TW201248183A - Radiation monitoring method - Google Patents

Radiation monitoring method Download PDF

Info

Publication number
TW201248183A
TW201248183A TW100117826A TW100117826A TW201248183A TW 201248183 A TW201248183 A TW 201248183A TW 100117826 A TW100117826 A TW 100117826A TW 100117826 A TW100117826 A TW 100117826A TW 201248183 A TW201248183 A TW 201248183A
Authority
TW
Taiwan
Prior art keywords
radiation
radiation dose
unit
value
dose
Prior art date
Application number
TW100117826A
Other languages
Chinese (zh)
Inventor
Tzu-Chen Hung
Kao-Feng Tsai
Yuan-Chih Lin
Kuo-Chen Huang
Original Assignee
Kwan Chiu Radio Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kwan Chiu Radio Mfg Co Ltd filed Critical Kwan Chiu Radio Mfg Co Ltd
Priority to TW100117826A priority Critical patent/TW201248183A/en
Publication of TW201248183A publication Critical patent/TW201248183A/en

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

A radiation monitoring method for monitoring the radiation dose level of a radiation source, such as a nuclear power plant or a hospital, is disclosed. In the radiation monitoring method, a plurality of radiation monitoring units are disposed at a plurality of sub-regions of the nuclear power plant or on the personnel of the radiation source. Thereafter, the values of detected radiation dose levels of the sub-regions are transmitted to a central control system through a plurality of relay transceivers so as to determine if each of the values of the radiation dose levels is greater than a short time standard value to provide a determination result. If the determination result is yes, the central control system transmits a warning signal to the radiation monitoring units of the sub-regions and the local personnel through the relay transceivers, and present evacuation paths on the radiation monitoring units. If the determination result is no, the central control system performs a long time track for the accumulation of the radiation dose level of the local personnel.

Description

201248183 六、發明說明: 【發明所屬之技術領域】 本揭露是有關於一種輻射監測方法,特別是有關於一 種用於監測核電廠、醫院、高壓電塔或變電箱等存在輻射 來源處所輻射劑量值之輻射監測方法。 【先前技術】 隨著近年來的地球暖化與氣候顯著變遷議題的發燒, 低碳綠能的產業需求也隨之而起,而提供產業運作的能源 供給系統更是讓核能發電成為矚目的對象。雖然各國政府 開始思考核能的替代能源與開發,但在時效與運作平台的 考量下,核能是能源短缺時代兼顧經濟、安全與環保的能 源技術,現有的核能科技就成為最佳的低碳高效能源方案。 在核能電廠的運作中,核能電廠防護工作是核能安全 最重要的一環。從設計、施工到運轉,甚至於意外事故的 處置,尤其每天負責電廠運作的運轉員更是維持核安的第 一道防線。 由於核能電廠運轉時,反應器的核分裂反應會產生具 有放射性產物,如果這些經長時間累積在人體内,會對身 體造成嚴重病變傷害。因此,需要一種輻射監測方法來監 控工作人員所接收的輻射劑量。 【發明内容】 本發明之一方面是在提供一種輻射監測方法,其可監 控一監測區域(例如核電廠)内之工作人員及子區域中所接 201248183 收的輻射劑量。 根據本發明之-實施例,在此賴射監測方法中 J置複數個輻射劑量偵測單元於監 :對這!=量偵測單元係-對-設置於== 域中。接著’利用輕射劑量偵測單元來 =子;域之複數個则量值。然後,利用輕射删 來將這純射㈣值傳送至複數財繼收發單元, =母-中繼收發料係對應至輕射劑量_單元之至少 3系用中繼收發單元來傳送輻射劑量值至中央 :=、卜後’利用中央監控系統來判斷各個輻射劑量 值疋否大於預設輻射劑量標準值,以從子區域中決定出 或受污染之移動人員與物件,他們所i受= 2里值係大於預設輻射劑量標準值。若測得的輻射劑量值 —繼收發單元發送至子二;:=,號’透過 、、目lf留士 ^ 认現%工作人員之輕射劑量债 目/ί不疏散路線。若輕射劑量值未超過輕射劑量 &準值’則由t央管制系統進行輻射量累積長期追縱。 根據本發明之另一實施例,在此輕射監測方法中,首 先设置輻射劑量偵測單元於工作單位上,其中工作單位係 2工作區域中。接著,利用輻射劑量偵測單元來偵測工 =位所接收之輻射劑量值。然後,利用輕射劑量偵測單 疋來將輻射劑量值傳送至中繼收發單元。接著,利用中繼 ,發單元來傳送輻射劑量值至中央監控系統。然後,利用 =監,系統來判斷工作單位所接收之輻射劑量值是否大 :預权輪射劑量標準值。當工作單位所接收之該轄射劑量 值大於預設輻射劑量標準值時,中央監控系統會發出警示 201248183 訊號至輻射劑量偵測單元,以通知工作單位離開工作區域。 由以上說明可知,本發明實施例係以無線傳輸的方式 將工作人員現場的輻射劑量值回饋至管制中心之中央監控 系統’使得工作人員或核電廠區的即時狀況可以被充分 握。 【實施方式】 堉问野參照第1圖和第2圖,第1圖係繪示根據本發 明實施例之輻射監測方法1〇㈣流程示意圖。帛2圖係^ 示根據監測方法100所應用之輕射監測系统2〇〇的架構示 意圖:輻射監測方法100係應用於廠房的監控,以判斷廢 房中是否有高輻射劑量的危險區域,並告知工作人員避開 這些危險區域。在輻射監測方法⑽巾,首先進行偵測^ 兀設置步驟110,以於監測區域(例如核電廠、醫院或高壓 1塔^電箱之分佈區域)中設置多龍射劑量偵測單元 、本實關中’監寵域可分為多個子區域,每個子 =係,一個輻射嶋測單元,如此便可對監測區 3灯王面性的偵測。接著,進行偵測 =以利用轄射劑量_單元210 區= 射劑量值 ;並將測得之轄射劑量值傳送至中繼收發單= 者’進订傳送步驟140,以利用中繼收發單元來傳 送子區域之輻射劑量值至中央監㈣統23〇。 在本實施例中,輻射劑量偵測單元210 Α且; 量楨測功能之盔娩210為具有輻射劑 T, . …線射頻辨識(Radio Frequency201248183 VI. Description of the invention: [Technical field to which the invention pertains] The present disclosure relates to a radiation monitoring method, and more particularly to a method for monitoring radiation emissions from a nuclear power plant, a hospital, a high voltage electric tower or a transformer box. Radiation monitoring method for dose values. [Prior Art] With the recent fever of the global warming and climate change issues, the industrial demand for low-carbon green energy has also followed, and the energy supply system that provides industrial operation has made nuclear power generation a target. . Although governments have begun to think about alternative energy and development of nuclear energy, under the consideration of timeliness and operational platform, nuclear energy is an energy technology that combines economic, safe and environmental protection in the era of energy shortage. Existing nuclear energy technology has become the best low-carbon energy source. Program. In the operation of nuclear power plants, nuclear power plant protection is the most important part of nuclear energy safety. From design, construction to operation, and even accident handling, especially the operators who are responsible for the operation of the plant every day are the first line of defense to maintain nuclear safety. Since the nuclear power plant operates, the nuclear fission reaction of the reactor produces radioactive products. If these accumulate in the human body for a long time, it will cause serious damage to the body. Therefore, a radiation monitoring method is needed to monitor the radiation dose received by a worker. SUMMARY OF THE INVENTION One aspect of the present invention is to provide a radiation monitoring method that monitors the radiation dose received by a worker and a sub-area within a monitoring area (e.g., a nuclear power plant). According to the embodiment of the present invention, in the tracking monitoring method, J is provided with a plurality of radiation dose detecting units for monitoring: this is set in the == domain. Then 'use the light shot dose detection unit to = sub; the plural of the domain is the magnitude. Then, using the light shot to transfer the pure shot (four) value to the plurality of transceiver units, the = mother-relay transceiver corresponds to at least 3 of the light dose unit to transmit the radiation dose value. To the central: =, after the 'use the central monitoring system to determine whether each radiation dose value is greater than the preset radiation dose standard value, to determine or contaminated mobile personnel and objects from the sub-area, they are subject to = 2 The ri value is greater than the preset radiation dose standard value. If the measured radiation dose value - after the transceiver unit sent to the sub-two;: =, the number 'through, 目士士士 ^ recognize the light staff dose of the staff / ί non-evacuation route. If the light dose value does not exceed the light dose & standard value, the t-central control system will carry out long-term tracking of radiation accumulation. According to another embodiment of the present invention, in the light shot monitoring method, the radiation dose detecting unit is first disposed on a work unit, wherein the work unit is in the work area. Then, the radiation dose detecting unit is used to detect the radiation dose value received by the worker=bit. The radiation dose detection value is then transmitted to the relay transceiver unit using the light dose detection unit. Next, the relay unit is used to transmit the radiation dose value to the central monitoring system. Then, using the = monitor, the system determines whether the radiation dose value received by the work unit is large: the standard value of the pre-quantitative shot dose. When the unit receives the dose value greater than the preset radiation dose standard value, the central monitoring system will issue a warning 201248183 signal to the radiation dose detection unit to inform the work unit to leave the work area. As can be seen from the above description, the embodiment of the present invention returns the radiation dose value of the worker's site to the central monitoring system of the control center in a wireless transmission manner so that the immediate condition of the worker or the nuclear power plant area can be fully grasped. [Embodiment] Referring to Figs. 1 and 2, Fig. 1 is a flow chart showing a radiation monitoring method 1 (4) according to an embodiment of the present invention.帛2 diagram shows the schematic diagram of the light-emitting monitoring system 2〇〇 applied according to the monitoring method 100: the radiation monitoring method 100 is applied to the monitoring of the plant to determine whether there is a dangerous area of high radiation dose in the waste house, and Inform the staff to avoid these dangerous areas. In the radiation monitoring method (10) towel, firstly, a detection and setting step 110 is performed to set a multi-long shot dose detecting unit in the monitoring area (for example, a distribution area of a nuclear power plant, a hospital, or a high voltage 1 tower). Guanzhong's supervisory domain can be divided into multiple sub-areas, each sub-system, and a radiation-measuring unit, so that the detection of the 3 sacral features of the monitoring area can be performed. Next, performing detection = to utilize the administrative dose _ unit 210 area = shot dose value; and transmitting the measured radiant dose value to the relay transceiver list = 'subscribe delivery step 140 to utilize the relay transceiver unit To transmit the radiation dose value of the sub-area to the central supervisor (four). In the present embodiment, the radiation dose detecting unit 210 and the helmet measuring device 210 of the measuring function have a radiation agent T, ... line radio frequency identification (Radio Frequency

IdentlflCatl°n;RFID)標籤,而中繼收發單元㈣ 201248183 讀取器。無線射頻辨識標籤可為主動式的標籤(例如具有電 池等可自行提供電力之裝置)或被動式的標籤。RFID讀取 器係以無線之方式來接收至少一個無線射頻辨識標籤所傳 送的轄射劑量值(例如核輻射值或電磁波轄射值),並透過 如RS-232等資料傳輸方式來傳送所收集的輻射劑量值。 在傳送步驟140後,進行判斷步驟150以及危險區域 決定步驟160,以利用中央監控系統來判斷各輻射劑量值 是否大於預設之輻射劑量標準值,以從子區域中決定出 危險區域。例如,當中央監控系統230判斷出某一個輻射 劑量值超過短期的輻射劑量標準值時,中央監控系統230 便會找出此輻射劑量值所對應的子區域,並將此子區域決 定為危險區域。在本實施例中,輻射劑量偵測單元210包 含有警示燈,當中央監控系統230決定出危險區域後,中 央監控系統便會送出警示信號至控制危險區域所對應的輻 射劑量偵測單元210,以使其警示燈發光。 在本發明之其他實施例中,輻射劑量偵測單元210可 更包含有顯示器(例如液晶顯示器),而中央監控系統可計 算出緊急逃生路線,並進行傳送步驟170,以透過中繼收 發器來將緊急逃生路線傳送至輻射劑量偵測單元210之控 制器。接著,進行顯示步驟180,以利用輻射劑量偵測單 元210之顯示器來顯示逃生路線。另外,中央監控系統亦 可將整個監測區域的地圖顯示於顯示器上,再將危險區域 對應的位置特別標示出來,例如以紅色區塊來標示危險區 域的位置。 若測得的輻射劑量值未超過輻射劑量標準值時,中央 7 201248183 監控系統便會進行長期管理步驟190,以針對傳送此輻射 劑量值之輻射劑量彳貞測單元進行長期管理步驟。例如,將 輻射劑量偵測單元所測得的輻射值累計,並判斷累計的值 是否大於劑量累計標準值。若累計的值大於劑量累計標準 值,則立即發出警示訊號至此輻射劑量偵測單元,以使佩 帶此輻射劑量偵測單元之工作人員了解自己的累計輻射劑 量已超過標準。 請參照第3圖,其係繪示根據本發明實施例之輻射劑 量偵測單元210的功能方塊示意圖。在本實施例中,輻射 劑量偵測單元210為無線射頻辨識(Radio Frequency Identification ; RFID)標籤,而中繼收發單元為RFID讀取 器。輻射劑量偵測單元210包含輻射劑量偵測器212、控 制器214、警示燈216以及天線218。輻射劑量偵測器212 係用以偵測子區域中的輻射劑量。控制器214儲存有標籤 識別碼(ID) ’以供中央監控系統辨識每個輻射劑量偵測單 元210。另外,控制器214係接收輻射劑量偵測器212所 測得之輻射劑量值,並透過天線來傳送至中繼收發單元。 當中央監控系統230決定出危險區域後,中央監控系統便 會發出警示訊號至危險區域的輻射劑量偵測單元21〇,而 輻射劑量偵測單元210之控制器214會根據此警示訊號來 控制警不燈216發光。如此,在危險區域中工作的人員便 可知道自己暴露於高劑量的輻射線下,從而儘速撤離危險 區域。另外,輻射劑量偵測單元21〇可另包含有顯示器 219,顯不器219可顯示中央監控系統所建議的撤離路線 值得注意的是,輻射劑量偵測單元210之控制器214 201248183 也可代替中央監控系統230來決定危險區域以及撤離路 線,如此便不需透過中繼收發單元來傳送警示訊號。另外, 在本發明之其它實施例中,若輻射劑量偵測單元210的傳 功率夠強,中繼收發單元也可被省略。 由上述說明可知,本發明實施例之輻射監測方法100 係藉由在核電廠或醫院廠區内部無線網路的佈建,依所需 管制點在室内以及室外佈建訊號讀取器,直接由訊號讀取 點判斷異常點之所在。如此不僅可以避免核安防護的死 角,也可以在第一時間回報狀況給管制中心,直接掌握狀 況以縮短反應時間,加快救援時效。另外,藉由警示燈的 指示,核電廠作業人員可暸解自己所在的環境是否安全, 並在核能外洩時能第一時間撤離至安全的地點。 請參照第4圖,其係繪示根據本發明實施例之輻射監 測方法400的流程示意圖。輻射監測方法400係用以監控 人員的輻射接收量是否在安全標準内,以達到人員健康控 管與即時救護的目的。輻射監測方法400所應用之設備與 輻射監測方法100相同,故不再贅述。 在輻射監測方法400中,首先進行偵測單元設置步驟 410,以於工作單位(核電廠工作人員)上設置輻射劑量偵測 單元210。在本實施例中,工作單位可能會在電廠的多個 區域中移動,因此工作單位身上佩戴的偵測單元可隨著工 作單位的移動來對工作單位目前所在之區域的輻射量(即 工作人員所暴露的輻射量)進行即時監控。接著,進行偵測 步驟420與傳送步驟430,以利用輻射劑量偵測單元210 來偵測工作單位所在區域之輻射劑量值,並將測得之輻射 201248183 劑量值傳送至中繼收發單元220。接著,進行傳送步驟 440,以利用中繼收發單元來傳送子區域之輻射劑量值至中 央監控系統230。然後,進行判斷步驟450。在判斷步驟 450中,中央監控系統230係判斷工作單位所接收之輻射 劑量值是否大於預設輻射劑量標準值。 若工作單位所接收之輻射劑量值大於預設輻射劑量 標準值,則進行警示步驟460,以利用中央監控系統230 來產生警示訊號。然後進行傳送步驟470,以透過中繼收 發單元回傳警示訊號至工作單位所佩戴的輻射劑量偵測單 元210。當輻射劑量偵測單元210接收到警示訊號後,進 行顯示步驟480。在顯示步驟480中,輻射劑量偵測單元 210之控制器會根據警示訊號來顯示逃生路線於顯示器 上,並控制警示燈發光(例如紅光),以告知工作單位目前 工作區域的輻射量值已過高,需從逃生路線儘速離開目前 的工作區域。 由以上說明可知,本實施例之輻射監測方法400可針 對個別工作人員的狀況來進行管理。當工作人員暴露於過 高的輻射劑量下時,工作人員可快速地察覺並撤退至安全 的區域。另外,值得一提的是,中央監控系統230可透過 中繼收發單元220來得知工作人員所處的位置。若工作人 員無法行動而撤退至安全區域時。救難人員也可從中央監 控系統230得知工作人員所處的位置,達到即時救助的目 的。 本實施例之輻射監測方法400係對工作人員的短期輻 射暴露量進行監控,以避免突發性的高輻射劑量對人體造 201248183 =長由於輻射物質會累積於人财,因此工作 例中暴露量也必須監控。在本發明之其他實施 標準值賠,t 接收之輕射劑量值小於預設輕射劑量 以將工作人昌央監控系統230即進行長期管理步驟490, 設之助/所接㈣輻射劑量累計,並將此累計值與預 計值超過輻較。若工作人員的輻射劑量累 的警』 :=r監測方法即可對工作人員進行長: …2 ’值得—提的是,在本實施例中,輻 早“0之控制器214也可代替中央監控系統來進行= 和長期輻射暴露量的監控,如此更能加強即時監控健 康以及即時人員救護的效果。 月1$ 雖然本發明已以數個實施例揭露如上,然其並非用以 限定本發明,在本發明所屬技術領域中任何具有通常知 者,在不脫離本發明之精神和範圍内,當可作各種之^動 與潤飾,因此本發明之保護範圍當視後附之申請專利範圍 所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、和優點能更 顯易懂,上文特舉數個較佳實施例,並配合所附圖^, 詳細說明如下: 工’乍 第1圖係繪示根據本發明實施例之輻射監測方法的节 201248183 程不意圖。 之輻射監測系統的 第2圖係繪示根據監測方法所應用 架構示意圖。。 偵測單元 第3圖係繪示根據本發明實施例之輕射劑量 的功能方塊示意圖。 第4圖係繪示根據本發明 程示意圖。 實施例之輻射監測方法的流 【主要元件符號說明】 100 :輻射監測方法 120 :偵測步驟 140 ··傳送步驟 160 :危險區域決定步驟 180 :顯示步驟 2〇〇 :輻射監測系統 212 :輻射劑量偵測器 216 :警示燈 219 :顯示器 220 :中繼收發單元 4〇〇 :輻射監測方法 420 :偵測步驟 440 :傳送步驟 460 :警示步驟 480 :顯示步驟 110 偵測單元設置步驟 130 傳送步驟 150 危險區域決定步驟 170 傳送步驟 190 長期管理步驟 210 輕射劑量偵測單元 214 控制器 218 天線 230 :中央監控系統 410 :偵測單元設置步驟 430 ·傳送步驟 450 :判斷步驟 470 :傳送步驟 490 :長期管理步驟 12IdentlflCatl°n; RFID) tag, while relay transceiver unit (4) 201248183 reader. The RFID tag can be an active tag (such as a device with a battery that can provide its own power) or a passive tag. The RFID reader wirelessly receives at least one radio frequency identification tag to transmit a dose value (for example, a nuclear radiation value or an electromagnetic wave jurisdiction value), and transmits the collected value through a data transmission method such as RS-232. Radiation dose value. After the transmitting step 140, a determining step 150 and a hazardous area determining step 160 are performed to determine whether each of the radiation dose values is greater than a predetermined radiation dose standard value by the central monitoring system to determine a hazardous area from the sub-areas. For example, when the central monitoring system 230 determines that a certain radiation dose value exceeds a short-term radiation dose standard value, the central monitoring system 230 finds a sub-region corresponding to the radiation dose value and determines the sub-region as a hazardous region. . In this embodiment, the radiation dose detecting unit 210 includes a warning light. When the central monitoring system 230 determines the dangerous area, the central monitoring system sends a warning signal to the radiation dose detecting unit 210 corresponding to the control danger zone. To make its warning light shine. In other embodiments of the present invention, the radiation dose detecting unit 210 may further include a display (such as a liquid crystal display), and the central monitoring system may calculate an emergency escape route and perform a transmitting step 170 to pass through the relay transceiver. The emergency escape route is transmitted to the controller of the radiation dose detecting unit 210. Next, a display step 180 is performed to display the escape route using the display of the radiation dose detecting unit 210. In addition, the central monitoring system can display the map of the entire monitoring area on the display, and then mark the corresponding location of the dangerous area, for example, the red area to indicate the location of the dangerous area. If the measured radiation dose value does not exceed the radiation dose standard value, the Central 7 201248183 monitoring system performs a long-term management step 190 to perform long-term management steps for the radiation dose measurement unit that transmits the radiation dose value. For example, the radiation value measured by the radiation dose detecting unit is accumulated, and it is judged whether the accumulated value is greater than the cumulative value of the dose. If the accumulated value is greater than the cumulative dose standard value, a warning signal is immediately sent to the radiation dose detecting unit, so that the staff member carrying the radiation dose detecting unit knows that the accumulated radiation dose has exceeded the standard. Please refer to FIG. 3, which is a functional block diagram of a radiation dose detecting unit 210 according to an embodiment of the present invention. In this embodiment, the radiation dose detecting unit 210 is a Radio Frequency Identification (RFID) tag, and the relay transceiver unit is an RFID reader. The radiation dose detecting unit 210 includes a radiation dose detector 212, a controller 214, a warning light 216, and an antenna 218. Radiation dose detector 212 is used to detect the radiation dose in the sub-area. The controller 214 stores a tag identification code (ID)' for the central monitoring system to identify each of the radiation dose detecting units 210. In addition, the controller 214 receives the radiation dose value measured by the radiation dose detector 212 and transmits it to the relay transceiver unit through the antenna. When the central monitoring system 230 determines the dangerous area, the central monitoring system will send a warning signal to the radiation dose detecting unit 21〇 of the dangerous area, and the controller 214 of the radiation dose detecting unit 210 will control the alarm according to the warning signal. No lights 216 are illuminated. In this way, people working in hazardous areas know that they are exposed to high doses of radiation and are evacuated as quickly as possible. In addition, the radiation dose detecting unit 21 can further include a display 219, and the display 219 can display the evacuation route suggested by the central monitoring system. It is noted that the controller 214 201248183 of the radiation dose detecting unit 210 can also replace the central unit. The monitoring system 230 determines the danger zone and the evacuation route, so that the relay signal is not transmitted through the relay transceiver unit. In addition, in other embodiments of the present invention, if the transmission power of the radiation dose detecting unit 210 is strong enough, the relay transceiver unit can also be omitted. It can be seen from the above description that the radiation monitoring method 100 of the embodiment of the present invention directly constructs a signal reader indoors and outdoors according to the required control point by deploying a wireless network in a nuclear power plant or a hospital factory. The read point determines where the abnormal point is. This will not only avoid the dead angle of nuclear safety protection, but also return the situation to the control center in the first time, directly grasp the situation to shorten the reaction time and speed up the rescue time. In addition, with the warning lights, the nuclear power plant operators can understand whether their environment is safe and can evacuate to a safe place in the first time when nuclear power is leaked. Referring to Figure 4, there is shown a flow diagram of a radiation monitoring method 400 in accordance with an embodiment of the present invention. The radiation monitoring method 400 is used to monitor whether the radiation receiving amount of the person is within the safety standard to achieve the purpose of personnel health control and immediate rescue. The apparatus to which the radiation monitoring method 400 is applied is the same as the radiation monitoring method 100 and will not be described again. In the radiation monitoring method 400, a detecting unit setting step 410 is first performed to set the radiation dose detecting unit 210 on a work unit (nuclear power plant worker). In this embodiment, the work unit may move in multiple areas of the power plant, so the detection unit worn on the work unit can increase the amount of radiation to the area where the work unit is currently located as the work unit moves (ie, the worker The amount of radiation exposed) is monitored on the fly. Then, the detecting step 420 and the transmitting step 430 are performed to detect the radiation dose value of the area where the working unit is located by using the radiation dose detecting unit 210, and transmit the measured radiation 201248183 dose value to the relay transceiver unit 220. Next, a transfer step 440 is performed to transmit the radiation dose value of the sub-area to the central monitoring system 230 using the relay transceiver unit. Then, a decision step 450 is performed. In decision step 450, the central monitoring system 230 determines whether the radiation dose value received by the work unit is greater than a predetermined radiation dose standard value. If the radiation dose value received by the work unit is greater than the preset radiation dose standard value, a warning step 460 is performed to utilize the central monitoring system 230 to generate an alert signal. Then, the transmitting step 470 is performed to transmit the warning signal to the radiation dose detecting unit 210 worn by the working unit through the relay transmitting and receiving unit. When the radiation dose detecting unit 210 receives the warning signal, the display step 480 is performed. In the display step 480, the controller of the radiation dose detecting unit 210 displays the escape route on the display according to the warning signal, and controls the warning light to emit light (for example, red light) to inform the working unit of the current working area. Too high, you need to leave the current work area as soon as possible from the escape route. As can be seen from the above description, the radiation monitoring method 400 of the present embodiment can manage the condition of individual workers. When workers are exposed to excessive radiation doses, workers can quickly detect and retreat to safe areas. In addition, it is worth mentioning that the central monitoring system 230 can know the location of the staff through the relay transceiver unit 220. If the staff member is unable to act and retreat to a safe area. Rescuers can also learn from the central monitoring system 230 where the staff is located to achieve immediate assistance. The radiation monitoring method 400 of the present embodiment monitors the short-term radiation exposure of the worker to avoid sudden high radiation dose to the human body 201248183 = long because the radiation material will accumulate in the human wealth, so the exposure in the working example It must also be monitored. In other implementation standard values of the present invention, the received light dose value is less than the preset light shot dose to perform the long-term management step 490 of the worker's central monitoring system 230, and the assisted/connected (four) radiation dose is accumulated. And this cumulative value is compared with the expected value. If the staff's radiation dose is tired, the police can make a long time for the staff: ... 2 'It is worth mentioning that, in this embodiment, the controller 214 of the early "0" can also replace the central The monitoring system performs the monitoring of the = and long-term radiation exposure, which further enhances the effect of immediate monitoring of health and immediate personnel rescue. Monthly 1$ Although the invention has been disclosed in several embodiments above, it is not intended to limit the invention. It is to be understood by those skilled in the art that the present invention can be used in various ways without departing from the spirit and scope of the invention. The above and other objects, features, and advantages of the present invention will become more apparent from the aspects of the invention. The description is as follows: The first diagram of the radiation monitoring method according to the embodiment of the present invention is not intended. The second diagram of the radiation monitoring system is based on the monitoring method. Fig. 3 is a functional block diagram showing a light dose according to an embodiment of the present invention. Fig. 4 is a schematic view showing the flow of the radiation monitoring method according to the present invention. DESCRIPTION OF SYMBOLS 100: Radiation monitoring method 120: detecting step 140 · · transmitting step 160: dangerous area determining step 180: displaying step 2: radiation monitoring system 212: radiation dose detector 216: warning light 219: display 220 : Relay Transceiver Unit 4: Radiation Monitoring Method 420: Detection Step 440: Transmission Step 460: Alert Step 480: Display Step 110 Detection Unit Setup Step 130 Transfer Step 150 Hazardous Area Decision Step 170 Transfer Step 190 Long Term Management Step 210 Light Shot Dose Detection Unit 214 Controller 218 Antenna 230: Central Monitoring System 410: Detection Unit Setup Step 430 • Transfer Step 450: Decision Step 470: Transfer Step 490: Long Term Management Step 12

Claims (1)

201248183 七、申請專利範圍: 1. 一種輻射監測方法,包含: 射劑㈣測單元於—監測區域之複數個 二些韓射劑量偵測單元係—對—設置於該 些子區域中; 輻射縫_單元來制該些子《之複數 利用該些輻射劑量_單元來將該些輻射㈣值傳送 至複數個中繼收發單元,其中每—該些中繼收發單元係對 應至该些輕射劑量债測單元之至少一者; 利用該些中繼收發單元來傳送該些輻射劑量值至一中 央監控系統;以及 利用該中央監控系統來判斷每一該些輻射劑量值是 否大於一預設輻射劑量標準值,以從該些子區域中決定 出-危險區域,其中該危險區域之輻射劑量值係大於該預 設輻射劑量標準值。 2.如申請專利範圍第1項所述之輻射監測方法,其中 每一該些輻射劑量偵測單元為一無線射頻辨識(Radi〇 Frequency Identification ; RFID)標籤,該無線射頻辨識標籤 包含: 一輻射劑量偵測器,用以偵測一子區域之一輻射劑量 值’該輕射劑量值為核輻射劑量值或電磁波輻射劑量值; 一天線; 13 201248183 一控制器’用以將該㈣劑量偵測 量值透過該轉來傳送至該财繼收發單元之輕射劑 一警不燈,受控於該控制器;以及 者, 一顯不器,受控於該控制器,苴 示一緊急逃生路線。 ”以頌不器係用以顯 3·如申請專圍第丨項所述 每一該些中繼收發單元為—無__取^法’其中 含 :4.如申請專利範圍第2項所述之輻射監測方法, ί=!5:者被決定為該危險區域時, 更包 該中央 監控系統係透過該些子區域之 識標籤之該控制器來使該無線斤=亥:線射頻辨 光。 町屑辨識私鐵之該警示燈發 含 :5.如申請專職圍第I項所述之輻射監測方法, 更包 ί=!域;:者被決定為該危險區域時,該中央 出該危險區域在該監測區 監控系統係透過一顯示器來顯示 域中的相應位置 6. —種輻射監測方法,包含: 投置一輻射劑量偵測單元於一 作單位係位於一工作區域令;、 #上,其中該工 利用該輻射劑量偵測單 J平7〇采偵測該工作單位所接收之 14 201248183 一輻射劑量值; 利用該輻射劑量偵測單元來將該輻射劑量值傳送至一 中繼收發單元; 利用該中繼收發單元來傳送該輻射劑量值至一中央監 控系統; 利用該中央監控系統來判斷該工作單位所接收之該輻 射劑量值是否大於一預設輻射劑量標準值;以及 當該工作單位所接收之該輻射劑量值大於該預設輻 射劑量標準值時,該中央監㈣統發出—警示訊號至該輕 射劑量_單元’以通知該卫作單位_該王作區域。 7.如申明專利範圍第6項所述之輻射監測方法,其中 該輻射劑量偵測單元為-無線射頻辨識射 辨識標籤包含: 和^貝 一,,肋_社作單位所接收之一 幸畜射劑置值,其中該輻射劑詈佶盔 輻射劑量值; 冰㈣量值或電磁波 一天線; :控制器’用以將該輕射劑量價測器所測得之 ^:值透過該天線來傳送至該些中繼收發單元之一 一警示燈,受控於該控制器:以及 , 一顯示器,受控於該控制器, 示一緊急逃生路線。 、°Λ·4不器係用以顯 其中 15 201248183 含 .9.如申請專利範園第7項所述之輻 射監撕方法, 更包 田該控制ϋ接收到該警告訊號時 之該控制器係控制該警示燈發光。°〜線射頻辨識標籤 10. 包含: 如申請專利範圍第7 項所述之輻射監測方法,更 利用該中央監控系統來累計該工 内所接收之該輻射劑量值,以奸^位於—預設時間 知俚以獲付一累計輻射劑量值; 於一預心=系統來判斷該累計輻射劑量值是否大 〜預设累計標準值;以及 當該累計輕射劑量值是大於該預設累計標準值時,該 、央監控系統發出該警告訊號至姉射劑量偵測單元,以 通知該工作單位離開該工作區域。201248183 VII. Patent application scope: 1. A radiation monitoring method, comprising: the injection agent (four) measurement unit in the monitoring area, a plurality of two Han radiation dose detection unit systems - pairs - disposed in the sub-areas; The unit uses the radiation dose units to transmit the radiation (four) values to a plurality of relay transceiver units, wherein each of the relay transceiver units corresponds to the light doses At least one of the debt measuring units; transmitting the radiation dose values to a central monitoring system by using the relay transceiver units; and using the central monitoring system to determine whether each of the radiation dose values is greater than a predetermined radiation dose A standard value is determined from the sub-regions - the hazardous region, wherein the radiation dose value of the hazardous region is greater than the predetermined radiation dose standard value. 2. The radiation monitoring method according to claim 1, wherein each of the radiation dose detecting units is a Radio Frequency Identification (RFID) tag, and the RFID tag comprises: a radiation a dose detector for detecting a radiation dose value of a sub-region 'the light dose value is a nuclear radiation dose value or an electromagnetic radiation dose value; an antenna; 13 201248183 a controller 'to use the (four) dose detection The light-measing agent transmitted to the financial transceiver unit through the switch is not controlled by the controller; and, a display device is controlled by the controller, indicating an emergency escape route.颂 颂 器 用以 用以 显 · · · · · · · 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如 如The radiation monitoring method described, ί=!5: when the person is determined to be the dangerous area, the central monitoring system transmits the wireless tag through the identification of the sub-areas. The warning light of the shoji identification private iron includes: 5. If you apply for the radiation monitoring method described in item I of the full-time division, the ί=! domain is included; when the person is determined to be the dangerous area, the central The monitoring area in the monitoring area is displayed by a display to display the corresponding position in the domain. 6. The radiation monitoring method comprises: placing a radiation dose detecting unit in a working unit to be located in a working area; In the above, the worker uses the radiation dose detection unit to detect the 14 201248183 radiation dose value received by the working unit; and the radiation dose detecting unit is used to transmit the radiation dose value to a relay. Transceiver unit; use the relay to receive The unit transmits the radiation dose value to a central monitoring system; the central monitoring system is used to determine whether the radiation dose value received by the working unit is greater than a predetermined radiation dose standard value; and the radiation received by the working unit When the dose value is greater than the preset radiation dose standard value, the central supervisor (4) sends a warning signal to the light dose _ unit to notify the guard unit _ the king area. 7. If the patent scope is the sixth item The radiation monitoring method, wherein the radiation dose detecting unit is: the radio frequency identification tag comprises: and a bei, the ribs are received by the unit, wherein the radiation agent is set.佶 辐射 radiation dose value; ice (four) magnitude or electromagnetic wave one antenna; : controller ' is used to transmit the value of the light dose dose detector to one of the relay transceiver units through the antenna A warning light is controlled by the controller: and, a display, controlled by the controller, showing an emergency escape route., °Λ·4 is not used to display the 15 201248183 Including the radiation monitoring and tearing method described in Item 7 of the Patent Application, the controller controls the warning light to be illuminated when the warning signal is received. °~Wire RFID tag 10 Included: If the radiation monitoring method described in item 7 of the patent application is applied, the central monitoring system is further used to accumulate the radiation dose value received in the work, so as to be located at a predetermined time to obtain a payment. The cumulative radiation dose value; determining whether the cumulative radiation dose value is large to a preset cumulative standard value in a pre-heart = system; and when the cumulative light dose value is greater than the preset cumulative standard value, the central monitoring system The warning signal is sent to the radiation dose detecting unit to notify the working unit to leave the working area.
TW100117826A 2011-05-20 2011-05-20 Radiation monitoring method TW201248183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100117826A TW201248183A (en) 2011-05-20 2011-05-20 Radiation monitoring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100117826A TW201248183A (en) 2011-05-20 2011-05-20 Radiation monitoring method

Publications (1)

Publication Number Publication Date
TW201248183A true TW201248183A (en) 2012-12-01

Family

ID=48138667

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100117826A TW201248183A (en) 2011-05-20 2011-05-20 Radiation monitoring method

Country Status (1)

Country Link
TW (1) TW201248183A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267052A (en) * 2014-10-16 2015-01-07 四川同佳环保科技有限责任公司 Safe monitoring method for radioactive source during flaw detection
CN106991265A (en) * 2016-01-20 2017-07-28 华北电力大学 Nuclear power plant's face source radiation source strength backstepping method and face source radiation source strength backstepping system
CN112357606A (en) * 2020-11-12 2021-02-12 重庆建安仪器有限责任公司 Radiation marker automatic putting control system based on radiation monitoring
CN112505741A (en) * 2020-11-24 2021-03-16 重庆建安仪器有限责任公司 Control and use method of radiation marker
CN114511980A (en) * 2022-02-11 2022-05-17 汕头市超声仪器研究所股份有限公司 X-ray radiation field management method and system based on active area division

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104267052A (en) * 2014-10-16 2015-01-07 四川同佳环保科技有限责任公司 Safe monitoring method for radioactive source during flaw detection
CN106991265A (en) * 2016-01-20 2017-07-28 华北电力大学 Nuclear power plant's face source radiation source strength backstepping method and face source radiation source strength backstepping system
CN106991265B (en) * 2016-01-20 2019-12-24 华北电力大学 Strong backward-pushing method and strong backward-pushing system for non-point source radiation source of nuclear power plant
CN112357606A (en) * 2020-11-12 2021-02-12 重庆建安仪器有限责任公司 Radiation marker automatic putting control system based on radiation monitoring
CN112505741A (en) * 2020-11-24 2021-03-16 重庆建安仪器有限责任公司 Control and use method of radiation marker
CN112505741B (en) * 2020-11-24 2024-03-29 重庆建安仪器有限责任公司 Control using method of radiation marker
CN114511980A (en) * 2022-02-11 2022-05-17 汕头市超声仪器研究所股份有限公司 X-ray radiation field management method and system based on active area division
CN114511980B (en) * 2022-02-11 2023-01-03 汕头市超声仪器研究所股份有限公司 X-ray radiation field management method and system based on active area division

Similar Documents

Publication Publication Date Title
CN102622857B (en) The system and method deferred to and alarmed with toxic gas exposure are provided for health monitoring and plant maintenance
CN106024083A (en) Nuclear emergency system of nuclear power plant
TW201248183A (en) Radiation monitoring method
CN102698382B (en) Fire disaster intelligent escaping system based on zigbee technology
KR101574076B1 (en) Safety and exposure control system of radiation workers
CN206039759U (en) High -voltage testing human protection system
CN102169614A (en) Monitoring method for electric power working safety based on image recognition
CN205862806U (en) Nuclear Power Station emergency system
EP3087539A1 (en) Waste measurement and tracking system
CN103426270A (en) Household intelligent fire-fighting early warning and escape system
CN108734912A (en) Wisdom fire-fighting based on Internet of Things manages cloud platform system
CN104083831A (en) Intelligent evacuation indicating system with positioning function and evacuation method
CN102436708B (en) Safety warning method for protecting targeted zones of transformer substation
CN202268041U (en) Anti-animal alarm device for power distribution
CN103942913A (en) Intelligent monitoring method for preventing external breakage of constructing machine for power lines
KR101670306B1 (en) Radiation safety management system and method using the same
CN107737429B (en) Intelligent fire fighting system
CN107506879A (en) System is informed in a kind of occupational hazards
CN203101652U (en) Radioactive source on-line monitor
CN102436007A (en) Automatic radioactive source monitoring system
CN114049729A (en) Monitoring and safety alarm system for dangerous protection area of construction site and use method
CN107146648A (en) A kind of monitoring system and method for nuclear power generating equipment
CN103543724A (en) Fence monitoring device and fence
CN111243227A (en) Electric shock protection device and method for power system
CN115766796A (en) Internet of things system for fire extinguishing and rescue based on intelligent fire control