TW201248291A - Pixel via and methods of forming the same - Google Patents

Pixel via and methods of forming the same Download PDF

Info

Publication number
TW201248291A
TW201248291A TW101111940A TW101111940A TW201248291A TW 201248291 A TW201248291 A TW 201248291A TW 101111940 A TW101111940 A TW 101111940A TW 101111940 A TW101111940 A TW 101111940A TW 201248291 A TW201248291 A TW 201248291A
Authority
TW
Taiwan
Prior art keywords
pixel
layer
gap
black mask
optical stack
Prior art date
Application number
TW101111940A
Other languages
Chinese (zh)
Inventor
Ho-Jin Lee
Fan Zhong
Yi Tao
Original Assignee
Qualcomm Mems Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/079,599 external-priority patent/US9134527B2/en
Priority claimed from US13/079,487 external-priority patent/US8963159B2/en
Application filed by Qualcomm Mems Technologies Inc filed Critical Qualcomm Mems Technologies Inc
Publication of TW201248291A publication Critical patent/TW201248291A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/001Optical devices or arrangements for the control of light using movable or deformable optical elements based on interference in an adjustable optical cavity

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Micromachines (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

This disclosure provides systems, methods and apparatuses for pixel vias. In one aspect, a method of forming an electromechanical device having a plurality of pixels includes depositing an electrically conductive black mask (23) on a substrate (20) at each of four comers and along at least one edge region of each pixel, depositing a dielectric layer (35) over the black mask, depositing an optical stack (16) including a stationary electrode over the dielectric layer, and depositing a mechanical layer (14) over the optical stack. The method further includes providing a conductive via (138) in a first pixel of the plurality of pixels, the via disposed in the dielectric layer and electrically connecting the stationary electrode to the black mask, the via disposed in a position along an edge of the first pixel, spaced offset from the edge of the first pixel in a direction towards the center of the first pixel.

Description

201248291 六、發明說明: 【發明所屬之技術領域】 本發明係關於機電系統》 【先前技術】 機電系統包含具有電元件及機械元件、致動器、傳感 器、感測器 '光學組件(例如,鏡)及電子器件之裝置。機 電系統可以多種尺度製造,包含(但不限於)微尺度及奈米 尺度。例如,微機電系統(MEMS)裝置可包含具有在約1微 米至數百微米或更大之範圍内之大小之結構。奈米機電系 統(NEMS)裝置可包含具有小於一微米之大小(包含例如小 於數百奈米之大小)之結構。可使用沈積、蝕刻、微影術 及/或蝕除基板及/或經沈積材料層之部分或添加層之其他 微機械加工方法產生機電元件以形成電裝置及機電裝置。 一種類型的機電系統裝置稱為干涉量測調變器 (IMOD)。如本文使用,術語干涉量測調變器或干涉量測 光調變器指代使用光學干涉原理選擇性地吸收及/或反射 光之一裝置。在一些實施方案中,一干涉量測調變器可包 3對導電板,該對導電板之一者或兩者可為全部或部分 透明及/或具反射性且能夠在施加一適當電信號之後相對 運動。在一實施方案中,一板可包含沈積於一基板上之— 固定層,且另一板可包含藉由一氣隙與該固定層分離之— 反射膜^ 一板相對於另一板之位置可改變入射在該干涉量 測調變器上之光之光學干涉。干涉量測調變器裝置具有廣 泛的應用,且預期用於改良現有產品及產生新產品,尤其 163409.doc 201248291 係具有顯示能力之產品。 -干涉量測裝置陣列可包含在每一像素之角隅處猫定之 -機械層。在角隅處及像素之間可包含—黑色遮罩以吸收 每-像素之光學非作用區域中之光。該黑色遮罩區域可改 良顯示之-對比率’同時亦減小填充因數。需要具有用於 機械層之較小錨定面積及改良填充因數之干涉量測裝置。 【發明内容】 本發明之系統、方法及裝置之各者具有若干發明態樣, 該若干發明態樣之單單一者不單獨作為本文揭示之所要屬 性。 、 可在包含-像素陣列之—裝置中實施本發明中描述之標 的之一發明態樣,每-像素具有:—基板;—導電黑色遮 罩其佈置在該基板上並在該像素之四個角隅之各者處且 沿该像素之至少-邊緣區域遮蔽該像素之一光學非作用部 刀 ”電層,其佈置在該黑色遮罩上方;一光學堆疊, 其包含-固^電極,該光學堆疊佈置在該介電層上方·及 -機械層’其;t位於該光學堆叠上方且在該機械層與該光 學堆疊之間界定—腔。該機械層可穿過該腔而在-致動位 置與㈣位置之間移動’且該機械層係在該像素之每一 角隅處銘定於該光學堆疊上方。該像素陣列包含—第一像 素《亥第-像素具有在介電層中將固定電極電連接至黑色 遮罩之—導電導通體,該導電導通體佈置在該第-像素之 一光學非作用區域中沿該第—像素之—邊緣之—位置中。 s導電導通體之位置經間隔而在朝向該第-像素之中心之 163409.doc 201248291 一方向上自該第一像素之邊緣偏移。 在一些實施方案中,該像素陣列進一步包含沿該第一像 素之邊緣與該第-像素相鄰之一第二像素,且該第二像素 並不包含介電層中用於將固定電極電連接至黑色遮罩之一 導通體。根據一些實施方案,該第一像素係一高間隙像素 X第一像素係一中間間隙像素,且該像素陣列進一步包 含在該高間隙像素與該中間間隙像素相對之一側上與該高 間隙像素相鄰之一低間隙像素,且該低間隙像素並不包含 介電層中用於將固定電極電連接至黑色遮罩之一導通體。 可以形成具有複數個像素之一顯示裝置之一方法實施本 發月中描述之標的之另一發明態樣。該方法包含在-基板 上沈積一導電黑色遮罩,該黑色遮罩在每一像素之四個角 :之各者處且沿每一像素之至少一邊緣區域遮蔽該像素之 光學非作用部分該方法進__步包含:在該黑色遮罩上 方沈3介電層;在該介電層上方沈積包含一固定電極之 光學堆疊;及在該光學堆疊上方沈積機械層。該機械層 ^該機械層與該光學堆疊之間界定-腔。該方法進-步包 I.在每—像素之每—角隅處於該光學堆叠上方猫定該機 ^激Γ該裝置之一第一像素中提供一導電導通體,該 =體佈置在該介電層巾且將該較電極電連接至該黑色 =1導㈣係佈置在該第__像素之—光學非作用區域 該第_像素之-邊緣之—位置中,且該導電導通體之 位置經間隔而在朝南 *朝向該第一像素之中心之一方向上自該第 一像素之邊緣偏移。 163409.doc -6 - 201248291 可在包含複數個像素之一機電裝置中實施本發明中描述 之標的之另一發明態樣,每一像素包含:一基板;一光吸 收構件,其佈置在該基板上並在該像素之四個角隅之各者 處且沿該像素之至少一邊緣區域遮蔽該像素之一光學非作 用部分;一介電層,其佈置在該光吸收構件上方;及一光 學堆叠,其包含-固定電極,該光學堆疊佈置在該介電層 上方;及一機^,其定位於該光學$營上方以在該機械 f與該光學堆疊之間界定―腔。該機械層可穿過該腔而在 致動位置與-鬆他位置之間移動,且該機械層係在該像 2之每-角隅處錯定於該光學堆疊上$。該像素陣列包含 -第-像素’帛第一像素具有在介電層中用於將固定電極 電連接至光吸收構件之—構件,該連接構件佈置在該第一 像素之-絲㈣用區域巾沿該第—像素之—邊緣之一位 該連接構件之位置經間隔而在朝向該第一像素之中 心之-方向上自該第一像素之邊緣偏移。在—些實施方案 中,自導通體之-中心至該第一像素之邊緣之一 圍介於W㈣至約3叫之間。在—些實施方案中,該第^ 像素係-高間隙像素’且其中該複數個像素進—步包含沿 該第-像素之邊緣與該第—像素相鄰之—中間間隙像素, 且其中該複數個像素進-步包含與該中間間隙像素相對且 與該第-像素相鄰之一低間隙像素,其中該中間間隙像素 及該低間隙像素並不包含介電層令用於將固定電極電連接 至黑色遮罩之一構件。 电逆按 可在包含一像素陣列之-裝置中實施本發明中描述之標 I63409.doc 201248291 的之另一發明態樣,每一像素包含:一基板;一導電黑色 遮罩’其佈置在該基板上且在該像素之四個角隅之各者處 遮蔽該像素之一光學非作用部分;一介電層,其佈置在該 黑色遮罩上方;一光學堆疊,其包含一固定電極,該光學 堆疊佈置在該介電層上方,及一機械層,其定位於該光學 堆叠上方且在該機械層與該光學堆疊之間界定一腔。該機 械層可穿過該腔而在一致動位置與一鬆弛位置之間移動, 且該機械層係在該像素之每一角隅處錨定於該光學堆疊上 方。該像素陣列包含一第一像素,該第一像素具有在介電 層中將固定電極電連接至黑色遮罩之一導電導通體,該導 通體佈置在該第一像素之一角隅處,自在該第一像素之一 光學非作用區域中於該光學堆疊上方錨定該機械層之處偏 移。 在一些實施方案中,該像素陣列進一步包含與該第一像 素相鄰之一第二像素,且該第二像素並不包含介電層中用 於將黑色遮罩電連接至固定電極之一導電導通體。根據一 些實施方案,該第一像素係一高間隙像素且該第二像素係 一中間間隙像素,且該像素陣列進一步包含在該中間間隙 像素與該南間隙像素相對之一側上之一低間隙像素,且該 低間隙像素並不包含介電層中用於將黑色遮罩電連接至固 定電極之一導電導通體。在一些實施方案中,該導通體與 在該光學堆疊上方錯定該機械層之處間隔約6 至約8卩m 之範圍中之距離。在_些實施方案中,該導通體係介電層 中用於將黑色遮罩之導電匯流層電連接至光學堆疊之固定 163409.doc 201248291 電極之一開口。 可以形成具有複數個像素之一裝置之一方沐 ^ 万忐實施本發明 中描述之標的之另一發明態樣。該方法包含:在—基板上 沈積一導電黑色遮罩以在每一像素之四個角隅之各者處遮 蔽該像素之一光學非作用部分;在該黑色遮罩上方沈積一 介電層;在該介電層上方沈積包含一固定電極之一光學堆 疊;在該光學堆疊上方沈積一機械層;及在每一像素之每 一角隅處於該光學堆疊上方錨定該機械層。該機械層在該 機械層與該光學堆疊之間針對每一像素界定一腔。該方法 進一步包含在該複數個像素之一第一像素中提供一導電導 通體,該導通體在該介電層中將該固定電極電連接至該黑 色遮罩,該導通體佈置在該第一像素之一角隅處,自在該 第一像素之一光學非作用區域中於該光學堆疊上方錨定該 機械層之處偏移。 在一些實施方案中,該方法進一步包含:在沈積該機械 層之前沈積一犧牲層;及在沈積該機械層之後移除該犧牲 層以形成該腔,該犧牲層具有經選擇以界定該腔之一高度 之一厚度。根據一些實施方案,該方法進一步包含在該犧 牲層中形成一錨定孔,該錨定孔界定在該光學堆疊上方錨 定該機械層之位置。 可在包含複數個像素之一裝置中實施本發明中描述之標 的之另一發明態樣’每一像素包含:一基板;用於吸收光 之一構件’其佈置在該基板上並在該像素之四個角隅之各 者處遮蔽該像素之一光學非作用部分;一介電層,其佈置 163409.doc -9- 201248291 :該二::構件上方;及一光學堆叠,其包含-固定電 學堆㈣置在該介電層上方。該像素㈣包含-、該第-像素具有在介電層中將固定電極電連接 一二:構件之一構件,該連接構件佈置在該第-像素之 聲始愚,自在該第—像素之一光學非作用區域中於該光 學堆叠上方錨定該機械層之處偏移。在-些實施方案中, 間間隙像素及一低 像素相鄰,且該低 素相對之一側上與 該低間隙像素並不 吸收構件之一構件 在隨附圖式及下 一或多個實施方案 該第-像素係—高間隙像素且該像素陣列進—步包含一中 間隙像素,該中間 間隙像在該令間間 s亥中間間隙像素相 包含在介電層中將 間隙像素與該高間隙 隙像素與該高間隙像 鄰’且該中間間隙及 固定電極電連接至光 文描述中闡述本說 之細節。自描述、 態樣及優點《注意 將明白其他特徵、 寸可不按比例繪製 【實施方式】 明書中描述之標的之 圖式及申請專利範圍 ’下列圖式之相對尺 在各種圖式中,相同的參考數字及符號指示相同元件。 以下詳細描述係關於用於描述發明態樣之目的之某此實 施方案。然而,本文中的教示可以許多不同方式應用。所 描述之實施方案可在經組態以顯示無論係動態(例如,視 訊)或靜態(例如,靜止影像)及無論係文字、圓形或圖像 之一影像之任何裝置中實施。更特定言之,預期該等實施 方案可在多種電子裝置中實施或與多種電子裝置相關聯, 163409.doc •10· 201248291 該等電子裝置諸如(但不限於):行動電話、啟用多媒體網 際網路之蜂巢式行動電話、行動電視接收器、無線裝置、 智慧型手機、藍芽裝置、個人資料助理(PDA)、無線電子 郵件接收器、掌上型或可攜式電腦、小筆電、筆記型電 腦智慧型筆電、平板電腦、印表機、影印機、掃描儀、 傳真裝置、GPS接收器/導航器、相機、Mp3播放器、攝錄 影機、遊戲主控台、腕錶、時鐘、計算器、電視監視器、 平板顯示器、電子閱讀裝置(例如,電子書閱讀器)、電腦 監視器、汽車顯示器(例如,里程表顯示器等等)、駕駛艙 控制器件及/或顯示器、攝影機取景顯示器(例如,車輛中 之-後視攝影機之顯示器)、電子相冊、電子廣告牌或標 諸牌、投影儀、建築結構、微波爐、冰箱、立體聲系統、 卡帶錄攝影機或播放器、DVD播放器、CD播放器、 VCR、收音機、可攜式記憶體晶μ、洗衣器 '乾衣器、洗 衣器/乾衣器、停車計時器、包裝(例如,機電系統 (EMS)、MEMS及非MEMS)、美學結構(例如,一件珠寶上 之影像顯示器)及多種機電系統裝置。本文中的教示亦可 用於非顯示器應用中’諸如(但不限於)電子切換裝置、射 頻渡波器、感測器、加速度計、陀螺儀、運動感測裝置、 磁力、消費型電子器件之慣性組件、消費型電子器件產 °口之零件、變容二極體、液晶裝置、電泳裝置、驅動方 案、製造程序、電子測試設備。因此,該等教示不旨在限 ;僅在圖式中描繪之實施方案’而是如一般技術者將容易 明白般具有廣泛適用性。 163409.doc 201248291 本發明揭示具有改良填充因數之機電裝置。一機電裝置 之填充因數或該裝置之光學作用面積相對於該機電裝置之 總面積之比率可受限於一光吸收黑色遮罩之面積。該機電 裝置可為一干涉量測調變器裝置,其包含複數個像素及錨 定至在每一像素之角隅處之黑色遮罩上方之一光學堆疊之 機械層。在一些實施方案中,一導電導通體係用於將該 裝置之―固^電極電連接至該黑色遮罩。該導通體自在該 光學堆疊上方錨定該機械層之處偏移以有助於減小該黑色 遮罩之面積。例如,使該導通體自用以在-像素角隅處於 光學堆叠丨方銘定機械層區域偏移可減小該像素 角隅處之黑色遮罩之大小,此係因為該猫定區域無需經定 大】以考量該像素導通體與該錨定區域之間之錯位。藉由 咸】像素角隅處之黑色遮罩之面積可減小該陣列之光學 非作用面積,藉此改良填充因數。在―些實施方案中,— 導通體並未包含於每個像素之介電層中。實情係,該導通 體可、座週期性定位而遍及一干涉量測調變器裝置(例如, 接近經組態具有-高間隙(或腔)高度之-像素之一角隅)以 減小該黑色遮罩之總面積並改良填充因數。例如,在包含 具有各種間隙高度之像素(或子像素)之一組態中,一導通 體可僅定位於具有最高間隙之一像素(或子像素)之一角隅 附近。 在一些其他實施方案中 之一光學非作用區域中沿 該導通體經間隔而在朝向 ’一導電導通體係佈置在一像素 該像素之一邊緣之一位置中,且 該像素之中心之一方向上自該像 163409.doc -12- 201248291 素之邊緣偏移《該黑色遮罩可包含沿該像素之邊緣自該像 素之一角隅延伸至該導通體之一通道。該通道之一側可包 含通常比通道寬度之其餘部分寬之一加寬部分(或一凸 起)。該凸起包圍該導通體之佔據面積,此有助於增加該 導通體對製程變動之穩健性。在一些實施方案中,無需沿 每一像素之每一邊緣包含該導通體。實情係,可僅對特定 像素之特定邊緣(例如’一高間隙像素中沿由該高間隙像 素及一中間間隙像素共用之一邊緣)提供該導通體以減小 该黑色遮罩之總面積。 可實施本發明中描述之標的之特定實施方案以實現下列 潛在優點之一或多者。在一些實施方案中,一像素陣列可 包含改良填充因數及/或具有減小面積之一黑色遮罩。此 外’一些實施方案可增加一干涉量測裝置中用於將一黑色 遮罩電連接至一固定電極之一導通體之製程穩健性。此 外,一些實施方案可藉由改良裝置對製造變動之容差來改 良干/歩置測裝置之良率。此外,可使用一些實施方案以 減小一像素陣列中之導通體的數目及/或僅在該陣列之一 小部分上方提供具有導通體之一像素陣列。 可應用所描述之實施方案之一適當機電系統(EMS)或 MEMS裝置之一實例係一反射顯示裝置。反射顯示裝置可 併有干涉量測調變器(IM〇D)以使用光學干涉之原理選擇 性地吸收及/或反射入射在其上之光。IM〇D可包含一吸收 體可相對於該吸收體移動之一反射體及界定於該吸收體 與該反射體之間之一光學諧振腔。該反射體可移動至兩個 163409.doc -13· 201248291 或兩個以上不同位置’此可改變光學諸振腔之大小且藉此 影響該干涉量測調變!I之反射t卜細k反射比光譜可 產生相當較寬的光譜帶,該等光譜帶可跨可見波長移位以 產生不同色彩《可藉由改變光學諧振腔之厚度(即,藉由 改變反射體之位置)來調整光譜帶之位置。 圖1展示描繪一干涉量測調變器(IM0D)顯示裝置之一系 列像素中之兩個相鄰像素之一等角視圖之一實例。該 IMOD顯Μ置包含—或多個干涉量測顯示元件。 在此等裝置中’ MEMS顯示元件之像素可處於亮狀態或暗 狀態中。在亮(「鬆他」、「打開」或「開啟」)狀態中,顯 示元件將入射可見光之大部分反射至(例如)使用者。相 反,在暗(「致動」、「閉合」或「關閉」)狀態中,顯示元 件反射少量入射可見光。在一些實施方案中,可類倒開啟 狀態及關閉狀態之光反射比性質。mem_素可經組態以 主要在容許除黑色及白色以外之一色彩顯示之特定波長處 反射。 IMOD顯示裝置可包含^如之—列/行陣列。每一ιΜ〇〇 可包含一對反射層(即,一可移動反射層及一固定部分反 射層)’該對反射層定位於彼此相距一可變且可控制距離. 處以形成一氣隙(亦稱為一光學間隙或腔該可移動反射 · 層可在至少兩個位置之間移動。在一第一位置(即,一鬆 弛位置)中,該可移動反射層可定位成距該固定部分反射 層相隔一相對較大距離。在一第二位置(即,一致動位置) 中,該可移動反射層可定位成更接近該部分反射層。自該 163409.doc • 14 · 201248291 兩個層反射之入射光可取決於該可移動反射層之位置而相 長或相消干涉,從而針對每一像素產生一總體反射或非反 射狀態。在一些實施方案中,IMOD在未致動時可處於反 射狀態中,反射可見光譜内之光,且在致動時可處於暗狀 態中,反射可見範圍外之光(例如,紅外光)。然而,在一 些其他實施方案中,一 IM〇D在未致動時可處於暗狀態 中,且在致動時處於反射狀態中。在一些實施方案中,引 入一施加電壓可驅動像素以改變狀態。在一些其他實施方 案中’一施加電荷可驅動像素以改變狀態。 圖1中之像素陣列之所描繪部分包含兩個相鄰干涉量測 調變器12。在左側的IMOD 12(如圖解說明)中,一機械層 或可移動反射層14係圖解說明為處於距包含一部分反射層 之一光學堆疊16相隔一預定距離之一鬆弛位置中。跨左側 的IMOD 12施加之電壓v〇不足以引起該可移動反射層14之 致動。在右側的IMOD 12中,可移動反射層14係圖解說明 為處於接近或相鄰於該光學堆疊16之一致動位置中。跨右 側的IMOD 12施加之電壓vbias足以將可移動反射層14維持 在致動位置中。 在圖1中’像素12之反射性質整體用箭頭π圖解說明, 該箭頭13指示入射在像素!2上之光及自左側像素12反射之 光15。雖然未詳細圖解說明,但是入射在像素12上之光13 之大部分將朝向光學堆疊16而透射穿過透明基板20。入射 在光學堆疊16上之光之一部分將透射穿過光學堆疊16之部 分反射層且一部分將被反射回來穿過透明基板2〇。透射穿 163409.doc 201248291 過光學堆疊16之光13之部分將在可移動反射層14處朝向透 明基板20被反射回來(並穿過透明基板2〇) 〇自光學堆疊16 之部分反射層反射之光與自可移動反射層14反射之光之間 之干涉(相長或相消)將判定自像素12反射之光15之(諸)波 長。 光學堆疊16可包含一單一層或若干層。該(等)層可包含 一電極層、一部分反射及部分透射層及一透明介電層之一 或多者。在一些實施方案中,光學堆疊16係導電、部分透 明及部分反射’且可(例如)藉由將上述層之一或多者沈積 在一透明基板20上而製造。電極層可由多種材料(諸如各 種金屬’例如銦錫氧化物(IT〇))形成。部分反射層可由具 部分反射性之多種材料(諸如各種金屬,例如鉻(Cr)、半導 體及介電質)形成。部分反射層可由一或多個材料層形 成’且該等層之各者可由單一材料或一材料組合形成。在 一些實施方案中,光學堆疊16可包含一單一半透明金屬或 半導體厚度,其用作一光學吸收體及導體兩者,而(例 如’光學堆疊16或IMOD之其他結構之)不同、導電性更強 之層或部分可用以在IMOD像素之間載送信號。光學堆疊 16亦可包含覆蓋一或多個導電層或一導電/吸收層之一或 多個絕緣或介電層。 在一些實施方案中,如下文進一步描述,光學堆疊16之 (諸)層可經圓案化為平行條狀物,且可形成一顯示裝置中 之列電極。如一般技術者所瞭解,本文中使用術語「圖案 化」以指代遮罩以及蝕刻程序。在一些實施方案中,諸如 163409.doc 16· 201248291 銘(A1)之一高度導電及反射材料可用於可移動反射層i4, 且此等條狀物可形成一顯示裝置中之行電極。可移動反射 層14了形成為一沈積金屬層或若干沈積金屬層之一系列平 订條狀物(正交於光學堆疊丨6之列電極)以形成沈積在柱ι 8 之頂部上之行及沈積在柱18之間之一介入犧牲材料。當蚀 除犧牲材料時,可在可移動反射層14與光學堆疊16之間形 成一界定間隙19或光學腔。在一些實施方案中,枉18之間 之間隔可為約1 μιη至1〇00 μηι,而間隙19可為小於1〇,〇〇〇 埃(Α)之數量級。 在一些實施方案中,IM0D之每一像素(無論處於致動狀 釔中或鬆弛狀態中)本質上係藉由固定反射層及移動反射 層形成之一電容器。如藉由圖丨左側的像素12所圖解說 明,當未施加電壓時,可移動反射層14保持在一機械鬆弛 狀態中,可移動反射層14與光學堆疊16之間具有間隙19。 然而,當將一電位差(例如,電壓)施加於一選擇列及行之 至少一者時,形成於對應像素處之列電極及行電極之交又 處之電容器開始充電,且靜電力將電極牵拉在一起。若該 施加電壓超過一臨限值,則可移動反射層14可變形且移動201248291 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to an electromechanical system. [Prior Art] An electromechanical system includes an electrical component and a mechanical component, an actuator, a sensor, and a sensor 'optical component (for example, a mirror) ) and devices for electronic devices. Electromechanical systems can be manufactured at a variety of scales including, but not limited to, microscale and nanoscale. For example, a microelectromechanical system (MEMS) device can comprise a structure having a size ranging from about 1 micrometer to hundreds of micrometers or more. A nanoelectromechanical system (NEMS) device can comprise a structure having a size of less than one micron (including, for example, less than a few hundred nanometers). Electromechanical components can be fabricated using deposition, etching, lithography, and/or other micromachining methods that etch the substrate and/or portions of the deposited material layer or add layers to form electrical and electromechanical devices. One type of electromechanical system device is called an Interference Measurement Transducer (IMOD). As used herein, the term interferometric modulator or interferometric modulator refers to a device that selectively absorbs and/or reflects light using the principles of optical interference. In some embodiments, an interference measurement modulator can include three pairs of conductive plates, one or both of which can be wholly or partially transparent and/or reflective and capable of applying an appropriate electrical signal. After the relative movement. In one embodiment, one plate may comprise a fixed layer deposited on a substrate, and the other plate may comprise a separate layer from the fixed layer by an air gap - the position of the reflective film relative to the other plate The optical interference of the light incident on the interferometric modulator is varied. Interferometric transducer devices have a wide range of applications and are expected to be used to improve existing products and to create new products, especially 163409.doc 201248291, which is a display capable product. The array of interferometric measuring devices may comprise a mechanical layer at the corner of each pixel. A black mask may be included between the corners and the pixels to absorb light in the optically inactive area of each pixel. The black mask area can be modified to show the contrast ratio while also reducing the fill factor. There is a need for an interferometric measuring device having a smaller anchoring area for the mechanical layer and an improved fill factor. SUMMARY OF THE INVENTION Each of the systems, methods and apparatus of the present invention has several aspects of the invention, and the individual aspects of the invention are not to be construed as a single. An aspect of the subject matter described in the present invention may be implemented in a device comprising a pixel array, each pixel having: a substrate; a conductive black mask disposed on the substrate and at four of the pixels An optical inactive portion of the pixel is disposed at each of the corners and along at least the edge region of the pixel, the electrical layer is disposed above the black mask; an optical stack includes a solid electrode An optical stack is disposed over the dielectric layer and - a mechanical layer; t is located above the optical stack and defines a cavity between the mechanical layer and the optical stack. The mechanical layer can pass through the cavity Moving between the moving position and the (four) position 'and the mechanical layer is defined above the optical stack at each corner of the pixel. The pixel array includes - the first pixel "Hai-pixel has a dielectric layer The fixed electrode is electrically connected to the conductive via of the black mask, and the conductive via is disposed in the optically inactive region of the first pixel along the edge of the first pixel. s position of the conductive via In the interval Offset from an edge of the first pixel to a center of the first pixel 163409.doc 201248291. In some implementations, the pixel array further includes an edge adjacent the first pixel along an edge of the first pixel a second pixel, and the second pixel does not include a conductive body in the dielectric layer for electrically connecting the fixed electrode to the black mask. According to some embodiments, the first pixel is a high gap pixel X first The pixel is an intermediate gap pixel, and the pixel array further includes a low gap pixel adjacent to the high gap pixel on a side opposite to the high gap pixel and the intermediate gap pixel, and the low gap pixel does not include a medium An electrical layer is used to electrically connect a fixed electrode to a black body of a black mask. Another aspect of the method of forming a display device having a plurality of pixels can be implemented by performing the method described in this month. The method includes Depositing a conductive black mask on the substrate, the black mask obscuring the pixel at each of the four corners of each pixel and along at least one edge region of each pixel The non-active portion of the method includes: depositing a dielectric layer over the black mask; depositing an optical stack comprising a fixed electrode over the dielectric layer; and depositing a mechanical layer over the optical stack. The layer defines a cavity between the mechanical layer and the optical stack. The method further comprises: in each of the pixels, the corner is placed above the optical stack, and the device is activated by the device. Providing a conductive via in the pixel, the body is disposed on the dielectric layer and electrically connecting the comparator to the black=1 (four) is disposed in the optical_inactive region of the __ pixel The position of the conductive via is offset from the edge of the first pixel in a direction toward the south* toward the center of the first pixel by spacing. 163409.doc -6 - 201248291 Another aspect of the invention described in the present invention is embodied in an electromechanical device comprising a plurality of pixels, each pixel comprising: a substrate; a light absorbing member disposed on the substrate and at four of the pixels Each of the corners and along the pixel An edge region obscuring an optically inactive portion of the pixel; a dielectric layer disposed over the light absorbing member; and an optical stack comprising - a fixed electrode, the optical stack being disposed over the dielectric layer; A machine is positioned above the optical camp to define a "cavity" between the machine f and the optical stack. The mechanical layer can pass through the cavity to move between the actuated position and the loose position, and the mechanical layer is misaligned on the optical stack at each corner of the image 2. The pixel array includes a -th-pixel '帛 first pixel having a member for electrically connecting the fixed electrode to the light absorbing member in the dielectric layer, the connecting member being disposed in the first pixel-wire (4) area towel The position of the connecting member along one of the edges of the first pixel is offset from the edge of the first pixel in a direction toward the center of the first pixel. In some embodiments, the center of the self-conducting body to one of the edges of the first pixel is between W (four) and about 3 Å. In some embodiments, the ^ pixel-high gap pixel 'and wherein the plurality of pixels further comprises an intermediate gap pixel adjacent to the first pixel along an edge of the first pixel, and wherein The plurality of pixels further comprises a low gap pixel opposite to the intermediate gap pixel and adjacent to the first pixel, wherein the intermediate gap pixel and the low gap pixel do not comprise a dielectric layer for electrically fixing the fixed electrode Connect to one of the black mask components. Another embodiment of the invention can be implemented in a device comprising a pixel array, wherein each pixel comprises: a substrate; a conductive black mask </ RTI> disposed therein An optically inactive portion of the pixel is shielded on the substrate and at each of the four corners of the pixel; a dielectric layer disposed over the black mask; an optical stack including a fixed electrode, the optical stack An optical stack is disposed over the dielectric layer, and a mechanical layer positioned over the optical stack and defining a cavity between the mechanical layer and the optical stack. The mechanical layer is movable through the cavity between an actuated position and a relaxed position, and the mechanical layer is anchored above the optical stack at each corner of the pixel. The pixel array includes a first pixel having a conductive electrode electrically connected to the black mask in the dielectric layer, the conductive body being disposed at a corner of the first pixel, An optically inactive region of one of the first pixels is offset from the optical stack above the optical stack. In some embodiments, the pixel array further includes a second pixel adjacent to the first pixel, and the second pixel does not include a conductive layer in the dielectric layer for electrically connecting the black mask to the fixed electrode Conductor. According to some embodiments, the first pixel is a high gap pixel and the second pixel is an intermediate gap pixel, and the pixel array further comprises a low gap on a side of the intermediate gap pixel opposite to the south gap pixel. a pixel, and the low gap pixel does not include a conductive via in the dielectric layer for electrically connecting the black mask to the fixed electrode. In some embodiments, the via is spaced apart from the mechanical stack by a distance of between about 6 and about 8 卩m. In some embodiments, the conductive layer of the conductive system is used to electrically connect the conductive bus layer of the black mask to the opening of the optical stack 163409.doc 201248291. Another aspect of the invention described in the present invention can be formed by forming one of a plurality of pixels. The method comprises: depositing a conductive black mask on the substrate to shield an optically inactive portion of the pixel at each of the four corners of each pixel; depositing a dielectric layer over the black mask; An optical stack comprising a fixed electrode is deposited over the dielectric layer; a mechanical layer is deposited over the optical stack; and the mechanical layer is anchored above each optical stack at each corner of each pixel. The mechanical layer defines a cavity for each pixel between the mechanical layer and the optical stack. The method further includes providing a conductive via in one of the plurality of pixels, the conductive body electrically connecting the fixed electrode to the black mask in the dielectric layer, the conductive body being disposed at the first At one of the corners of the pixel, the mechanical layer is offset from above the optical stack in an optically inactive region of the first pixel. In some embodiments, the method further comprises: depositing a sacrificial layer prior to depositing the mechanical layer; and removing the sacrificial layer after depositing the mechanical layer to form the cavity, the sacrificial layer having a selected to define the cavity One thickness of one height. According to some embodiments, the method further includes forming an anchoring aperture in the sacrificial layer, the anchoring aperture defining a location at which the mechanical layer is anchored above the optical stack. Another aspect of the subject matter described in the present invention may be implemented in a device comprising one of a plurality of pixels. 'Each pixel comprises: a substrate; a member for absorbing light' disposed on the substrate and at the pixel Each of the four corners obscures one of the optically inactive portions of the pixel; a dielectric layer disposed 163409.doc -9-201248291: the second:: above the member; and an optical stack, which includes - fixed An electrical stack (4) is placed over the dielectric layer. The pixel (4) includes - the first pixel has a fixed electrode electrically connected in the dielectric layer: a member of the member, the connecting member is disposed at the first pixel, and is free from the first pixel An offset in the optically inactive region where the mechanical layer is anchored above the optical stack. In some embodiments, the inter-gap pixel is adjacent to a low pixel, and the low-level opposite side and the low-gap pixel are not one of the absorbing members. The first pixel-high-gap pixel and the pixel array further comprises a middle gap pixel, wherein the intermediate gap image is included in the dielectric layer, and the gap pixel is included in the dielectric layer The gap gap pixel is adjacent to the high gap and the intermediate gap and the fixed electrode are electrically connected to the details of the description in the description of the light. Self-Description, Aspects and Advantages "Note that other features, dimensions may not be drawn to scale [Embodiment] The schema of the subject matter described in the specification and the scope of the patent application 'The relative dimensions of the following figures are the same in the various drawings. The reference numerals and symbols indicate the same elements. The following detailed description is directed to some such embodiments for the purpose of describing the aspects of the invention. However, the teachings herein can be applied in many different ways. The described embodiments can be implemented in any device configured to display either dynamic (e.g., video) or static (e.g., still image) and any image, whether text, circle, or image. More specifically, it is contemplated that such implementations can be implemented in or associated with a variety of electronic devices, such as, but not limited to, mobile phones, enabled multimedia networks. Road's cellular mobile phone, mobile TV receiver, wireless device, smart phone, Bluetooth device, personal data assistant (PDA), wireless email receiver, handheld or portable computer, small laptop, notebook Computer smart laptop, tablet, printer, photocopying machine, scanner, fax device, GPS receiver/navigator, camera, Mp3 player, camcorder, game console, watch, clock, Calculator, television monitor, flat panel display, electronic reading device (eg, e-book reader), computer monitor, car display (eg, odometer display, etc.), cockpit control device and/or display, camera viewfinder display (for example, a display in a vehicle - a rear view camera), an electronic photo album, an electronic billboard or a card, a projector, a building Structure, microwave, refrigerator, stereo system, cassette recorder or player, DVD player, CD player, VCR, radio, portable memory crystal, laundry 'dryer, washer/dryer, Parking meters, packaging (eg, electromechanical systems (EMS), MEMS and non-MEMS), aesthetic structures (eg, an image display on a piece of jewelry), and a variety of electromechanical systems. The teachings herein may also be used in non-display applications such as, but not limited to, electronic switching devices, RF ferrites, sensors, accelerometers, gyroscopes, motion sensing devices, magnetic, inertial components of consumer electronics. , consumer electronic components, parts, variable capacitance diodes, liquid crystal devices, electrophoresis devices, drive solutions, manufacturing procedures, electronic test equipment. Therefore, the teachings are not intended to be limiting; only the embodiments depicted in the drawings may be broadly applicable as would be readily apparent to those skilled in the art. 163409.doc 201248291 The present invention discloses an electromechanical device having an improved fill factor. The fill factor of an electromechanical device or the ratio of the optically active area of the device to the total area of the electromechanical device may be limited by the area of a light absorbing black mask. The electromechanical device can be an interference measurement modulator device comprising a plurality of pixels and a mechanical layer anchored to one of the optical stacks above the black mask at the corners of each pixel. In some embodiments, a conductive conduction system is used to electrically connect the "electrode" of the device to the black mask. The conductive body is offset from where the mechanical layer is anchored above the optical stack to help reduce the area of the black mask. For example, if the via body is used to shift the mechanical layer region at the pixel corner 光学 in the optical stack, the size of the black mask at the pixel corner 减小 can be reduced, because the cat region does not need to be large. Taking into account the misalignment between the pixel via and the anchor region. By reducing the area of the black mask at the pixel corners, the optical inactive area of the array can be reduced, thereby improving the fill factor. In some embodiments, the vias are not included in the dielectric layer of each pixel. In fact, the conductive body can be periodically positioned throughout the interferometric transducer device (eg, near a corner of the pixel configured to have a high gap (or cavity) height) to reduce the black The total area of the mask and improved fill factor. For example, in one configuration that includes pixels (or sub-pixels) having various gap heights, a conductor can be positioned only near one of the corners (or sub-pixels) of one of the highest gaps. In one of the other embodiments, the optically inactive region is spaced along the conductive body at a position toward one of the edges of the pixel in a pixel toward the 'one conductive conduction system, and one of the centers of the pixel is self-aligned. The edge of the image is 163409.doc -12- 201248291. The black mask can include a channel extending from one of the pixels to a channel of the via along the edge of the pixel. One side of the channel may comprise a widened portion (or a bulge) that is generally wider than the remainder of the channel width. The protrusion surrounds the footprint of the via, which helps to increase the robustness of the via to process variations. In some embodiments, it is not necessary to include the via along each edge of each pixel. In other words, the via may be provided only for a particular edge of a particular pixel (e.g., in a high gap pixel along one of the edges shared by the high gap pixel and an intermediate gap pixel) to reduce the total area of the black mask. Particular embodiments of the subject matter described in this disclosure can be implemented to achieve one or more of the following potential advantages. In some embodiments, a pixel array can include an improved fill factor and/or a black mask having a reduced area. Further, some embodiments may increase the process robustness of an interference measuring device for electrically connecting a black mask to a conductive body of a fixed electrode. In addition, some embodiments may improve the yield of the dry/sampling device by modifying the device tolerances for manufacturing variations. In addition, some embodiments may be used to reduce the number of vias in a pixel array and/or to provide a pixel array having one of the vias only over a small portion of the array. One example of a suitable electromechanical system (EMS) or MEMS device to which one of the described embodiments can be applied is a reflective display device. The reflective display device can be coupled with an interferometric transducer (IM〇D) to selectively absorb and/or reflect light incident thereon using the principles of optical interference. The IM〇D may comprise an absorber movable relative to the absorber and an optical resonant cavity defined between the absorber and the reflector. The reflector can be moved to two 163409.doc -13· 201248291 or more than two different positions' This changes the size of the optical resonators and thereby affects the interference measurement modulation! The reflection of I can produce a fairly broad spectral band that can be shifted across the visible wavelength to produce different colors "by varying the thickness of the optical cavity (ie, by changing the reflection) The position of the body) to adjust the position of the spectral band. 1 shows an example of an isometric view depicting one of two adjacent pixels in a series of pixels of an interferometric transducer (IMOD) display device. The IMOD display includes - or a plurality of interferometric display elements. In such devices, the pixels of the MEMS display element can be in a bright or dark state. In the bright ("loose", "open" or "on" state) state, the display component reflects most of the incident visible light to, for example, the user. In contrast, in dark ("actuated", "closed", or "closed") states, the display element reflects a small amount of incident visible light. In some embodiments, the light reflectance properties of the inverted and closed states can be reversed. The mem_ element can be configured to reflect primarily at a particular wavelength that allows for one color display other than black and white. The IMOD display device can include an array of columns/rows. Each ι can include a pair of reflective layers (ie, a movable reflective layer and a fixed partial reflective layer). The pair of reflective layers are positioned at a variable and controllable distance from each other to form an air gap (also known as an air gap). The movable reflective layer is movable between at least two positions for an optical gap or cavity. In a first position (ie, a relaxed position), the movable reflective layer can be positioned to be away from the fixed portion of the reflective layer A relatively large distance apart. In a second position (ie, an actuating position), the movable reflective layer can be positioned closer to the partially reflective layer. From the 163409.doc • 14 · 201248291 two layers of reflection The incident light may be constructively or destructively interfered depending on the position of the movable reflective layer to produce an overall reflective or non-reflective state for each pixel. In some embodiments, the IMOD may be in a reflective state when not actuated. Medium that reflects light in the visible spectrum and, when actuated, may be in a dark state, reflecting light outside the visible range (eg, infrared light). However, in some other embodiments, an IM〇D When not actuated, it may be in a dark state and in a reflective state when actuated. In some embodiments, introducing an applied voltage may drive the pixel to change state. In some other embodiments 'an applied charge can drive the pixel To change the state. The depicted portion of the pixel array in Figure 1 includes two adjacent interferometric transducers 12. In the IMOD 12 on the left (as illustrated), a mechanical layer or a movable reflective layer 14 is illustrated. The description is in a relaxed position at a predetermined distance from the optical stack 16 containing a portion of the reflective layer. The voltage v〇 applied across the left IMOD 12 is insufficient to cause actuation of the movable reflective layer 14. The IMOD on the right side 12, the movable reflective layer 14 is illustrated as being in an approximate moving position adjacent or adjacent to the optical stack 16. The voltage vbias applied across the right IMOD 12 is sufficient to maintain the movable reflective layer 14 in the actuated position. The reflection property of the pixel 12 in Fig. 1 is generally illustrated by an arrow π indicating the light incident on the pixel !2 and the light 15 reflected from the left pixel 12. Not illustrated in detail, but a substantial portion of the light 13 incident on the pixel 12 will be transmitted through the transparent substrate 20 toward the optical stack 16. A portion of the light incident on the optical stack 16 will be partially reflected through the optical stack 16. The layer and a portion will be reflected back through the transparent substrate 2〇. Transmitted through 163409.doc 201248291 The portion of the light 13 that passes through the optical stack 16 will be reflected back toward the transparent substrate 20 at the movable reflective layer 14 (and through the transparent substrate) 2) The interference (constructive or destructive) between the light reflected from the partially reflective layer of the optical stack 16 and the light reflected from the movable reflective layer 14 will determine the wavelength of the light 15 reflected from the pixel 12. The optical stack 16 can comprise a single layer or several layers. The (etc.) layer can comprise one or more of an electrode layer, a portion of the reflective and partially transmissive layers, and a transparent dielectric layer. In some embodiments, optical stack 16 is electrically conductive, partially transparent, and partially reflective&apos; and can be fabricated, for example, by depositing one or more of the above layers on a transparent substrate 20. The electrode layer may be formed of a variety of materials such as various metals such as indium tin oxide (IT〇). The partially reflective layer can be formed from a variety of materials that are partially reflective, such as various metals such as chromium (Cr), semiconductors, and dielectrics. The partially reflective layer can be formed from one or more layers of material and each of the layers can be formed from a single material or a combination of materials. In some embodiments, optical stack 16 can comprise a single-half transparent metal or semiconductor thickness that acts as both an optical absorber and a conductor, and (eg, 'optical stack 16 or other structure of IMOD') is different, conductive A stronger layer or portion can be used to carry signals between IMOD pixels. The optical stack 16 can also include one or more conductive or dielectric layers covering one or more conductive layers or a conductive/absorptive layer. In some embodiments, as further described below, the layer(s) of optical stack 16 can be rounded into parallel strips and can form column electrodes in a display device. As understood by those of ordinary skill, the term "patterning" is used herein to refer to masking and etching procedures. In some embodiments, a highly conductive and reflective material such as 163409.doc 16· 201248291 (A1) can be used for the movable reflective layer i4, and such strips can form row electrodes in a display device. The movable reflective layer 14 is formed as a deposited metal layer or a plurality of deposited metal layers, a series of flat strips (orthogonal to the column electrodes of the optical stack 丨6) to form a deposit on top of the column ι 8 and One of the deposits between the pillars 18 involves the sacrificial material. When the sacrificial material is etched, a defined gap 19 or optical cavity can be formed between the movable reflective layer 14 and the optical stack 16. In some embodiments, the spacing between the crucibles 18 can be from about 1 μηη to 1〇00 μηι, and the gap 19 can be on the order of less than 1 〇, 〇〇〇 (Α). In some embodiments, each pixel of the IMOD (whether in an actuated state or in a relaxed state) essentially forms a capacitor by a fixed reflective layer and a moving reflective layer. As illustrated by the pixel 12 on the left side of the figure, when no voltage is applied, the movable reflective layer 14 remains in a mechanically relaxed state with a gap 19 between the movable reflective layer 14 and the optical stack 16. However, when a potential difference (for example, a voltage) is applied to at least one of the selected column and the row, the capacitor formed at the intersection of the column electrode and the row electrode at the corresponding pixel starts to be charged, and the electrostatic force pulls the electrode Pull together. If the applied voltage exceeds a threshold, the movable reflective layer 14 can be deformed and moved

是一般技術者將容易瞭解將一方向稱為「 ^之分離距離。無 弓。雖然在一些例 列」或「行」,但 「列」且將另一方 163409.doc •17- 201248291 向稱為「行」係任意的。換言之,在一些定向上,列可視 為行,且行可視為列。此外,顯示元件可均句地配置為正 交列及行(一「陣列」)或配置為(例如)相對於彼此具有特 定位置偏移之非線性組態(一「馬赛克」)。術語「陣列」 及「馬赛克」可指代任意組態。因此,雖然顯示器係稱為 包S 陣列J或「馬赛克」,但是在任何例項中,元件 本身無需配置成彼此正交或佈置成_均句分佈,而是可包 含具有不對稱形狀及不均勻分佈元件之配置。 圖2展示圖解說明併有一3x3干涉量測調變器顯示器之一 電子裝置之一系統方塊圖之一實例。該電子裝置包含可經 組態以執行-或多個軟體模組之一處理器21。除執行一作 業系統外,該處理器21亦可經組態以執行一或多個軟體應 用程式’包含一網頁瀏覽器、一電話應用程式、一電子郵 件程式或任何其他軟體應用程式。 該處理器21可經組態以與一陣列驅動㈣通信。該陣列 驅動器22可包含提供信號給(例如卜顯示陣列或面板扣之 -列驅動器電路24及一行驅動器電路%。圖i中圖解說明 之1獅顯示裝置之橫截面係藉由圖2中之線w加以展 不。雖然圖2為清楚起見而圖解說明IM〇D之—陣列, 但是該顯示陣列3G可含有極多個細d,且列中之励D數 目可不同於行中之細D數目,且反之亦然。 圓3展示圓解說明圖!之干涉量測調變器之可移動反射層 位置對施加電遷之-圖之一實例。對於Μ·干涉量測調 變器’列/行(即’共同/分段)寫入程序可利用如圖3中圖解 163409.doc 201248291 說明之此等裝置之—磁滯性質一干涉量測調變器可使用 (例如)約1 〇伏特電位差以以如 是以引起可移動反射層或鏡自鬆弛狀 態改變為致動狀態。當電愿自該值減小時,可移動反射層 維持其狀態,此係因為電壓下降回至(例如)職特以下, 然而’該可移動反射層直至電壓下降至2伏特以下才完全 鬆他。因此’如圖3中所示’存在大約3伏特至7伏特之一 電壓範圍’在該範n中存在其巾裝置在鬆弛狀態中或致動 狀態中皆係穩定之-施加電壓窗,則存在約3伏特至7伏特 之-電壓範圍。在本文中,將該窗稱為「磁滞窗」或「穩 定性窗」。對於具有圖3之磁滞特性之一顯示陣列3〇 ’列^ 行寫入程序可經設計以一次定址一或多列,使得在定址一 給定列期間’所定址列中待致動之像素係曝露於約1〇伏特 之一電壓差,且待鬆弛之像素係曝露於接近零伏特之一電 壓差。在定址之後,將該等像素曝露於一穩定狀態或大約 5伏特之偏壓電壓差,使得該等像素保持在先前選通狀態 中。在此實例中,在經定址之後,每一像素經歷約3伏特 至7伏特之「穩定性窗」内之一電位差。此磁滯性質特徵 使像素設計(例如,圖丨中圖解說明)能夠在相同施加電壓條 件下在一致動或鬆弛預先存在狀態中保持穩定。因為每一 IMOD像素(無論處於致動狀態中或鬆弛狀態中)本質上係 藉由固定反射層及移動反射層形成之一電容器,所以此穩 定狀態可保持在磁滯窗内之一穩定電壓而不實質上消耗或 損耗電力。此外’若該施加電壓電位保持實質上固定,則 基本上少量或無電流流入IMOD像素中。 I63409.doc -19- 201248291 在一些實施方案中,可根據一給定列中之像素之狀態之 所要變化(若存在),藉由沿行電極集合以「分段」電壓之 形式施加資料信號來產生一影像之一圖框。可輪流定址陣 列之每一列,使得一次一列寫入圖框。為將所要資料寫入 至第列中之像素,可將對應於該第一列中之像素之所 要狀態之分段電壓施加於行電極上,且可將呈一特定「共 同」電壓或彳§號形式之一第一列脈衝施加至第一列電極。 接著’可改變分段電壓集合以對應於第二列中之像素之狀 態之所要變化(若存在),且可將一第二共同電壓施加至第 二列電極》在一些實施方案中,第一列中之像素未受沿行 電極施加之分段電壓之變化影響,且保持在其等在第一共 同電壓列脈衝期間所設定之狀態。可針對整個系列之列或 行以一循序方式重複此程序以產生影像圖框。可使用新影 像資料藉由以每秒某一所要數目個圖框持續重複此程序來 刷新及/或更新該等圖框。 跨每一像素施加之分段及共同信號之組合(即,跨每一 像素之電位差)判定每一像素之所得狀態。圖4展示圖解說 明在施加各種共同電壓及分段電壓時一干涉量測調變器之 各種狀態之一表之一實例。如一般技術者容易瞭解,「分 段」電壓可施加於行電極或列電極,且「共同」電壓可施 加於行電極或列電極之另一者。 如圖4中(以及圖5B中所示之時序圖中)所圖解說明,當 沿一共同線施加一釋放電壓VCrel時,無關於沿分段線施 加之電壓(即’高分段電壓VSh及低分段電壓vSl),沿該共 163409.doc •20· 201248291 同線之所有干涉量測調變器元件皆將被置於一鬆弛狀態 中,或者稱為一釋放狀態或未致動狀態。特定言之,當沿 一共同線施加釋放電壓VCreiJ^,跨調變器之電位電壓(或 者稱為一像素電壓)在沿該像素之對應分段線施加高分段 電壓VSH及低分段電壓VSl時係處於鬆弛窗(參見圖3,亦稱 為一釋放窗)内。 當在一共同線上施加一保持電壓(諸如一高保持電壓 VCH0LD H或一低保持電壓VCh〇ld_l)時,干涉量測調變器之 狀態將保持恆定。例如,一鬆弛IM0D將保持在一鬆弛位 置中且致動1MOD將保持在一致動位置中。保持電壓 可經選擇使得在沿對應分段線施加高分段電壓VSH及低分 段電麼VSL時’像素電壓將保持在一穩定性窗内。因此, 分段電壓擺動(即,高分段電壓vsH與低分段電壓VSl之間 之差)係小於正穩定性窗或負穩定性窗之寬度。 當在一共同線上施加一定址或致動電壓(諸如一高定址 電壓VCADD_H或一低定址電壓VCadd—L)時,可沿該線藉由 沿各自分段線施加分段電壓而將資料選擇性地寫入至調變 器。分段電壓可經選擇使得致動取決於所施加之分段電 壓。當沿一共同線施加一定址電壓時,施加一分段電壓將 導致一穩定性窗内之—像素電壓,從而引起像素保持未致 動。相比之了,施加另—分段電壓冑導致超出穩定性窗之 一像素電壓,進而導致像素之致動。引起致動之特定分段 電壓可取決於所使用的定址電壓而改變。在一些實施方案 中’當沿共同線施加高定址電壓VCADD H時,施加高分段 163409.doc -21 - 201248291 電壓VSH可引起一調變器保持於其當前位置中,而施加低 分段電壓VSL可引起該調變器致動。作為一推論,當施加 一低疋址電壓乂(^003時,分段電壓之影響可相反,其中 间分段電壓VSH引起該調變器致動,且低分段電壓vSl對 該調變器之狀態不具有影響(即,保持穩定)。 在一些實施方案中,可使用跨調變器產生相同極性電位 差之保持電壓、定址電壓及分段電壓。在一些其他實施方 案中,可使用使調變器之電位差之極性交替之信號。跨調 變器之極性之交替(即,寫入程序之極性之交替)可減小或 抑制在重複一單一極性之寫入操作之後可發生之電荷累 積。 圖5 A展示圖解說明圖2之3x3干涉量測調變器顯示器中之 一顯示資料圖框之一圖之一實例。圖5B展示可用以寫入圖 5A中圖解說明之顯示資料之圖框之共同信號及分段信號之 一時序圖之一實例。該等信號可施加於(例如)圖2之3χ3陣 列’此最終將導致顯示圖5 Α中圖解說明之顯示配置之線時 間60e。圖5A中之致動調變器係處於一暗狀態中(即,其中 反射光之大部分係在可見光譜之外)以導致對(例如)一觀看 者之一暗外觀。在寫入圖5A中圖解說明之圖框之前,像素 可處於任何狀態中,但是圖5B之時序圖中圖解說明之寫入 程序假定每一調變器已在第一線時間6〇a之前釋放且駐留 在一未致動狀態中。 在第一線時間60a期間:將一釋放電壓70施加於共同線1 上;施加於共同線2之電壓開始於一高保持電壓72且移動 163409.doc 22· 201248291 至一釋放電壓70;及沿共同線3施加一低保持電壓%。因 此,在第一線時間60a之持續時間之内,沿共同線i之調變 器(共同1,分段1)、(共同1,分段2)及(共同丨,分段3)保持 在一鬆弛或未致動狀態中,沿共同線2之調變器(共同2, 分段1)、(共同2,分段2)及(共同2,分段3)將移動至一鬆 弛狀態,且沿共同線3之調變器(共同3 ’分段1}、(共同3, 分段2)及(共同3,分段3)將保持在其等先前狀態中。參考 圖4,沿分段線1、2及3施加之分段電壓將對干涉量測調變 器之狀態不具有影響,此係因為在線時間6〇a期間,共同 線1、2或3未被曝露於引起致動之電壓位準(即,VCrel_鬆 弛及VChold_l-穩定)。 在第一線時間60b期間’共同線1上之電壓移動至高保持 電壓72,且沿共同線1之所有調變器無關於所施加之分段 電壓而保持在一鬆弛狀態中,此係因為在共同線1上未施 加定址或致動電壓。歸因於釋放電壓7〇之施加,沿共同線 2之調變器保持在一鬆他狀態中’且沿共同線3之調變器 (共同3 ’分段1)、(共同3,分段2)及(共同3,分段3)將在沿 共同線3之電壓移動至一釋放電壓70時鬆弛。 在第三線時間60c期間’藉由在共同線!上施加一高定址 電壓74而定址共同線1。因為在施加此定址電壓期間沿分 段線1及2施加一低分段電壓64,所以跨調變器(共同1,分 段1)及(共同1 ’分段2)之像素電壓大於調變器之正穩定性 窗之高端(即’電壓差超過一預定義臨限值),且致動調變 器(共同1 ’分段1)及(共同1,分段2)。相反,因為沿分段 I63409.doc •23- 201248291 線3施加一高分段電壓62,所以跨調變器(共同1,分段3)之 像素電壓小於跨調變器(共同丨,分段丨)及(共同丨,分段2) 之電壓且保持在調變器之正穩定性窗内;因此,調變器 (共同1 ’分段3)保持鬆弛。又在線時間6〇c期間,沿共同線 2之電壓降低至一低保持電壓76,且沿共同線3之電壓保持 在一釋放電壓70處’從而使沿共同線2及3之調變器保持於 一鬆弛位置中。 在第四線時間6〇d期間,共同線1上之電壓返回至一高保 持電壓72 ’使沿共同線1之調變器保持於其等各自定址狀 態中。共同線2上之電壓降低至一低定址電壓78。因為沿 分段線2施加一高分段電壓62,所以跨調變器(共同2,分 段2)之像素電壓係低於調變器之負穩定性窗之低端,從而 引起調變器(共同2,分段2)致動。相反,因為沿分段線丨及 3施加一低分段電壓64,所以調變器(共同2,分段〇及(共 同2,分段3)保持在一鬆弛位置中。共同線3上之電壓增加 至一高保持電壓72,使沿共同線3之調變器保持於一鬆弛 狀態中》 最終,在第五線時間60e期間,共同線丨上之電壓保持在 高保持電壓72,且共同線2上之電壓保持在一低保持電壓 76,使沿共同線1及2之調變器保持於其等各自定址狀態 中。共同線3上之電壓增加至一高定址電壓74以定址沿共 同線3之調變器。由於在分段線2及3上施加一低分段電壓 64,所以調變器(共同3’分段2)及(共同3,分段3)致動, 而沿分段線1施加之高分段電壓62引起調變器(共同3,分 163409.doc •24- 201248291 段i)保持在一鬆弛位置中。因此,在第五線時間6〇e結束 時’ 3x3像素陣列係處於圖5A中所示之狀態中,且只要沿 共同線施加保持電壓便將保持在該狀態中,無關於當定址 沿其他共同線(未展示)之調變器時可發生之分段電壓之變 動0 在圖5B之時序圖中,一給定寫入程序(即,線時間術至 60e)可包含使用尚保持電壓及高定址電壓或低保持電壓及 低定址電壓。一旦已針對一給定共同線完成該寫入程序 (且將共同電壓設定為具有與致動電壓相同之極性之保持 電壓),像素電壓便保持在一給定穩定性窗内,且不通過 鬆他窗直到在該共同線上施加一釋放電壓。此外由於每 -調變器係在定址調變器之前作為寫入程序之部分而釋 放所以冑變器之致動時間(而非釋放時間)可判定線時 間。具體言之,在其中一調變器之釋放時間大於致動時間 之:施方案中,如圖5B中所描繪,可施加釋放電壓達長於It is common for a general practitioner to understand that a direction is called "the separation distance of ^. No bow. Although in some cases" or "row", but "column" and the other party is called 163409.doc •17- 201248291 "Line" is arbitrary. In other words, in some orientations, a column can be considered a row and a row can be considered a column. In addition, the display elements can be configured uniformly as orthogonal columns and rows (an "array") or as a non-linear configuration (a "mosaic") having a particular positional offset relative to each other, for example. The terms "array" and "mosaic" can refer to any configuration. Therefore, although the display is referred to as a package S array J or "mosaic", in any of the examples, the elements themselves need not be configured to be orthogonal to each other or arranged in a _ uniform distribution, but may include asymmetric shapes and unevenness. Distribution of components. Figure 2 shows an example of a system block diagram illustrating one of the electronic devices of a 3x3 interferometric transducer display. The electronic device includes a processor 21 that is configurable to execute - or a plurality of software modules. In addition to executing a job system, the processor 21 can also be configured to execute one or more software applications 'including a web browser, a telephone application, an email program, or any other software application. The processor 21 can be configured to communicate with an array of drivers (4). The array driver 22 can include a signal to provide (eg, a display array or panel buckle-column driver circuit 24 and a row of driver circuits %. The cross-section of the lion display device illustrated in Figure i is by the line in Figure 2 w does not show. Although Figure 2 illustrates the array of IM〇D for clarity, the display array 3G may contain a plurality of thin d, and the number of excitation D in the column may be different from the fine D in the row. The number, and vice versa. Circle 3 shows the circular solution diagram! The position of the movable reflection layer of the interferometric transducer is applied to the electromigration-example. For the Μ·interference measurement modulator' column The /row (ie, 'common/segmented) write procedure can utilize such a device as illustrated by Figure 163409.doc 201248291 - the hysteresis property-interference measurement modulator can be used, for example, at approximately 1 volt volt The potential difference is such as to cause the movable reflective layer or the mirror self-relaxing state to change to an actuated state. When the electric wish is reduced from this value, the movable reflective layer maintains its state, because the voltage drops back to (for example) Following, however, the movable reflective layer Until the voltage drops below 2 volts, it is completely loose. Therefore, 'there is a voltage range of about 3 volts to 7 volts as shown in FIG. 3' in which there is a towel device in a relaxed state or an actuated state. In the case of a stable voltage-applied window, there is a voltage range of about 3 volts to 7 volts. In this context, the window is referred to as a "hysteresis window" or a "stability window." One of the lag characteristics display arrays can be designed to address one or more columns at a time such that the pixel to be actuated in the addressed column is exposed to about 1 定 during addressing a given column. One of the voltage differences of volts, and the pixel to be relaxed is exposed to a voltage difference of approximately zero volts. After addressing, the pixels are exposed to a steady state or a bias voltage difference of approximately 5 volts such that the pixels Staying in the previous strobe state. In this example, after addressing, each pixel experiences a potential difference within a "stability window" of about 3 volts to 7 volts. This hysteresis property makes the pixel design (eg, Illustrated in the figure) The same applied voltage condition remains stable in the pre-existing state of the constant motion or relaxation. Because each IMOD pixel (whether in the actuated state or in the relaxed state) essentially forms a capacitor by the fixed reflective layer and the moving reflective layer. Therefore, this steady state can maintain a stable voltage within the hysteresis window without substantially consuming or losing power. Furthermore, if the applied voltage potential remains substantially fixed, substantially little or no current flows into the IMOD pixel. .doc -19- 201248291 In some embodiments, the data signal can be generated by applying a data signal in the form of a "segmented" voltage along the set of row electrodes, depending on the desired change in state of the pixels in a given column, if any. A frame of an image. Each column of the array can be positioned in turn so that one column is written to the frame at a time. To write the desired data to the pixels in the column, a segment voltage corresponding to the desired state of the pixels in the first column can be applied to the row electrodes and can be presented as a particular "common" voltage or 彳§ One of the first form of the pulse is applied to the first column of electrodes. Then 'the segment voltage set can be changed to correspond to the desired change in the state of the pixels in the second column (if present), and a second common voltage can be applied to the second column electrode". In some embodiments, first The pixels in the column are unaffected by changes in the segment voltage applied along the row electrodes and remain in the state they were set during the first common voltage column pulse. This procedure can be repeated in a sequential manner for the entire series of columns or rows to produce an image frame. The new image data can be used to refresh and/or update the frames by repeating the program continuously for a desired number of frames per second. The resulting state of each pixel is determined by the combination of segments and common signals applied across each pixel (i.e., the potential difference across each pixel). Figure 4 shows an example of a table illustrating one of various states of an interferometric modulator when various common voltages and segment voltages are applied. As will be readily appreciated by those of ordinary skill, a "segmented" voltage can be applied to a row or column electrode and a "common" voltage can be applied to the other of the row or column electrodes. As illustrated in Figure 4 (and in the timing diagram shown in Figure 5B), when a release voltage VCrel is applied along a common line, there is no voltage applied along the segment line (i.e., 'high segment voltage VSh and The low segment voltage vSl), along with all of the interferometric modulator elements along the line 163409.doc •20·201248291, will be placed in a relaxed state, either a released state or an unactuated state. In particular, when a release voltage VCreiJ^ is applied along a common line, a potential voltage across the modulator (or referred to as a pixel voltage) applies a high segment voltage VSH and a low segment voltage along a corresponding segment line of the pixel. VSl is in a slack window (see Figure 3, also known as a release window). When a holding voltage (such as a high holding voltage VCH0LD H or a low holding voltage VCh〇ld_l) is applied to a common line, the state of the interference measuring modulator will remain constant. For example, a relaxed IMOD will remain in a relaxed position and the actuation 1MOD will remain in the consistent position. The hold voltage can be selected such that when a high segment voltage VSH and a low segment voltage VSL are applied along the corresponding segment line, the pixel voltage will remain within a stability window. Therefore, the segment voltage swing (i.e., the difference between the high segment voltage vsH and the low segment voltage VS1) is less than the width of the positive or negative stability window. When an address or actuation voltage (such as a high address voltage VCADD_H or a low address voltage VCadd-L) is applied to a common line, data can be selectively along the line by applying a segment voltage along the respective segment lines. Write to the modulator. The segment voltage can be selected such that actuation depends on the segment voltage applied. When a site voltage is applied along a common line, applying a segment voltage will result in a pixel voltage within the stability window, causing the pixel to remain unactuated. In contrast, applying a different-segment voltage 胄 results in a pixel voltage that exceeds the stability window, which in turn causes actuation of the pixel. The particular segmentation voltage that causes the actuation can vary depending on the addressing voltage used. In some embodiments 'When a high address voltage VCADD H is applied along a common line, applying a high segment 163409.doc -21 - 201248291 voltage VSH can cause a modulator to remain in its current position while applying a low segment voltage VSL can cause the modulator to actuate. As a corollary, when a low address voltage 乂 (^003) is applied, the effect of the segment voltage can be reversed, the middle segment voltage VSH causes the modulator to be actuated, and the low segment voltage vS1 acts on the modulator. The state has no effect (ie, remains stable). In some embodiments, a hold voltage, an address voltage, and a segment voltage for the same polarity potential difference can be generated across the modulator. In some other implementations, the modulation can be used The alternating polarity of the potential difference of the transformer. The alternation of the polarity across the modulator (i.e., the alternation of the polarity of the write process) can reduce or inhibit charge accumulation that can occur after repeating a single polarity write operation. 5A shows an example of one of the display data frames illustrating the 3x3 interferometric modulator display of FIG. 2. FIG. 5B shows a frame that can be used to write the display data illustrated in FIG. 5A. An example of one of the common signal and segmented signal timing diagrams. These signals can be applied to, for example, the 3χ3 array of Figure 2, which will ultimately result in the display of the line time 60e of the display configuration illustrated in Figure 5 The actuating modulator of Figure 5A is in a dark state (i.e., where a majority of the reflected light is outside the visible spectrum) to cause a dark appearance to, for example, one of the viewers. Prior to the frame illustrated in 5A, the pixels may be in any state, but the writer illustrated in the timing diagram of Figure 5B assumes that each modulator has been released and resides in a line before the first line time 6〇a During the first line time 60a: a release voltage 70 is applied to the common line 1; the voltage applied to the common line 2 starts at a high hold voltage 72 and moves 163409.doc 22· 201248291 to one Release voltage 70; and apply a low hold voltage % along common line 3. Therefore, within the duration of first line time 60a, the modulator along common line i (common 1, segment 1), (common 1 , segment 2) and (common 丨, segment 3) remain in a relaxed or unactuated state, along the common line 2 modulator (common 2, segment 1), (common 2, segment 2) And (common 2, segment 3) will move to a relaxed state, and along the common line 3 modulator (common 3 ' Segment 1}, (Common 3, Segment 2) and (Common 3, Segment 3) will remain in their previous states. Referring to Figure 4, the segment voltages applied along segment lines 1, 2 and 3 will be The state of the interferometric modulator has no effect, because the common line 1, 2 or 3 is not exposed to the voltage level causing the actuation during the online time 6〇a (ie, VCrel_relaxation and VChold_l-stability During the first line time 60b, the voltage on common line 1 moves to a high hold voltage 72, and all of the modulators along common line 1 remain in a relaxed state regardless of the applied segment voltage. Since no addressing or actuation voltage is applied on common line 1. Due to the application of the release voltage 7〇, the modulator along common line 2 remains in a loose state and along the common line 3 modulator ( Common 3 'segment 1), (common 3, segment 2) and (common 3, segment 3) will relax when the voltage along common line 3 is moved to a release voltage 70. During the third line time 60c' by the common line! A high address voltage 74 is applied to address the common line 1. Since a low segment voltage 64 is applied along segment lines 1 and 2 during the application of this address voltage, the pixel voltage across the modulator (common 1, segment 1) and (common 1 segment 2) is greater than the modulation The high end of the positive stability window (ie, 'the voltage difference exceeds a predefined threshold'), and the modulators (common 1 'segment 1) and (common 1, segment 2) are actuated. Conversely, because a high segment voltage 62 is applied along segment I63409.doc •23- 201248291 line 3, the pixel voltage across the modulator (common 1, segment 3) is less than the cross-modulator (common segmentation, segmentation) The voltages of 丨) and (common 丨, segment 2) are maintained within the positive stability window of the modulator; therefore, the modulator (common 1 'segment 3) remains slack. During the online time 6〇c, the voltage along common line 2 is reduced to a low hold voltage 76, and the voltage along common line 3 is maintained at a release voltage 70' so that the modulators along common lines 2 and 3 remain In a relaxed position. During the fourth line time 6 〇d, the voltage on common line 1 returns to a high hold voltage 72' such that the modulators along common line 1 remain in their respective addressed states. The voltage on common line 2 is reduced to a low address voltage 78. Since a high segment voltage 62 is applied along the segment line 2, the pixel voltage across the modulator (common 2, segment 2) is lower than the low end of the negative stability window of the modulator, thereby causing the modulator (Common 2, Section 2) Actuated. Conversely, because a low segment voltage 64 is applied along the segment lines 33, the modulators (common 2, segment 〇 and (common 2, segment 3) remain in a relaxed position. On common line 3 The voltage is increased to a high hold voltage 72 to maintain the modulator along common line 3 in a relaxed state. Finally, during the fifth line time 60e, the voltage on the common line is maintained at a high hold voltage 72, and The voltage on line 2 is maintained at a low hold voltage 76 to maintain the modulators along common lines 1 and 2 in their respective address states. The voltage on common line 3 is increased to a high address voltage 74 to address the common edge. Modulator of line 3. Since a low segment voltage 64 is applied to segment lines 2 and 3, the modulator (common 3' segment 2) and (common 3, segment 3) are actuated along The high segment voltage 62 applied by segment line 1 causes the modulator (common 3, 163409.doc • 24-201248291 segment i) to remain in a relaxed position. Therefore, at the end of the fifth line time 6〇e' The 3x3 pixel array is in the state shown in Figure 5A and will remain there as long as a holding voltage is applied along the common line In the state, there is no change in the segment voltage that can occur when addressing a modulator along other common lines (not shown). In the timing diagram of Figure 5B, a given write procedure (ie, line time to 60e) may include the use of a hold voltage and a high address voltage or a low hold voltage and a low address voltage. Once the write procedure has been completed for a given common line (and the common voltage is set to have the same polarity as the actuation voltage) Keeping the voltage), the pixel voltage remains within a given stability window and does not pass through the window until a release voltage is applied across the common line. Also, since each-modulator is written as before the address modulator The release time of the program, so the actuation time of the variator (rather than the release time) can determine the line time. Specifically, the release time of one of the modulators is greater than the actuation time: in the scheme, as shown in Fig. 5B As depicted in the figure, the release voltage can be applied for longer than

一早一線時間。在一歧其你奢始士安 rK —再他實施方案中,可改變沿共同線 或分段線施加之電壓以老 |尤 後以亏量不冋調變器(諸如不同色彩之 調變器)之致動電壓及釋放電壓之變動。 根據上文陳述之原理進行揚 仃徕作之干涉量測調變器之結構 之細節可能大不相同。你丨如 例如圖6Α至6Ε展示干涉量測調 變器之不同實施方案之橫截 顆面之實例,包含可移動反射層 14及其支稽·結構。圖展千阁 展圖丨之干涉量測調變器顯示器 之一部分橫截面之一實例, (即,可移動反射層u)係沈積在自基板2g正交地延伸 ^ 11其中金屬材料之一條狀物 之 163409.doc '25- 201248291 支撐件18上。在圖6B中’每一 IMOD之可移動反射層14之 形狀實質上為正方形或矩形,且在角隅處或角隅附近附接 至支樓件之繋鏈32上。在圖6C中,可移動反射層14之形狀 實質上為正方形或矩形且自可包含一可撓性金屬之一可變 形層34上懸掛下來。該可變形層34可圍繞可移動反射層14 之周長而直接或間接連接至基板2〇。此等連接在本文中係 稱為支撐柱。圖6(:中所示之實施方案具有得自可移動反射 層14之光學功能與其機械功能(其等可藉由可變形層34實 行)之去耦合之額外益處。此去耦合容許用於可移動反射 層14之結構設計及材料及用於可變形層34之結構設計及材 料獨立於彼此而最佳化。 圖6D展示一im〇D之另一實例’其中可移動反射層14包 含一反射子層14a。該可移動反射層14搁在一支撐結構(諸 如支撐柱18)上。該等支撐柱18提供該可移動反射層14與 下固定電極(即,所圖解說明IMOD中之光學堆叠16之一部 分)之分離’使得(例如)當該可移動反射層14處於一鬆弛位 置中時在該可移動反射層丨4與該光學堆疊16之間形成一間 隙19 °該可移動反射層14亦可包含可經組態以用作一電極 之一導電層14c及一支撐層14b。在此實例中,該導電層 14c係佈置在該支撐層14b遠離基板20之一側上,且該反射 子層14a係佈置在該支撐層1413靠近基板2〇之另一側上。在 一些實施方案中,該反射子層1私可導電且可佈置在該支 樓層14b與該光學堆疊16之間。該支撐層14b可包含一介電 材料(例如’氮氧化矽(Si0N)或二氧化矽(Si〇2))之一或多 163409.doc •26_ 201248291 個層》在一些實施方案中,該支撐層Mb可為層之一堆 疊’舉例而言’諸如si〇2/SiON/Si〇2三層堆疊。該反射子 層14a及该導電層14C之任一者或兩者可包含(例如)具有約 0.5%銅(Cu)之鋁(A1)合金或另一反射金屬材料。在介電支 撐層14b上方及下方採用導電層143、14〇可平衡應力並提 供增強之導電性。在一些實施方案中,針對多種設計目的 (諸如在該可移動反射層14内達成特定應力分佈),該反射 子層14a及該導電層i4c可由不同材料形成。 如圖6D中圖解說明,一些實施方案亦可包含—黑色遮罩 結構23。該黑色遮罩結構23可形成於光學非作用區域中 (例如,像素之間或柱18下方)以吸收環境光或雜散光。該 黑色遮罩結構23亦可藉由抑制光自顯示器之非作用部分反 射或透射穿過顯示器之非作用部分而改良一顯示裝置之光 學性質,藉此增加對比率。此外,該黑色遮罩結構23可導 電且經組態以用作一電匯流層。在一些實施方案中,列電 極可連接至該黑色遮罩結構23以減小所連接之列電極之電 阻。黑色遮罩結構23可使用多種方法(包含沈積及圖案化 技術)形成。該黑色遮罩結構23可包含一或多個層。例 如,在一些實施方案中,該黑色遮罩結構23包含用作一光 學吸收體之鉬鉻(MoCr)層、二氧化矽(si〇2)層及用作一反 射體及一匯流層之鋁合金,該等層之厚度分別係在約3 〇 A 至80 A、500 A至1000 A及500 A至6000 A之範圍中。可使 用多種技術圖案化一或多個層,該等技術包含光微影術及 乾式蝕刻(包含(例如)用於MoCr及Si〇2層之四氟甲烷(Cf4) 163409.doc -27- 201248291 及/或氧氣(〇2)以及用於鋁合金層之氣氣(ci2)及/或三氣化 硼(BC13))。在一些實施方案中’該黑色遮罩23可為一標準 量具或干涉量測堆疊結構。在此等干涉量測堆疊黑色遮罩 結構23中,可使用導電反射體以在每一列或行之光學堆疊 16中之下固定電極之間發射或載送信號。在一些實施方案 中,一間隔層3 5可用以使吸收層16a與黑色遮罩23中之導 電層大體上電隔離。 圖6E展示一 IMOD之另一實例,其中可移動反射層14係 自支撐。與圖6D相比’圖6E之實施方案並不包含支撐柱 18。而是,該可移動反射層14在多個位置處接觸下伏光學 堆疊16’且當跨干涉量測調變器之電壓不足以引起致動 時,該可移動反射層14之曲率提供足夠支撐使得該可移動 反射層14返回至圖6E之未致動位置。此處為清楚起見,將 可含有複數個若干不同層之光學堆疊16展示為包含一光學 吸收體16a及一介電質16b。在一些實施方案中,該光學吸 收體16a可用作一固定電極及一部分反射層兩者。 在諸如圖6A至圖6E中所示之實施方案中’ im〇d用作 視裝置,其中自透明基板2〇之前側(即,與其上配置調 器之側相對之側)觀看影像。在此等實施方案中,裝置 Z面部分(即’顯示裝置在可移動反射層14後面之任何 刀包含例如圖6C中圖解說明之可變形層34)可經組態 操作而不衝擊或負面影響顯示裝置之影像品質此係因 反射層叫學屏蔽該裝置之該等部分。例如,在一些實 方案中’可移動反射層14後面可包含—匯流排結構(未 163409.doc •28· 201248291 解說明),該匯流排結構提供使調變器之光學性質與調變 器之機電性質(諸如電壓定址及由此定址所引起之移動)分 離之能力。此外’圖6A至圖6E之實施方案可簡化諸如(例 如)圖案化之處理。 圖7展示圖解說明一干涉量測調變器之一製造程序80之 一流程圖之一實例,且圖8A至圖8E展示此一製造程序 之對應階分段之橫截面示意圖解之實例。在一些實施方案 中’除圖7中未展示之其他方塊外,該製造程序8〇亦可經 實施以製造(例如)圖1及圖6中圖解說明之一般類型的干涉 量測調變器。參考圖1 '圖6及圖7,該程序8〇開始於方塊 82’其中在基板20上方形成光學堆疊16。圖8Α圖解說明形 成於該基板20上方之此一光學堆疊16。該基板2〇可為一透 明基板(諸如玻璃或塑膠),其可為可撓性或相對較硬及不 可彎曲,且可能已遭受先前製備程序(例如,清洗)以促進 該光學堆疊16之有效形成。如上所論述,該光學堆疊16可 導電、部分透明及具㈣反射性,i可藉由(例如)將具有 所要性質之一或多個層沈積在該透明基板2〇上而製造。在 圖8A中,該光學堆疊16包含具有子層16&amp;及i6b之一多層結 構’但是在一些其他實施方案中,可包含更多或更少個子 層。在一些實施方案中’該等子層…、⑽之一者可經粗 態而具有光學吸收及導電性質兩者,諸如組合導體/吸收 體子層16&amp;。此外’可將該等子層16a、16b之一或多者 =化為平行條狀物,且可形成—顯示裝置中之列電極。可 遮罩及钱刻程序或此項技術中已知之另__適當程序 163409.doc -29. 201248291 執行此圖案化。在-些實施方案中,該等子層i6a、_之 -者可為-絕緣層或介電層’諸如沈積在一或多個金屬層 (例如,一或多個反射層及/或導電層)上方之子層⑽。此 外’可將該光學堆叠16圖案化為形成顯示器之列之個別及 平行條狀物。 程序80在方塊84繼續以在該光學堆疊16上方形成-犧牲 層25。隨後移除該犧牲層25以形成腔19(例如,在方塊9〇 處)且因此在圖1中圖解說明之所得干涉量測調變器12中未 展示該犧牲層25。圖8B圖解說明包含形成於該光學堆疊16 上方之一犧牲層25之一部分製造裝置。在該光學堆疊16上 方形成該犧牲層25可包含依經選擇以在後續移除之後提供 具有所要設計大小之一間隙或腔19(亦參見圖i及圖8E)之 厚度沈積一氟化氙(XeF2)(可触刻材料),諸如鉬(M〇)或 非晶矽(Si)。可使用諸如以下各者之沈積技術實行該犧牲 材料之沈積··物理氣相沈積(PVD,例如濺锻)、電漿增強 型化學氣相沈積(PECVD)、熱化學氣相沈積(熱c VD)或旋 塗。 程序80在方塊86繼續以形成一支撐結構(例如,如圖i、 圖6及圖8C中圖解說明之一柱18)。形成柱18可包含圖案化 該犧牲層25以形成一支撐結構孔隙,接著使用一沈積方法 (諸如PVD、PECVD、熱CVD或旋塗)將一材料(例如聚合物 或一無機材料,例如氧化梦)沈積至該孔隙ψ以形成該柱 18。在一些實施方案中,形成於該犧牲層中之支撐結構孔 隙可延伸穿過該犧牲層25及該光學堆疊16兩者而至下伏基 I63409.doc • 30· 201248291 板20 ’使得柱18之下端如圖6A中圖解說明般接觸基板20。 或者,如圖8C中描繪,形成於該犧牲層25中之孔隙可延伸 穿過該犧牲層25 ’但未穿過該光學堆疊16〇例如,圖吒圖 解說明與光學堆疊16之一上表面接觸的支撐柱18之下端。 可藉由在該犧牲層25上方沈積一支撐結構材料層且圖案化 以移除經定位遠離該犧牲層25中之孔隙之支撐結構材料之 部分來形成柱18或其他支撐結構。如圖8C中圖解說明,支 撐結構可定位於孔隙内,但是亦可至少部分延伸在該犧牲 層25之一部分上方。如上所述,該犧牲層乃及/或該等支 撐柱18之圖案化可藉由一圖案化及蝕刻程序執行,但是亦 可藉由替代性餘刻方法執行。 程序80在方塊88繼續以形成一可移動反射層或膜(諸如 圖1、圖6及圖8D中圖解說明之可移動層14卜可藉由採用 例如反射層(例如,鋁、鋁合金)沈積之一或多個沈積步Early in the morning. In a different way, you can change the voltage applied along the common line or the segment line to the old | especially after the loss of the modulator (such as different color modulators) The variation of the actuation voltage and the release voltage. The details of the structure of the interferometric transducers that are based on the principles set forth above may vary widely. For example, Figures 6A through 6B show examples of cross-sections of different embodiments of an interferometric transducer, including a movable reflective layer 14 and its structure. An example of a cross-section of one of the interferometric transducer displays of the map exhibiting (i.e., the movable reflective layer u) is deposited orthogonally from the substrate 2g. 163409.doc '25- 201248291 support 18 on. The shape of the movable reflective layer 14 of each IMOD in Fig. 6B is substantially square or rectangular and is attached to the tether 32 of the branch member at or near the corner. In Figure 6C, the movable reflective layer 14 is substantially square or rectangular in shape and is suspended from a variable layer 34 which may comprise a flexible metal. The deformable layer 34 can be directly or indirectly connected to the substrate 2〇 around the perimeter of the movable reflective layer 14. These connections are referred to herein as support columns. The embodiment shown in Figure 6 (: has the added benefit of decoupling the optical function from the movable reflective layer 14 and its mechanical function, which can be implemented by the deformable layer 34. This decoupling is allowed for The structural design and materials of the moving reflective layer 14 and the structural design and materials for the deformable layer 34 are optimized independently of each other. Figure 6D shows another example of an im 〇 D where the movable reflective layer 14 contains a reflection Sublayer 14a. The movable reflective layer 14 rests on a support structure, such as support post 18. The support posts 18 provide the movable reflective layer 14 and the lower fixed electrode (i.e., the optical stack in the illustrated IMOD) The separation of one of the portions 16 is such that, for example, a gap 19 is formed between the movable reflective layer 4 and the optical stack 16 when the movable reflective layer 14 is in a relaxed position. The movable reflective layer 14 A conductive layer 14c and a support layer 14b that can be configured to function as an electrode can also be included. In this example, the conductive layer 14c is disposed on a side of the support layer 14b away from the substrate 20, and the reflection Sublayer 14a is arranged The support layer 1413 is adjacent to the other side of the substrate 2. In some embodiments, the reflective sub-layer 1 is privately conductive and can be disposed between the support floor 14b and the optical stack 16. The support layer 14b can comprise a One or more of a dielectric material (eg, 'sodium niobium oxide (Si0N) or cerium oxide (Si〇2)) 163409.doc • 26_201248291 layers. In some embodiments, the support layer Mb can be one of the layers Stacking 'for example' a three-layer stack such as si〇2/SiON/Si〇2. Either or both of the reflective sub-layer 14a and the conductive layer 14C may comprise, for example, about 0.5% copper (Cu) Aluminum (A1) alloy or another reflective metal material. The use of conductive layers 143, 14 above and below the dielectric support layer 14b balances stress and provides enhanced electrical conductivity. In some embodiments, for a variety of design purposes ( The reflective sub-layer 14a and the conductive layer i4c may be formed of different materials, such as to achieve a particular stress distribution within the movable reflective layer 14. As illustrated in Figure 6D, some embodiments may also include a black mask structure 23. The black mask structure 23 can be formed in optics In the active area (eg, between pixels or below the column 18) to absorb ambient light or stray light. The black mask structure 23 can also be reflected or transmitted through the inactive portion of the display by inhibiting light from being inactive portions of the display. While improving the optical properties of a display device, thereby increasing the contrast ratio, the black mask structure 23 can be electrically conductive and configured to function as an electrical bus layer. In some embodiments, the column electrodes can be connected to the black The mask structure 23 is used to reduce the resistance of the connected column electrodes. The black mask structure 23 can be formed using a variety of methods including deposition and patterning techniques. The black mask structure 23 can comprise one or more layers. For example, in some embodiments, the black mask structure 23 comprises a molybdenum chromium (MoCr) layer, a ceria (si〇2) layer, and an aluminum used as a reflector and a bus layer, which serve as an optical absorber. The thickness of the layers is in the range of about 3 〇A to 80 A, 500 A to 1000 A, and 500 A to 6000 A, respectively. One or more layers may be patterned using a variety of techniques, including photolithography and dry etching (including, for example, tetrafluoromethane (Cf4) for MoCr and Si〇2 layers 163409.doc -27- 201248291 And/or oxygen (〇2) and gas (ci2) and/or tri-carbide (BC13) for the aluminum alloy layer. In some embodiments, the black mask 23 can be a standard gauge or an interferometric stacking structure. In such interference measurement stack black mask structures 23, conductive reflectors can be used to transmit or carry signals between the fixed electrodes below the optical stack 16 of each column or row. In some embodiments, a spacer layer 35 can be used to substantially electrically isolate the absorber layer 16a from the conductive layer in the black mask 23. Figure 6E shows another example of an IMOD in which the movable reflective layer 14 is self-supporting. The embodiment of Fig. 6E does not include support posts 18 as compared to Fig. 6D. Rather, the movable reflective layer 14 contacts the underlying optical stack 16' at a plurality of locations and provides sufficient support for the curvature of the movable reflective layer 14 when the voltage across the interferometric transducer is insufficient to cause actuation. The movable reflective layer 14 is returned to the unactuated position of Figure 6E. For clarity, an optical stack 16 that may contain a plurality of different layers is shown to include an optical absorber 16a and a dielectric 16b. In some embodiments, the optical absorber 16a can be used as both a fixed electrode and a portion of a reflective layer. In an embodiment such as that shown in Figs. 6A to 6E, "im" is used as a viewing device in which an image is viewed from the front side of the transparent substrate 2 (i.e., the side opposite to the side on which the modulator is disposed). In such embodiments, the Z-face portion of the device (i.e., 'any knife behind the movable reflective layer 14 of the display device contains, for example, the deformable layer 34 illustrated in Figure 6C) can be configured to operate without impact or negative effects. The image quality of the display device is due to the fact that the reflective layer is called to shield such portions of the device. For example, in some implementations, the 'movable reflective layer 14 can be followed by a bus bar structure (not described in 163409.doc • 28·201248291), which provides optical properties and modulators for the modulator The ability to separate mechanical and electrical properties, such as voltage addressing and movement caused by addressing. Further, the embodiment of Figs. 6A to 6E can simplify processing such as, for example, patterning. Figure 7 shows an example of a flow chart illustrating one of the manufacturing procedures 80 of an interferometric modulator, and Figures 8A-8E show examples of cross-sectional schematic illustrations of corresponding step segments of such a manufacturing procedure. In some embodiments, in addition to the other blocks not shown in Figure 7, the fabrication process 8 can also be implemented to produce, for example, the general type of interferometric modulators illustrated in Figures 1 and 6. Referring to Figure 1 & Figures 6 and 7, the process 8 begins with block 82' in which an optical stack 16 is formed over substrate 20. Figure 8A illustrates this optical stack 16 formed over the substrate 20. The substrate 2 can be a transparent substrate (such as glass or plastic) that can be flexible or relatively hard and inflexible and may have been subjected to previous preparation procedures (eg, cleaning) to facilitate the effectiveness of the optical stack 16. form. As discussed above, the optical stack 16 can be electrically conductive, partially transparent, and (four) reflective, i can be fabricated, for example, by depositing one or more layers having the desired properties on the transparent substrate 2 . In Figure 8A, the optical stack 16 includes a multilayer structure having one of the sub-layers 16 &amp; and i6b' but in some other embodiments, more or fewer sub-layers may be included. In some embodiments, one of the sub-layers..., (10) may have both optical absorption and electrical conductivity properties in a coarse state, such as a combined conductor/absorber sub-layer 16&amp; Further, one or more of the sub-layers 16a, 16b can be converted into parallel strips and can be formed as column electrodes in the display device. Masking and money-cutting programs or other programs known in the art __appropriate program 163409.doc -29. 201248291 Perform this patterning. In some embodiments, the sub-layers i6a, _ may be an insulating layer or a dielectric layer such as one or more metal layers (eg, one or more reflective layers and/or conductive layers) ) The sub-layer (10) above. In addition, the optical stack 16 can be patterned into individual and parallel strips that form the display. The process 80 continues at block 84 to form a sacrificial layer 25 over the optical stack 16. The sacrificial layer 25 is then removed to form the cavity 19 (e.g., at block 9A) and thus the sacrificial layer 25 is not shown in the resulting interferometric modulator 12 illustrated in FIG. FIG. 8B illustrates a partial fabrication apparatus including a sacrificial layer 25 formed over the optical stack 16. Forming the sacrificial layer 25 over the optical stack 16 can include depositing yttrium fluoride (yield selected to provide a gap or cavity 19 of a desired design size (see also Figures i and 8E) after subsequent removal (see also Figures i and 8E) XeF2) (tactile material) such as molybdenum (M〇) or amorphous germanium (Si). The deposition of the sacrificial material may be performed using deposition techniques such as: physical vapor deposition (PVD, such as sputtering), plasma enhanced chemical vapor deposition (PECVD), thermal chemical vapor deposition (thermal c VD) ) or spin coating. The process 80 continues at block 86 to form a support structure (e.g., one of the posts 18 illustrated in Figures i, 6 and 8C). Forming the pillars 18 can include patterning the sacrificial layer 25 to form a support structure void, followed by a deposition method (such as PVD, PECVD, thermal CVD, or spin coating) to apply a material (eg, a polymer or an inorganic material, such as an oxidative dream) Deposited into the pores to form the column 18. In some embodiments, the support structure apertures formed in the sacrificial layer can extend through both the sacrificial layer 25 and the optical stack 16 to the underlying I63409.doc • 30·201248291 board 20' such that the column 18 The lower end contacts the substrate 20 as illustrated in FIG. 6A. Alternatively, as depicted in FIG. 8C, apertures formed in the sacrificial layer 25 may extend through the sacrificial layer 25' but not through the optical stack 16. For example, the figure illustrates contact with an upper surface of the optical stack 16. The lower end of the support column 18. The post 18 or other support structure can be formed by depositing a layer of support structure material over the sacrificial layer 25 and patterning to remove portions of the support structure material that are positioned away from the voids in the sacrificial layer 25. As illustrated in Figure 8C, the support structure can be positioned within the aperture, but can also extend at least partially over a portion of the sacrificial layer 25. As noted above, the patterning of the sacrificial layer and/or the support pillars 18 can be performed by a patterning and etching process, but can also be performed by an alternative residual method. The process 80 continues at block 88 to form a movable reflective layer or film (such as the movable layer 14 illustrated in Figures 1, 6 and 8D can be deposited by employing, for example, a reflective layer (e.g., aluminum, aluminum alloy) One or more deposition steps

對其機械性質而選擇之一機械子層。 或多者可包含針對其等 •另一子層14b可包含針 °因為犧牲層25仍存在 於形成於方塊88處所形成之部分製造干涉量測調變器中 所以該可移動反射層丨4在此階分段通常 犧牲層25之一部 不可移動。含有一One of the mechanical sublayers is chosen for its mechanical properties. Or more may include for it, etc. • The other sub-layer 14b may comprise a needle. Since the sacrificial layer 25 is still present in the portion of the fabricated interference measurement modulator formed at the block 88, the movable reflective layer 在4 is This order segment is typically immovable by one of the sacrificial layers 25. Contains one

163409.doc -31 · 201248291 放」IMOD。如上文結合圖1所述,可將該可移動反射層14 圖案化為形成顯示器之行之個別及平行條狀物。 程序80在方塊90繼續以形成一腔(例如,如圖1、如6及 如8E中圖解說明之腔19)。可藉由使犧牲材料25(在方塊84 沈積)曝露於一蝕刻劑而形成該腔19。例如,可藉由乾式 化學蝕刻,例如藉由使犧牲層25曝露於一氣態或汽態蝕刻 劑(諸如源自固體二氟化氙(XeF2)之蒸氣)達有效移除(通常 相對於包圍該腔19之結構選擇性地移除)所要量的材料之 一時分段來移除諸如鉬(Mo)或非晶矽(a-Si)之一可蚀刻犧 牲材料。亦可使用其他蝕刻方法,例如濕式蝕刻及/或電 漿蝕刻。因為犧牲層25係在方塊90期間移除,所以可移動 反射層14在此階分段之後通常係可移動的。在移除犧牲材 料25之後’所得完全或部分製造im〇d在本文可稱為一 「釋放」IMOD。 本發明揭示具有改良填充因數之機電裝置。在一些實2 方案中,該機電裝置可為包含一像素陣列及在每一像素: 每一角隅處錨定於一光學堆疊上方之一機械層之一干涉, 測裝置。可在㈣列之-像素巾提供—導通體以將一固| 電極電連接至在該像素之-角隅處之黑色料1導通$ 可在該像素之角隅處自在該像素之—光學非仙區域中; 光學轉上㈣定該機械層之處偏移。相對於其中該^ 體與用以將機械層駭在光學堆疊#方之—㈣孔重疊3 -設計,使該導通體偏移可減小黑色遮罩之面積H 可在-像素陣列中採用偏移導通體以改良填充因 163409.doc -32· 201248291 如,使該導通體自該錨定孔偏移可減小該錨定孔之大小, 藉此允許降低在像素角隅處之黑色遮罩之面積。因此,使 該導通體自⑽定孔偏移可藉由減小黑色遮罩面積來增加 填充因數,藉此藉由增加像素陣列中之光學作用面積相對 於該陣列之總面積之比率來改良填充因數。在一些實施方 案中,僅對-些像素(或該等像素之一小部分)提供該導通 體,藉此進一步改良像素陣列之填充因數。例如,可僅在 具有最大間隙大小之一像素之一角隅處提供該導通體。 圖9展示圖解說明一干涉量測調變器之一製造程序ι〇〇之 一流程圖之一實例。該程序100開始於方塊1〇2。在方塊 1 04中,在一基板上方形成一黑色遮罩。該基板可為(例如) 包含玻璃或塑膠之一透明基板。該黑色遮罩可包含多種材 料及/或層,包含允許透過該基板觀看影像之玻璃或透明 聚合材料。 繼續參考圖9,黑色遮罩結構可經組態以吸收光學非作 用區域(諸如像素之間之區域及/或其中機械層彎曲以改良 一顯示裝置之光學性質之像素角隅附近之區域)中之環境 光或雜散光《此外’該黑色遮罩結構可導電且可經組態以 用作一電匯流層。如上所述,該黑色遮罩結構可包含複數 個層。 在方塊106中,在該黑色遮罩上方提供一介電層。可使 用該介電層以使該黑色遮罩之部分與一或多個後續沈積層 電隔離。該介電層可為任何適當的電絕緣體,包含(例如) 一氧化矽(Si〇2)、氮氧化矽(SiON)及/或原矽酸四乙酯 163409.doc -33- 201248291 (TEOS)。 ’其中在該介163409.doc -31 · 201248291 Put "IMOD". As described above in connection with Figure 1, the movable reflective layer 14 can be patterned into individual and parallel strips that form the rows of the display. The routine 80 continues at block 90 to form a cavity (e.g., as shown in Figures 1, such as 6 and cavity 19 as illustrated in Figure 8E). The cavity 19 can be formed by exposing the sacrificial material 25 (deposited at block 84) to an etchant. For example, it can be effectively removed by dry chemical etching, for example by exposing the sacrificial layer 25 to a gaseous or vaporous etchant, such as a vapor derived from solid xenon difluoride (XeF2) (usually relative to surrounding The structure of the cavity 19 selectively removes one of the desired amounts of material to segment to remove one of the molybdenum materials such as molybdenum (Mo) or amorphous germanium (a-Si). Other etching methods such as wet etching and/or plasma etching may also be used. Because the sacrificial layer 25 is removed during block 90, the movable reflective layer 14 is typically movable after this stage segment. The resulting fully or partially fabricated im〇d after removal of the sacrificial material 25 may be referred to herein as a "release" IMOD. The present invention discloses an electromechanical device having an improved fill factor. In some embodiments, the electromechanical device can be an interference device comprising an array of pixels and one of the mechanical layers anchored to each of the optical stacks at each corner. The conductive body may be provided in the (four) column-pixel towel to electrically connect a solid electrode to the black material 1 at the corner of the pixel, and the pixel may be free from the pixel at the corner of the pixel. In the fairy area; optical shift (4) to determine the offset of the mechanical layer. Compared with the design in which the mechanical layer is placed on the optical stack #-(4) hole, the displacement of the conductive body can reduce the area of the black mask. H can be used in the pixel array. Shifting the body to improve the filling factor 163409.doc -32· 201248291 For example, shifting the conducting body from the anchoring hole can reduce the size of the anchoring hole, thereby allowing the black mask to be lowered at the corner of the pixel The area. Therefore, shifting the via from (10) to the hole can increase the fill factor by reducing the black mask area, thereby improving the fill by increasing the ratio of the optically active area in the pixel array relative to the total area of the array. Factor. In some embodiments, the vias are provided only for some of the pixels (or a small portion of the pixels), thereby further improving the fill factor of the pixel array. For example, the via may be provided only at one of the corners of one of the pixels having the largest gap size. Figure 9 shows an example of a flow chart illustrating one of the manufacturing procedures of an interference measurement modulator. The program 100 begins at block 1〇2. In block 104, a black mask is formed over a substrate. The substrate can be, for example, a transparent substrate comprising one of glass or plastic. The black mask can comprise a plurality of materials and/or layers comprising glass or a transparent polymeric material that allows viewing of images through the substrate. With continued reference to FIG. 9, the black mask structure can be configured to absorb optically inactive regions (such as regions between pixels and/or regions in the vicinity of pixel corners where the mechanical layer is curved to improve the optical properties of a display device). Ambient or stray light "In addition, the black mask structure is electrically conductive and can be configured to function as an electrical bus layer. As mentioned above, the black mask structure can comprise a plurality of layers. In block 106, a dielectric layer is provided over the black mask. The dielectric layer can be used to electrically isolate portions of the black mask from one or more subsequent deposited layers. The dielectric layer can be any suitable electrical insulator including, for example, cerium oxide (Si〇2), cerium oxynitride (SiON), and/or tetraethyl orthophthalate 163409.doc -33- 201248291 (TEOS) . </ br>

中之列提供(例如)電接觸件。如在下文將進一步描述,無 圖9中圖解說明之程序1〇〇在方塊1〇8繼續 電層中形成至該黑色遮罩之一導通體。該導 需針對干涉量測調變器陣列之每一像素包含導通體。實情 係,可僅對該陣列之該等像素之一部分提供導通體以有^ 於改良填充因數。 在方塊110中’在該介電層及導通體上方形成一光學堆 疊。該光學堆疊包含一固定電極,且可使用在該導通體上 方知·供之光學堆疊之部分以在該固定電極與該黑色遮罩之 間製造電連接0 圖9中圖解說明之程序100在方塊112繼續,其中在該光 學堆疊上方形成一犧牲層。隨後移除該犧牲層以形成一間 隙。在該光學堆疊上方形成該犧牲層可包含以經選擇以在 後續移除之後提供具有所要大小之一間隙之一厚度沈積諸 如鉬(Mo)或非晶矽(a-Si)之氟可蝕刻材料。可沈積多個犧 牲層以達成複數個間隙大小。例如,對於一 IMOD陣列, 每一間隙大小可表示一不同反射色彩。 在方塊114中,在該犧牲層中形成自該導通體偏移之一 錨定孔。可藉由移除該犧牲層在一像素之一角隅附近之一 部分而形成該錨定孔。如在下文將詳細描述,可使用該錨 定孔以形成用於支撐一後續沈積機械層之一柱及/或允許 一自支撐機械層以接觸該光學堆疊及/或另一層。於方塊 I63409.doc • 34 · 201248291 114中形成之錨定孔未與在方塊丨〗〇中形成之導通體對準β 實情係’該錨定孔與該導通體經偏移,藉此允許該錨定孔 相對於其中該導通體與該錨定孔重疊之一方案而具有較小 尺寸’此係因為該錯定孔無需包含額外裕度以考量與該導 通體之對準。減小該錨定孔之尺寸可幫助改良干涉量測調 變器陣列之填充因數’此係因為減小該錨定孔之大小允許 降低佈置在像素角隅處之光學非作用黑色遮罩之面積。 繼續圖9中圖解說明之程序ι〇〇在方塊η6以形成一機械 層。如先前所述,可藉由採用一或多個沈積步驟連同一或 多個圖案化、遮罩及/或蝕刻步驟一起形成該機械層。 繼續圖9中圖解說明之程序100在方塊118以形成一腔或 間隙。可藉由使犧牲材料(諸如在方塊丨丨2沈積之犧牲材料) 曝露於一蝕刻劑而形成該間隙。例如,可藉由乾式化學触 刻移除可蝕刻犧牲材料,諸如鉬(Μ〇)、鎢、鈕戈 多晶矽(poly-Si)或單晶矽(s-Si)。 在移除該犧牲層之後,通常藉由在固定電極與該機械層 之間施加一電壓而釋放該機械層且憑藉靜電力使該機械層 在一致動位置與一鬆弛位置之間移動。可在一像素 處將該機械層錨定至於方塊104中形成之黑色遮罩 a 、 &lt; —部 分上方之光學堆疊。 隹万塊119結束圖圖解說明之程序丨〇〇。該 外細節可為如下所述。可在所圖解說明序列之前、 〒間或 之後採用許多額外步驟,但是為清楚起見而省略該 步驟。 μ寻額外 163409.doc -35- 201248291 圖10A至圖i〇R展示製造一干涉量測調變器 &lt; 一方法中 之各個階分段之橫截面示意圖解之實例。在圖i〇a中,已 在一基板20上枝供一黑色遮罩結構23。如上所述,該基 板20可包含多種透明材料。在提供該黑色遮罩結⑽之前 可在該基板上提供一或多個層。例如,如圖1〇A中所示’ 在提供該黑色遮罩結構23之前已提供一蝕刻停止層122以 在圖案化該黑色遮罩時用作一蝕刻停止。在一些實施方案 中,該蝕刻停止層122係具有在約50人至25〇人之範圍中 (例如,約160 A)之一厚度之氧化鋁層。 該黑色遮罩結構23可經組態以吸收光學非作用區域中 (例如,像素之間)之環境光或雜散光以藉由增加對比率而 改良一顯示裝置之光學性質。此外,該黑色遮罩結構23可 導電且可經組態以用作一電匯流層。 繼續參考圖10A,該黑色遮罩結構23可包含一或多個 層。在一些實施方案中,該黑色遮罩結構23包含一光學吸 收層23a、一介電層23b及一匯流層23c。在一些實施方案 中,MoCr層用作該光學吸收層23a,Si02層用作該介電層 23b且鋁合金層用作該匯流層23 c,其中該等層之一厚度分 別係在(例如)約30 A至80 A、500 A至1000 A及500 A至 6000 A之範園中。 圖10B圖解說明在該基板20上方提供一成形結構126。該 成形結構12 6可包含一緩衝氧化物層,諸如二氧化石夕 (Si〇2) »該成形結構126可具有(例如)在約500 A至6000 A 之範圍中之一厚度。該成形結構126可有助於藉由填充匯 163409.doc •36- 201248291 流結構或黑色遮罩結構23之間之間隙來維持跨基板之一相 對平坦輪廓。然而,如在下文將詳細描述,該成形結構 126可重疊該黑色遮罩結構23之一部分以有助於在該機蜮 層中形成一扭結。特定言之,可在該成形結構126上方沈 積一或多個層(包含機械層),藉此實質上複製該成形結構 1 26之一或多個幾何特徵。例如,如圖1 0B中所圖解說明, 該成形結構126可重疊該黑色遮罩結構23以形成一突出部 129,該突出部129可在諸如一機械層之一後續沈積保形層 中產生一向上延伸波或扭結。 雖然將本文所圖解說明之各種機電系統裝置展示並描述 為包含成形結構126,但是一般技術者將認知,形成如本 文所述之一機械層之方法可適用於缺少成形結構U6之程 序。 圖i〇c圖解說明提供一間隔層或介電層35。該介電層35 可包含(例如)二氧化矽(Si〇2)、氮氧化矽(si〇N)及/或原矽 酸四乙酯(TEOS)。在一些實施方案中,該介電層35之厚度 係在約3000 A至6000 A之範圍中,然而,該介電層35可取 決於所要光學性質而具有多種厚度。如下文將參考圖1〇Ε 及圖10F進一步詳細描述,可在該黑色遮罩結構23上 (「上」在此處指代黑色遮罩結構與基板2〇相對之側)之一 部分上方移除該介電層35,以允許形成用於將一固定電極 電連接至該黑色遮罩結構23之一導通體。 圖10D圖解說明在該介電層35上方提供一色彩增強結構 134。該色彩增強結構134可經選擇性地提供在各種像素結 163409.doc •37· 201248291 構上方。例如,在採用多個間隙高度之一多色干涉量測調 變器實施方案中,可在具有一特定間隙大小之調變器上提 供色彩增強結構134。在一些實施方案中,該色彩增強結 構134係具有範圍介於約1500 A至約2500 A之間(例如,約 1900 A)之一厚度之氮氧化矽(Si〇N)層。可使用任何適當 技術圖案化該SiON層,包含(例如)採用四氟甲烷(Cf4)及/ 或氧氣(〇2)之一蝕刻程序。 在提供該色彩增強結構134之前可在該介電層35上提供 一或多個層。例如,如圖10D中所示,在提供該色彩增強 結構134之前已提供一蚀刻停止層135 ^在一些實施方案 中’該触刻停止層135係具有在約50 A至250 A之範圍中 (例如’約U0A)之一厚度之氧化鋁層。 圖10E圖解說明在該介電層35中形成一導通體138。如在 下文將詳細描述,該導通體138可允許一後續沈積層接觸 該黑色遮罩結構23 »如圖10E中所示,無需在該黑色遮罩 23之每一區域上方包含導通體。實情係’可於干涉量測調 變器中週期性地放置導通體以增加陣列之填充因數。 圖10F及圖10G圖解說明在該介電層35及該導通體138上 方形成一光學堆疊16。該光學堆疊16可包含複數個層。例 如’該光學堆疊16可包含一固定電極層14〇(諸如鉬鉻 (MoCr))、一透明介電層141(諸如二氧化矽(Si〇2))及一蝕 刻停止層142(諸如氧化鋁(A10x)),該蝕刻停止層ι42用以 在後續犧牲層钮刻程序期間保護該透明介電層141及/或在 犧牲層移除程序期間浸蝕。該蝕刻停止層i 42可由具部分 163409.doc -38· 201248291 反射性之多種材料(諸如各種金屬、半導體及介電質)形 成。該部分反射層可由一或多個子層形成,且該等子層之 各者可由一單一材料或一材料組合形成。在一些實施方案 中,光學堆疊16之諸層中之一些層或所有層(例如,包含 固疋電極140)係圖案化為平行條狀物,且可形成一顯示裝 置中之列電極。如圖10F及圖l〇G中圖解說明,該光學堆疊 16之一或多個層可實體及電接觸該黑色遮罩結構23。例 如,導通體138允許該固定電極14〇電接觸該黑色遮罩結構 23 〇 圖10H至圖i〇j圖解說明在該光學堆疊16上方提供並圖案 化複數個犧牲層。如在下文將論述,隨後移除該等犧牲層 以形成一間隙或腔。使用複數個犧牲層可有助於形成具有 大量諳振光學間隙之-顯示裝置。例如,&gt;圖解說明:、可 藉由選擇性地提供一第一犧牲層144、一第二犧牲層145及 一第三犧牲層146而產生各種間隙大小。此可提供等於約 邊等第-、第二及第三犧牲層144至146之厚度之—總和之 -第-間隙大小(或「高間隙」)、等於約該等第二及第三 犧牲層145、146之厚度之—總和之—第二間隙大小(或 「中間間隙」)及等於約該第三犧牲層丨4 6之厚度之一第二 間隙大小(或「低間隙」)。對於—干涉量測㈣㈣列了 -高間隙可對應於-高間隙像素,—中間間隙可對應於一 中間間隙像素’且一低間隙可料虛i 间隙了對應於一低間隙像素。經組 態具有不同間隙大小之此等像素之各者可產生—不同反射 色彩。因A,此等像素在本文可稱為高間隙像素、中間間 163409.doc -39· 201248291 隙像素或低間隙像素。 在該光學堆疊16上方形成該等第一、第二及第三犧牲層 144至146可包含沈積鉬(Μ〇)或非晶矽(a_si)。在一些實施 方案中,該第一犧牲層144係具有範圍介於約200 A至約 1000 A之間(例如,約400 A)之一厚度之鉬(Mo)層,該第二 犧牲層145係具有範圍介於約2〇〇 A至約1000 A之間(例 如’約400 A)之一厚度之一^1〇層,且該第三犧牲層146係 具有範圍介於約600 A至約2000 A之間(例如,約1600 A)之 一厚度之一 Mo層。 雖然圖10Η至圖10J係圖解說明其中在該第一犧牲層ι44 上方提供該第二犧牲層145且在該等第一及第二犧牲層 144、145上方提供該第三犧牲層146之一組態,但是其他 組態亦係可行的。例如,該等第一、第二及第三犧牲層 144至146無需重疊,且可形成更多或更少個犧牲層以提供 所要間隙大小。 圖10Κ圖解說明圖案化像素之間之犧牲層144至146。可 以多種方式圖案化該等犧牲層,包含使用諸如氣氣(cl2)及 /或氧氣(〇2)之一蝕刻劑。如在下文將描述,在像素之間 (諸如在像素之角隅處)移除犧牲層144至146之部分可產生 錨定孔150,可使用該等錨定孔15〇以形成用於支撐一後續 沈積機械層之一柱及/或有助於錨定一自支撐機械層。 經圓解說明之部分製造干涉量測調變器之錨定孔15〇未 與導通體138對準。因為錨定孔150無需包含額外裕度以考 量與導通體丨38之對準,所以相對於其中導通體138與錨定 163409.doc •40- 201248291 孔150重疊以形成一錨定導通體之一方案,此可允許該錨 定孔150具有較小之一寬度Wl 此外,藉由使導通體138及 錨定孔150偏移,可避免跨像素之與錨定孔及導通體錯位 有關之非均勻性。 此外,如圖10L中圖解說明,纟—些實施方案中,無需 在黑色遮罩23之每一區域上方包含導通體138。實情係, 可在少於一陣列之所有像素上方週期性地提供導通體。藉 由減小該錨定孔15 0之寬度w,及藉由減小干涉量測調變器 陣列中之導通體138之總數目,可減小該黑色遮罩23之總 面積,藉此改良填充因數。 圖10L圖解說明提供並圖案化一機械層之一反射層Ua及 一支撐層14b。該反射層14a可為一反射材料,包含(例如) 鋁合金。在一些實施方案中,該反射層14a包含具有在約 0.3重量。/。至1.0重量%之範圍中(例如,約〇5%)之銅之鋁銅 (AlCu)。該反射層14a可為任何適當厚度,諸如在約2〇〇入 至約500 A之範圍中(例如,約3〇〇 A)之一厚度。 可使用該支撐層14b以藉由用作一抗反射層而輔助一光 微影程序及/或幫助獲得一完全製造機械層之一所要機械 可撓性。在一些實施方案中,該支撐層14b係具有在約5〇 A至約1〇〇〇 A之範圍中(例如,約25〇 A)之一厚度之氮氧化 矽(SiON)層。 圖10M圖解說明在該支撐層14b上方、在錨定孔15〇之底 部上之透明介電層141上方及在該等錨定孔15〇之側壁上之 犧牲層144至丨46上方提供—蝕刻停止層154。該蝕刻停止 163409.doc 201248291 層154可為(例如)具有在約loo A至約3〇〇 a之範圍中(例 如’約200 A)之一厚度之氧化鋁(八1〇〇層。可採用該蝕刻 停止層154以保護干涉量測裝置之諸層免遭後續蝕刻步 驟。例如,如在下文將描述,當移除該等犧牲層144至146 以釋放機械層時,該钮刻停止層154可保護支撐層免遭用 以移除該等犧牲層M4至146之一蝕刻劑。 圖10N至圖10P圖解說明提供並圖案化一第一支撐層 160、一第二支撐層161及一第三支撐層162。可將該等第 一、第二及第三支撐層16〇至162用於多種功能。例如,可 使用該等第一、第二及第三支撐層16〇至162以形成支撐結 構,包含柱及/或鉚釘。此外,該等第一、第二及第三支 撐層160至162可併入至機械層之全部或部分中以有助於達 成對應於一所要致動電壓之一結構剛度及/或有助於獲得 一自支撐機械層。 如圖10P中圖解說明,該第一支撐層160之一部分16〇3可 用作用於一高間隙像素及一中間間隙像素之一支撐柱,而 該第一支撐層160之一部分16%可包含於一低間隙像素之 機械層中。藉由採用該等第一、第二及第三支撐層16〇至 162以跨不同間隙高度之像素而供應多種功能,可改良干 涉量測裝置之設計之靈作用。在一些實施方案中,機械層 可自支撐在肖定像素上方且可藉由一支㈣或其他結構支 樓在其他像素上方。 隨後可移除該等犧牲層144至146以在干涉量測調變器陣 列中形成各個像素。可藉由將該等第―、第二及第三支樓 163409.doc -42- 201248291 層160至162選擇性地包含於該陣列之各個像素上方之機械 層中而改變形成於該等犧牲層上之機械層之厚度。例如, 該第三支撐層162可提供在高間隙像素、中間間隙像素及 低間隙像素上方’且該第二支撐層161可提供在中間間隙 像素及低間隙像素上方,且該第一支撐層160可提供在低 間隙像素上方。藉由改變機械層跨不同間隙高度之像素之 厚度’可針對每一間隙高度達成該機械層之所要硬度,對 於彩色顯示應用而言’此可有助於允許針對不同大小氣隙 之相同像素致動電壓。 可藉由諸如氮氧化矽(Si0N)之一介電材料形成該等第 一、第二及第三支撐層160至162。在一些實施方案中,該 等第一、第二及第三支撐層16〇至162之厚度之各者可在約 600 A至約3000 A之範圍中(例如,約1〇〇〇 A)。 圖10Q圖解說明提供並圖案化一帽蓋層14c以形成一完整 機械層14。該帽蓋層14c可保形地提供在該等支撐層至 162上方且可具有類似於反射層14a之圖案之一圖案。圖案 化該帽蓋層Me類似於圖案化反射層…可有助於平衡機械 層14中之應力。如在下文將描述’藉由平衡該機械層μ中 之應力’可控制在移除該等犧牲層144至146之後該機械層 Μ之塑形及曲率。此外’該機械層14中之經平衡應力可減 小一釋放干涉量測調變ϋ之高度對溫度之靈敏度。 該帽蓋層14c可為-金屬材料,且可為(例如)與該反射層 14a相同之材料。在一些實施方案中,該帽蓋層包含具 有在約0.3重量%y.〇重量%之範圍中(例如,約重量%) 163409.doc -43- 201248291 之銅之鋁銅(AlCu),且該帽蓋層14c之厚度經選擇而在約 200 A至約500 A之範圍中(例如,約300 A)。 如上所述,該機械層14可包含跨該干涉量測調變器陣列 之不同像素之多種層。該機械層14之額外細節可如下所 述。 圖10R圖解說明移除該等犧牲層144至146以形成一第— 或高間隙19a、一第二或中間間隙19b及一第三或低間隙 19c。可在形成該第一間隙19a、該第二間隙19b及該第三 間隙19c之前採用額外步驟。例如,可在該機械層14中形 成犧牲釋放孔以有助於移除該等犧牲層144至146。 如上所述’可藉由使該等犧牲層144至146曝露於一姓刻 劑而形成該等間隙19a至19c。可曝露犧牲層達有效移除 (通常相對於包圍該等間隙19a至19c之結構選擇性地移除) 材料之一時分段。亦可使用其他選擇性蝕刻方法,例如, 濕式蝕刻及/或電漿蝕刻。 钮刻停止層154可保護該第一支撐層16〇免遭用以移除該 等犧牲層144至146之犧牲釋放化學。此可允許該第一支樓 層160為將以其他方式藉由用以移除犧牲層之釋放化學蝕 刻之一結構材料。 介電保護層142可保護光學堆疊16之諸層(諸如介電層 141)免遭用以移除該等犧牲層144至146之犧牲釋放化學。 包含該介電保護層142可有助於在釋放期間減小或防止對 光學堆疊之損害,藉此改良光學效能。 該等第一、第二及第三間隙19a至19c可對應於干涉量測 163409.doc •44· 201248291 增強不同色彩之腔。例如’該等第一、第二及第三間隙 19a至19c可具有經選擇以分別干涉量測增強(例如)藍色、 紅色及綠色之高度。該第一或高間隙19a可與一第一或高 間隙像素172a相關聯,該第二或中間間隙i9b可與一第二 或中間間隙像素172b相關聯,且該第三或低間隙i9c可與 一第三或低間隙像素172c相關聯。 為允許大致相同致動電壓針對每一間隙大小摺疊機械 層,該機械層14在該等間隙19a至19c之各者上方可包含不 同材料、不同數目個層或不同厚度。因此,如圖1〇R中所 示’機械層14在高間隙19a上方之一部分可包含反射層 14a、支撐層i4b、蝕刻停止層154、第三支撐層162及帽蓋 層14c,而機械層14在中間間隙19b上方之一部分可進一步 包含第二支撐層161 類似地,與機械層14在高間隙19a上 方之部分相比,機械層14在低間隙19c上方之一部分可進 一步包含第一支撐層160及第二支撐層16ι。 如上所述,該等第一、第二及第三支撐層16〇至162可跨 該干涉量測調變器P車列之不同Μ而供應不同功能。例 如,第一支撐層160可用於將該機械層14支撐在低間隙像 素上方,且增加低間隙像素之結構剛度。此外,第二支撐 層⑹可將將該機械層14支撑在中間間隙像素及低間隙 像素上;Τ 增加中間間隙像素及低間隙像素之結構剛 度,且第三支樓層162可用於增加低間隙像素、中間間隙 像素及高間隙像素之結構剛度。因此,該第—支撐層16〇 之第一部分⑽用作用於將該機械層14支#在該等高及中 163409.doc -45- 201248291 間間隙19a、19b上方之一柱,而該第一支撐層16〇之第二 部分160b係包含於該低間隙19c上方之機械層14中。使用 複數個支樓層允許大致相同致動電壓針對每一間隙大小指 疊該機械層。 在移除該等犧牲層144至146之後,該機械層14可經移位 . 遠離基板達一發射高度(launch height),且此時可因多種 · 原因(諸如殘餘機械應力)而改變形狀或曲率。如上所述, 帽蓋層14c可與反射層14a—起使用以有助於在釋放機械層 時平衡該機械層中之應力。因此,該帽蓋層1补可具有經 選擇以有助於在移除該等犧牲層144至146之後調譜該機械 層之發射及曲率之一厚度、组合物及/或應力。此外,在 成形結構126上方且尤其在圖ιοΒ之突出部129上方提供機 械層14,在該機械層14中形成一扭結可藉由改變該 成形結構126之厚度來控制該扭結pi之幾何特徵,藉此控 制該機械層14中之應力。控制發射高度可容許選擇一特定 間隙大小(從製造及光學效能角度來看係可期望之間隙大 小)所需之一犧牲層厚度。 如上所述’圖10K之錨定孔15〇未與導通體138對準。因 此’如圖10R中所示,該機械層14係在自導通體Π8偏移之 一點處錨定至黑色遮罩23上方之光學堆疊16。如上所述, 相對於其中機械層14係在相同於導通體所定位之區域中錨 定於該黑色遮罩23上方之一設計,在自導通體138偏移之 一點處錨定該機械層14可允許更小之黑色遮罩23 ^例如, 藉由使導通體138自用以錨定該機械層14之一錨定孔偏 163409.doc • 46 · 201248291 移,該錨定孔之大小無需具有增加之面積以考量與導通體 1 3 8之製程對準。此外,藉由使導通體〗38自用以固定該機 械層14之錨定孔偏移’可避免跨像素之與錨定孔及導通體 錯位有關之非均勻性。因此,藉由使導通體138自錯定孔 偏移’可改良該干涉量測調變器陣列之填充因數。 此外’如圖1 0R中圖解說明,導通體138無需包含於每一 像素中。實情係’可在少於一陣列之所有像素上方提供導 通體。例如,如圖10R中所示,在高間隙像素172a之一角 隅123附近已包含導通體138。此外,在中間間隙像素17孔 或低間隙像素172c之角隅處未包含導通體。藉由對少於該 陣列之所有像素提供導通體,可減小該干涉量測調變器陣 列中之導通體的總數目’繼而可減小該黑色遮罩23之總面 積。因為該黑色遮罩23光學不透明,所以減小該黑色遮罩 23之總面積改良該像素陣列之填充因數。 如圖10R中圖解說明,該黑色遮罩23具有大於用以支撐 該機械層14之結構之佔據面積之一佔據面積。例如,第一 支撐層160之第一部分160a操作為用於機械層14與高間隙 像素172a相關聯之部分之一支撐柱,且在該高間隙像素 172a之角隅123處具有小於黑色遮罩23之寬度之一寬度。 該黑色遮罩23圍繞機械層之錨定區域之額外寬度可在致動 期間遮蔽該機械層14之一彎曲部分。例如,當致動機械層 14時,雖然機械層14之大部分可在一平面中對準且可與光 學堆疊16接觸,但機械層14之一部分(例如,沿一像素之 邊緣)可不與光學堆疊16接觸,且因此可在未提供額外黑 163409.doc 201248291 色遮罩之情況下干涉量測地產生_非所要色彩。可針對具 有較大間隙高度之像素增加在致動期間未與光學堆盤…妾 觸之機械層14之部分。例如,高間隙像素n2a之彎曲區域 可大於低間隙像素172c之f曲區域,此係因為間隙i9a大 於間隙19c。 在一些實施方案中,諸如導通體138之導通體係包含於 最大間隙大小之像素之一或多個角隅處。在最大間隙大小 之像素之角隅附近定位該等導通體138可為有利,此係因 為高間隙像素在致動狀態中可具有一較大彎曲區域,且因 此相對於中間間隙像素及低間隙像素而在像素角隅處可具 有一較大光學非作用區域。因此,在一些實施方案中,該 黑色遮罩在高間隙子像素之角隅處可較大以考量較大臀曲 區域並對一導通體提供空間。然而,因為無需針對該陣列 之每一像素包含導通體,所以可減小該黑色遮罩23之總面 積’且可改良該干涉量測調變器陣列之填充因數。 該等導通體(諸如導通體138)可具有多種形狀及大小。 例如’該等導通體可塑形為一圓形、橢圓形、八邊形及/ 或任何其他適當形狀。該等導通體之大小可隨製程而變 化。在一些實施方案中,每一導通體138具有在約丨.5 μίη 至約3.0 μπι之範圍中(例如,約2.4 μιη)之一最大寬度。該 等導通體之額外細節可如下所述。 圖11Α至圖11C展示各種干涉量測調變器陣列之平面圖 示意圖解之實例。在圖11Α中,圖解說明一干涉量測調變 器陣列180。該干涉量測調變器陣列180包含複數個不同間 163409.doc •48· 201248291 隙大小的像素,包含一第一間隙或高間隙像素174a、一第 二間隙或中間間隙像素1 74b及一第三間隙或低間隙像素 174c。該等高、中間及低間隙像素174a至174c可類似於圖 10R之高、中間及低間隙像素172a至172c。然而,該等 高、中間及低間隙像素174a至174c無需與該等高、中間及 低間隙像素172a至172c相同。 如圖11A中所示’在該等高、中間及低間隙像素丨74&amp;至 174c之每一角隅處於該基板上佈置一導電黑色遮罩。雖然 圖11A中未圖解說明,但是已在該黑色遮罩上方提供一介 電層’且已在該介電層上方提供包含一固定電極之一光學 堆疊。使用導通體138以使該光學堆疊之固定電極電接觸 至該黑色遮罩23之各個部分。 在光學堆疊上方定位該機械層14以界定該等高、中間及 低間隙像素174a至174c之間隙高度。該機械層14係在該等 咼、中間及低間隙像素174a至174c之角隅之各者處錨定於 該黑色遮罩23上方。例如,該高間隙像素17乜包含四個角 隅123a至123d,且該機械層係分別在該四個角隅123&amp;、 23b 123(1及123d之各者處之錨定孔i5〇a、150b、150c及 测處財在該光學堆疊上方。如上所述,可以大量方式 在該黑色遮罩上方錨定該機械層14。 對於該陣列⑽之每-像素,包圍每-像素之每-角隅 之黑色遮罩23之面積無需相同。實情係,對於具有一相對 較大間隙的像素(諸如最大間隙大小的像素),黑色遮罩在 -像素角隅處之面積可較大’以考量在致動期間增加的機 163409.doc -49· 201248291 械層彎曲。例如,黑色遮罩在高間隙像素l74a之角隅 至123d之各者處之面積大於黑色遮罩在中間間隙像素⑽ 之一角隅123e處之面積及黑色遮罩在低間隙像素17乜之一 角隅123f處之面積。如圖11A中所示,黑色遮罩在高間隙 像素174a之角隅123a處之增加部分或凸起可用於提供導通 體 138。 繼續參考圖11A,在一些實施方案中,導通體138係定位 於與一中間間隙像素相鄰之高間隙像素174a之一角隅處。 然而,如下文將參考圖11B及圖lie描述,可在其他位置中 及/或高間隙像素之多個角隅處提供導通體丨3 8。 沿自錨定孔之中心至像素之中心之一線到達黑色遮罩之 邊緣之距離可取決於一像素之間隙高度而變化。例如,自 黑色遮罩之邊緣沿一線到達一高間隙像素之錨定孔之中心 之距離山可在約10 μιη至約12 μΐη2範圍中,而自黑色遮罩 之邊緣沿一線到達一低或中間間隙像素之錨定孔之中心之 距離d2可在約7 μιη至約9 μηι之範圍中。 繼續參考圖11A ’除在像素角隅處提供黑色遮罩23外, 亦可在一像素之其他區域中(諸如沿像素邊緣)包含黑色遮 罩23。亦可使用沿像素之邊緣之黑色遮罩區域以沿一列或 行提供電連接’且可包含沿每一像素之一或多個邊緣之斷 裂以提供所要電連接能力。例如,黑色遮罩23包含沿與高 間隙像素174a及低間隙像素174c接界之一邊緣之一斷裂。 在一些實施方案中,斷裂具有在約2 μηι至約3 μηι之範圍中 之一長度。 163409.doc •50· 201248291 如上所述,干涉量測裝置陣列180包含自用以固定機械 層14之錯疋孔或其他結構偏移之導通體。例如高間隙像 素174a之角隅123a處之—導通體138自錨定孔15〇&amp;偏移。 在-些實施方案中,自導通體之中^至機械層所固定至之 錨定孔之中心之距離之範圍介於約6 μΓη至約8 _之間。 當從上方觀看時,相對於其中導通體與錨定孔重疊以形 成一錨定導通體之一方案,使導通體138及錨定孔偏移可 允許錨定孔具有較小之一面積。例如,錨定孔】5〇a無需包 含額外裕度以考量與佈置於高間隙像素174a之角隅123a處 之導通體138之對準。在一些實施方案中,採用圓形導通 體及圓形錯定孔,錦定?Ll5〇a之半徑係在約4 μηι至約7㈣ 之範圍中’且導通體138之半㈣在約2叫至約4 μπι之範 圍中。 在圖11Α中’可在每—高間隙像素之__角隅處提供該等 導通體。例如,高間隙像素174a在一第一角隅123&amp;處包含 導通體&quot;8 ’但在高間隙像素174a之第二、第三及第四角 隅123b至123d處並未包含一導通體。 圖11B圖解說明根據另_實施方案之__干涉量測調變器 陣列182圖11B之干涉量測調變器陣列182類似於圖ha 之干涉量測調變器陣列! 8〇,惟干涉量測調變器陣列⑻在 每-高間隙像素之兩個角隅處包含導通體除外。例如,高 間隙像素174a在-第一角隅咖及—第二角隅⑽處包含 導通體!38,但在高間隙像素⑽之第三角隅咖及第四 角隅123d處並未包含一導通體。 I63409.doc * 51 - 201248291 圖lie圖解說明根據又另—實施方案之—干涉量測調變 器陣列184。圖lie之干涉量測調變器陣列184類似於圖 11A之干涉量測調變器陣列18〇,惟干涉量測調變器陣列 184在每一高間隙像素之四個角隅處包含導通體除外。例 如,該高間隙像素174a在第一、第二、第三及第四角隅 123a至l23d處包含導通體138。一般技術者應了解,除圖 11A至圖11C中圖解說明之導通體138之組態外’導通體 138之其他組態亦係可行的,該等其他組態包含(例如)每一 高間隙像素具有三個導通體之一組態、其中高間隙像素及 中間間隙像素兩者皆包含導通體之一組態及/或任何其他 適當組態。 圖12展示圖解說明一干涉量測調變器之一製造程序19〇 之一流程圖之一實例。該程序19〇開始於方塊191。在方塊 192中,在一基板上方形成一黑色遮罩。該基板可為(例如) 一透明基板,且黑色遮罩結構可導電且經組態以吸枚光學 非作用像素區域中之環境光或雜散光。該黑色遮罩可遮蔽 干涉量測調變器之一像素陣列中之每一像素之每一角隅。 該黑色遮罩之額外細節可如上所述。 在方塊193中,在該黑色遮罩上方提供一介電層。可使 用該介電層以使該黑色遮罩與一或多個後續沈積層電隔 離。該介電層可為任何適當的電絕緣體,包含(例如)二氧 化矽(Si02)、氮氧化矽(SiON)及/或原矽酸四乙酯(TE〇s)。 該介電層之額外細節可如先前所述。 圖12中圖解說明之程序190在方塊194繼續,其中在該介 163409.doc •52· 201248291 電層上方形成一光學堆疊。如上所述,一干涉量測調變器 之光學堆疊可導電、部分透明且具部分反射性,且可包含 用於對該干涉量測調變器裝置提供靜電操作之一固定電 極。 在方塊195中,在該光學堆疊上方形成一機械層。形成 該機械層可包含··提供一犧牲層;在該犧牲層上方沈積_ 或多個層;及移除該犧牲層以釋放該機械層。 繼續參考圖12 ’該程序190在方塊196繼續,其中在該陣 列之每一像素之每一角隅處將該機械層錨定於該光學堆疊 上方。例如,可在一像素之角隅處形成一支撐柱,且可使 用該支撐柱以在像素之角隅處將機械層錨定於光學堆疊上 方。然而,如上所述’可以其他方式錨定該機械層。 在方塊198中,在該陣列之一像素中提供一導電導通 體。該導電導通體係在該介電層中且將該固定電極電連接 至該黑色遮罩。該導通體係佈置在該像素之一角隅處,且 自在該像素之一光學非作用區域中於該光學堆疊上方錨定 該機械層之處偏移。相較於其中一導通體與該機械層之一 猫定區域重疊之一設計’使導通體相對於在該像素之角隅 處錨定該機械層之位置偏移可允許較小之黑色遮罩。該偏 移導通體之額外細節可如先前所述。該方法結束於方塊 199。 圖13 A展示一干涉量測調變器陣列2〇〇之一平面圖示意圖 解之一實例。所圖解說明之干涉量測裝置陣列200包含一 第一或南間隙像素202a、一第二或中間間隙像素202b、一 163409.doc •53- 201248291 第二或低間隙像素202c、一機械層14、一黑色遮罩23、錨 定孔150及導通體138。 雖然為改良圖式清晰度而未予以圖解說明,但是已在該 遮罩23上方提供一介電層,且已在該介電層上方提供 包t 一固定電極之一光學堆疊。該等導通體138係用以將該 光學堆叠之固定電極電接觸至該黑色遮罩23之各個部分。 ,黑色遮罩23係佈置在每-像素之角隅處且沿像素邊緣 之。P刀。該黑色遮罩23可用以沿—列或行提供電連接,且 可包含沿每-像素之一或多個邊緣之斷裂以提供所要電連 接能力。例如’該黑色遮罩23包含沿與高間隙像素2〇2a及 中間間隙像素202b接界之一邊緣之一斷裂。在一些實施方 案中’該等斷裂具有在約2 μηι至約4 μιη之範圍中之一長度 d3。 與圖UA至圖UC之像素陣列㈣,圖13a之像素陣列 200包含沿像素之邊緣佈置之導通體。例如,已沿與中間 間隙像素鳩接界之高間隙像素2心之一邊緣而在高間隙 像素202a令之,累色遮罩23之一通道2〇4中佈f 一導通體 …。如圖13A中所示,在此實施方案中,在像素角隅處無 需包含導通體。實情係’可沿-像素之邊緣包含導通體 138,且該導通體138可在朝向該像素之中心之一方向上自 該像素之邊緣偏移。依此方式沿像素之邊緣(而非在像素 角隅處)提供導通體138可有助於藉由減小用以遮蔽像素角 隅之黑色遮罩之面積而改良干涉量測裝置之填充因數。 如圖ΠΑ中所示,並非所有像素邊緣皆需包含一導通 163409.doc -54· 201248291 體。例如,如圖UA中所示,可僅在高間隙像素中提供導 通體。在一些實施方宰中,遵骑技 、r導通體係^與中間間隙像素接 界之高間隙像素之邊緣而包含於高間隙像素中。 導通體138可佈置在沿像素邊緣延伸之黑色遮罩之通道 中,且包含該導通體138之通道之一側可包含包圍該導通 體138之佔據面積之—黑色遮罩塊或凸起2〇3。藉由在黑色 遮罩通道中包含凸起2G3,該等導通體138可變得對製程變 動更具穩健性。例如,該黑色遮罩凸起2〇3可減小包圍每 -導通體138之區域之拓撲變動,藉此減小與在該等導通 體上方沈積保形層有關之製造誤差。如圖13A中所示,該 等導通體及凸起可佈置在高間隙像素中。因為高間隙像素 可促成的反射比小於低及中間間隙像素所以相對於在一 中間及/或低間隙像素中具有一凸起之一設計,在一高間 隙像素中提供-凸起可對亮度產生較小的影響。 在一些實施方案(諸如圖13A中圖解說明之實施方案) 中’導通體138係定位在沿高間隙像素2〇2a之一像素邊緣 之一長度之約-半長度處。然而,可在沿—像素之一邊緣 之其他位置中提供該導通體138。在-些實施方案中,該 導通體138係;t位⑨沿—像素邊緣之—長度之約1/3至約2/3 之間。 圖13B展不圖13A之干涉量測調變器沿線取得之 橫截面不意圖解之一實例。該橫截面包含高間隙像素 2〇2a、中間間隙像素“孔、基板2〇、黑色遮罩通道2〇4、 黑色遮罩凸起2〇3、導通體138、#刻停止層122、成形結 163409.doc •55· 201248291 構126、介電層35、色彩增強結構134、蝕刻停止層135、 光學堆疊16、高間隙19a及中間間隙i9b、反射層14a、支 樓層14b、触刻停止層154、該等第二及第三支撐層161、 162及帽蓋層14c。該等高間隙及中間間隙像素202a、202b 之額外細節可類似於先前描述之細節β . 在一些實施方案中,黑色遮罩自凸起203之邊緣至與中 間間隙像素202b相鄰之高間隙像素202a之邊緣之寬度d4係 在約3 μηι至約4 μιη之範圍中,且在未具有凸起2〇3之黑色 遮罩之一區域中,自黑色遮罩之邊緣至相同像素邊緣之寬 度ds係在約2 μιη至約3 μπι之範圍中》該凸起203可具有任 何適當的面積。在其中凸起係圓形之一部分之實施方案 中,該凸起之半徑係在約3 μηι至約5 μιη之範圍中。 自導通體138之邊緣至黑色遮罩凸起2〇3之邊緣之距離d6 可經選擇以減小包圍該導通體丨3 8之區域之拓撲變動。例 如,該等導通體138可引起後續沈積保形層(諸如自光學堆 疊16至該帽蓋層14c之諸層)之拓撲變化。藉由增加該距離 心,可減小拓撲之變動。在一些實施方案中,該距離^經 選擇而在約2 μιη至約3 μηι之範圍中。導通體138可在朝向 像素之中心之一方向上自該像素之邊緣偏移任何適當距 ‘ 離。在一些實施方案中,自導通體138之中心至與中間間 隙像素202b接界之高間隙像素2〇2a之邊緣之距離d?係在約 1 μηι至約3 μιη之範圍中。 圖14展示圖解說明一干涉量測調變器之一製造程序 之一流程圖之一實例。該程序210開始於方塊211。在方塊 163409.doc •56- 201248291 212中,在一基板上方形成一黑色遮罩。該基板可為(例如) 透明基板,且黑色遮罩結構可經組態以吸收光學非作用 區域(諸如像素之間之區域)中之環境光或雜散光且可導 電。該黑色遮罩可遮蔽該干涉量測調變器之一像素陣列中 每一像素之每一角隅及至少一邊緣區域。該黑色遮罩之額 外細節可如先前所述。 在方塊214中,在該黑色遮罩上方提供一介電層。可使 用該介電層以使該黑色遮罩與一或多個後續沈積層電隔 離。該介電層可為任何適當的電絕緣體,包含(例如)二氧 化石夕(Sl〇2)、氮氧化矽(SiON)及原矽酸四乙酯(TEOS)。該 介電層之額外細節可如先前所述。 繼續參考圖14,繼續該程序210在方塊216,其中在該介 電層上方形成一光學堆疊。如上所述,—干涉量測調變器 之光學堆疊可導電、部分透明且具部分反射性,且可包含 用於對干涉量測調變器裝置提供靜電操作之一固定電極。 在方塊218中,在該光學堆疊上方形成一機械層。形成 該機械層可包含:提供一犧牲層;在該犧牲層上方沈積一 或多個層;及移除該犧牲層以釋放該機械層。 圖14中圖解說明之程序21〇在方塊220繼續,其中在該陣 每像素之每一角隅處將該機械層錫定於該光學堆疊 上方❶例如,如上所述,一支撐柱可形成於一像素之角隅 , p, 可用以在該像素之角隅處將該機械層錄定於該光學 堆疊上方及/或該機械層可為自支撐。 在方塊222中,在該陣列之一像素中提供一導通體。該 163409.doc •57· 201248291 導通體係佈置在該介電層中且將該固定電極電連接至該黑 色遮罩。該導通體係沿該像素之一邊緣佈置且在朝向該像 素之中心之一方向上自該像素之邊緣偏移。在一些實施方 案中,該導通體係形成於自該像素之一角隅沿該像素之邊 緣延伸至該像素之另一角隅之黑色遮罩之一通道中,且該 通道之一側包含包圍該導通體之一佔據面積之一凸起。藉 由在黑色遮罩通道之一側上包含包圍導通體之佔據面積之 凸起,該導通體可變得對製程變動更具穩健性。例如,該 凸起可減小包圍導通體之區域之拓撲變動,藉此減小與在 導通體上方沈積保形層有關之製造誤差。該凸起可為任何 適當形狀’包含(例如)圓形、六邊形'八邊形、矩形或梯 形之一部分。在一些實施方案中,該凸起可包含於該通道 之兩側上。該方法結束於方塊223。 圖15A及15B展示圖解說明包含複數個干涉量測調變器 之一顯示裝置40之系統方塊圖之實例β該顯示裝置4〇可為 (例如)一蜂巢式或行動電話。然而,該顯示裝置4〇之相同 組件或其稍微變動亦圖解說明各種類型的顯示裝置,諸如 電視機、電子書閲讀器及可攜式媒體播放器。 該顯示裝置40包含一外殼41、一顯示器30、一天線43、 一揚聲器45、一輸入裝置48及一麥克風46。該外殼41可由 多種製造程序之任一程序形成,包含射出成型及真空成 形。此外,該外殼41可由多種材料之任一材料製成,包含 (但不限於):塑膠、金屬 '玻璃、橡膠及陶瓷或其等之一 組合。該外殼41可包含可移除部分(未展示),該等可移除 163409.doc -58- 201248291 部分可與不同色彩或含有不同標誌、圖像或符號之其他可 移除部分互換。 如本文所述,顯示器30可為多種顯示器之任一者,包含 雙穩態或類比顯示器。該顯示器30亦可經組態以包含一平 板顯示器(諸如電漿、肛、OLED、STN LCD或TFT LCD) 或一非平板顯示器(諸如_ CRT或其他顯像管裝置卜此 外,如本文所述,該顯示器3〇可包含一干涉量測調變器顯 示器。 圖15B中示意地圖解說明該顯示裝置4〇之組件。該顯示 裝置40包含-外殼41 ’且可包含至少部分圍封在該外殼 中之額外組件。例如,該顯示裝置4〇包含一網路介面27, 該網路介面27包含耗合至—收發器47之—天線❿該收發 器47係連接至-處理器21,該處理器21係連接至調節硬體 52。該調節硬體52可經組態以調節一信號(例如,過滹一 信號卜該調節硬體52係連接至一揚聲器45及一麥^風 W。該處理器21亦係連接至一輸入裝置似一驅動器控制 器29 °該驅動器控制器29係糕合至一圖框緩衝器28及一陣 列驅動器22’該陣列驅動器22繼而耗合至—顯示陣列3〇。 一電源供應H5G可基於特定顯示裝置4()設計而將電力提供 至所有組件。 八 該網路介面27包含天線43及收發器47,使得該顯示裝置 可經由-網路與-或多個裝置通信。該網路介面η亦可 具有一些處理能力以免除(例如)處理器21之資料處理要 求。該天線43可發射及接收信號。在—些實施方案中,該 I63409.doc •59- 201248291 天線43根據IEEEl6.11標準(包含IEEE1611(a)'(b)或(g)) 或IEEE 802.11標準(包含IEEE 8〇2 Ua、b、g*n)發射及接 收射頻(RF)信號。在一些其他實施方案中,該天線43根據 藍芽(BLUETOOTH)標準發射及接收rF信號。在一蜂巢式 電話之情況中’該天線43經設計以接收分碼多重存取 (CDMA)、分頻多重存取(FDMA)、分時多重存取(TDMA)、 全球行動通信系統(GSM)、GSM/通用封包無線電服務 (GPRS)、增強型資料GSM環境(EDGE)、陸地中繼無線電 (TETRA)、寬頻CDMA(W-CDMA)、演進資料最佳化(2\^_ DO)、lxEV-DO、EV-DO Rev A、EV-DO Rev B、高速封包 存取(HSPA)、高速下行鏈路封包存取(HSDPA)、高速上行 鏈路封包存取(HSUPA)、演進型高速封包存取(HSPA+)、 長期演進技術(LTE)、AMPS或用以在一無線網路(諸如利 用3G或4G技術之一系統)内通信之其他已知信號。該收發 器47可預處理自該天線43接收之信號,使得該處理器21可 接收並進一步操縱該等信號、該收發器47亦可處理自該處 理器21接收之信號’使得該等信號可經由該天線43自該顯 示裝置40發射。 在一些實施方案中,該收發器47可由一接收器取代。此 外,該網路介面27可由可儲存或產生待發送至該處理器21 之影像資料之一影像源取代。該處理器21可控制顯示裝置 40之總體操作。該處理器21接收資料(諸如來自該網路介 面27或一影像源之壓縮影像資料)並將資料處理為原始影 像資料或易於處理為原始影像資料之一格式。該處理器21 163409.doc -60- 201248291 可將經處理之資料發送至該驅動器控制器29或該圖框緩衝 器28以進行儲存。原始資料通常指代識別—影像内之每一 位置處之影像特性之資訊,如,此等影像特性可包含色 彩、飽和度及灰階度。 該處理器21可包含用以控制顯示裝置40之操作之一微控 制器、cpu或邏輯單元。該調節硬體52可包含用於將信號 發射至揚聲ϋ 45及用於自麥克風46接收信號之放大器及滤 波器。該調節硬體52可為顯示裝置4〇内之離散組件或可併 入該處理器21或其他組件内。 該驅動器控制器29可直接自該處理器21或自該圖框緩衝 器28取得由該處理器21產生之原始影像資料且可適當地重 新格式化原始影像資料以使其高速發射至該陣列驅動器 22。在—些實施方案中,該驅動器控制ϋ 29可將該原始影 像-貝料重新格式化為具有類光柵格式之一資料流使得其 具有適合跨該顯示陣列3〇掃描之一時序。接著,該驅動器 控制器29將經格式化之資訊發送至該陣列驅動器22。雖然 -驅動器控制器29(諸如一 LCD控制器)通常係作為一獨立 積體電路(ic)而與系統處理器21相關聯,但是此等控制器 可以s午多方式實施。例如,控制器可作為硬體嵌入於處理 器21中、作為軟體嵌人於處理器21中或與陣列驅動器22完 全整合於硬體中。 該陣列驅動器22可自該驅動器控制器29接收經格式化之 資訊且可將視訊資料重新格式化為波形之一平行集合,該 等波形係每秒多次地施加至來自顯示器之χ-y像素矩陣之 163409.doc 201248291 數百及有時數千個(或更多)引線。 在一些實施方案中,驅動器控制器29、陣列驅動器22及 顯不陣列30係適合本文描述之任何類型的顯示器。例如’ 該驅動器控制器29可為一習知顯示控制器或一雙穩態顯示 控制器(例如,一 IM0D控制器)。此外,該陣列驅動器Μ 可為一習知驅動器或一雙穩態顯示驅動器(例如,一 顯示驅動器)。此外,該顯示陣列3〇可為一習知顯示陣列 或一雙穩態顯示陣列(例如,包含im〇d陣列之一顯示 器)。在一些實施方案中,該驅動器控制器29可與該陣列 驅動器22整合。此一實施方案在高度整合系統(諸如蜂巢 式電話、手錶及其他小面積顯示器)中較為常見。 在一些實施方案中,輸入裝置48可經組態以容許(例如) 使用者控制顯示裝置40之操作。該輸入裝置48可包含一小 鍵盤(諸如一qWERTY鍵盤或一電話小鍵盤)、—按鈕、一 切換器、一搖桿、一觸敏螢幕或一壓敏膜或熱敏膜。麥克 風46可組態為顯示裝置40之一輸入裝置。在一些實施方案 中,透過麥克風46之語音命令可用於控制該顯示裝置⑽之 操作》 電源供應器5G可包含如此項技術中熟知的多種能量儲存 裝置。例如,該電源供應器50可為一可充電電池,諸如鎳 鎘電池或鋰離子電池。該電源供應器50亦可為一可再生能 源、一電容器或一太陽能電池(包含一塑膠太陽能電池或 一太陽能電池漆卜該電源供應器5〇亦可經組態以自一壁 式插座接收電力β 163409.doc -62- 201248291 在一些實施方案中,控制可程式化性駐留在可定位於電 子顯不系統中之若干位置中之驅動器控制器29中。在一些 其他實施方案中,控制可程式化性駐留在該陣列驅動器22 中。可在任何數目個硬體及/或軟體組件及各種組態中實 施上述最佳化。 結合本文揭示之實施方案進行描述之各種闡釋性邏輯、 邏輯塊、模組、電路及演算法步驟可實施為電子硬體、電 腦軟體或兩者之組合β已在功能性方面大體上描述且在上 述各種闡釋性組件、方塊、模組、電路及步驟中圖解說明 硬體及軟體之可互換性。是否在硬體或軟體中實施此功能 性取決於特定應用及強加於整個系統之設計限制。 可使用以下各者實施或執行用以實施結合本文揭示之態 樣進行描述之各種闡釋性邏輯、邏輯塊、模組及電路之硬 體及資料處理設備:一通用單晶片或多晶片處理器、一數 位信號處理器(DSP)、一特定應用積體電路(ASIC)、一場 可程式化閉陣列(FPGA)或其他可程式化邏輯裝置、離散閘 或電晶體邏輯、離散硬體組件或其等之經設計以執行本文 插述之功能之任何組合。一通用處理器可為一微處理器或 任何習知處理器、控制器、微控制器或狀態機。一處理器 亦=實施為計算裝置之—組合(例如,—贈與—微處理器 之組合)、複數個微處理器、結合一 DSP核心之一或多個 微處理器或任何其他此組態。在_些實施方案中,可藉由 專用於給弋功能之電路執行特定步驟及方法。 在-或多個態樣中,可將所描述的功能實施於硬體、數 163409.doc •63- 201248291 位電子電路、電腦軟體、勃體中,包含本說明 =及:等之結構等效物或其等之任何組合。本說; 也述之標的之實施方案亦可實施為在—電腦儲存媒體2 碼二藉由資料處理設備執行或控制資料處理設備之之 -或多個電腦程式(即,電腦程式指令之一或多個模組 熟習此項技術者可容易明白在本發明中描述之實施 之各種修改,且在不脫離本發明之精神或範鳴之情況/,、 本文定義之-般原理亦可應用於其他實施方案。因 請專利範圍不旨在限於本文展示之實施方案但符合與本 文所揭示之本發明、原理及新賴特徵一致之最廣範嘴。字 詞「例示性」在本文中係專用於意謂「用作為―㈣、例 項或圖解」。在本文中播述為「例示性」或提供為實例之 任何實施方案未必理解為比其他實施方案較佳或有利。此 外’一般技術者將容易了解,術語「上」及「下」有時係 為便於描述圖式且指示對應於一適當定向頁面上之圖式定 向之相對位置而使用,且可能不反映如所實施之m〇D之 適當定向。 本說明書中之在個別實施方案之背景内容下描述之特定 特徵亦可在-單-實施方案中組合實施。相反,在一單一 實施方案之背景下描述之各種特徵亦可在多個實施方案中 單獨實施或以任何適當子組合實施。此外,雖然上文可將 特徵描述為以特定組合起作用且即使最初如此主張,但在 -些情況中’纟自所主張之組合之一或多個特徵可自組合 中切除且所主張的組合可關於一子組合或一子組合之變 163409.doc -64 - 201248291The middle column provides, for example, electrical contacts. As will be further described below, the procedure 1 illustrated in Figure 9 is not formed in the continuing electrical layer of block 1 to 8 to the one of the black mask. The guide needs to include a via for each pixel of the interferometric modulator array. In fact, only one of the pixels of the array may be provided with a conducting body to improve the fill factor. In block 110, an optical stack is formed over the dielectric layer and the via. The optical stack includes a fixed electrode, and a portion of the optical stack known above the conductive body can be used to make an electrical connection between the fixed electrode and the black mask. The program 100 illustrated in FIG. 9 is in the block. 112 continues with a sacrificial layer formed over the optical stack. The sacrificial layer is then removed to form a gap. Forming the sacrificial layer over the optical stack can include depositing a fluorine etchable material such as molybdenum (Mo) or amorphous germanium (a-Si) with a thickness selected to provide a thickness of one of a desired size after subsequent removal. . Multiple sacrificial layers can be deposited to achieve a plurality of gap sizes. For example, for an IMOD array, each gap size can represent a different reflected color. In block 114, one of the anchor holes offset from the via is formed in the sacrificial layer. The anchoring hole can be formed by removing the sacrificial layer in a portion near a corner of one of the pixels. As will be described in more detail below, the anchoring holes can be used to form a post for supporting a subsequent deposition mechanical layer and/or to allow a self-supporting mechanical layer to contact the optical stack and/or another layer. The anchor hole formed in the block I63409.doc • 34 · 201248291 114 is not aligned with the conductive body formed in the block ” ” ” ” ” ” ” The anchoring aperture has a smaller dimension relative to one of the schemes in which the conducting body overlaps the anchoring aperture 'this is because the misaligned aperture need not include additional margin to account for alignment with the conducting body. Reducing the size of the anchoring aperture can help improve the fill factor of the interferometric array of modulators'. This is because reducing the size of the anchoring aperture allows for reducing the area of the optically inactive black mask disposed at the corners of the pixel. . The procedure illustrated in Figure 9 is continued at block η6 to form a mechanical layer. As previously described, the mechanical layer can be formed by one or more deposition steps in conjunction with one or more patterning, masking, and/or etching steps. The process 100 illustrated in Figure 9 continues at block 118 to form a cavity or gap. The gap can be formed by exposing a sacrificial material, such as a sacrificial material deposited in the block 丨丨2, to an etchant. For example, the etchable sacrificial material can be removed by dry chemical etch, such as molybdenum, tungsten, poly-Si or single crystal germanium (s-Si). After the sacrificial layer is removed, the mechanical layer is typically released by applying a voltage between the fixed electrode and the mechanical layer and the mechanical layer is moved between the intermeshing position and a relaxed position by electrostatic force. The mechanical layer can be anchored to the black mask a formed in block 104 at a pixel, &lt; - Part of the optical stack above.隹 Wan block 119 ends the diagram illustrating the procedure 丨〇〇. The details can be as follows. Many additional steps may be taken before, during or after the illustrated sequence, but this step is omitted for clarity. μ寻超 163409.doc -35- 201248291 Figure 10A to i〇R show the manufacture of an interference measurement modulator &lt; An example of a cross-sectional schematic solution of each step in a method. In Fig. 1A, a black mask structure 23 has been provided on a substrate 20. As noted above, the substrate 20 can comprise a variety of transparent materials. One or more layers may be provided on the substrate prior to providing the black mask junction (10). For example, as shown in FIG. 1A, an etch stop layer 122 has been provided prior to providing the black mask structure 23 to serve as an etch stop when patterning the black mask. In some embodiments, the etch stop layer 122 has an aluminum oxide layer having a thickness in the range of from about 50 to 25 Å (e.g., about 160 A). The black mask structure 23 can be configured to absorb ambient or stray light in optically inactive regions (e.g., between pixels) to improve the optical properties of a display device by increasing the contrast ratio. Additionally, the black mask structure 23 can be electrically conductive and can be configured to function as an electrical bus layer. With continued reference to Figure 10A, the black mask structure 23 can include one or more layers. In some embodiments, the black mask structure 23 includes an optical absorber layer 23a, a dielectric layer 23b, and a bus layer 23c. In some embodiments, a MoCr layer is used as the optical absorption layer 23a, a SiO 2 layer is used as the dielectric layer 23b, and an aluminum alloy layer is used as the bus layer 23 c, wherein one of the thicknesses of the layers is respectively (for example) Approximately 30 A to 80 A, 500 A to 1000 A and 500 A to 6000 A in the park. FIG. 10B illustrates providing a forming structure 126 over the substrate 20. The shaped structure 12 6 can comprise a buffer oxide layer, such as SiO 2 (Si 〇 2) » The shaped structure 126 can have a thickness, for example, in the range of about 500 A to 6000 A. The forming structure 126 can help by filling the sink 163409. Doc •36- 201248291 The gap between the flow structure or black mask structure 23 to maintain a relatively flat profile across one of the substrates. However, as will be described in greater detail below, the forming structure 126 can overlap a portion of the black mask structure 23 to aid in forming a kink in the casing layer. In particular, one or more layers (including mechanical layers) may be deposited over the shaped structure 126, thereby substantially replicating one or more geometric features of the shaped structure 126. For example, as illustrated in FIG. 10B, the forming structure 126 can overlap the black mask structure 23 to form a protrusion 129 that can create a conformal layer in a subsequent deposition conformal layer such as a mechanical layer. Extend the wave or kink up. While the various electromechanical systems devices illustrated herein are shown and described as comprising a shaped structure 126, one of ordinary skill in the art will recognize that the method of forming a mechanical layer as described herein is applicable to the lack of a process for forming the structure U6. Figure i〇c illustrates the provision of a spacer or dielectric layer 35. The dielectric layer 35 may comprise, for example, cerium oxide (Si 〇 2), cerium oxynitride (si 〇 N), and/or tetraethyl orthophthalate (TEOS). In some embodiments, the thickness of the dielectric layer 35 is in the range of about 3000 A to 6000 A, however, the dielectric layer 35 can have a variety of thicknesses depending on the desired optical properties. As will be described in further detail below with reference to Figures 1A and 10F, it may be removed over the black mask structure 23 ("upper" here refers to the side of the black mask structure opposite the substrate 2") The dielectric layer 35 is configured to allow formation of a conductive body for electrically connecting a fixed electrode to the black mask structure 23. FIG. 10D illustrates providing a color enhancement structure 134 over the dielectric layer 35. The color enhancement structure 134 can be selectively provided at various pixel junctions 163409. Doc •37· 201248291 Above the structure. For example, in a multi-color interference measurement modulator implementation employing multiple gap heights, a color enhancement structure 134 can be provided on a modulator having a particular gap size. In some embodiments, the color enhancement structure 134 is a layer of cerium oxynitride (Si〇N) having a thickness ranging from about 1500 A to about 2500 A (e.g., about 1900 A). The SiON layer can be patterned using any suitable technique, including, for example, an etching procedure using one of tetrafluoromethane (Cf4) and/or oxygen (?2). One or more layers may be provided on the dielectric layer 35 prior to providing the color enhancement structure 134. For example, as shown in FIG. 10D, an etch stop layer 135 has been provided prior to providing the color enhancement structure 134. In some embodiments, the etch stop layer 135 has a range of between about 50 A and 250 A ( For example, a layer of alumina having a thickness of about 'about U0A. FIG. 10E illustrates the formation of a via 138 in the dielectric layer 35. As will be described in more detail below, the via 138 can allow a subsequent deposited layer to contact the black mask structure 23 » as shown in Figure 10E, without the need to include a via above each of the black masks 23. The fact that the conductors can be placed periodically in the interferometric transducer increases the fill factor of the array. 10F and 10G illustrate the formation of an optical stack 16 over the dielectric layer 35 and the via 138. The optical stack 16 can include a plurality of layers. For example, the optical stack 16 can include a fixed electrode layer 14 (such as molybdenum chromium (MoCr)), a transparent dielectric layer 141 (such as cerium oxide (Si 〇 2)), and an etch stop layer 142 (such as alumina). (A10x)), the etch stop layer ι 42 is used to protect the transparent dielectric layer 141 during subsequent sacrificial layer squeezing procedures and/or etch during the sacrificial layer removal process. The etch stop layer i 42 can have a portion 163409. Doc -38· 201248291 Reflective materials such as various metals, semiconductors and dielectrics. The partially reflective layer can be formed from one or more sub-layers, and each of the sub-layers can be formed from a single material or a combination of materials. In some embodiments, some or all of the layers of optical stack 16 (e.g., comprising solid-state electrodes 140) are patterned into parallel strips and may form column electrodes in a display device. As illustrated in Figures 10F and 10G, one or more layers of the optical stack 16 can physically and electrically contact the black mask structure 23. For example, the conductive body 138 allows the fixed electrode 14 to electrically contact the black mask structure. 23 Figures 10H through iJ illustrate the provision and patterning of a plurality of sacrificial layers over the optical stack 16. As will be discussed below, the sacrificial layers are subsequently removed to form a gap or cavity. The use of a plurality of sacrificial layers can help to form a display device having a large amount of oscillating optical gap. For example, &gt; illustrates that various gap sizes can be produced by selectively providing a first sacrificial layer 144, a second sacrificial layer 145, and a third sacrificial layer 146. This may provide a sum-to-gap size (or "high gap") equal to the thickness of the first, second and third sacrificial layers 144 to 146 such as the sides, equal to about the second and third sacrificial layers The thickness of 145, 146 - the sum - the second gap size (or "intermediate gap") and one of the thicknesses of the third sacrificial layer 丨 46, the second gap size (or "low gap"). For - interference measurement (4) (4), a high gap may correspond to a high gap pixel, an intermediate gap may correspond to an intermediate gap pixel 'and a low gap may have a virtual i gap corresponding to a low gap pixel. Each of these pixels having different gap sizes can produce - different reflective colors. Because of A, these pixels can be referred to herein as high-gap pixels, intermediate between 163409. Doc -39· 201248291 Gap pixel or low gap pixel. Forming the first, second, and third sacrificial layers 144-146 over the optical stack 16 can include depositing molybdenum (ruthenium) or amorphous germanium (a-si). In some embodiments, the first sacrificial layer 144 is a molybdenum (Mo) layer having a thickness ranging from about 200 A to about 1000 A (eg, about 400 A), the second sacrificial layer 145 Having a layer having a thickness ranging from about 2 A to about 1000 A (eg, 'about 400 A), and the third sacrificial layer 146 having a range from about 600 A to about 2000 A layer of Mo between one of A (for example, about 1600 A). Although FIG. 10A to FIG. 10J illustrate a group in which the second sacrificial layer 145 is provided over the first sacrificial layer ι44 and the third sacrificial layer 146 is provided over the first and second sacrificial layers 144, 145. State, but other configurations are also possible. For example, the first, second, and third sacrificial layers 144 through 146 need not overlap, and more or fewer sacrificial layers can be formed to provide the desired gap size. FIG. 10A illustrates sacrificial layers 144 through 146 between patterned pixels. The sacrificial layers can be patterned in a variety of ways, including the use of an etchant such as gas (cl2) and/or oxygen (〇2). As will be described below, removing portions of the sacrificial layers 144-146 between pixels, such as at the corners of the pixels, can create anchor holes 150 that can be used to form a support Subsequent deposition of one of the mechanical layers of the column and/or aid in anchoring a self-supporting mechanical layer. The anchor hole 15〇 of the partially fabricated interference measuring modulator, which has been illustrated by the circular solution, is not aligned with the conducting body 138. Because the anchoring aperture 150 need not include additional margin to account for alignment with the conductive body 38, the conductive body 138 is anchored to the 163409. Doc • 40- 201248291 The holes 150 overlap to form an anchoring conductor, which allows the anchoring hole 150 to have a smaller width W1. Furthermore, by deflecting the conducting body 138 and the anchoring hole 150, The non-uniformity associated with anchoring holes and conductor misalignment across pixels can be avoided. Moreover, as illustrated in Figure 10L, in some embodiments, it is not necessary to include a via 138 over each of the regions of the black mask 23. In fact, the vias can be provided periodically over all of the pixels of less than one array. By reducing the width w of the anchor hole 150 and reducing the total number of the conductive bodies 138 in the modulator array by reducing the interference, the total area of the black mask 23 can be reduced, thereby improving Fill factor. Figure 10L illustrates the provision and patterning of a mechanical layer of a reflective layer Ua and a support layer 14b. The reflective layer 14a can be a reflective material comprising, for example, an aluminum alloy. In some embodiments, the reflective layer 14a comprises at about 0. 3 weight. /. To 1. Copper aluminum copper (AlCu) in the range of 0% by weight (for example, about 5%). The reflective layer 14a can be of any suitable thickness, such as a thickness in the range of from about 2 in about 500 Å (e.g., about 3 Å A). The support layer 14b can be used to assist a photolithography process by acting as an anti-reflective layer and/or to help achieve the desired mechanical flexibility of one of the fully fabricated mechanical layers. In some embodiments, the support layer 14b is a layer of cerium oxynitride (SiON) having a thickness in the range of from about 5 Å to about 1 Å (e.g., about 25 Å A). Figure 10M illustrates the provision of an etch over the support layer 14b over the transparent dielectric layer 141 on the bottom of the anchor holes 15 and over the sacrificial layers 144 to 46 on the sidewalls of the anchor holes 15A. Stop layer 154. The etching stops 163409. Doc 201248291 Layer 154 can be, for example, alumina having a thickness in the range of about loo A to about 3 〇〇a (eg, about 200 A) (eight 〇〇 layer. The etch stop layer 154 can be employed) The layers of the interference measuring device are protected from subsequent etching steps. For example, as will be described below, when the sacrificial layers 144 to 146 are removed to release the mechanical layer, the button stop layer 154 can protect the support layer from The etchant is used to remove one of the sacrificial layers M4 to 146. Figures 10N to 10P illustrate providing and patterning a first support layer 160, a second support layer 161, and a third support layer 162. The first, second, and third support layers 16 to 162 are used for various functions. For example, the first, second, and third support layers 16A to 162 may be used to form a support structure, including a pillar and And/or rivets. Further, the first, second, and third support layers 160-162 may be incorporated into all or a portion of the mechanical layer to help achieve structural stiffness corresponding to one of the desired actuation voltages and/or Or to help obtain a self-supporting mechanical layer. As illustrated in Figure 10P, the first A portion 16〇3 of the support layer 160 can be used as a support pillar for a high gap pixel and an intermediate gap pixel, and a portion 16% of the first support layer 160 can be included in a mechanical layer of a low gap pixel. The use of the first, second and third support layers 16A to 162 to provide a plurality of functions across pixels of different gap heights may improve the design of the interference measuring device. In some embodiments, the mechanical layer may Self-supporting above the symmetrical pixels and above the other pixels by one (four) or other structural struts. The sacrificial layers 144 to 146 can then be removed to form individual pixels in the interferometric array of moduli. By the first, second and third buildings 163409. Doc - 42 - 201248291 Layers 160 through 162 are selectively included in the mechanical layer above each pixel of the array to vary the thickness of the mechanical layer formed on the sacrificial layers. For example, the third supporting layer 162 may be disposed above the high gap pixel, the intermediate gap pixel and the low gap pixel, and the second supporting layer 161 may be provided above the intermediate gap pixel and the low gap pixel, and the first supporting layer 160 Can be provided above the low gap pixels. By varying the thickness of the mechanical layer across the heights of the different gap heights, the desired hardness of the mechanical layer can be achieved for each gap height. For color display applications, this can help to allow the same pixel for different size air gaps. Dynamic voltage. The first, second and third support layers 160 to 162 may be formed by a dielectric material such as yttrium oxynitride (SiONO). In some embodiments, each of the thicknesses of the first, second, and third support layers 16A through 162 can range from about 600 A to about 3000 A (e.g., about 1 A). Figure 10Q illustrates the provision and patterning of a cap layer 14c to form a complete mechanical layer 14. The cap layer 14c may be conformally provided over the support layers 162 and may have a pattern similar to the pattern of the reflective layer 14a. Patterning the cap layer Me is similar to the patterned reflective layer... can help balance the stress in the mechanical layer 14. The shaping and curvature of the mechanical layer after removal of the sacrificial layers 144 to 146 can be controlled as described below by balancing the stress in the mechanical layer μ. In addition, the equilibrium stress in the mechanical layer 14 can reduce the sensitivity of the height of the release interference modulating enthalpy to temperature. The cap layer 14c may be a metal material and may be, for example, the same material as the reflective layer 14a. In some embodiments, the cap layer comprises at about 0. 3 wt% y. 〇% by weight (for example, about wt%) 163409. Doc-43-201248291 Copper aluminum copper (AlCu), and the thickness of the cap layer 14c is selected to be in the range of about 200 A to about 500 A (e.g., about 300 A). As noted above, the mechanical layer 14 can include a plurality of layers across different pixels of the interferometric array of interferometric measurements. Additional details of the mechanical layer 14 can be as follows. Figure 10R illustrates the removal of the sacrificial layers 144 through 146 to form a first or high gap 19a, a second or intermediate gap 19b, and a third or low gap 19c. Additional steps may be employed prior to forming the first gap 19a, the second gap 19b, and the third gap 19c. For example, sacrificial relief holes may be formed in the mechanical layer 14 to aid in the removal of the sacrificial layers 144-146. The gaps 19a to 19c can be formed by exposing the sacrificial layers 144 to 146 to a surname as described above. The sacrificial layer can be exposed for effective removal (typically selectively removed relative to the structure surrounding the gaps 19a-19c). Other selective etching methods can also be used, such as wet etching and/or plasma etching. The button stop layer 154 protects the first support layer 16 from the sacrificial release chemistry used to remove the sacrificial layers 144-146. This may allow the first floor layer 160 to be one of the structural materials that will otherwise be chemically etched by the release of the sacrificial layer. The dielectric cap layer 142 can protect layers of the optical stack 16 (such as the dielectric layer 141) from sacrificial release chemistry to remove the sacrificial layers 144-146. The inclusion of the dielectric cap layer 142 can help reduce or prevent damage to the optical stack during release, thereby improving optical performance. The first, second and third gaps 19a to 19c may correspond to interference measurements 163409. Doc •44· 201248291 Enhance the cavity of different colors. For example, the first, second, and third gaps 19a through 19c may have heights selected to enhance interference, e.g., blue, red, and green, respectively. The first or high gap 19a can be associated with a first or high gap pixel 172a, the second or intermediate gap i9b can be associated with a second or intermediate gap pixel 172b, and the third or low gap i9c can be associated with A third or low gap pixel 172c is associated. To allow substantially the same actuation voltage to fold the mechanical layer for each gap size, the mechanical layer 14 may comprise different materials, different numbers of layers, or different thicknesses over each of the gaps 19a through 19c. Therefore, as shown in FIG. 1A, the mechanical layer 14 may include a reflective layer 14a, a support layer i4b, an etch stop layer 154, a third support layer 162, and a cap layer 14c in a portion above the high gap 19a, and the mechanical layer. 14 may further include a second support layer 161 at a portion above the intermediate gap 19b. Similarly, the mechanical layer 14 may further include a first support layer at a portion above the low gap 19c as compared to a portion of the mechanical layer 14 above the high gap 19a. 160 and a second support layer 16i. As described above, the first, second, and third support layers 16A through 162 can provide different functions across the different ranges of the interferometric modulator P train. For example, the first support layer 160 can be used to support the mechanical layer 14 above the low gap pixels and increase the structural stiffness of the low gap pixels. In addition, the second supporting layer (6) can support the mechanical layer 14 on the intermediate gap pixel and the low gap pixel; Τ increase the structural rigidity of the intermediate gap pixel and the low gap pixel, and the third floor 162 can be used to increase the low gap pixel Structural rigidity of intermediate gap pixels and high gap pixels. Therefore, the first portion (10) of the first support layer 16A is used to support the mechanical layer 14 in the height and middle 163409. Doc -45 - 201248291 A column above the gap 19a, 19b, and the second portion 160b of the first support layer 16 is contained in the mechanical layer 14 above the low gap 19c. The use of a plurality of slabs allows substantially the same actuation voltage to be indexed for each gap size. After removing the sacrificial layers 144 to 146, the mechanical layer 14 can be displaced.  A launch height is achieved away from the substrate, and the shape or curvature can be changed at this time for a variety of reasons, such as residual mechanical stress. As described above, the cap layer 14c can be used with the reflective layer 14a to help balance the stress in the mechanical layer when the mechanical layer is released. Accordingly, the cap layer 1 complement may have a thickness, composition, and/or stress selected to assist in modulating the emission and curvature of the mechanical layer after removal of the sacrificial layers 144-146. Furthermore, a mechanical layer 14 is provided over the forming structure 126 and in particular above the projection 129 of the figure ι, in which a kink is formed by controlling the thickness of the forming structure 126 to control the geometric characteristics of the kink pi, Thereby the stress in the mechanical layer 14 is controlled. Controlling the emission height allows for the selection of a particular gap size (the desired gap size from a manufacturing and optical performance perspective). The anchoring holes 15A of FIG. 10K are not aligned with the conductive body 138 as described above. Thus, as shown in Fig. 10R, the mechanical layer 14 is anchored to the optical stack 16 above the black mask 23 at a point offset from the conductive body Π8. As described above, the mechanical layer 14 is anchored at a point offset from the conductive body 138 relative to a design in which the mechanical layer 14 is anchored above the black mask 23 in the same region as the conductive body is positioned. A smaller black mask 23 can be allowed, for example, by having the conductive body 138 self-anchoring one of the mechanical layers 14 to anchor the aperture 163409. Doc • 46 · 201248291 Shift, the size of the anchor hole does not need to have an increased area to account for alignment with the process of the conductor 138. In addition, the non-uniformity associated with the anchor holes and the misalignment of the vias across the pixels can be avoided by offsetting the vias 38 from the anchor holes used to secure the mechanical layer 14. Therefore, the fill factor of the interferometric modulator array can be improved by shifting the via 138 from the misaligned aperture. Further, as illustrated in Figure 10R, the conductive body 138 need not be included in each pixel. The reality system can provide a conducting body over all of the pixels of less than one array. For example, as shown in Figure 10R, a conductive body 138 is already included near one of the corners 123 of the high gap pixel 172a. Further, a via is not included at the corner of the intermediate gap pixel 17 or the low gap pixel 172c. By providing a conducting body for less than all of the pixels of the array, the total number of conductive bodies in the array of interferometric modulators can be reduced&apos; and the total area of the black mask 23 can then be reduced. Since the black mask 23 is optically opaque, reducing the total area of the black mask 23 improves the fill factor of the pixel array. As illustrated in Figure 10R, the black mask 23 has a larger footprint than one of the footprints of the structure used to support the mechanical layer 14. For example, the first portion 160a of the first support layer 160 operates as one of the support pillars for the portion of the mechanical layer 14 associated with the high gap pixel 172a, and has a smaller black mask 23 at the corner 隅123 of the high gap pixel 172a. One width of the width. The additional width of the black mask 23 around the anchoring region of the mechanical layer can shield a curved portion of the mechanical layer 14 during actuation. For example, when the mechanical layer 14 is actuated, although a majority of the mechanical layer 14 can be aligned in a plane and can be in contact with the optical stack 16, one portion of the mechanical layer 14 (eg, along the edge of a pixel) may not be optical Stack 16 contacts, and therefore may not provide additional black 163409. Doc 201248291 In the case of a color mask, the interference measurement produces an undesired color. Portions of the mechanical layer 14 that are not in contact with the optical stack during actuation may be added for pixels having a larger gap height. For example, the curved region of the high gap pixel n2a may be larger than the curved region of the low gap pixel 172c because the gap i9a is larger than the gap 19c. In some embodiments, a conduction system such as via 138 is included at one or more corners of the largest gap size pixel. Positioning the conductive bodies 138 near the corners of the pixels of the largest gap size may be advantageous because the high gap pixels may have a larger curved area in the actuated state, and thus relative to the intermediate gap pixels and the low gap pixels There may be a large optical inactive area at the pixel corner 。. Thus, in some embodiments, the black mask can be larger at the corners of the high-gap sub-pixels to account for larger hip-curved regions and provide space for a conductive body. However, since it is not necessary to include a via for each pixel of the array, the total area of the black mask 23 can be reduced and the fill factor of the interferometric modulator array can be improved. The conductive bodies, such as the conductive body 138, can have a variety of shapes and sizes. For example, the conductive bodies can be shaped as a circle, an ellipse, an octagon, and/or any other suitable shape. The size of the conductors can vary with the process. In some embodiments, each of the vias 138 has an anode. 5 μίη to about 3. In the range of 0 μπι (for example, about 2. 4 μιη) One of the maximum widths. Additional details of the conductors can be as follows. Figures 11A through 11C show examples of schematic views of various cross-sectional measurement modulator arrays. In Fig. 11A, an interference measurement modulator array 180 is illustrated. The interferometric modulator array 180 includes a plurality of different spaces 163409. Doc • 48· 201248291 The gap size pixel includes a first gap or high gap pixel 174a, a second gap or intermediate gap pixel 1 74b, and a third gap or low gap pixel 174c. The contour, intermediate and low gap pixels 174a through 174c can be similar to the high, middle and low gap pixels 172a through 172c of Figure 10R. However, the contour, middle and low gap pixels 174a through 174c need not be identical to the contour, intermediate and low gap pixels 172a through 172c. As shown in Fig. 11A, a conductive black mask is disposed on the substrate at each corner of the contour, intermediate and low gap pixels 丨 74 &amp; 174c. Although not illustrated in Figure 11A, a dielectric layer has been provided over the black mask and an optical stack comprising a fixed electrode has been provided over the dielectric layer. A conductive body 138 is used to electrically contact the fixed electrodes of the optical stack to respective portions of the black mask 23. The mechanical layer 14 is positioned over the optical stack to define the gap height of the high, intermediate, and low gap pixels 174a through 174c. The mechanical layer 14 is anchored above the black mask 23 at each of the corners of the equal, intermediate, and low gap pixels 174a through 174c. For example, the high-gap pixel 17A includes four corners 123a to 123d, and the mechanical layer is at the anchor hole i5〇a of each of the four corners 123&amp;, 23b 123 (1 and 123d, respectively) 150b, 150c and the measurement are above the optical stack. As described above, the mechanical layer 14 can be anchored over the black mask in a number of ways. For each pixel of the array (10), surround each pixel-per-pixel The area of the black mask 23 does not need to be the same. In fact, for a pixel having a relatively large gap (such as a pixel with a maximum gap size), the area of the black mask at the -pixel corner 可 can be larger. Machine 163409 added during the actuation period. Doc -49· 201248291 Mechanical bending. For example, the area of the black mask at each of the corners 123 to 123d of the high gap pixel l74a is larger than the area of the black mask at the corner 隅123e of the intermediate gap pixel (10) and the black mask is at the corner of the low gap pixel 17乜. The area of 123f. As shown in Fig. 11A, an additional portion or protrusion of the black mask at the corner 隅123a of the high gap pixel 174a can be used to provide the via 138. With continued reference to FIG. 11A, in some embodiments, the conductive body 138 is positioned at one of the corners of the high gap pixel 174a adjacent to an intermediate gap pixel. However, as will be described below with reference to Figures 11B and lie, the conductive body 38 can be provided at other locations and/or at a plurality of corners of the high gap pixel. The distance from the center of the anchor hole to the edge of the pixel to the edge of the black mask may vary depending on the gap height of one pixel. For example, the distance from the edge of the black mask to the center of the anchor hole of a high gap pixel along a line may range from about 10 μm to about 12 μΐη2, and the edge from the black mask reaches a low or middle along the line. The distance d2 of the center of the anchor hole of the gap pixel may range from about 7 μm to about 9 μm. Continuing to refer to Fig. 11A', in addition to providing a black mask 23 at the pixel corners, a black mask 23 may be included in other regions of the pixel, such as along the edges of the pixels. Black mask regions along the edges of the pixels can also be used to provide electrical connections along a column or row and can include breaks along one or more edges of each pixel to provide the desired electrical connection capability. For example, the black mask 23 includes a break along one of the edges bordering the high gap pixel 174a and the low gap pixel 174c. In some embodiments, the cleavage has a length in the range of from about 2 μηι to about 3 μηι. 163409. Doc • 50· 201248291 As described above, the interferometric array 180 includes a conductive body that is offset from the wrong pupil or other structure used to secure the mechanical layer 14. For example, at the corner 隅123a of the high gap pixel 174a, the via 138 is offset from the anchor hole 15〇&amp; In some embodiments, the distance from the conductor to the center of the anchoring hole to which the mechanical layer is secured ranges from about 6 μΓη to about 8 _. The viewing of the conductive body 138 and the anchoring aperture may allow the anchoring aperture to have a smaller area relative to the one in which the conductive body overlaps the anchoring aperture to form an anchoring conductor when viewed from above. For example, the anchor hole 5〇a need not include an additional margin to account for alignment with the via 138 disposed at the corner 隅123a of the high gap pixel 174a. In some embodiments, a circular conductor and a circular misalignment are used, which is Jinding? The radius of Ll5〇a is in the range of about 4 μηι to about 7 (four) and the half (four) of the conductive body 138 is in the range of about 2 to about 4 μm. These conductors can be provided at the _ corner of each high-gap pixel in Figure 11A. For example, the high gap pixel 174a includes a conducting body &quot;8&apos; at a first corner 隅123&amp; but does not include a conducting body at the second, third, and fourth corners 隅123b to 123d of the high gap pixel 174a. Figure 11B illustrates an interferometric modulator array 182 of Figure 11B in accordance with another embodiment. The interferometric modulator array 182 of Figure 11B is similar to the interferometric modulator array of Figure ha! The modulating array (8) includes a conducting body at two corners of each high-gap pixel. For example, the high gap pixel 174a includes a via at the first corner and the second corner (10)! 38, but a conducting body is not included in the third corner of the high gap pixel (10) and the fourth corner 隅123d. I63409. Doc * 51 - 201248291 Figure lie illustrates an interference measurement modulator array 184 according to yet another embodiment. The interferometric modulator array 184 of Figure lie is similar to the interferometric modulator array 18A of Figure 11A, except that the interferometric modulator array 184 includes a conducting body at each of the four corners of each high gap pixel. except. For example, the high gap pixel 174a includes a via 138 at the first, second, third, and fourth corners 123a through 1253d. One of ordinary skill in the art will appreciate that other configurations of the conductors 138 other than the configuration of the vias 138 illustrated in Figures 11A-11C are also possible, including, for example, each high gap pixel. There is one configuration of three conductors, wherein both the high gap pixel and the intermediate gap pixel comprise one configuration of the conductor and/or any other suitable configuration. Figure 12 shows an example of a flow chart illustrating one of the manufacturing procedures 19 of an interference measurement modulator. The program 19 begins at block 191. In block 192, a black mask is formed over a substrate. The substrate can be, for example, a transparent substrate, and the black mask structure can be electrically conductive and configured to absorb ambient or stray light in the optically inactive pixel region. The black mask shields each corner of each pixel in the pixel array of the interferometric transducer. Additional details of the black mask can be as described above. In block 193, a dielectric layer is provided over the black mask. The dielectric layer can be used to electrically isolate the black mask from one or more subsequent deposited layers. The dielectric layer can be any suitable electrical insulator including, for example, cerium oxide (SiO 2 ), cerium oxynitride (SiON), and/or tetraethyl orthophthalate (TE 〇s). Additional details of the dielectric layer can be as previously described. The routine 190 illustrated in Figure 12 continues at block 194, where the mediation is at 163409. Doc •52· 201248291 An optical stack is formed above the electrical layer. As noted above, the optical stack of an interferometric transducer can be electrically conductive, partially transparent, and partially reflective, and can include a fixed electrode for providing electrostatic operation to the interferometric modulator device. In block 195, a mechanical layer is formed over the optical stack. Forming the mechanical layer can include providing a sacrificial layer; depositing _ or a plurality of layers over the sacrificial layer; and removing the sacrificial layer to release the mechanical layer. Continuing with reference to Figure 12, the process 190 continues at block 196 where the mechanical layer is anchored above the optical stack at each corner of each pixel of the array. For example, a support post can be formed at a corner of a pixel and the support post can be used to anchor the mechanical layer above the optical stack at the corners of the pixel. However, the mechanical layer can be anchored in other ways as described above. In block 198, a conductive via is provided in one of the pixels of the array. The conductive via system is in the dielectric layer and electrically connects the fixed electrode to the black mask. The conduction system is disposed at one corner of the pixel and is offset from where the mechanical layer is anchored above the optical stack in an optically inactive region of the pixel. Compared with one of the conductors and one of the mechanical layers, one of the designs is designed to allow the conductor to be offset from the position at which the mechanical layer is anchored at the corner of the pixel to allow a smaller black mask. . Additional details of the biasing conductor can be as previously described. The method ends at block 199. Figure 13A shows an example of a schematic plan view of an interferometric modulator array 2〇〇. The illustrated interferometric device array 200 includes a first or south gap pixel 202a, a second or intermediate gap pixel 202b, and a 163409. Doc • 53- 201248291 Second or low gap pixel 202c, a mechanical layer 14, a black mask 23, an anchor hole 150, and a conductive body 138. Although not illustrated for improved pattern definition, a dielectric layer has been provided over the mask 23 and an optical stack of one of the fixed electrodes has been provided over the dielectric layer. The conductive bodies 138 are for electrically contacting the fixed electrodes of the optical stack to respective portions of the black mask 23. The black mask 23 is arranged at the corner of each pixel and along the edge of the pixel. P knife. The black mask 23 can be used to provide electrical connections along a column or row and can include breaks along one or more edges of each pixel to provide the desired electrical connection capability. For example, the black mask 23 includes one of the edges that are bordered by the high gap pixel 2〇2a and the intermediate gap pixel 202b. In some embodiments, the fractures have a length d3 in the range of from about 2 μηι to about 4 μηη. With the pixel array (4) of Figures UA through UC, the pixel array 200 of Figure 13a includes a via disposed along the edge of the pixel. For example, one of the edges of the high-gap pixel 2, which is bordered by the intermediate gap pixel, is placed in the high-gap pixel 202a, and one of the channels 2〇4 of the color-reducing mask 23 is a conductive body. As shown in Fig. 13A, in this embodiment, it is not necessary to include a via at the pixel corner 。. The fact ‘ can include a via 138 along the edge of the pixel, and the via 138 can be offset from the edge of the pixel in one of the directions toward the center of the pixel. Providing the vias 138 along the edges of the pixels (rather than at the corners of the pixels) in this manner can help improve the fill factor of the interferometric measuring device by reducing the area of the black mask used to mask the corners of the pixels. As shown in Figure ,, not all pixel edges need to include a turn-on 163409. Doc -54· 201248291 Body. For example, as shown in Figure UA, a via can be provided only in high gap pixels. In some implementations, the high-gap pixels are included in the high-gap pixels according to the edge of the high-gap pixel that is connected to the intermediate gap pixel. The via 138 may be disposed in a channel of the black mask extending along the edge of the pixel, and one side of the channel including the via 138 may include a black mask block or bump 2 that surrounds the footprint of the via 138. 3. By including bumps 2G3 in the black mask channel, the conductive bodies 138 can become more robust to process variations. For example, the black mask bumps 2〇3 can reduce topological variations in the area surrounding each of the vias 138, thereby reducing manufacturing variations associated with depositing a conformal layer over the vias. As shown in Fig. 13A, the vias and bumps can be arranged in high gap pixels. Since the high-gap pixel can contribute a lower reflectance than the low and intermediate-gap pixels, it has a one-bump design in a middle and/or low-gap pixel, and the bump is provided in a high-gap pixel to generate brightness. Smaller impact. In some embodiments, such as the embodiment illustrated in Figure 13A, the &apos;conductor 138 is positioned about one-half of the length along one of the pixel edges of the high gap pixel 2〇2a. However, the via 138 can be provided in other locations along one of the edges of the pixel. In some embodiments, the via 138 is; t-bit 9 is between about 1/3 to about 2/3 of the length of the pixel edge. Figure 13B shows an example of a cross-sectional unintended solution taken along the line of the interferometric modulator of Figure 13A. The cross section includes a high gap pixel 2〇2a, an intermediate gap pixel “hole, substrate 2〇, black mask channel 2〇4, black mask protrusion 2〇3, conductive body 138, #刻止层122, shaped junction 163409. Doc • 55· 201248291 structure 126, dielectric layer 35, color enhancement structure 134, etch stop layer 135, optical stack 16, high gap 19a and intermediate gap i9b, reflective layer 14a, support floor 14b, etch stop layer 154, The second and third support layers 161, 162 and the cap layer 14c. Additional details of the contour gap and intermediate gap pixels 202a, 202b may be similar to the detail β previously described.  In some embodiments, the width d4 of the black mask from the edge of the protrusion 203 to the edge of the high gap pixel 202a adjacent to the intermediate gap pixel 202b is in the range of about 3 μηι to about 4 μηη, and does not have In a region of the black mask of the protrusion 2〇3, the width ds from the edge of the black mask to the edge of the same pixel is in the range of about 2 μm to about 3 μm. The protrusion 203 may have any suitable area. . In embodiments in which a portion of the raised circle is circular, the radius of the projection is in the range of from about 3 μηι to about 5 μηη. The distance d6 from the edge of the conductive body 138 to the edge of the black mask bump 2〇3 can be selected to reduce the topological variation of the region surrounding the via 丨38. For example, the conductive bodies 138 can cause a topological change in the subsequent deposition of a conformal layer, such as layers from the optical stack 16 to the cap layer 14c. By increasing the distance, the topology can be reduced. In some embodiments, the distance is selected to be in the range of from about 2 μηη to about 3 μηι. The conductive body 138 can be offset from the edge of the pixel by any suitable distance in one direction toward the center of the pixel. In some embodiments, the distance d from the center of the conductive body 138 to the edge of the high gap pixel 2〇2a bordering the intermediate gap pixel 202b is in the range of about 1 μηι to about 3 μηη. Figure 14 shows an example of a flow chart illustrating one of the manufacturing procedures of an interference measurement modulator. The program 210 begins at block 211. At block 163409. Doc • 56- 201248291 212, a black mask is formed over a substrate. The substrate can be, for example, a transparent substrate, and the black mask structure can be configured to absorb ambient light or stray light in an optically inactive area, such as an area between pixels, and can conduct electricity. The black mask can mask each corner and at least one edge region of each pixel in the pixel array of one of the interference measurement modulators. The additional details of the black mask can be as previously described. In block 214, a dielectric layer is provided over the black mask. The dielectric layer can be used to electrically isolate the black mask from one or more subsequent deposited layers. The dielectric layer can be any suitable electrical insulator including, for example, silica (Sl 2 ), bismuth oxynitride (SiON), and tetraethyl orthophthalate (TEOS). Additional details of the dielectric layer can be as previously described. With continued reference to Figure 14, the process 210 continues at block 216 where an optical stack is formed over the dielectric layer. As noted above, the optical stack of the interferometric transducer can be electrically conductive, partially transparent, and partially reflective, and can include a fixed electrode for providing electrostatic operation to the interferometric modulator device. In block 218, a mechanical layer is formed over the optical stack. Forming the mechanical layer can include: providing a sacrificial layer; depositing one or more layers over the sacrificial layer; and removing the sacrificial layer to release the mechanical layer. The process 21 illustrated in Figure 14 continues at block 220 where the mechanical layer is tinned over the optical stack at each corner of the matrix, for example, as described above, a support post can be formed The corners of the pixels 隅, p, may be used to record the mechanical layer above the optical stack at the corners of the pixel and/or the mechanical layer may be self-supporting. In block 222, a via is provided in one of the pixels of the array. The 163409. Doc • 57· 201248291 The conduction system is disposed in the dielectric layer and electrically connects the fixed electrode to the black mask. The conduction system is disposed along one of the edges of the pixel and offset from the edge of the pixel in a direction toward one of the centers of the pixels. In some embodiments, the conduction system is formed in one of the black masks from one corner of the pixel extending along an edge of the pixel to another corner of the pixel, and one side of the channel includes the via One of the occupied areas is raised. By including a protrusion surrounding the footprint of the via on one side of the black mask channel, the via can become more robust to process variations. For example, the bumps can reduce topological variations in the area surrounding the via, thereby reducing manufacturing tolerances associated with depositing a conformal layer over the via. The projections can be of any suitable shape&apos; including, for example, a portion of a circle, a hexagonal octagon, a rectangle or a ladder. In some embodiments, the protrusions can be included on both sides of the channel. The method ends at block 223. 15A and 15B show an example of a system block diagram illustrating a display device 40 including a plurality of interferometric modulators. The display device 4 can be, for example, a cellular or mobile phone. However, the same components of the display device 4 or slight variations thereof also illustrate various types of display devices, such as televisions, e-book readers, and portable media players. The display device 40 includes a housing 41, a display 30, an antenna 43, a speaker 45, an input device 48, and a microphone 46. The outer casing 41 can be formed by any of a variety of manufacturing procedures, including injection molding and vacuum forming. In addition, the outer casing 41 can be made of any of a variety of materials including, but not limited to, plastic, metal 'glass, rubber and ceramic, or a combination thereof. The housing 41 can include a removable portion (not shown) that can be removed 163409. The doc -58- 201248291 section can be interchanged with other removable parts of different colors or with different logos, images or symbols. As described herein, display 30 can be any of a variety of displays, including bistable or analog displays. The display 30 can also be configured to include a flat panel display (such as a plasma, anus, OLED, STN LCD, or TFT LCD) or a non-flat panel display (such as a _CRT or other tube device), as described herein, The display 3A can include an interference measurement modulator display. The assembly of the display device 4 is schematically illustrated in Figure 15B. The display device 40 includes a housing 41' and can include at least partially enclosed in the housing Additional components. For example, the display device 4A includes a network interface 27 including an antenna that is consuming to the transceiver 47. The transceiver 47 is coupled to the processor 21, the processor 21 The control hardware 52 is coupled to the adjustment hardware 52. The adjustment hardware 52 can be configured to adjust a signal (eg, an adjustment signal 52 is coupled to a speaker 45 and a microphone W. The processor 21 is also coupled to an input device such as a driver controller 29. The driver controller 29 is coupled to a frame buffer 28 and an array driver 22' which in turn is coupled to the display array 3A. A power supply H5G can be Power is provided to all components for a particular display device 4() design. The network interface 27 includes an antenna 43 and a transceiver 47 such that the display device can communicate with - or multiple devices via a network. Interface η may also have some processing power to avoid, for example, data processing requirements of processor 21. Antenna 43 may transmit and receive signals. In some embodiments, the I63409. Doc •59- 201248291 Antenna 43 according to IEEEl6. 11 standard (including IEEE1611(a)'(b) or (g)) or IEEE 802. The 11 standard (including IEEE 8〇2 Ua, b, g*n) transmits and receives radio frequency (RF) signals. In some other implementations, the antenna 43 transmits and receives rF signals in accordance with the BLUETOOTH standard. In the case of a cellular telephone, the antenna 43 is designed to receive code division multiple access (CDMA), frequency division multiple access (FDMA), time division multiple access (TDMA), Global System for Mobile Communications (GSM). , GSM/General Packet Radio Service (GPRS), Enhanced Data GSM Environment (EDGE), Terrestrial Relay Radio (TETRA), Wideband CDMA (W-CDMA), Evolutionary Data Optimization (2\^_DO), lxEV -DO, EV-DO Rev A, EV-DO Rev B, High Speed Packet Access (HSPA), High Speed Downlink Packet Access (HSDPA), High Speed Uplink Packet Access (HSUPA), Evolved High Speed Packet Storage Take (HSPA+), Long Term Evolution (LTE), AMPS, or other known signals used to communicate within a wireless network, such as one that utilizes 3G or 4G technology. The transceiver 47 can pre-process signals received from the antenna 43 such that the processor 21 can receive and further manipulate the signals, and the transceiver 47 can also process signals received from the processor 21 such that the signals are It is emitted from the display device 40 via the antenna 43. In some embodiments, the transceiver 47 can be replaced by a receiver. In addition, the network interface 27 can be replaced by an image source that can store or generate image data to be sent to the processor 21. The processor 21 can control the overall operation of the display device 40. The processor 21 receives data (such as compressed image data from the network interface 27 or an image source) and processes the data into raw image data or is easily processed into one of the original image data formats. The processor 21 163409. Doc -60- 201248291 The processed data can be sent to the drive controller 29 or the frame buffer 28 for storage. Raw material usually refers to information that identifies the image characteristics at each location within the image. For example, such image characteristics may include color, saturation, and grayscale. The processor 21 can include a microcontroller, cpu or logic unit to control the operation of the display device 40. The conditioning hardware 52 can include amplifiers and filters for transmitting signals to the speaker 45 and for receiving signals from the microphone 46. The conditioning hardware 52 can be a discrete component within the display device 4 or can be incorporated into the processor 21 or other components. The driver controller 29 can retrieve the original image data generated by the processor 21 directly from the processor 21 or from the frame buffer 28 and can reformat the original image data to enable high speed transmission to the array driver. twenty two. In some embodiments, the driver control 重新 29 can reformat the original image-bee material into a data stream having one of the raster-like formats such that it has a timing suitable for scanning across the display array. The drive controller 29 then sends the formatted information to the array driver 22. Although the -drive controller 29 (such as an LCD controller) is typically associated with the system processor 21 as a separate integrated circuit (ic), such controllers can be implemented in a multi-modal manner. For example, the controller can be embedded in the processor 21 as a hardware, embedded in the processor 21 as a software, or fully integrated into the hardware with the array driver 22. The array driver 22 can receive formatted information from the driver controller 29 and can reformat the video material into a parallel set of waveforms that are applied to the χ-y pixels from the display multiple times per second. Matrix 163409. Doc 201248291 Hundreds and sometimes thousands (or more) of leads. In some embodiments, driver controller 29, array driver 22, and display array 30 are suitable for any type of display described herein. For example, the driver controller 29 can be a conventional display controller or a bi-stable display controller (e.g., an IMOD controller). Additionally, the array driver Μ can be a conventional driver or a bi-stable display driver (e.g., a display driver). Additionally, the display array 3 can be a conventional display array or a bi-stable display array (e.g., one containing an array of im〇d arrays). In some embodiments, the driver controller 29 can be integrated with the array driver 22. This embodiment is more common in highly integrated systems such as cellular phones, watches, and other small area displays. In some embodiments, input device 48 can be configured to allow, for example, a user to control the operation of display device 40. The input device 48 can include a keypad (such as a qWERTY keyboard or a telephone keypad), a button, a switch, a joystick, a touch sensitive screen, or a pressure sensitive film or a thermal film. The microphone 46 can be configured as an input device of the display device 40. In some embodiments, voice commands through microphone 46 can be used to control the operation of the display device (10). Power supply 5G can include a variety of energy storage devices as are well known in the art. For example, the power supply 50 can be a rechargeable battery such as a nickel cadmium battery or a lithium ion battery. The power supply 50 can also be a renewable energy source, a capacitor or a solar cell (including a plastic solar cell or a solar cell paint). The power supply 5 can also be configured to receive power from a wall socket. β 163409. Doc - 62 - 201248291 In some embodiments, control programmability resides in a driver controller 29 that can be located in several locations in an electronic display system. In some other implementations, control programmability resides in the array driver 22. The above optimizations can be implemented in any number of hardware and/or software components and in various configurations. The various illustrative logic, logic blocks, modules, circuits, and algorithm steps described in connection with the embodiments disclosed herein can be implemented as an electronic hardware, a computer software, or a combination of both, which has been generally described in terms of functionality and The interchangeability of hardware and software is illustrated in the various illustrative components, blocks, modules, circuits, and steps described above. Whether or not this functionality is implemented in hardware or software depends on the specific application and design constraints imposed on the overall system. The hardware and data processing apparatus for implementing the various illustrative logic, logic blocks, modules, and circuits described in connection with the aspects disclosed herein can be implemented or executed by a general single-chip or multi-chip processor, A digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable closed array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, etc. It is designed to perform any combination of the functions recited herein. A general purpose processor can be a microprocessor or any conventional processor, controller, microcontroller or state machine. A processor is also implemented as a combination of computing devices (e.g., a gift-microprocessor combination), a plurality of microprocessors, one or more microprocessor cores, or any other such configuration. In some embodiments, specific steps and methods may be performed by circuitry dedicated to the 弋 function. In the - or multiple aspects, the described functions can be implemented on hardware, number 163409. Doc •63- 201248291 Bit electronic circuits, computer software, and Boeing, including any combination of this description = and other structural equivalents or the like. The implementation of the subject matter can also be implemented as one of the computer program media or a plurality of computer programs (ie, one of the computer program instructions) Various modifications of the implementations described in the present invention can be readily understood by those skilled in the art, and the principles defined herein may be applied to other embodiments without departing from the spirit or scope of the present invention. The scope of the invention is not intended to be limited to the embodiments shown herein, but is in accordance with the invention, the principles and the novel features disclosed herein. The word "exemplary" is used exclusively herein. Any use of the embodiments as "exemplary" or provided as an example is not necessarily to be construed as preferred or advantageous over other embodiments. It will be readily understood that the terms "upper" and "lower" are sometimes used to facilitate the description of the schema and to indicate the relative position of the schema orientation on a suitably oriented page, and may not be reversed. The specific features of the m〇D are implemented as described in the specification. The specific features described in the background of the individual embodiments may also be implemented in combination in a single-implementation. Conversely, in the context of a single embodiment The various features described may also be implemented in various embodiments or in any suitable sub-combination. In addition, although the features may be described above as being in a particular combination and even if so initially claimed, in some cases' One or more features from the claimed combination may be excised from the combination and the claimed combination may be related to a sub-combination or a sub-combination change 163409. Doc -64 - 201248291

類似地,踔然在圖式中以—〜 不應理解為需要以所展示之特/項序描繪操作,但是此 操作,或執行所有_解說===或循序順序執行此等 外,圖式可以-流程圖之形4達成所要結果。此 和广扯 , 意地描纷一或多個例示性 程序。然而,未經描繪之其#』 性 1明夕&quot;其他操作可併人於經示意性圖解 說明之例不性程序中。例如,济+ Λ ^ 了在經圖解說明之操作之任 一者之前、之後、之同時或之 .^ 门執仃一或多個額外操作。 在某些境況中’多重任務處理月 _ al . 堤理及並行處理可為有利。此 外’在上述實施方案中之各插备 &lt;谷種系統組件之分離不應理解 在所有實施方案中皆需要此分離, 刀離且應理解為所描述之程 式組件及系統通常可一起整合於—單—軟體產品申或封裝 至多個軟體產品中。此外,其他實施方案係在下列申請專 利範圍之範_ n情況中,中請專利範圍中叙述之 動作可以一不同順序執行且仍達成所要結果。 【圖式簡單說明】 圖1展示描繪一干涉量測調變器(IM〇D)顯示裝置之—系 列像素中之兩個相鄰像素之一等角視圖之一實例。 圖2展示圖解說明併有一 3x3干涉量測調變器顯示器之— 電子裝置之一系統方塊圖之一實例。 圖3展示圖解說明圖丨之干涉量測調變器之可移動反射層 位置對施加電壓之一圖之一實例。 圖4展示圖解說明在施加各種共同及分段電壓時一干涉 量測調變器之各種狀態之一表之一實例。 163409.doc -65- 201248291 圖5 A展示圖解說明圖2之3x3干涉量測調變器顯示器中之 一顯示資料圖框之一圖之一實例。 圖5B展示用於可用以寫入圖5A中圖解說明之顯示資料 之圖框之共同信號及分段信號之一時序圖之一實例。 圖6A展示圖1之干涉量測調變器顯示器之一部分橫截^面 之一實例。 圖6B至6E展示干涉量測調變器之不同實施方案之橫截 面之實例。 圖7展示圖解說明一干涉量測調變器之一製造程序之— 流程圖之一實例。 圖8A至8E展示在製造一干涉量測調變考夕 文亞义一方法中之 各個階分段之橫截面示意圖解之實例。 圖9展示圖解說明一干涉量測調變器之一製造程序之 流程圖之一實例。 器之—方法中 陣列之平面圖 製造程序之一 圖10A至圖10R展示製造一干涉量測調變 之各個階分段之截面示意圖解之實例。 圖11A至圖11C展示各種干涉量測調變器 示意圖解之實例。 圖12展示圖解說明一干涉量測調變器之 流程圖之一實例。 圖13 A展示一干涉量測調變器 之一實例。Similarly, the use of -~ in the drawings should not be construed as requiring the operations to be depicted in the specific/item order shown, but this operation, or the execution of all _ narration === or sequential execution of these, Can - the shape of the flow chart 4 to achieve the desired result. This and the arbitrarily, one or more exemplary procedures are intended. However, it is not depicted that its "sexuality 1" and other operations can be combined with an illustrative procedure. For example, 济+Λ ^ is one or more additional operations before, after, or at the same time as any of the illustrated operations. In some cases, multi-task processing month _ al. levee and parallel processing may be advantageous. Furthermore, the separation of the various plug-in &lt;seed system components in the above embodiments should not be understood to require this separation in all embodiments, and it should be understood that the described program components and systems can generally be integrated together. - Single-software products are applied or packaged into multiple software products. In addition, other embodiments are in the scope of the following application patents, and the actions recited in the scope of the patent can be performed in a different order and still achieve the desired result. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 shows an example of an isometric view of one of two adjacent pixels in a series of pixels depicting an interferometric transducer (IM〇D) display device. Figure 2 shows an example of a system block diagram illustrating one of the electronic devices illustrated and having a 3x3 interferometric transducer display. Figure 3 shows an example of one of the graphs of the position of the movable reflective layer and the applied voltage of the interferometric transducer of Fig. 4 shows an example of one of a table illustrating various states of an interferometric modulator when various common and segmented voltages are applied. 163409.doc -65- 201248291 Figure 5A shows an example of one of the display data frames illustrating the 3x3 interferometric transducer display of Figure 2. Figure 5B shows an example of a timing diagram for one of the common and segmented signals that can be used to write the frame of the display data illustrated in Figure 5A. Figure 6A shows an example of a partial cross-section of the interference measurement modulator display of Figure 1. Figures 6B through 6E show examples of cross sections of different embodiments of an interferometric transducer. Figure 7 shows an example of a flow chart illustrating one of the manufacturing processes of an interference measurement modulator. Figures 8A through 8E show examples of cross-sectional schematic solutions of various step segments in the method of fabricating an interference measurement modulation method. Figure 9 shows an example of a flow chart illustrating a manufacturing procedure for an interference measurement modulator. A plan of the array in the method - one of the manufacturing processes Fig. 10A to Fig. 10R show an example of a schematic diagram of a cross section of each step of manufacturing an interference measurement modulation. Figures 11A through 11C show examples of schematic solutions of various interferometric modulators. Figure 12 shows an example of a flow chart illustrating an interference measurement modulator. Figure 13A shows an example of an interference measurement modulator.

平面圖示意圖解 干涉量測調變器 圖13B展示圖13A之沿線13B-13B獲取之 陣列之一橫截面示意圖解之一實例β 163409.doc -66 - 201248291 圖14展示圖解說明一干涉量測調變器之—製造程序之一 流程圖之一實例。 圖1 5A及圖1 5B展示圖解說明包含複數個干涉量測調變 器之一顯示裝置之系統方塊圖之實例。 【主要元件符號說明】 12 干涉量測調變器(imod)/像素 13 光 14 機械層/可移動反射層 14a 反射子層/導電層/反射層/子層 14b 支撐層/介電支撐層/子層 14c 導電層/帽蓋層 15 光 16 下伏光學堆疊/光學堆疊 16a 吸收層/光學吸收體/吸收體子層 16b 介電質/子層 18 柱/支撑件/支撑柱 19 間隙/腔 19a 高間隙/第一間隙 19b 中間間隙/第二間隙 19c 低間隙/第三間隙 20 透明基板/下伏基板 21 處理器 22 陣列驅動器 23 黑色遮罩/干涉量測堆疊黑色遮罩結構 163409.doc -67- 201248291 23a 光學吸收層 23b 介電層 23c 匯流層 24 列驅動器電路 25 犧牲層 26 行驅動器電路 27 網路介面 28 圖框緩衝器 29 驅動器控制器 30 顯示陣列/顯示面板/顯示器 32 繫鏈 34 可變形層 35 間隔層/介電層 40 顯示裝置 41 外殼 43 天線 45 揚聲器 46 麥克風 47 收發器 48 輸入裝置 50 電源供應器 52 調節硬體 60a 第一線時間 60b 第二線時間 163409.doc • 68- 201248291 60c 第三線時間 60ά 第四線時間 60e 第五線時間 62 高分段電壓 64 低分段電壓 70 釋放電壓 72 高保持電壓 74 高定址電壓 76 低保持電壓 78 低定址電壓 122 触刻停止層 123 高間隙像素之角隅 123a 高間隙像素之角隅 123b 高間隙像素之角隅 123c 高間隙像素之角隅 123d 高間隙像素之角隅 123e 中間間隙像素之角隅 123f 低間隙像素之角隅 126 成形結構 129 突出部 134 色彩增強結構 135 触刻停止層 138 導電導通體 140 固定電極層 163409.doc - 69 - 201248291 141 透明介電層 142 触刻停止層/介電保護層 144 第一犧牲層 145 第二犧牲層 146 第三犧牲層 150 錨定孔 〇 150a 錨定孔 150b 錨定孔 150c 錨定孔 150d 錨定孔 154 触刻停止層 160 第一支撐層 160a 第一支撐層之第一部分 160b 第一支撐層之第二部分 161 第二支撐層 162 第三支撐層 171 扭結 172a 高間隙像素/第一間隙像素 172b 中間間隙像素/第二間隙像素 172c 低間隙像素/第三間隙像素 174a 高間隙像素/第一間隙像素 174b 中間間隙像素/第二間隙像素 174c 低間隙像素/第三間隙像素 180 干涉量測調變器陣列 163409.doc -70- 201248291 182 184 200 202a 202b 202c 203 干涉量測調變器陣列 干涉量測調變器陣列 干涉量測調變器陣列 第-間隙像素/高間隙像素 第二間隙像素/中間間隙像素 第三間隙像素/低間隙像素 黑色遮罩凸起 204 黑色遮罩通道 Common line 1 共同線1 Common line 2 共同線2 Common line 3 共同線3 Segment line 1 分段線1 Segment line 2 分段線2 Segment line 3 分段線3 163409.doc 71Schematic diagram of the plan view interferometric measurement modulator Figure 13B shows an example of a cross-sectional schematic of one of the arrays taken along line 13B-13B of Figure 13A. Figure 163409.doc -66 - 201248291 Figure 14 shows an interferometric measurement modulation An example of a flowchart of one of the manufacturing procedures. 1A and 1B show an example of a system block diagram illustrating a display device including a plurality of interferometric modulators. [Main component symbol description] 12 Interference measurement modulator (imod)/pixel 13 Light 14 Mechanical layer/movable reflective layer 14a Reflective sublayer/conductive layer/reflective layer/sublayer 14b Support layer/dielectric support layer/ Sublayer 14c Conductive Layer/Cap Layer 15 Light 16 Under Optical Stacking/Optical Stacking 16a Absorbing Layer/Optical Absorber/Absorber Sublayer 16b Dielectric/Sublayer 18 Column/Support/Support Column 19 Gap/Cavity 19a high gap/first gap 19b intermediate gap/second gap 19c low gap/third gap 20 transparent substrate/underlying substrate 21 processor 22 array driver 23 black mask/interference measurement stack black mask structure 163409.doc -67- 201248291 23a Optical Absorption Layer 23b Dielectric Layer 23c Confluence Layer 24 Column Driver Circuit 25 Sacrificial Layer 26 Row Driver Circuit 27 Network Interface 28 Frame Buffer 29 Driver Controller 30 Display Array / Display Panel / Display 32 Tether 34 deformable layer 35 spacer/dielectric layer 40 display device 41 housing 43 antenna 45 speaker 46 microphone 47 transceiver 48 input device 50 power supply 52 adjustment Body 60a First line time 60b Second line time 163409.doc • 68- 201248291 60c Third line time 60ά Fourth line time 60e Fifth line time 62 High segment voltage 64 Low segment voltage 70 Release voltage 72 High hold voltage 74 High address voltage 76 low hold voltage 78 low address voltage 122 etch stop layer 123 high gap pixel angle 隅123a high gap pixel angle 隅123b high gap pixel angle 隅123c high gap pixel angle 隅123d high gap pixel angle隅123e intermediate gap pixel angle 隅123f low gap pixel angle 隅126 shaped structure 129 protrusion 134 color enhancement structure 135 etch stop layer 138 conductive via 140 fixed electrode layer 163409.doc - 69 - 201248291 141 transparent dielectric layer 142 etch stop layer/dielectric protection layer 144 first sacrificial layer 145 second sacrificial layer 146 third sacrificial layer 150 anchor hole 150a anchor hole 150b anchor hole 150c anchor hole 150d anchor hole 154 Layer 160 first support layer 160a first portion of first support layer 160b second portion of first support layer 161 second support Layer 162 third support layer 171 kink 172a high gap pixel / first gap pixel 172b intermediate gap pixel / second gap pixel 172c low gap pixel / third gap pixel 174a high gap pixel / first gap pixel 174b intermediate gap pixel / Two gap pixels 174c low gap pixels / third gap pixels 180 interference measurement modulator array 163409.doc -70- 201248291 182 184 200 202a 202b 202c 203 interference measurement modulator array interference measurement modulator array interference Measurer Array Array - Gap Pixel / High Gap Pixel Second Gap Pixel / Intermediate Gap Pixel Third Gap Pixel / Low Gap Pixel Black Mask Bump 204 Black Mask Channel Common line 1 Common Line 1 Common line 2 Common Line 2 Common line 3 Common line 3 Segment line 1 Segment line 1 Segment line 2 Segment line 2 Segment line 3 Segment line 3 163409.doc 71

Claims (1)

201248291 七、申請專利範圍: 1 · 一種裝置’其包括: 一像素陣列,每一像素具有: 一基板; 一導電黑色遮罩’其佈置在該基板上並在該像素之 四個角隅之各者處且沿該像素之至少—邊緣區域遮蔽 該像素之一光學非作用部分; 一介電層’其佈置於該黑色遮罩上方; 一光學堆疊,其佈置於該介電層上方,該光學堆疊 包含一固定電極;及 與該光學堆疊之間界定一腔,該機械層可穿過該腔而 在一致動位置與-鬆他位置之間移動,該機械層在該 像素之每一角隅處錨定於該光學堆疊上方, 其中該像素陣列包含一第一像素,該第—像素且有該 介電層中將該固定電極電連接至該黑色遮罩之—導電導 通體,該導電導通體佈置在該第一像素之一光學非作用 區域中沿該第-像素之—邊緣之_位置中,且該導電導 通體之位i經間隔而在朝向該第一像素之中心之一 上自該第一像素之該邊緣偏移。 0 2.如請求項丨之裝置,其中該像素陣列進一步包含 -像素之該邊緣與該第一像素相鄰之一第二像素,其 該第二像素並不包含該介電層中用於將該雷 接至該黑色遮罩之-導通體。 1極電連 163409.doc 201248291 3.201248291 VII. Patent Application Range: 1 · A device comprising: a pixel array, each pixel having: a substrate; a conductive black mask disposed on the substrate and at each of the four corners of the pixel And shielding an optically inactive portion of the pixel along at least an edge region of the pixel; a dielectric layer ' disposed over the black mask; an optical stack disposed over the dielectric layer, the optical The stack includes a fixed electrode; and a cavity is defined between the optical stack, the mechanical layer can pass through the cavity to move between a consistent position and a loose position, the mechanical layer being at each corner of the pixel Anchored on the optical stack, wherein the pixel array includes a first pixel, and the first pixel has a conductive layer electrically connected to the black mask in the dielectric layer, the conductive via Arranging in an optically inactive region of one of the first pixels along a position of the edge of the first pixel, and the bit i of the conductive via is spaced toward one of the centers of the first pixel The edge is offset from the first pixel. 0. The device of claim 2, wherein the pixel array further comprises a second pixel of the edge of the pixel adjacent to the first pixel, the second pixel not including the dielectric layer for The lightning is connected to the black body of the black mask. 1 pole electrical connection 163409.doc 201248291 3. 一高度大 如請求項2之裝置,其中該笫一 、丁 &quot;发乐像素之該腔之 於該第二像素之該腔之一高度。 如請求項3之裝置,其中該第—像素係,—高間隙像素且 該第一像素係一中間間隙像素’且其中該像素陣列進一 步包含在該高間隙像素與該中間間隙像素相對之一侧上 與該高間隙像素相鄰之-低間隙像素,且其中該低間隙 像素並不包含該介電層中用於將該固定電極電連接至該 黑色遮罩之一導通體。 5·如請求項3之裝置’其中該黑色遮罩包含沿該第一像素 之該邊緣自該像素之-角隅延伸至該導通體之一通道。 6·如请求項5之裝置,其中該通道包含包圍該導通體之一 佔據面積之一凸起。 7. 如凊求項6之裝置,其中包含該凸起之該黑色遮罩之該 通道之。p分具有自該凸起之一邊緣至該像素之該邊緣 之寬度’該寬度之範圍介於約3 μηι至約4.5 μιη之間。 8. 如凊求項7之裝置,其中不包含該凸起之該黑色遮罩之 第一通道之一部分具有自該黑色遮罩之該通道之一邊緣 至該像素之該邊緣之一寬度,該寬度之範圍介於約2卩爪 至約3 μηι之間。 9·如°青求項3之裝置’其中自該導通體之一中心至該第一 禮去 該邊緣之一距離之範圍介於約1 pm至約3 μιη之 間。 10.如6青求項8之裝置,其中該黑色遮罩包含一光學吸收 層、一介電層及一導電匯流層之至少一者。 163409.doc 201248291 11. 12. 13. 14. 15. 16. 如請求項1 〇 &gt; # 〈褒置’其中該導通體係該介電層中用於 該黑色遮I夕姑播 、种 十^孩導電匯流層電連接至該光學 定電極之-開U。 固 如請求項丨丨&gt; # 教置,其進一步包括經組態以施加— 電壓之一偽厭带A 艰壓 愛1:路’其中當施加該偏壓電壓時該機械層 之至少一部分實質上平行於該基板。 如請求項1之褒置,其進一步包括: 一顯示器; 處理器,其經組態以與該顯示器通信,該處理器經 組態以處理影像資料;及 。己憶體裝置,其經組態以與該處理器通信。 如請求項13之裝置,其進一步包括: 一驅動器電路,其經組態以將至少一信號發送至該顯 示器;及 一控制器,其經組態以將該影像資料之至少一部分發 送至該驅動器電路。 如请求項14之裝置,其進一步包括經組態以將該影像資 料發送至該處理器之一影像源模組。 一種形成具有複數個像素之一顯示裝置之方法,其包 括: 在一基板上沈積一導電黑色遮罩,該黑色遮罩在每一 像素之四個角隅之各者處且沿每一像素之至少一邊緣區 域遮蔽該像素之一光學非作用部分; 在該黑色遮罩上方沈積一介電層; 163409.doc 201248291 在該介電層上沈積一光學堆疊’該光學堆疊包含一固 定電極, 在該光學堆疊上方沈積該機械層,該機械層在該機械 層與該光學堆疊之間界定一腔; 在每一像素之4 一角隅處於該光學㈣上方錯定該機 械層;及 你软衣JL y %守通趙,琢導通 體佈置在該介電層巾且將言玄固定電極電連接至該黑色遮 罩’該導通體佈置在該第-像素之—光學非作用區域中 沿該第一像素之-邊緣之—位置中,且其中該導電導通 體之該位置經間隔而在朝向該第一像素之中心之一方向 上自該第一像素之該邊緣偏移。 17.如明求項16之方法,其進—步包括:在沈積該機械層之 前沈積-犧牲層;及在沈積該機械層之後移除該犧牲層 以形成該腔’其中該犧牲層具有經選擇以界定該腔之一 局度之一厚度。 如青求項17之方法’其進—步包括在該第—像素之每一 角隅處於該犧牲層中形成―减孔,每1定孔界定在 素之每—角隅處於該光學堆叠上方㈣該機械 19. 如請求項18之方法,其進—步包括在每 -支擇柱以支樓該機械層。 疋孔中形成 20. 如請求項16之大、i 其中沈積該黑色遮罩進一步白人,士 積沿該第一像紊$兮Α 步包S沈 京之忒邊緣自該像素之一角隅延伸至該導 163409.doc 201248291 通體之該黑色遮罩之—通道。 21. 22. 23. 24. 25. :請求項20之方法’其中沈積該黑色遮罩進一步 該通道中形成_料通體之—佔據面積之-凸起。 如請求項16之方法,其 第像素係一高間隙像素, 且其中該複數個像素進一 與該第—較_之—Μ⑽料第之該邊緣 u 中間間隙像素,且其中該複數個 與該第一像素相鄰且與該中間間隙像素 _ :像素’其中該中間間隙及該低間隙像素 不u該介電層中用於將該固定電極電 遮罩之一導通體。 μ黑已 如請求項16之方法,苴 . 其進一步包括在該機械層面對該腔 之一表面上形成—反射層,該反射層及該光學堆疊形成 一干涉量測腔。 如凊求項23之方法’其進一步包括將一偏壓電壓施加於 該光學堆疊,使得該機械層之至少—部分實質上平行於 該基板。 一種機電裝置,其包括: 複數個像素’每—像素包含: 一基板; 用於吸收光之構件,其佈置在該基板上且在該像素 之四個角隅之各者處且沿該像素之至少一邊緣區域遮 蔽該像素之一光學非作用部分; 一介電I ’其佈置在該光學吸收構件上方; 光學堆疊,其佈置在該介電層上,該光學堆疊包 I63409.doc 201248291 含一固定電極;及 一機械層,其定位於該光學堆疊上方以在該機械層 與該光學堆疊之間界定一腔,該機械層可穿過該腔而 在一致動位置與一鬆弛位置之間移動,該機械層在該 像素之每一角隅處錨定在該光學堆疊上方, 其中該像素陣列包含一第一像素,該第一像素具有該 介電層中用於將該固定電極電連接至該光吸收構件之一 構件’料接構件佈置在㈣-像素之一光學非作用區 域中沿該第-像素之一邊緣之一位置中,且其中該連接 構件之位置經間隔而在朝向該第一像素之中心之一方向 上自該第一像素之該邊緣偏移。 26.如請求項25之機電裝置’其中該光吸收構件包含沿該第 一像素之該邊緣自該像素之—角隅延伸至該連接構件之 一通道。 .如晴求項26之機電裝置’其中該通道包含包圍該連接構 件之一佔據面積之一凸起。 ,請求項25之機電裝置,其中該第一像素係一高間隙像 素,且其中該複數個像素進—步包含沿該第—像素之該 邊緣與該第—像素相鄰之—中間間隙像素,且其中該複 = 象素進一步包含與該第-像素相鄰且與該中間間隙 像音:對之一低間隙像素’其中該中間間隙及該低間隙 包含該介電層中用於將該固定電極電連接至該 黑色遮罩之一構件。 163409.docA device as claimed in claim 2, wherein the cavity of the chirped pixel is at a height of the cavity of the second pixel. The device of claim 3, wherein the first pixel system, the high gap pixel and the first pixel is an intermediate gap pixel 'and wherein the pixel array is further included on a side opposite to the high gap pixel and the intermediate gap pixel a low gap pixel adjacent to the high gap pixel, and wherein the low gap pixel does not include a conductive body in the dielectric layer for electrically connecting the fixed electrode to the black mask. 5. The device of claim 3 wherein the black mask comprises a channel extending from the corner of the pixel to the one of the vias along the edge of the first pixel. 6. The device of claim 5, wherein the channel comprises a protrusion that surrounds one of the occupied areas of the conductive body. 7. The device of claim 6, wherein the channel of the raised black mask is included. The p-score has a width from one edge of the bump to the edge of the pixel. The width ranges from about 3 μηι to about 4.5 μηη. 8. The device of claim 7, wherein a portion of the first channel of the black mask that does not include the protrusion has a width from one edge of the channel of the black mask to one of the edges of the pixel, The width ranges from about 2 jaws to about 3 μηι. 9. The device of claim 3 wherein the distance from one of the centers of the conductor to the first edge is between about 1 pm and about 3 μιη. 10. The device of claim 6, wherein the black mask comprises at least one of an optical absorption layer, a dielectric layer, and a conductive bus layer. 163409.doc 201248291 11. 12. 13. 14. 15. 16. If the request item 1 〇&gt;# 〈褒置' where the conduction system is used in the dielectric layer for the black cover, the seed 10 The child's conductive busbar is electrically connected to the optical stator - open U. As the request item 丨丨&gt;#教置, it further includes being configured to apply - one of the voltages, a pseudo-anaesthetic band A, and a hard-pressed love 1: path 'where at least a portion of the mechanical layer is substantially applied when the bias voltage is applied The upper side is parallel to the substrate. The device of claim 1, further comprising: a display; a processor configured to communicate with the display, the processor configured to process the image material; and A memory device configured to communicate with the processor. The device of claim 13, further comprising: a driver circuit configured to transmit at least one signal to the display; and a controller configured to send at least a portion of the image data to the driver Circuit. The apparatus of claim 14, further comprising configured to transmit the image data to an image source module of the processor. A method of forming a display device having a plurality of pixels, comprising: depositing a conductive black mask on a substrate, the black mask being at each of four corners of each pixel and along each pixel At least one edge region obscuring an optically inactive portion of the pixel; depositing a dielectric layer over the black mask; 163409.doc 201248291 depositing an optical stack on the dielectric layer 'The optical stack includes a fixed electrode, Depositing the mechanical layer over the optical stack, the mechanical layer defining a cavity between the mechanical layer and the optical stack; at a corner of each pixel 4, the mechanical layer is misaligned above the optical (four); and your soft coat JL y % 守通赵, the 琢 conducting body is disposed on the dielectric layer towel and electrically connecting the sinus fixed electrode to the black mask. The conducting body is disposed in the optically inactive area of the first pixel along the first In the pixel-edge-position, and wherein the position of the conductive via is offset from the edge of the first pixel in a direction toward the center of the first pixel. 17. The method of claim 16, further comprising: depositing a sacrificial layer prior to depositing the mechanical layer; and removing the sacrificial layer to form the cavity after depositing the mechanical layer, wherein the sacrificial layer has a Select to define one of the thicknesses of one of the chambers. The method of claim 17 includes the step of: forming, in each corner of the first pixel, a "reduction hole" in the sacrificial layer, each of the fixed holes being defined in each of the primes - the corner is above the optical stack (four) The machine 19. The method of claim 18, further comprising the mechanical layer in each of the support columns. Formed in the pupil 20. If the size of the request item 16 is large, i where the black mask is deposited further white, the margin extends along the edge of the first image from the edge of the pixel to the edge of the pixel. 163409.doc 201248291 The black mask of the whole body - the passage. 21. 22. 23. 24. 25. The method of claim 20 wherein the black mask is deposited further to form an area-of-area-protrusion in the channel. The method of claim 16, wherein the pixel is a high-gap pixel, and wherein the plurality of pixels are in a gap with the edge u of the first---(10) material, and wherein the plurality of pixels and the plurality of pixels A pixel adjacent to and intersecting the intermediate gap pixel _: pixel' wherein the intermediate gap and the low gap pixel are in the dielectric layer for electrically connecting the fixed electrode to one of the conductive masks. μ black has the method of claim 16, wherein it further comprises forming a reflective layer on a surface of the cavity at the mechanical level, the reflective layer and the optical stack forming an interference measuring cavity. The method of claim 23, further comprising applying a bias voltage to the optical stack such that at least a portion of the mechanical layer is substantially parallel to the substrate. An electromechanical device comprising: a plurality of pixels each per pixel comprising: a substrate; a member for absorbing light disposed on the substrate and at each of the four corners of the pixel and along the pixel At least one edge region masks one of the optically inactive portions of the pixel; a dielectric I' disposed over the optical absorbing member; and an optical stack disposed on the dielectric layer, the optical stack package I63409.doc 201248291 a fixed electrode; and a mechanical layer positioned over the optical stack to define a cavity between the mechanical layer and the optical stack, the mechanical layer being movable through the cavity to move between an actuated position and a relaxed position The mechanical layer is anchored above the optical stack at each corner of the pixel, wherein the pixel array includes a first pixel having the dielectric layer for electrically connecting the fixed electrode to the One of the members of the light absorbing member is disposed in the optically inactive region of one of the (four)-pixels along one of the edges of one of the first pixels, and wherein the position of the connecting member The spacing is offset from the edge of the first pixel in a direction toward the center of the first pixel. 26. The electromechanical device of claim 25 wherein the light absorbing member comprises a channel extending from the corner of the pixel to the connecting member along the edge of the first pixel. The electromechanical device of claim 26 wherein the channel comprises a protrusion that surrounds one of the occupied areas of the connecting member. The electromechanical device of claim 25, wherein the first pixel is a high gap pixel, and wherein the plurality of pixels further comprises an intermediate gap pixel adjacent to the first pixel along the edge of the first pixel, And wherein the complex = pixel further comprises adjacent to the first pixel and the intermediate gap image: a low gap pixel 'of the intermediate gap and the low gap comprising the dielectric layer for the fixing The electrode is electrically connected to one of the members of the black mask. 163409.doc
TW101111940A 2011-04-04 2012-04-03 Pixel via and methods of forming the same TW201248291A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/079,599 US9134527B2 (en) 2011-04-04 2011-04-04 Pixel via and methods of forming the same
US13/079,487 US8963159B2 (en) 2011-04-04 2011-04-04 Pixel via and methods of forming the same

Publications (1)

Publication Number Publication Date
TW201248291A true TW201248291A (en) 2012-12-01

Family

ID=45931062

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101111940A TW201248291A (en) 2011-04-04 2012-04-03 Pixel via and methods of forming the same

Country Status (5)

Country Link
JP (2) JP5792373B2 (en)
KR (1) KR20140027212A (en)
CN (1) CN103460113A (en)
TW (1) TW201248291A (en)
WO (1) WO2012138577A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6182918B2 (en) 2013-03-18 2017-08-23 セイコーエプソン株式会社 Interference filter, optical filter device, optical module, and electronic apparatus
DE102014105633B3 (en) * 2014-04-22 2015-09-10 Advanced Display Technology Ag Pixel array for an electro-fluidic display element and a corresponding display element
CN111630434B (en) * 2018-02-01 2022-06-24 罗伯特·博世有限公司 Micromechanical mirror device, mirror system and method for producing a micromechanical mirror device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297471B1 (en) * 2003-04-15 2007-11-20 Idc, Llc Method for manufacturing an array of interferometric modulators
JP3329206B2 (en) * 1996-09-05 2002-09-30 セイコーエプソン株式会社 Color liquid crystal display device and pixel arrangement method
CN100343717C (en) * 1998-09-24 2007-10-17 反射公司 Double-layer dielectric reflective space optical modulator with self-limiting micro-mechanical component
US6861277B1 (en) * 2003-10-02 2005-03-01 Hewlett-Packard Development Company, L.P. Method of forming MEMS device
US7420725B2 (en) * 2004-09-27 2008-09-02 Idc, Llc Device having a conductive light absorbing mask and method for fabricating same
CN101576656B (en) * 2005-02-23 2012-05-30 皮克斯特罗尼克斯公司 Display methods and apparatus
US7619805B2 (en) * 2005-03-29 2009-11-17 Hewlett-Packard Development Company, L.P. Light modulator device
TWI442086B (en) * 2006-08-31 2014-06-21 Liquavista Bv Electronic device comprising an array of cells and method for operating the same
KR101004691B1 (en) * 2007-09-12 2011-01-04 주식회사 하이닉스반도체 Method for forming micropattern in semiconductor device
US7719754B2 (en) * 2008-09-30 2010-05-18 Qualcomm Mems Technologies, Inc. Multi-thickness layers for MEMS and mask-saving sequence for same
US8270056B2 (en) * 2009-03-23 2012-09-18 Qualcomm Mems Technologies, Inc. Display device with openings between sub-pixels and method of making same

Also Published As

Publication number Publication date
JP2015158670A (en) 2015-09-03
JP5792373B2 (en) 2015-10-14
CN103460113A (en) 2013-12-18
KR20140027212A (en) 2014-03-06
WO2012138577A1 (en) 2012-10-11
JP2014515836A (en) 2014-07-03

Similar Documents

Publication Publication Date Title
TWI402536B (en) Microelectromechanical device with optical function separated from mechanical and electrical function
TWI599794B (en) Electromechanical systems apparatus and method of manufacturing the same
TWI554817B (en) Dielectric enhanced mirror for imod display
TW200900347A (en) Microelectromechanical device and method utilizing conducting layers separated by stops
JP5718520B2 (en) Dielectric spacers for display devices
TWI390643B (en) Mems device and interconnects for same
TWI484218B (en) Matching layer thin-films for an electromechanical systems reflective display device
KR20120120494A (en) Interferometric pixel with patterned mechanical layer
JP2014508958A (en) Electromechanical interferometric modulator device
TW201533471A (en) Multi-state interferometric modulator with large stable range of motion
TW201238010A (en) Method of fabrication and resultant encapsulated electromechanical device
TW201307943A (en) Devices and methods for achieving non-contacting white state in interferometric modulators
TW201319673A (en) Capacitive touch sensor having light shielding structures
TW201308290A (en) Methods and devices for driving a display using both an active matrix addressing scheme and a passive matrix addressing scheme
US8547626B2 (en) Mechanical layer and methods of shaping the same
JP2015501943A (en) Side wall spacers along conductive lines
TW201248291A (en) Pixel via and methods of forming the same
TW201248292A (en) Mechanical layer and methods of making the same
TW201333530A (en) Electromechanical systems variable capacitance device
TW201337326A (en) Storage capacitor for electromechanical systems and methods of forming the same
JP2014534470A (en) Stack via for vertical integration
TW201329602A (en) Electromechanical systems variable capacitance device
JP2015507215A (en) Encapsulated array of electromechanical system devices
JP2014512554A (en) Apparatus and method for supporting a mechanical layer
TWI476750B (en) Methods and systems for energy recovery in a display