. AX. The method of embodiment A, wherein the at least one carbocation comprises 163192.doc • 20· 201248655 at least one secondary carbocation or tertiary carbocation. AY. The method of Embodiment AW wherein the at least one carbocation comprises at least one tertiary carbocation. AZ. The method of Embodiment AW wherein the at least one ion comprises at least one gas ion. BA. The method of embodiment A, wherein the at least one first metal ion comprises at least one IUPAC Group 11 element. The method of Embodiment AW wherein the at least one first metal ion comprises at least one coin metal ion. BC. The method of embodiment A, wherein the at least one first metal ion comprises at least one silver ion. BD. The method of embodiment AW, wherein the at least one organic compound comprises a carbon atom bonded to at least one imine atom, the carbon atom being bonded to at least one aromatic ring by at least one carbon-carbon bond . Organic compound having the carbon atom also by BE. The method of Example AW, wherein the at least one comprises a carbon atom bonded to at least one halogen atom, and at least two carbon-carbon bonds are bonded to at least two aromatic rings . BF. The method of Example AW, comprising triphenylmethane. The at least one organic tooth compound BG. The method of the embodiment AW, further comprising: adjusting the halogenate production rate by at least one of: selecting the at least one organic tooth compound, selecting the at least one organic The amount of the compound in the composition, or at least one temperature at which the reduction is carried out. BH. At least one first metal product produced according to the method of Example AW 163192.doc • 21 · 201248655. BJ. The at least one first metal product of embodiment BH, the at least one product comprising at least one nanowire. BK. An article comprising at least one first metal product as in Example BH. U.S. Patent Application Serial No. 13/326,356, the entire disclosure of which is incorporated herein by reference in its entirety in its entirety in its entirety in its entirety in its entirety in : BL. A method comprising: providing at least one compound capable of forming at least one tooth ion, the compound comprising at least a first atom, at least one iS atom bonded to the at least one first atom, and bonded to At least one carbon atom of the at least one first atom; and at least one first metal ion is reduced to at least one first metal in the presence of at least one of the at least one compound or the at least one functional ion, wherein the at least one The absolute value of the difference in electronegativity between the first atom and the at least one halogen atom is greater than about 0.4 Pauling units and less than about 2 鲍 Pauling units. BM. The method of embodiment BL, wherein the at least one first atom comprises at least one of: a boron atom, a nitrogen atom, a phosphorus atom, a ruthenium atom, a sulfur atom, a selenium atom or a carbon atom. BN· as in Example BL The method, wherein the at least one first atom comprises at least one of: a boron atom, a phosphorus atom, a germanium atom or a carbon atom 163 163192.doc • 22- 201248655 BP. The method of embodiment BL, further comprising Solvent decomposition of a compound forms the at least one halide ion. BQ. The method of embodiment BL, wherein the at least one halide ion comprises at least one gas ion or bromide ion. BR. The method of embodiment BL, wherein the at least one compound is capable of forming at least one carbocation. B. The method of embodiment B, wherein the at least one compound comprises at least one of: diethyldioxane, phenylphosphine dioxane, diphenylphenylborane or triphenylmethyl chloride. BT. The method of embodiment BL, wherein the at least one first metal comprises at least one IUPAC Group 11 element or at least one coin metal. B. The method of embodiment B, wherein the at least one first metal comprises silver. BV. At least one nanowire body comprising at least one first metal produced according to the method of embodiment BL. U.S. Provisional Application Serial No. 61/48, 936, filed on May 23, 2011, which is hereby incorporated by reference in its entirety in its entirety, in Embodiments: BW. A method comprising: providing a composition comprising a non-metallic catalyst, the non-metallic catalyst comprising ruthenium; and reducing at least one first metal ion to at least one in the presence of the non-metallic catalyst a metal. The method of embodiment B, wherein the non-metallic catalyst comprises at least one stone atom bonded to at least one carbon atom. BY. The method of Embodiment BW wherein the non-metallic catalyst comprises at least one stone atom bonded to at least two carbon atoms. Wherein the at least -彳 atom is bonded to the at least one of the 11 atoms bonded thereto, wherein the at least one atom is bonded to the at least one of the bonds bonded to B Z. At least one of the methods of embodiment BW A dentate atom. CA. Method of Example BW At least two fangs atoms. CB. Method of Example BW At least one oxygen atom. CC, as in Example BW, at least two oxygen atoms. CD. Method of Example BW At least one hydrogen atom. CE. Method of Example BW At least two gas atoms. Wherein the at least - (iv) atom is bonded to the at least one of the austenite atoms bonded to CF. The method of embodiment bw, wherein the method is to x. The non-metallic catalyst i contains a bond to at least one halogen. The atom 矽屌 s , y , the W also bonds 2 at least one carbon atom. CG. The method of embodiment B, wherein the at least - containing at least one atom of a ruthenium atom, is made of at least two carbon atoms. - 夕 atoms are also bonded to each other. CH. The method of Example BW, wherein the diethyl chlorite contains chlorocholine. A non-metallic catalyst package 163192.doc -24- 201248655 CJ. The method of embodiment BW wherein the at least one first metal ion comprises at least one IUPAC Group 11 element. CK. The method of embodiment B, wherein the at least one first metal ion comprises at least one coin metal ion. CL. The method of embodiment B, wherein the at least one first metal ion comprises at least one silver ion. CM_ at least a first metal product produced according to the method of Example BW. CN. At least one first metal product of embodiment CM, the at least one product comprising at least one nanowire. CP. An article comprising at least one first metal product as in Example CM. EXAMPLES Example 1 To a 500 mL reaction flask containing 280 mL of ethylene glycol (EG) was added 0.20 g of freshly prepared diethyldioxane in a 52 mM solution in EG and 3.3 g of iron(II) acetate. 3 mM solution in ethylene glycol (EG). The solution was stripped of at least some of the dissolved gas by mechanically agitating at room temperature and 100 rpm using a glass pipette by bubbling n2 into the solution for at least 2 hours. (This operation is hereinafter referred to as "degassing".) A solution of 0.77 Μpolyethylene &quot; η each biting ketone (pvp, weight average molecular weight 55,000) in EG and 0.25 M AgN03 in EG is degassed from N2, A 20 mL syringe was then prepared each. The reaction mixture was heated to 145 C' under n2 and then a solution of AgN〇3 and PVP was added via a 12-port Teflon syringe needle at a constant rate over 25 minutes. The reaction 163192.doc •25·201248655 was held at 145 ° C for 90 minutes and then allowed to cool to ambient temperature. Figure 1 shows an optical micrograph of a silver nanowire product. Example 2 Using a TEFLON® fluoropolymer tube, a 500 mL reaction flask containing 280 mL of ethylene glycol (EG) was degassed from N2 while stirring at 100 rpm for 2 hours. To the EG was added 0.10 g of freshly prepared phenylphosphine dioxane in a 0.40 hydrazine solution in EG and 3.3 g of a 3 mM solution of iron(II) acetate in EG. The fluoropolymer tube was then withdrawn to provide a nitrogen purge of the headspace of the reaction flask at a purge rate of L·5 L/min. A solution of 0.84 Μ polyvinylpyrrolidone (PVP, weight average molecular weight 55,000) in EG and 0.25 M AgN03 in EG was degassed from N2, followed by preparation of a 20 mL syringe. The reaction mixture was heated to 155 ° under N2. C, AgN03 and PVP solutions were then added via a 12 gauge TEFLON® fluoropolymer syringe needle at a constant rate over 25 minutes. The reaction was held at 155 ° C for 90 minutes and then allowed to cool to ambient temperature. Figure 2 shows an optical micrograph of an unpurified silver nanowire product. Example 3 A 500 mL reaction flask containing 280 mL of ethylene glycol (EG) was degassed overnight by bubbling nitrogen through the contents of the reaction flask. To the flask was added 1.3 g of freshly prepared 31 mM diphenyl borane in EG. The reaction mixture was heated to 145 ° C under nitrogen. Will be 0.77 Μ polyvinylpyrrole. A stock solution of ketone (PVP, weight average molecular weight 55,000) in EG and 0.25 M AgN〇3 in EG was degassed by nitrogen. A 20 mL syringe of PVP and AgN〇3 solution was prepared and then the solution was added to the reaction flask at a constant rate over 25 minutes via a 12 gauge TEFLON® fluoropolymer injector 163192.doc •26·201248655 needle. The reaction mixture was held at 145 ° C for 90 minutes and then allowed to cool to ambient temperature. Figure 3 shows an optical micrograph of a silver nanowire product. Example 4 To a 500 mL reaction flask containing 280 mL of ethylene glycol (EG) was added 2.5 g of freshly prepared diethyldichloromethane in 81 mM solution in EG. The TEFLON® fluoropolymer tube was degassed by bubbling A through the solution overnight at room temperature and mechanical stirring at 100 rpm. (This operation is hereinafter referred to as "degassing".) 0.84 Μ polyvinylpyrrolidone (PVP, weight average molecular weight 55,000) in EG and 0.25 M AgN03 in EG was degassed from ν2' followed by preparation 20 mL syringe. The reaction mixture was heated to 145 ° C under ν 2 and then the AgN03 and PVP solutions were added via a 12-gauge TEFLON® fluoropolymer syringe needle at a constant rate over 25 minutes. The reaction was held at 145 C for 90 minutes and then allowed to cool to ambient temperature. Figure 4 shows an optical micrograph of a silver nanowire product. The nanowire bodies have an average diameter of 64 9 ± 16 5 nm and an average length of 15·5 ± μηι based on measurements of at least 1 line body. Example 5-7 The procedure of Example 4 was repeated using the amount and concentration of t-ethyl-phossite/EG catalyst solution. These results, together with the results of Example 4, are shown in Table I in the range of the catalyst solution of the type 5 tested, with the smallest average diameter and length change. Example 8 (Comparative) 163192.doc • 27- 201248655 A 500 mL reaction flask was charged with 280 mL of ethylene glycol (EG) and 1.4 g of freshly prepared 15 mM IrCl3.3H2 〇 dispersion in EG. The solution was degassed by bubbling &amp; to the solution for 2 hours at room temperature and 1 rpm mechanical agitation using a glass pipette. 0.25 M AgN〇3 in EG and 0.84 Μpolyethylene. The stock solution of bistroxidone (PVP) in EG was also degassed by bubbling hydrazine to the solutions for at least 60 minutes. Two syringes were each loaded into mL AgN〇3 and PVP solution. The reaction mixture was heated to 1553⁄4 under A and the AgNO;} and PVP solution were added via a 12 gauge TEFLON® fluoropolymer syringe needle at a constant rate over a minute. The reaction was held at i55 ° C for 90 minutes and then allowed to cool to room temperature. Figure 5 shows the reaction mixture after 60 min of reaction. It can be seen that the nanoparticles, the particles and only a small amount of short nanowires. Example 9 (Comparative) The procedure of Example 8 was repeated using 2.9 g of freshly prepared KdrCU in the EG dispersion of 7. mM mM dispersion of IrCl3*3H2 。. Replace 155. The reaction was carried out at 145 °C. Figure 6 shows the reaction mixture after 90 min of reaction. Only a small amount of fine nanowires can be seen. Example 10 (Comparative) The procedure of Example 8 was repeated using 2.3 g of freshly prepared ΐη (:13·4Η2〇7〇mM dispersion in egg instead of Ιγ (:13·3Η2〇 dispersion). Figure 7 shows the reaction for 90 min. The subsequent reaction mixture β has no visible mitochondria. Example 11 (Comparative) 163192.doc -28 · 201248655 Add 50 mL of ethylene glycol (EG) and 0.29 g of 7.0 mM AuC13 to EG in a 100 mL reaction flask. The solution was degassed by bubbling N2 into the solution for 2 hours at room temperature and 100 rpm with mechanical stirring. 0.25 M AgN03 in EG and 0.84 Μ polyvinylpyrrolidone (PVP) The stock solution in EG was also degassed by bubbling Ν2 to the solution for at least 60 minutes. Two syringes were each charged with 3 mL of AgN03 and PVP solution. The reaction mixture was heated to 145 °C under N2. And adding AgN03 and PVP solution at a constant rate over 25 minutes via a 20 gauge TEFLON® fluoropolymer syringe needle. The reaction was held at 145 ° C for 150 minutes and then allowed to cool to room temperature. Reaction 15, 30, The samples taken after 60, 90 120 and 150 min seem to have only nano particles and helpless. Example 12. Example 12 (Comparative) 500 containing 300 mL of ethylene glycol (EG), 2.2 g of polyvinylpyrrolidone (PVP, weight average molecular weight 55,000) and 9.2 mg of tetrapentahydrate bis(tetrahydrofuran) adduct The mL reaction flask was degassed overnight at room temperature using nitrogen gas introduced under the surface of the liquid via a TEFLON® fluoropolymer tube. The tube was then withdrawn from the liquid to provide approximately 0.5 L/min of the headspace of the reaction flask. Nitrogen, then the stirred flask was heated to 145 ° C. 0.50 Μ The stock solution of AgN03 in EG was also degassed by nitrogen, and then a 20 mL syringe of the degassed solution was prepared. Subsequently, via 12 caliber TEFLON® fluoropolymerization The syringe needle was added to the AgN03 solution at a constant rate over 25 minutes. The flask was then held at the temperature for 60 minutes and then allowed to cool down to ambient temperature. 163192.doc •29- 201248655 Figure 8 shows the optics of the nanowire product Photomicrograph, based on measurements of one linear body, the nanowire product has an average diameter of 253.5 ± 133.0 nm and an average length of 8-7 ± 5 · 5 μηη. Example 13 (Comparative) Using 6.9 mg IV The procedure of Example 12 was repeated by replacing the yttrium-containing adduct with a vaporized zirconium bis(tetrahydrofuran) adduct. Figure 9 shows an optical micrograph of a silver nanowire product based on measurements of 100 wire bodies. The nanowire product has an average diameter of 147.3 ± 50.0 nm and an average length of 15.6 ± 12 〇 ^ claws. Example 14 (Comparative) The procedure of Example 12 was repeated using a 9.9 mg gasification button (V). Figure 1〇 shows an optical micrograph of a silver nanowire product based on the measurement of 1 line body. The silver nanowire product has an average diameter of 2 1 5 ± 11 9 nm and 10.6 ± 6.5. The average length of μιη. Example 15 To a 500 mL reaction flask containing 280 mL of ethylene glycol (EG) was added 7.3 mg of triphenylmethane methane and 3.3 g of iron ruthenium (π) in a 3 mM solution in ethylene glycol (EG). The reaction mixture was degassed from n2 using a glass pipette while stirring at 100 rpm for 2 hours. A solution of 〇.77 Μ polyvinylpyrrolidone (PVP) in EG and 0.25 M AgN〇3 in EG was degassed from Ν2, followed by preparation of a 20 mL syringe. The reaction mixture was heated to 155 °C at ν2. The AgN03 and PVP solutions were then added over a 25 minute period via a 12 gauge TEFLON® fluoropolymer syringe needle at a nominal rate. The reaction was held at 145 ° C for 90 minutes and then allowed to cool to ambient temperature. 163192.doc -30- 201248655 Figure 11 shows an optical micrograph of a silver nanowire product. Example 16 The procedure of Example 15 was repeated except that the gasification section freshly prepared using 〇.16 § was replaced by a 0.27 Μ solution in EG instead of triphenylchlorodecane. Under these conditions, it was observed that the silver nanowires began to form, but then the irregularly shaped silver nanowires were formed, which tend to coalesce into groups. Figure 12 shows an optical micrograph of the reaction product. Example 17 A 5 〇〇 mL reaction flask containing 28 〇 mL of ethylene glycol (EG) was degassed using nitrogen introduced from a subsurface TEFLON® fluoropolymer tube. Subsequently, 1.0 g of a diethyl dioxane in an 81 mM solution in EG was added to the flask. The fluoropolymer tube was then withdrawn to provide a nitrogen package with a flow rate of approximately 0.5 L/min. The reaction mixture was heated to 145 ° C while stirring at 100 rpm. 0.77 Μ polyethylene. A solution of birofenidone (PVP) in EG and 0.25 M AgN03 in EG was degassed from nitrogen' followed by a 20 mL syringe. Subsequently, AgN〇3 and PVP solutions were added via a 12-diameter TEFLON® fluoropolymer syringe needle at a constant rate over 25 minutes. The reaction was held at 1451 for 90 minutes and then allowed to cool to ambient temperature. Figure 13 shows an optical micrograph of a silver nanowire product. Example 18 The procedure of Example 17 was repeated using an 81 mM solution of 2.5 g of diethyldioxane in EG instead of 1.0 g as used above. Figure 14 shows an optical micrograph of a silver nanowire product. Example 19 163192.doc 201248655 The procedure of Example 17 was repeated using 5.0 g of diethyl dioxane in an EG 81 mM solution instead of 1.0 g as used above. Figure 15 shows an optical micrograph of a silver nanowire product. Table I Example The average diameter (nm) of the Et2SiCl2 solution average length 〇im) 4 2.5 g of 0_81 mM 65 16 5 5.0 g of 0.81 mM 68 14 6 η 4.4 g of 0·45 mM 62 14 / 1.0 g of 0.81 mM 60 13 [Simple Description of the Drawings] Figure 1 shows an optical micrograph of the silver nanowire product of Example 1. Figure 2 shows an optical micrograph of the silver nanowire product of Example 2. Figure 3 shows an optical micrograph of the silver nanowire product of Example 3. Figure 4 shows an optical micrograph of the silver nanowire product of Example 4. Figure 5 shows an optical micrograph of the reaction product of Comparative Example 8. Figure 6 shows an optical micrograph of the reaction product of Comparative Example 9. Figure 7 shows an optical micrograph of the reaction product of Comparative Example 10. Figure 8 shows an optical micrograph of the reaction product of Comparative Example 12. Figure 9 shows an optical micrograph of the reaction product of Comparative Example 13. Figure 10 shows an optical micrograph of the reaction product of Comparative Example 14. Figure 11 shows an optical micrograph of the silver nanowire product of Example 15. Figure 12 shows an optical micrograph of the silver nanowire product of Example 16. Figure 13 shows an optical micrograph of the silver nanowire product of Example 17. Figure 14 shows an optical micrograph of the silver nanowire product of Example 18. Figure 15 shows an optical micrograph of the silver nanowire product of Example 19. 163192.doc • 32·

Claims (1)

201248655 七、申請專利範圍: 1. 一種方法,其包含: 提供能夠形成至少-種_離子之至少一種化合物,該 化合物包含至少一第一原子、鍵結於該至少一第一原子 之至少一個_素原子及鍵結於該至少一第一原子之至,丨、 一個碳原子;及 ^ 於该至少—種化合物或該至少一種齒離子中至少一者 的存在下將至少一第一金屬離子還原成至少一第一金 屬, ::該至少一第一原子與該至少一個函素原子之電負 1異之絕對值大於約0.4個,鲍林單位及小於約2〇個飽 林單位,且 其中該還原係於不存在原子序不同於該至少一第一金 屬離子之原子序的任何金屬離子情況下進行。 2·::求項!之方法’其中該至少一第一原子包含以下至 夕者·硼原子、氮原子、磷原子、矽原子 '硫原子、 硒原子或碳原子。 3·如請求項1之方法,其中哕$,丨、一笙E /h 、肀这至y第一原子包含以下至 者删原子、璘原子、石夕原子或碳原子。 4. Π求項1之方法,更包括藉由該至少-種化合物之溶 劑刀解來形成該至少_種函離子。 5. 如請求項1之方法,其中該至少-種齒離子包含至少— 氣離子或溴離子。 6‘如請求項1之^方、本 .^ 去,其中該至少一種化合物能夠形成至 163192.doc 201248655 少一種碳陽離子。 7-如請求項1之方法,其中該至少一種化合物包含以下至 少一者:二乙基二氣矽烷、苯膦醯二氣、二氣苯基硼烷 或三苯基甲基氣。 8.如吻求項〗之方法,其中該至少一第一金屬包含至少一 種IUPAC第11族元素或至少-種鑄幣金屬。 9如°月求項1之方法,其中該至少-第-金屬包含銀。 1 〇’至^種奈米線體,其包含根據請求項1之方法產生之 至少一第一金屬。 163192.doc -2 -201248655 VII. Patent Application Range: 1. A method comprising: providing at least one compound capable of forming at least one type of ion, the compound comprising at least one first atom, bonded to at least one of the at least one first atom And a bond between the at least one first atom, 丨, one carbon atom; and at least one first metal ion in the presence of at least one of the at least one compound or the at least one tooth ion Forming at least a first metal, :: the absolute value of the electrical at least one of the at least one first atom and the at least one elemental atom is greater than about 0.4, the Pauling unit and less than about 2 full saturation units, and wherein The reduction is carried out in the absence of any metal ion having an atomic sequence different from the atomic sequence of the at least one first metal ion. 2. The method of claim 2 wherein the at least one first atom comprises a boron atom, a nitrogen atom, a phosphorus atom, a germanium atom, a sulfur atom, a selenium atom or a carbon atom. 3. The method of claim 1, wherein 哕$, 丨, 笙 E /h, 肀 to y the first atom comprises the following to delete an atom, a ruthenium atom, a shi atom or a carbon atom. 4. The method of claim 1, further comprising forming the at least one functional ion by solvent cleavage of the at least one compound. 5. The method of claim 1, wherein the at least one type of tooth ion comprises at least - a gas ion or a bromide ion. 6 'As in the case of claim 1, the present, wherein the at least one compound is capable of forming one carbocation to 163192.doc 201248655. The method of claim 1, wherein the at least one compound comprises at least one of the following: diethyldioxane, phenylphosphine dioxane, diphenylphenylborane or triphenylmethyl gas. 8. The method of claim 1, wherein the at least one first metal comprises at least one IUPAC Group 11 element or at least - a coin metal. 9. The method of claim 1, wherein the at least --metal comprises silver. 1 〇' to a nanowire body comprising at least one first metal produced according to the method of claim 1. 163192.doc -2 -
TW101111190A 2011-05-23 2012-03-29 Nanowire preparation methods, compositions, and articles TW201248655A (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201161488814P 2011-05-23 2011-05-23
US201161488936P 2011-05-23 2011-05-23
US201161488811P 2011-05-23 2011-05-23
US201161500155P 2011-06-23 2011-06-23
US13/326,356 US8613887B2 (en) 2011-01-14 2011-12-15 Nanowire preparation methods, compositions, and articles
US13/420,635 US20120183435A1 (en) 2011-01-14 2012-03-15 Nanowire preparation methods, compositions, and articles

Publications (1)

Publication Number Publication Date
TW201248655A true TW201248655A (en) 2012-12-01

Family

ID=47217583

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101111190A TW201248655A (en) 2011-05-23 2012-03-29 Nanowire preparation methods, compositions, and articles

Country Status (2)

Country Link
TW (1) TW201248655A (en)
WO (1) WO2012161857A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10193006B2 (en) 2016-06-20 2019-01-29 National Tsing Hua University Nanowire composite structure and methods of forming the same, sensing device and methods of forming the same and protective structures of a nanowire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11370023B2 (en) * 2019-01-28 2022-06-28 Global Graphene Group, Inc. Production of metal nanowires directly from metal particles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7718094B2 (en) * 2004-06-18 2010-05-18 The Research Foundation Of State University Of New York Preparation of metallic nanoparticles
US8454721B2 (en) 2006-06-21 2013-06-04 Cambrios Technologies Corporation Methods of controlling nanostructure formations and shapes
JP2009155674A (en) 2007-12-25 2009-07-16 Osaka Univ Method for manufacturing nanoparticle of metal
CN101451270B (en) 2008-12-11 2011-04-13 常振宇 Method for large scale preparation of noble metal nano wire
TW201125810A (en) 2009-08-25 2011-08-01 Cambrios Technologies Corp Methods for controlling metal nanostructures morphology

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10193006B2 (en) 2016-06-20 2019-01-29 National Tsing Hua University Nanowire composite structure and methods of forming the same, sensing device and methods of forming the same and protective structures of a nanowire

Also Published As

Publication number Publication date
WO2012161857A1 (en) 2012-11-29

Similar Documents

Publication Publication Date Title
US8741026B2 (en) Branched nanowire preparation methods, compositions, and articles
US9321108B2 (en) Nanowire preparation methods, compositions, and articles
US9017450B2 (en) Nanowire preparation methods, compositions, and articles
JP2016503457A (en) Method for producing silver nanowires
KR20170106086A (en) preparation method of copper nano-structures
TW201249568A (en) Nanowire preparation methods, compositions, and articles
TW201248655A (en) Nanowire preparation methods, compositions, and articles
TW201247341A (en) Metal ion catalysis of metal ion reduction, methods, compositions, and articles
US20140227519A1 (en) Nanowire preparation methods, compositions, and articles
US8980170B2 (en) Nanowire preparation methods, compositions, and articles
US8764878B2 (en) Copper nanowire preparation methods and compositions
US20120148443A1 (en) Nanowire preparation methods, compositions, and articles
US20120183435A1 (en) Nanowire preparation methods, compositions, and articles
TW201247523A (en) Nanowire preparation methods, compositions, and articles
TW201235291A (en) Nanowire preparation methods, compositions, and articles
Zhu et al. Controllable, surfactant-free growth of 2D, scroll-like tellurium nanocrystals via a modified polyol process
TW201247343A (en) Zero-valent catalysis of metal ion reduction methods, compositions, and articles
US9095903B2 (en) Nanowire ring preparation methods, compositions, and articles
Zhang et al. Size and Shape Controlled Synthesis of Pd Nanocrystals
JP6085331B2 (en) REAGENT COMPLEX AND METHOD FOR SYNTHESIZING REAGENT COMPLEX
TW201247342A (en) Metal ion catalysis of metal ion reduction, methods, compositions, and articles