TW201247928A - Atomic layer deposition apparatus and atomic layer deposition method - Google Patents

Atomic layer deposition apparatus and atomic layer deposition method Download PDF

Info

Publication number
TW201247928A
TW201247928A TW101104714A TW101104714A TW201247928A TW 201247928 A TW201247928 A TW 201247928A TW 101104714 A TW101104714 A TW 101104714A TW 101104714 A TW101104714 A TW 101104714A TW 201247928 A TW201247928 A TW 201247928A
Authority
TW
Taiwan
Prior art keywords
raw material
gas supply
liquid
material gas
unit
Prior art date
Application number
TW101104714A
Other languages
Chinese (zh)
Inventor
Naomasa Miyatake
Original Assignee
Mitsui Shipbuilding Eng
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Shipbuilding Eng filed Critical Mitsui Shipbuilding Eng
Publication of TW201247928A publication Critical patent/TW201247928A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4485Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation without using carrier gas in contact with the source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

This atomic layer deposition apparatus which forms a thin film on a substrate has: a film-forming container having a raw material gas supply port and a reaction gas supply port formed therein; a raw material gas supply unit, which includes a liquid raw material storage unit that stores a liquid raw material, i.e., a raw material of the thin film, and a vaporization control unit that directly vaporizes the liquid raw material stored in the liquid raw material storage unit and controls a flow quantity, and which supplies a raw material gas to the raw material gas supply port; a reaction gas supply unit, which supplies to the reaction gas supply port the reaction gas that forms the thin film by reacting to the raw material gas; a control unit, which controls the raw material gas supply unit and the reaction gas supply unit such that the raw material gas and the reaction gas are alternately supplied; a collision plate that is disposed such that the raw material gas supplied from the raw material gas supply port collides with the plate; and a temperature adjusting unit, which adjusts the temperature of the collision plate.

Description

201247928 六、發明說明: 【發明所屬之技術領域】 本發明係關於在基板上形成薄膜之原子層沈積裝置及 原子層沈積方法。 【先前技術】 在基板形成薄膜時,以段差被覆性優異,均一形成薄 膜(膜厚控制性)的技術而言,已知有原子層沈積法( ALD : Atomic Layer Deposition)。在 ALD 法中,對基板 上交替供給以構成所欲形成的薄膜的元素爲主成分的2種 氣體’例如原料氣體與反應氣體,在基板上以原子層單位 形成薄膜。在ALD法中,當原料氣體被供給至基板上時 ,使用原料氣體的基板表面的反應自我停止作用。基板表 面的反應自我停止作用係指在供給原料氣體的期間,僅有 1層或數層原料氣體吸附在基板表面,多餘的原料氣體並 不會附著而未有助於成膜的作用。因此,使用ALD法而 以原子層單位反覆在基板上形成薄膜,藉此可形成所希望 膜厚的薄膜。 與一般的 CVD( Chemical Vapor Deposition)法相比 較,ALD法係段差被覆性與膜厚控制性均優異。因此, 期待在形成記憶體元件的電容器、或被稱爲^ high-k閘極 j的絕緣膜時,使用ALD法。 此外,在ALD法中,係可以3 00°C以下的溫度形成 絕緣膜。因此,在如液晶顯示器等般使用玻璃基板的顯示 201247928 裝置中,期待在形成薄膜電晶體的閘極絕緣膜時使用 ALD 法。 成膜所使用的原料在常溫、常壓下爲液體時,首先將 液體原料氣化,使用經氣化的原料氣體來形成薄膜。以將 液體原料氣化的方法而言,已知有發泡法或烘烤法等。發 泡法係使用載體氣體的發泡而使供給汽缸內的液體氣化的 方法。在發泡法中,係將供給汽缸加熱,以提高原料氣體 的蒸氣壓,藉此使原料氣體在發泡用載體氣體飽和*而供 給至腔室。在烘烤法中,係將液體原料導入至加熱槽而將 原料氣化,且以高溫用質流控制器控制流量。 一般而言,將液體原料氣化,且使用經氣化的原料氣 體來形成薄膜時,當將液體原料氣化時,在原料氣體係不 僅液體原料的氣體成分,連液體形成爲微粒的霧氣亦在被 混合的狀態下含有。若霧氣混入至成膜容器內時,附著在 成膜容器內壁的霧氣會形成爲液體狀,因時間的經過而固 化而形成微粒的發生原因。 因此,提出一種具備有用以將液體原料的氣體成分與 霧氣分離,且排出經分離的霧氣的霧氣分離部的減壓 CVD裝置,已知有下列減壓CVD裝置(專利文獻1 )。 [先前技術文獻] [專利文獻] [專利文獻1]日本特開2005-327864號公報 201247928 【發明內容】 (發明所欲解決之課題) 不同於CVD法,在ALD法中,原料氣體係以脈衝狀 被供給至成膜容器。因此,若使用發泡法或烘烤法、及上 述專利文獻所記載的霧氣分離部,藉由ALD法來形成薄 膜時,在原料氣體的脈衝狀供給形成爲Ο F F時所氣化的 原料氣體並未被使用而被廢棄,原料的利用效率降低。 此外,若僅在原料氣體的短時間供給、亦即原料氣體 的脈衝狀供給形成爲ON時欲將液體原料氣化時,從開始 氣化起至氣化量呈穩定爲止需耗費時間,因此在原料氣體 的脈衝狀供給成爲ON時,會有未被充分供給原料氣體的 可能性。 本發明之目的在提供一種可使液體原料的利用效率提 升’且將原料氣體穩定地以脈衝狀供給的原子層沈積裝置 及原子層沈積方法。 (解決課題之手段) 用以解決上述課題之本發明之一形態係一種在基板上 形成薄膜的原子層沈積裝置。 該裝置係具有: 成膜容器’其係形成有原料氣體供給口與反應氣體供 給口; 原料氣體供給部,其係包含:儲存作爲前述薄膜的原 料的液體原料的液體原料儲存部;及將被儲存在前述液體 201247928 原料儲存部的前述液體原料直接氣化,且控制流量的氣化 控制部’將原料氣體供給至前述原料氣體供給口; 反應氣體供給部’其係將與前述原料氣體起反應而形 成前述薄膜的反應氣體供給至前述反應氣體供給口; 控制部’其係以前述原料氣體與前述反應氣體被交替 供給的方式’控制前述原料氣體供給部與前述反應氣體供 給部; 撞板’其係以由前述原料氣體供給口所被供給的前述 原料氣體發生衝撞的方式進行配置;及 溫度調節部,其係調節前述擋板的溫度。 此外’較佳爲前述溫度調節部係以前述擋板的溫度成 爲前述液體原料的沸點以上的溫度的方式調節前述擋板的 溫度。 此外’較佳爲前述氣化控制部爲液體噴注閥。 此外’較佳爲前述原料氣體供給部係具備有將被儲存 在前述液體原料儲存部的前述液體原料進行加壓的加壓部 〇 此外’較佳爲前述原料氣體供給部係具備有將被儲存 在前述液體原料儲存部的前述液體原料的壓力進行偵測的 壓力偵測部’前述加壓部係根據前述壓力偵測部所偵測到 的前述液體原料的壓力,以前述液體原料的壓力成爲一定 的方式將前述液體原料進行加壓。 此外’較佳爲前述控制部係以2秒以下之長度的脈衝 被供給前述原料氣體的方式控制前述原料氣體供給部。· -8- 201247928 再者,本發明之其他一形態係一種在基板上形成薄膜 的原子層沈積方法。 該方法係具有: 使得將液體原料氣化所得的原料氣體衝撞擋板之後, 將前述原料氣體供給至成膜腔室內,而使前述原料氣體的 成分附著在成膜腔室內的基板的工程;及 使前述原料氣體的成分附著在前述基板之後,將反應 氣體供給至前述成膜腔室內,使前述原料氣體的成分與前 述反應氣體起反應而在前述基板形成薄膜層的工程, 前述擋板係以前述原料氣體發生衝撞的方式進行配置 ,以前述擋板的溫度成爲前述液體原料的沸點以上的溫度 的方式進行調節。 (發明之效果) 藉由本發明之原子層沈積裝置及原子層沈積方法,可 使液體原料的利用效率提升,將原料氣體穩定地以脈衝狀 供給。 【實施方式】 <實施形態> (原子層沈積裝置之構成) 首先,參照第1圖,說明本實施形態之原子層沈積裝 置之構成。第1圖係顯示本實施形態之原子層沈積裝置之 一例的槪略構成圖。本實施形態之原子層沈積裝置1 0係 -9- 201247928 交替供給原料氣體與反應氣體,在基板s上以原子層單 形成薄膜。此時,原子層沈積裝置10係在與吸附在基 S的原料氣體的成分之間提高反應氣體的反應活性,因 可使電漿發生。在本實施形態中,係在電漿的發生使用 行平板電極,但是並非限定於該方式。在本實施形態中 係使用在常溫常壓下爲液體的原料來形成薄膜。 本實施形態之原子層沈積裝置10係具備有:成膜 器20、排氣部40、高頻電源50、控制部52、原料氣體 給部8 0、及反應氣體供給部9 0。 成膜容器20係具備有真空腔室30及注入器60。 首先’說明真空腔室30。真空腔室30係具備有: 持部32、上側電極36、及下側電極38。在支持部32 上面設有下側電極3 8。在此,下側電極3 8係予以接地 基板S係藉由由真空腔室30的下方貫穿支持部32的上 銷44予以支持。上升銷44係可藉由升降機構46而以 下方向作升降,上升銷44在支持基板S的狀態下,升 機構46使上升銷44朝下方向移動,藉此使基板S被載 於下側電極38之上。 此外,在支持部32的內部設有加熱器34,可藉由 熱器34來調整基板S的溫度。 上側電極36係被設在基板S的上方,與高頻電源 相連接。高頻電源50供給預定頻率的高頻電流,藉此 上側電極3 6與下側電極3 8之間生成電漿。 此外,高頻電源5 0係與控制部5 2相連接。高頻電 位 板 此 平 容 供 支 的 〇 升 上 降 置 加 50 在 源 -10- 201247928 5 〇對上側電極3 6供給高頻電流的時序係藉由控制部5 2 來進行控制。 接著,說明注入器60。注入器60係位於在真空腔室 內流動的原料氣體或反應氣體流的上游側。注入器60 係具有內部空間,在該內部空間形成有朝向水平方向呈細 長的原料氣體供給口 62、及朝向水平方向呈細長的反應 氣體供給口 64。此外,在注入器60的內部空間設有朝向 水平方向呈細長的擋板66。由原料氣體供給部80所被供 給的原料氣體係通過原料氣體供給口 62,而被供給至注 入器60的內部空間,甚至真空腔室30內。此外,由反應 氣體供給部90所被供給的反應氣體係通過反應氣體供給 口 64而被供給至注入器60的內部空間,甚至真空腔室 30內。 擋板6 6係以由原料氣體供給口 6 2所被供給的原料氣 體發生衝撞的方式’被配置在比原料氣體供給口 62更接 近原料氣體流的下游方向。此外,擋板66係以由反應氣 體供給口 ό 4所被供給的反應氣體不會發生衝撞的方式進 行配置。亦即’擋板6 6係以與原料氣體供給口 6 2相對向 ’但是不與反應氣體供給口 64相對向的方式而設。 此外’擋板6 6係與溫度調節部6 8相連接,藉由溫度 η周節部68來調節擋板66的溫度。溫度調節部68較佳爲 以擋板66的溫度成爲液體原料的沸點以上的溫度的方式 調節擋板66的溫度。例如,擋板66的溫度較佳爲調節爲 10〇°c以上、2〇o°c以下。在本實施形態中,擋板66的溫 -11 - 201247928 度係被調節爲170°C。 在此,參照第2圖,說明原料氣體供給口 62與擋板 66的位置關係。第2圖係由原料氣體流的下游方向所觀 看的注入器60的側面圖。在第2圖所示之側面圖中,以 至少朝向水平方向呈細長的原料氣體供給口 62與擋板66 完全重®的方式,配置擋板66。反應氣體供給口 64不與 擋板66相重疊。在該側面圖中,較佳爲原料氣體供給口 62位於擋板66的高度方向的中心附近的位置》 返回至第1圖,排氣部40係將透過排氣管42而被供 給至真空腔室30內的原料氣體、反應氣體、沖洗氣體進 行排氣。在排氣部40係使用例如乾泵。排氣部40將真空 腔室30內進行排氣,藉此即使原料氣體、反應氣體、沖 洗氣體被供給至真空腔室30內,亦使真空腔室30內的真 空度被維持在l〇Pa〜lOOPa左右》 接著,說明原料氣體供給部80。原料氣體供給部80 係具備有:液體原料儲存部82、壓力偵測部84、加壓部 8 6、及氣化控制部8 8。 液體原料儲存部82係儲存被使用在形成薄膜的液體 原料。被儲存在液體原料儲存部82的液體原料爲例如 TEMAZ (四-(乙基甲基胺基酸)-锆(Tetrakis ethylmethylamino zirconium) ) 、TEMAH (四-(乙基甲 基胺基酸)-給(tetrakis ethylmethylamino hafnium)) ο 壓力偵測部84係偵測液體原料儲存部82的液體原料 -12- 201247928 的儲存內部的壓力。壓力偵測部84例如爲壓力計。壓力 偵測部84所偵測到的壓力的資料係被傳送至加壓部86。+ 根據壓力偵測部84所偵測到的壓力的資料,加壓部 86係以被儲存在液體原料儲存部82內的液體原料的壓力 成爲一定的方式將液體原料進行加壓。加壓部86係例如 將N2氣體或Ar氣體等惰性氣體導入至液體原料儲存部 82內,藉此將液體原料進行加壓。 氣化控制部88係將被儲存在液體原料儲存部82且被 供給至氣化控制部8 8的液體原料直接氣化,且控制流量 。氣化控制部8 8爲例如液體噴注閥。液體噴注閥係可使 用例如Swagelok公司製的ALD液體噴注閥。 此外,氣化控制部88係與控制部52相連接。氣化控 制部88將液體原料氣化的時序係藉由控制部52來進行控 制。氣化控制部88係可以0.05秒以上、2秒以下的長度 的脈衝狀供給將液體原料直接氣化,而供給原料氣體。其 中,在藉由氣化控制部88所生成的原料氣體有亦包含液 體原料在液體的狀態下形成爲複數微粒子而漂浮的霧氣的 情形。 接著,說明反應氣體供給部90。反應氣體供給部90 係具備有:反應氣體儲存部92、及反應氣體閥94 ^ 反應氣體儲存部92係儲存被使用在形成薄膜的反應 氣體。被儲存在反應氣體儲存部92的反應氣體爲例如〇2 氣體等氧化氣體。 反應氣體閥94係與控制部52相連接。反應氣體閥 -13- 201247928 94的開閉狀態係藉由控制部5 2來進行控制。 其中’雖未圖示’原料氣體供給部80、反應氣體供 給部90係分別構成爲可對成膜容器20的內部供給n2氣 體或Ar氣體等沖洗氣體。 以上爲本實施形態之原子層沈積裝置10的槪略構成 (原子層沈積方法) 接著,參照第3圖、第4圖,說明使用本實施形態之 原子層沈積裝置10的原子層沈積方法。第3圖係顯示本 實施形態之原子層沈積方法之一例的流程圖。此外,第4 圖(a)〜(d)係顯示在基板S之上形成薄膜的工程圖。 首先’原料氣體供給部80對成膜容器20的內部供給 原料氣體(步驟S101)。 在步驟S 1 0 1中’壓力偵測部84係偵測液體原料儲存 部82的液體原料的儲存內部的壓力,根據壓力偵測部84 所偵測到的壓力資料,以被儲存在液體原料儲存部82內 的液體原料的壓力成爲一定的方式,加壓部86將液體原 料進行加壓。因此’在氣化控制部8 8係由液體原料儲存 部82以一定壓力被供給液體原料。 氣化控制部88將由液體原料儲存部82所被供給的液 體原料直接氣化,以藉由控制部52進行控制的時序,由 原料氣體供給口 62對成膜容器20的內部(注入器60的 內部空間)供給原料氣體。氣化控制部8 8並無法將液體 -14 - 201247928 原料完全氣化’在由原料氣體供給口 62所被供 氣體之中’不僅原料的氣體成分,連霧氣亦加以 由原料氣體供給口 62所被供給的原料的氣 霧氣加以混合的原料氣體係衝撞被配置在比原料 口 62更接近原料氣體流的下游方向的擋板66。 擋板66的溫度成爲液體原料的沸點以上的溫度 擋板66的溫度係藉由溫度調節部68進行調節, 料氣體供給口 6 2所被供給的霧氣係藉由衝撞擋; 化。因此’即使在氣化控制部88無法將液體原 化的情形下’亦可抑制霧氣附著在成膜容器20 情形。 如上所示,原料氣體供給部8 0係以例如0 成膜容器20的內部供給原料氣體。如第4圖( 藉由步驟S101,對成膜容器20的內部供給原狗 分原料的氣體成分(原料氣體的成分)1 基板S之上,而形成吸附層1〇2。 接著’原料氣體供給部80對成膜容器20的 沖洗氣體112(步驟S102)。原料氣體供給部 如〇. 1秒鐘對成膜容器20的內部供給沖洗氣體 ’排氣部40將成膜容器20的內部的原料的氣| 或沖洗氣體1 1 2進行排氣。排氣部4〇係以例如 成膜容器20的內部的原料的氣體成分11〇或 1 12進行排氣。如第4圖(b )所示,藉由步驟 成膜容器20的內部供給沖洗氣體112,藉由基 ί給的原料 混合。 ,體成分與 [氣體供給 在此,以 :的方式, 因此由原 肢66而氣 :料完全氣 的內部的 .1秒鐘對 a )所示, 的氣體成 1 〇吸附在 丨內部供給 8 0係以例 1 1 2。此外 變成分11〇 2秒鐘將 沖洗氣體 S102 ,對 板S表面 -15- 201247928 的反應自我停止作用而未吸附在基板S之上的原料的氣體 成分110係由成膜容器20被沖洗。 接著’反應氣體供給部90對成膜容器20的內部供給 反應氣體(步驟S 1 03 )。利用藉由控制部52予以控制的 時序,開放反應氣體閥94,由反應氣體供給口 64對成膜 容器20的內部供給反應氣體。反應氣體供給部90係以例 如1秒鐘對成膜容器20的內部供給反應氣體。如第4圖 (c)所示,藉由步驟S103,對成膜容器20的內部供給 反應氣體114。此時,反應氣體係在注入器60的內部空 間,不會衝撞擋板66,而迅速地供給至真空腔室3 0的內 部。 此外,高頻電源50對上側電極36供給預定頻率的高 頻電流,在上側電極3 6與下側電極3 8之間發生電漿(步 驟S 104 )。高頻電源50係以例如0.2秒鐘發生反應氣體 114的電漿。高頻電源50使反應氣體114的電漿發生, 藉此使反應氣體114活性化的成分與吸附層102起反應而 形成薄膜層104。 其中,高頻電源50使反應氣體114的電漿發生的時 序亦可與反應氣體供給部90對成膜容器20的內部供給反 應氣體114的時序爲同時。 此外,不會發生電漿而反應氣體114與吸附層102起 反應時,係可省略步驟S104。此時,加熱器34將基板S 進行加熱,俾以反應氣體1 1 4與吸附層1 02充分起反應。 接著,反應氣體供給部90對成膜容器20的內部供給 -16- 201247928 沖洗氣體112 (步驟S105)。反應氣體供給部90係以例 如〇. 1秒鐘對成膜容器20的內部供給沖洗氣體1 1 2。此外 ,排氣部40對成膜容器20的內部的反應氣體114或沖洗 氣體112進行排氣。如第4圖(d)所示,藉由步驟S105 ,對成膜容器20的內部供給沖洗氣體112,使反應氣體 114由成膜容器20被沖洗。 藉由以上說明的步驟S101〜S105,在基板S之上形 成一原子層份的薄膜層104。以下反覆步驟S101〜S105 預定次數,藉此可形成所希望膜厚的薄膜層104» 如以上說明所示,在本實施形態之原子層沈積裝置 1〇及原子層沈積方法中,以比原料氣體供給口 62更接近 原料氣體流的下游方向配置擋板66,擋板66的溫度藉由 溫度調節部68來進行調節。因此,原子層沈積裝置10及 原子層沈積方法即使在氣化控制部88無法將液體原料完 全氣化的情形下,亦可抑制霧氣附著在成膜容器20的內 部的情形。結果,可使液體原料的利用效率提升,將原料 氣體穩定地以脈衝狀供給。尤其,在以2秒以下的供給時 間對成膜容器20內供給原料氣體的原子層沈積方法中, 由於可由液體原料立即生成原料氣體而供給至成膜容器 2〇內,因此液體原料的利用效率係更加提升。 尤其’溫度調節部68係以擋板66的溫度成爲液體原 料的沸點以上的溫度的方式進行溫度調節,因此可使衝撞 到擋板66的霧氣確實氣化。 此外,由於將液體原料儲存部82的內部的液體原料 -17- 201247928 進行加壓,因此可有效地對氣化控制部8 8供給液體原 。此外,加壓部86係將對液體原料的加壓控制爲一定 因此可將原料氣體恆以一定量供給至成膜容器20內部《 此外,擋板66並非被設置在反應氣體供給口 64的 面所相對向的位置,而是被設置在原料氣體供給口 62 前面所相對向的位置,因此原料氣體雖會衝撞到擋板 ,但是反應氣體並不會衝撞到擋板66。因此,反應氣 可迅速地供給至真空腔室30內。此外,即使在擋板66 液體原料未氣化而在附著於擋板66的狀態下殘留下來 情形下,亦爲反應氣體並不會衝撞到擋板66,因此亦 制在擋板66形成造成微粒原因的薄膜層。 其中,在本實施形態中係在注入器60設置1個擋 66,但是亦可設置複數個擋板,來使霧氣更加確實地氣 。此時,擋板的配置並未特別限制,但是較佳爲在與原 氣體供給口 62相對向的位置設置擋板,俾使包含由原 氣體供給口 62所流動的霧氣的原料氣體在最初發生衝 〇 以上詳加說明本發明之原子層沈積裝置及原子層沈 方法,惟本發明並非限定於上述實施形態。此外,在未 離本發明之主旨的範圍內,可爲各種改良或變更,自不 ^Τ-ΐ. m ° 【圖式簡單說明】 第1圖係顯示實施形態之原子層沈積裝置之一例的 料 刖 的 66 體 中 的 抑 板 化 料 料 撞 積 脫 待 槪 -18- .201247928 略構成圖。 第2圖係由原料氣體流的下游方向所觀看的注入器的 側面圖。 第3圖係顯示實施形態之原子層沈積方法之一例的流 程圖。 第4圖係顯示在基板之上形成薄膜的工程圖。 【主要元件符號說明】 原子層沈積裝置 2〇 :成膜容器 30 :真空腔室 32 :支持部 3 4 _·加熱器 3 6 :上側電極 3 8 :下側電極 4〇 :排氣部 42 :排氣管 44 :上升銷 46 :升降機構 5 0 :高頻電源 5 2 :控制部 :注入器 62 :原料氣體供給口 64 :反應氣體供給口 -19- 201247928 66 :擋板 6 8 :溫度調節部 8 0 :原料氣體供給部 8 2 :液體原料儲存部 8 4 :壓力偵測部 8 6 ·加壓部 8 8 :氣化控制部 90 :反應氣體供給部 92 :反應氣體儲存部 94 :反應氣體閥 1 〇 2 :吸附層 1 04 :薄膜層 110:原料的氣體成分 1 1 2 :沖洗氣體 1 1 4 ·反應氣體 S :基板 -20201247928 VI. Description of the Invention: [Technical Field] The present invention relates to an atomic layer deposition apparatus and an atomic layer deposition method for forming a thin film on a substrate. [Prior Art] When a thin film is formed on a substrate, a technique of forming a thin film (thickness controllability) is excellent in the step coverage, and an atomic layer deposition method (ALD: Atomic Layer Deposition) is known. In the ALD method, two kinds of gases, such as a material gas and a reaction gas, which are mainly composed of elements constituting a film to be formed, are alternately supplied to a substrate, and a thin film is formed on the substrate in atomic layer units. In the ALD method, when the material gas is supplied onto the substrate, the reaction of the substrate surface using the material gas self-stops. The reaction self-stopping action on the surface of the substrate means that only one or a plurality of layers of the material gas are adsorbed on the surface of the substrate during the supply of the material gas, and the excess material gas does not adhere to the film and does not contribute to the film formation. Therefore, a film is formed on the substrate in an atomic layer unit by an ALD method, whereby a film having a desired film thickness can be formed. Compared with the general CVD (Chemical Vapor Deposition) method, the ALD method is excellent in step coverage and film thickness controllability. Therefore, it is expected that the ALD method is used in forming a capacitor of a memory element or an insulating film called a high-k gate j. Further, in the ALD method, an insulating film can be formed at a temperature of 300 ° C or lower. Therefore, in the display using a glass substrate as in a liquid crystal display or the like, it is expected that the ALD method is used in forming a gate insulating film of a thin film transistor. When the raw material used for film formation is a liquid at normal temperature and normal pressure, the liquid raw material is first vaporized, and a vaporized raw material gas is used to form a thin film. As a method of vaporizing a liquid raw material, a foaming method, a baking method, or the like is known. The foaming method is a method of vaporizing a liquid supplied to a cylinder by foaming of a carrier gas. In the foaming method, the supply cylinder is heated to increase the vapor pressure of the material gas, whereby the material gas is saturated in the foaming carrier gas* and supplied to the chamber. In the baking method, a liquid raw material is introduced into a heating tank to vaporize the raw material, and the flow rate is controlled by a mass flow controller at a high temperature. In general, when a liquid raw material is vaporized and a vaporized raw material gas is used to form a thin film, when the liquid raw material is vaporized, not only the gas component of the liquid raw material but also the liquid is formed into a mist of the particulate in the raw material gas system. It is contained in a state of being mixed. When mist is mixed into the film forming container, the mist adhering to the inner wall of the film forming container is formed into a liquid state, and solidifies due to passage of time to cause generation of fine particles. Therefore, a decompression CVD apparatus having a mist separation unit for separating a gas component of a liquid material from a mist and discharging the separated mist is proposed, and the following pressure reduction CVD apparatus is known (Patent Document 1). [Prior Art] [Patent Document 1] [Patent Document 1] Japanese Laid-Open Patent Publication No. 2005-327864 No. 201247928 SUMMARY OF INVENTION [Problem to be Solved by the Invention] Unlike the CVD method, in the ALD method, a raw material gas system is pulsed. The shape is supplied to the film forming container. Therefore, when the film is formed by the ALD method using the foaming method, the baking method, and the mist separation unit described in the above-mentioned patent document, the raw material gas vaporized when the pulsed supply of the material gas is formed as Ο FF It is discarded without being used, and the utilization efficiency of raw materials is lowered. In addition, when the liquid material is to be vaporized only when the short-time supply of the material gas, that is, when the pulsed supply of the material gas is turned ON, it takes time from the start of gasification to the stabilization of the gasification amount. When the pulsed supply of the material gas is turned ON, there is a possibility that the material gas is not sufficiently supplied. SUMMARY OF THE INVENTION An object of the present invention is to provide an atomic layer deposition apparatus and an atomic layer deposition method which can increase the utilization efficiency of a liquid raw material and supply a raw material gas stably in a pulsed manner. (Means for Solving the Problem) An aspect of the present invention for solving the above problems is an atomic layer deposition apparatus for forming a thin film on a substrate. The apparatus includes: a film forming container in which a source gas supply port and a reaction gas supply port are formed; and a material gas supply unit that includes a liquid material storage unit that stores a liquid material as a raw material of the film; The liquid material stored in the raw material storage unit of the liquid 201247928 is directly vaporized, and the vaporization control unit that controls the flow rate supplies the raw material gas to the raw material gas supply port; the reaction gas supply unit 'reacts with the raw material gas The reaction gas that forms the thin film is supplied to the reaction gas supply port; the control unit 'controls the raw material gas supply unit and the reaction gas supply unit so that the raw material gas and the reaction gas are alternately supplied; This is disposed such that the material gas supplied from the material gas supply port collides with each other, and a temperature adjustment unit that adjusts the temperature of the baffle. Further, it is preferable that the temperature adjustment unit adjusts the temperature of the baffle so that the temperature of the baffle plate is equal to or higher than the boiling point of the liquid material. Further, it is preferable that the gasification control unit is a liquid injection valve. Further, it is preferable that the material gas supply unit includes a pressurizing unit that pressurizes the liquid material stored in the liquid material storage unit, and that the raw material gas supply unit is preferably provided. a pressure detecting unit that detects the pressure of the liquid material in the liquid material storage unit, wherein the pressure portion is based on a pressure of the liquid material detected by the pressure detecting unit, and the pressure of the liquid material becomes The aforementioned liquid material is pressurized in a certain manner. Further, it is preferable that the control unit controls the material gas supply unit such that a pulse of a length of 2 seconds or shorter is supplied to the material gas. -8- 201247928 Further, another aspect of the present invention is an atomic layer deposition method for forming a thin film on a substrate. In the method, after the raw material gas obtained by vaporizing the liquid raw material collides with the baffle, the raw material gas is supplied into the film forming chamber, and the component of the raw material gas adheres to the substrate in the film forming chamber; After the component of the material gas is adhered to the substrate, a reaction gas is supplied into the film forming chamber, and a component of the material gas reacts with the reaction gas to form a thin film layer on the substrate. The material gas is disposed so as to collide, and the temperature of the baffle is adjusted to be equal to or higher than the boiling point of the liquid material. (Effect of the Invention) According to the atomic layer deposition apparatus and the atomic layer deposition method of the present invention, the utilization efficiency of the liquid raw material can be improved, and the material gas can be stably supplied in a pulse form. [Embodiment] <Embodiment> (Configuration of Atomic Layer Deposition Device) First, the configuration of the atomic layer deposition device of the present embodiment will be described with reference to Fig. 1 . Fig. 1 is a schematic block diagram showing an example of an atomic layer deposition apparatus of the present embodiment. In the atomic layer deposition apparatus 10 of the present embodiment, the source gas and the reaction gas are alternately supplied, and a thin film is formed on the substrate s by an atomic layer. At this time, the atomic layer deposition apparatus 10 increases the reactivity of the reaction gas between the components of the material gas adsorbed on the base S, so that the plasma can be generated. In the present embodiment, the plate electrode is used for the generation of plasma, but the present invention is not limited thereto. In the present embodiment, a film is formed using a raw material which is liquid at normal temperature and normal pressure. The atomic layer deposition apparatus 10 of the present embodiment includes a film former 20, an exhaust unit 40, a high-frequency power source 50, a control unit 52, a material gas supply unit 80, and a reaction gas supply unit 90. The film formation container 20 is provided with a vacuum chamber 30 and an injector 60. First, the vacuum chamber 30 will be described. The vacuum chamber 30 includes a holding portion 32, an upper electrode 36, and a lower electrode 38. A lower electrode 38 is provided on the support portion 32. Here, the lower electrode 38 is grounded. The substrate S is supported by the upper pin 44 that penetrates the support portion 32 from below the vacuum chamber 30. The ascending pin 44 is lifted and lowered in the following direction by the elevating mechanism 46. In the state in which the ascending pin 44 supports the substrate S, the elevating mechanism 46 moves the ascending pin 44 in the downward direction, whereby the substrate S is carried on the lower electrode. Above 38. Further, a heater 34 is provided inside the support portion 32, and the temperature of the substrate S can be adjusted by the heater 34. The upper electrode 36 is provided above the substrate S and is connected to a high frequency power source. The high-frequency power source 50 supplies a high-frequency current of a predetermined frequency, whereby plasma is generated between the upper electrode 36 and the lower electrode 38. Further, the high-frequency power source 50 is connected to the control unit 52. The frequency of the high-frequency potentiometer is increased by 50. The source -10- 201247928 5 时序 The timing of supplying the high-frequency current to the upper electrode 36 is controlled by the control unit 52. Next, the injector 60 will be described. The injector 60 is located on the upstream side of the source gas or reactant gas stream flowing in the vacuum chamber. The injector 60 has an internal space in which a material gas supply port 62 which is elongated in the horizontal direction and a reaction gas supply port 64 which is elongated in the horizontal direction are formed. Further, a baffle 66 elongated in the horizontal direction is provided in the inner space of the injector 60. The material gas system supplied from the material gas supply unit 80 is supplied to the internal space of the injector 60 or even the vacuum chamber 30 through the material gas supply port 62. Further, the reaction gas system supplied from the reaction gas supply unit 90 is supplied to the internal space of the injector 60 through the reaction gas supply port 64, even in the vacuum chamber 30. The baffle 66 is disposed closer to the downstream direction of the raw material gas flow than the raw material gas supply port 62 so that the raw material gas supplied from the raw material gas supply port 62 collides with each other. Further, the baffle 66 is disposed such that the reaction gas supplied from the reaction gas supply port 4 does not collide. That is, the baffle 66 is provided so as to face the raw material gas supply port 6 2 but not to face the reaction gas supply port 64. Further, the shutter 66 is connected to the temperature adjusting portion 68, and the temperature of the shutter 66 is adjusted by the temperature η circumferential portion 68. The temperature adjusting unit 68 preferably adjusts the temperature of the baffle 66 such that the temperature of the baffle 66 becomes a temperature equal to or higher than the boiling point of the liquid material. For example, the temperature of the baffle 66 is preferably adjusted to be 10 〇 ° C or more and 2 〇 ° ° C or less. In the present embodiment, the temperature of the baffle 66 is adjusted to 170 °C. Here, the positional relationship between the material gas supply port 62 and the baffle 66 will be described with reference to Fig. 2 . Figure 2 is a side elevational view of the injector 60 as viewed from the downstream of the feed gas stream. In the side view shown in Fig. 2, the shutter 66 is disposed such that the material gas supply port 62 which is elongated at least in the horizontal direction and the shutter 66 are completely weighted. The reaction gas supply port 64 does not overlap with the baffle 66. In the side view, it is preferable that the material gas supply port 62 is located at a position near the center of the baffle 66 in the height direction." Returning to Fig. 1, the exhaust portion 40 is supplied to the vacuum chamber through the exhaust pipe 42. The material gas, the reaction gas, and the flushing gas in the chamber 30 are exhausted. For example, a dry pump is used in the exhaust unit 40. The exhaust unit 40 exhausts the inside of the vacuum chamber 30, whereby the vacuum in the vacuum chamber 30 is maintained at 10 Pa even if the material gas, the reaction gas, and the flushing gas are supplied into the vacuum chamber 30. ~100 Pa or so. Next, the material gas supply unit 80 will be described. The material gas supply unit 80 includes a liquid material storage unit 82, a pressure detecting unit 84, a pressurizing unit 86, and a vaporization control unit 888. The liquid material storage unit 82 stores the liquid material used to form the film. The liquid material stored in the liquid material storage portion 82 is, for example, TEMAZ (Tetrakis ethylmethylamino zirconium), TEMAH (tetrakis-(ethylmethylamino acid)- (tetrakis ethylmethylamino hafnium)) ο The pressure detecting unit 84 detects the pressure inside the storage of the liquid material -12-201247928 of the liquid material storage unit 82. The pressure detecting unit 84 is, for example, a pressure gauge. The data of the pressure detected by the pressure detecting unit 84 is transmitted to the pressurizing unit 86. The pressurizing unit 86 pressurizes the liquid material so that the pressure of the liquid material stored in the liquid material storage unit 82 becomes constant, based on the data of the pressure detected by the pressure detecting unit 84. The pressurizing unit 86 introduces an inert gas such as N2 gas or Ar gas into the liquid material storage unit 82, for example, thereby pressurizing the liquid material. The vaporization control unit 88 directly vaporizes the liquid raw material stored in the liquid raw material storage unit 82 and supplied to the vaporization control unit 88, and controls the flow rate. The gasification control unit 888 is, for example, a liquid injection valve. The liquid injection valve can be, for example, an ALD liquid injection valve manufactured by Swagelok. Further, the vaporization control unit 88 is connected to the control unit 52. The timing at which the vaporization control unit 88 vaporizes the liquid material is controlled by the control unit 52. The vaporization control unit 88 supplies the raw material gas by directly vaporizing the liquid raw material in a pulsed supply of a length of 0.05 second or longer and 2 seconds or shorter. The material gas generated by the gasification control unit 88 also includes a mist which is formed by floating a plurality of fine particles in a state in which the liquid material is in a liquid state. Next, the reaction gas supply unit 90 will be described. The reaction gas supply unit 90 includes a reaction gas storage unit 92 and a reaction gas valve 94. The reaction gas storage unit 92 stores a reaction gas used to form a thin film. The reaction gas stored in the reaction gas storage unit 92 is an oxidizing gas such as 〇2 gas. The reaction gas valve 94 is connected to the control unit 52. The open/close state of the reaction gas valve -13-201247928 94 is controlled by the control unit 52. The raw material gas supply unit 80 and the reaction gas supply unit 90 are configured to supply a flushing gas such as n2 gas or Ar gas to the inside of the film forming container 20, respectively. The above-described schematic configuration of the atomic layer deposition apparatus 10 of the present embodiment (atomic layer deposition method) Next, an atomic layer deposition method using the atomic layer deposition apparatus 10 of the present embodiment will be described with reference to Figs. 3 and 4 . Fig. 3 is a flow chart showing an example of the atomic layer deposition method of the present embodiment. Further, Fig. 4 (a) to (d) show drawings in which a thin film is formed on the substrate S. First, the material gas supply unit 80 supplies the material gas to the inside of the film formation container 20 (step S101). In step S101, the pressure detecting unit 84 detects the pressure inside the liquid material of the liquid material storage unit 82, and stores it in the liquid material according to the pressure data detected by the pressure detecting unit 84. The pressure of the liquid material in the storage unit 82 is constant, and the pressurizing unit 86 pressurizes the liquid material. Therefore, the liquid material is supplied to the liquid material by the liquid material storage unit 82 at a constant pressure. The vaporization control unit 88 directly vaporizes the liquid material supplied from the liquid material storage unit 82, and is controlled by the control unit 52 to the inside of the film formation container 20 by the material gas supply port 62 (injector 60) The internal space) supplies the raw material gas. The gasification control unit 88 cannot completely vaporize the liquid-14 - 201247928 raw material 'in the gas supplied from the raw material gas supply port 62', not only the gas component of the raw material but also the mist is supplied from the raw material gas supply port 62. The raw material gas system in which the mist of the supplied raw material is mixed collides with the baffle 66 disposed closer to the downstream direction of the raw material gas flow than the raw material port 62. The temperature of the baffle 66 is equal to or higher than the boiling point of the liquid material. The temperature of the baffle 66 is adjusted by the temperature adjusting unit 68, and the mist supplied from the material gas supply port 62 is blocked by the collision. Therefore, even when the vaporization control unit 88 cannot initialize the liquid, it is possible to suppress the mist from adhering to the film formation container 20. As described above, the material gas supply unit 80 supplies the material gas to the inside of the film forming container 20, for example. As shown in Fig. 4, the gas component (component of the material gas) 1 on the substrate S of the original dog component is supplied to the inside of the film formation container 20 to form the adsorption layer 1〇2. Then, the raw material gas supply is performed. The portion 80 is in the flushing gas 112 of the film forming container 20 (step S102). The raw material gas supply unit supplies the flushing gas to the inside of the film forming container 20 in one second. The exhaust unit 40 will form the raw material inside the film forming container 20. The exhaust gas is exhausted by the flushing gas 1 1 2. The exhaust portion 4 is exhausted by, for example, the gas component 11A or 1 12 of the raw material inside the film forming container 20, as shown in Fig. 4(b). By supplying the flushing gas 112 to the inside of the film forming container 20, the raw material is mixed by the base material. The body composition and the gas supply are in the manner of: The inside of the .1 second is shown in a), the gas is 1 〇 adsorbed in the 丨 internal supply 80 series by the example 1 1 2 . Further, the variable composition of 11 〇 2 seconds of the flushing gas S102, and the gas component 110 of the raw material which is not self-stopped by the reaction of the surface of the sheet S -15 - 201247928 but not adsorbed on the substrate S is washed by the film forming container 20. Next, the reaction gas supply unit 90 supplies a reaction gas to the inside of the film formation container 20 (step S1 03). The reaction gas valve 94 is opened by the timing controlled by the control unit 52, and the reaction gas is supplied from the reaction gas supply port 64 to the inside of the film formation container 20. The reaction gas supply unit 90 supplies a reaction gas to the inside of the film formation container 20, for example, for one second. As shown in Fig. 4(c), the reaction gas 114 is supplied to the inside of the film formation container 20 by the step S103. At this time, the reaction gas system is supplied to the inside of the vacuum chamber 30 without being collided with the baffle 66 in the internal space of the injector 60. Further, the high-frequency power source 50 supplies a high-frequency current of a predetermined frequency to the upper electrode 36, and plasma is generated between the upper electrode 36 and the lower electrode 38 (step S104). The high frequency power source 50 generates a plasma of the reaction gas 114 for, for example, 0.2 seconds. The high-frequency power source 50 generates plasma of the reaction gas 114, whereby the component activated by the reaction gas 114 reacts with the adsorption layer 102 to form the thin film layer 104. Here, the timing at which the high-frequency power source 50 generates the plasma of the reaction gas 114 may be simultaneously with the timing at which the reaction gas supply unit 90 supplies the reaction gas 114 to the inside of the film formation container 20. Further, when the plasma does not occur and the reaction gas 114 reacts with the adsorption layer 102, the step S104 can be omitted. At this time, the heater 34 heats the substrate S, and the reaction gas 141 is sufficiently reacted with the adsorption layer 102. Next, the reaction gas supply unit 90 supplies -16 - 201247928 flushing gas 112 to the inside of the film formation container 20 (step S105). The reaction gas supply unit 90 supplies the flushing gas 1 1 2 to the inside of the film formation container 20, for example, in 1 second. Further, the exhaust unit 40 exhausts the reaction gas 114 or the flushing gas 112 inside the film formation container 20. As shown in Fig. 4(d), the flushing gas 112 is supplied to the inside of the film forming container 20 in step S105, and the reaction gas 114 is washed by the film forming container 20. A film layer 104 of an atomic layer is formed on the substrate S by the steps S101 to S105 described above. The steps S101 to S105 are repeated a predetermined number of times, whereby the film layer 104 of a desired film thickness can be formed. As shown in the above description, in the atomic layer deposition apparatus 1 and the atomic layer deposition method of the present embodiment, the ratio of the material gas is The supply port 62 is disposed closer to the downstream direction of the material gas flow, and the temperature of the baffle 66 is adjusted by the temperature adjustment unit 68. Therefore, even in the case where the vaporization control unit 88 cannot completely vaporize the liquid material, the atomic layer deposition apparatus 10 and the atomic layer deposition method can suppress the adhesion of the mist to the inside of the film formation container 20. As a result, the utilization efficiency of the liquid raw material can be improved, and the raw material gas can be stably supplied in a pulsed manner. In particular, in the atomic layer deposition method in which the source gas is supplied to the film formation container 20 at a supply time of 2 seconds or less, since the raw material gas can be immediately generated from the liquid material and supplied to the film formation container 2, the utilization efficiency of the liquid material is utilized. The system is even better. In particular, the temperature adjustment unit 68 performs temperature adjustment so that the temperature of the baffle 66 becomes equal to or higher than the boiling point of the liquid material. Therefore, the mist that has collided with the baffle 66 can be surely vaporized. Further, since the liquid raw material -17 - 201247928 inside the liquid raw material storage portion 82 is pressurized, the vaporization control portion 8 8 can be efficiently supplied with the liquid original. Further, the pressurizing unit 86 controls the pressurization of the liquid material to be constant, so that the material gas can be supplied to the inside of the film forming container 20 at a constant amount. Further, the baffle 66 is not provided on the surface of the reaction gas supply port 64. The opposite positions are provided at positions facing each other in front of the material gas supply port 62, so that the material gas collides with the baffle, but the reaction gas does not collide with the baffle 66. Therefore, the reaction gas can be quickly supplied into the vacuum chamber 30. Further, even in the case where the liquid material of the baffle 66 is not vaporized and remains in the state of being attached to the baffle 66, the reaction gas does not collide with the baffle 66, so that the baffle 66 is formed to cause particles. The reason for the film layer. In the present embodiment, one stopper 66 is provided in the injector 60. However, a plurality of shutters may be provided to make the mist more reliable. At this time, the arrangement of the baffle plate is not particularly limited, but it is preferable to provide a baffle at a position opposed to the raw gas supply port 62 so that the raw material gas containing the mist flowing from the raw gas supply port 62 is initially generated. The atomic layer deposition apparatus and the atomic layer deposition method of the present invention will be described in detail above, but the present invention is not limited to the above embodiment. In addition, various modifications and changes may be made without departing from the spirit and scope of the invention. FIG. 1 is a view showing an example of an atomic layer deposition apparatus of an embodiment. The slab-forming material in the 66 body of the material 撞 撞 槪 槪 -18 - . 201247928 a little composition. Figure 2 is a side elevational view of the injector as viewed in the downstream direction of the feed gas stream. Fig. 3 is a flow chart showing an example of the atomic layer deposition method of the embodiment. Figure 4 is a drawing showing the formation of a film on a substrate. [Description of main component symbols] Atomic layer deposition apparatus 2: Film forming container 30: Vacuum chamber 32: Support portion 3 4 - Heater 3 6 : Upper electrode 3 8 : Lower electrode 4: Exhaust portion 42: Exhaust pipe 44: Rising pin 46: Elevating mechanism 50: High-frequency power supply 5 2 : Control unit: Injector 62: Raw material gas supply port 64: Reaction gas supply port -19-201247928 66: Baffle 6 8: Temperature adjustment Part 80: Raw material gas supply unit 8 2 : Liquid material storage unit 8 4 : Pressure detecting unit 8 6 · Pressurizing unit 8 8 : Gasification control unit 90 : Reaction gas supply unit 92 : Reaction gas storage unit 94 : Reaction Gas valve 1 〇 2 : adsorption layer 104 : film layer 110: gas component of raw material 1 1 2 : flushing gas 1 1 4 · reaction gas S: substrate -20

Claims (1)

201247928 七、申請專利範圍: 種原子層沈積裝置’其係在基板上形成薄膜的原 子層沈積裝置,其特徵爲具有: 成膜谷器,其係形成有原料氣體供給口與反應氣體供 給口; ”原料氣體供給部,其係包含:儲存作爲前述薄膜的原 料的液體原料的液體原料儲存部;及將被儲存在前述液體 原料儲存部的前述液體原料直接氣化,且控制流量的氣化 控制部,將原料氣體供給至前述原料氣體供給口; 反應氣體供給部,其係將與前述原料氣體起反應而形 成前述薄膜的反應氣體供給至前述反應氣體供給口; 控制部’其係以前述原料氣體與前述反應氣體被交替 供給的方式’控制前述原料氣體供給部與前述反應氣體供 給部; 擋板’其係以由前述原料氣體供給口所被供給的前述 原料氣體發生衝撞的方式進行配置;及 溫度調節部,其係調節前述擋板的溫度。 2 ·如申請專利範圍第1項之原子層沈積裝置,其中, 即述溫度調節部係以前述擋板的溫度成爲前述液體原料的 沸點以上的溫度的方式調節前述擋板的溫度。 3·如申請專利範圍第1項或第2項之原子層沈積裝置 ’其中’前述氣化控制部爲液體噴注閥》 4·如申請專利範圍第1項至第3項中任一項之原子層 &積裝置’其中,前述原料氣體供給部係具備有將被儲存 -21 - 201247928 在前述液體原料儲存部的前述液體原料進行加壓的加壓部 0 5. 如申請專利範圍第4項之原子層沈積裝置,其中, 前述原料氣體供給部係具備有壓力偵測部,偵測被儲存在 前述液體原料儲存部的前述液體原料的壓力, 前述加壓部係根據前述壓力偵測部所偵測到的前述液 體原料的壓力,以前述液體原料的壓力成爲一定的方式將 前述液體原料進行加壓。 6. 如申請專利範圍第1項至第5項中任一項之原子層 沈積裝置’其中,前述控制部係以2秒以下的供給時間使 前述原料氣體被供給至前述成膜容器內的方式控制前述原 料氣體供給部。 7. 如申請專利範圍第1項至第6項中任一項之原子層 沈積裝置’其中’前述擋板並非設在前述反應氣體供給口 的前面所相對向的位置,而是設在前述原料氣體供給口的 前面所相對向的位置。 8·—種原子層沈積方法’其係在基板上形成薄膜的原 子層沈積方法,其特徵爲具有: 使得將液體原料氣化所得的原料氣體衝撞擋板之後, 將前述原料氣體供給至成膜腔室內,而使前述原料氣體的 成分附著在成膜腔室內的基板的工程;及 使前述原料氣體的成分附著在前述基板之後,將反應 氣體供給至前述成膜腔室內,使前述原料氣體的成分與前 述反應氣體起反應而在前述基板形成薄膜層的工程, -22- 201247928 前述擋板係以前述原料氣體發生衝撞的方式進行配置 ,以前述擋板的溫度成爲前述液體原料的沸點以上的溫度 的方式進行調節。 -23-201247928 VII. Patent application scope: An atomic layer deposition apparatus, which is an atomic layer deposition apparatus for forming a thin film on a substrate, which is characterized in that: a film forming granulator is formed with a raw material gas supply port and a reaction gas supply port; The raw material gas supply unit includes: a liquid raw material storage unit that stores a liquid raw material as a raw material of the thin film; and a gasification control that directly vaporizes the liquid raw material stored in the liquid raw material storage unit and controls a flow rate The raw material gas is supplied to the raw material gas supply port, and the reaction gas supply unit supplies a reaction gas that reacts with the raw material gas to form the thin film to the reaction gas supply port; the control unit' uses the raw material The gas and the reaction gas are alternately supplied to control the raw material gas supply unit and the reaction gas supply unit; and the baffle plate is disposed such that the material gas supplied from the material gas supply port collides; And a temperature adjustment unit that adjusts the temperature of the baffle The atomic layer deposition apparatus according to claim 1, wherein the temperature adjustment unit adjusts the temperature of the baffle so that the temperature of the baffle plate is equal to or higher than a boiling point of the liquid material. The atomic layer deposition apparatus of the first or second aspect of the patent application 'where the 'gasification control part is a liquid injection valve>> 4> The atomic layer &amp of any one of claims 1 to 3 The raw material gas supply unit includes a pressurizing unit that pressurizes the liquid material stored in the liquid material storage unit from 21 to 201247928. 5. The atom of claim 4 In the layer deposition apparatus, the material gas supply unit includes a pressure detecting unit that detects a pressure of the liquid material stored in the liquid material storage unit, and the pressurizing unit detects the pressure detecting unit according to the pressure detecting unit. The pressure of the liquid raw material to be obtained is such that the liquid raw material is pressurized in such a manner that the pressure of the liquid raw material becomes constant. 6. Patent Application No. 1 to 5 In the atomic layer deposition apparatus of any one of the above, the control unit controls the raw material gas supply unit such that the raw material gas is supplied into the film formation container with a supply time of 2 seconds or less. The atomic layer deposition apparatus of any one of the above-mentioned items, wherein the said baffle is not disposed at a position facing the front side of the reaction gas supply port, but is disposed in front of the raw material gas supply port. A relative atomic layer deposition method is an atomic layer deposition method for forming a thin film on a substrate, which is characterized in that: after the raw material gas obtained by vaporizing the liquid raw material collides with the baffle, the foregoing The raw material gas is supplied into the film forming chamber, and the component of the material gas adheres to the substrate in the film forming chamber; and after the component of the material gas adheres to the substrate, the reaction gas is supplied to the film forming chamber. a process of forming a thin film layer on the substrate by reacting a component of the material gas with the reaction gas, -22-201247928 The baffle plate is disposed such that the material gas collides, and the temperature of the baffle plate is adjusted to be equal to or higher than a boiling point of the liquid material. -twenty three-
TW101104714A 2011-02-14 2012-02-14 Atomic layer deposition apparatus and atomic layer deposition method TW201247928A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011028623A JP2012167317A (en) 2011-02-14 2011-02-14 Atomic layer deposition apparatus

Publications (1)

Publication Number Publication Date
TW201247928A true TW201247928A (en) 2012-12-01

Family

ID=46672240

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101104714A TW201247928A (en) 2011-02-14 2012-02-14 Atomic layer deposition apparatus and atomic layer deposition method

Country Status (6)

Country Link
US (1) US20130309401A1 (en)
EP (1) EP2677060A1 (en)
JP (1) JP2012167317A (en)
KR (1) KR20130079526A (en)
TW (1) TW201247928A (en)
WO (1) WO2012111295A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI788098B (en) * 2021-11-12 2022-12-21 天虹科技股份有限公司 Atomic layer deposition equipment

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6334880B2 (en) 2013-10-03 2018-05-30 Jswアフティ株式会社 Atomic layer deposition apparatus and atomic layer deposition method
KR101570227B1 (en) * 2014-05-20 2015-11-18 주식회사 유진테크 Apparatus and method for processing substrate
KR101628786B1 (en) * 2015-09-09 2016-06-09 주식회사 유진테크 Apparatus and method for processing substrate
KR102659195B1 (en) * 2016-07-11 2024-04-19 삼성전자주식회사 Plasma chemical vapor deposition apparatus and method of forming Li based thin film
JP2019033236A (en) * 2017-08-10 2019-02-28 株式会社日本製鋼所 Atomic layer growth apparatus, method for film formation using the same, and cleaning method thereof
JP6937806B2 (en) * 2019-09-25 2021-09-22 株式会社Kokusai Electric Substrate processing equipment and semiconductor manufacturing method
CN111607780A (en) * 2020-05-15 2020-09-01 南京恩腾电子科技有限公司 Atomic layer deposition method for surface of three-dimensional bluff body

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6454912B1 (en) * 2001-03-15 2002-09-24 Micron Technology, Inc. Method and apparatus for the fabrication of ferroelectric films
JP4316341B2 (en) * 2003-10-01 2009-08-19 東京エレクトロン株式会社 Vaporizer and film forming apparatus
JP4150356B2 (en) 2004-05-13 2008-09-17 東京エレクトロン株式会社 Film forming apparatus and film forming method
JP5203843B2 (en) * 2008-08-06 2013-06-05 東京エレクトロン株式会社 Vaporizer and film forming apparatus using the same
JP2010225751A (en) * 2009-03-23 2010-10-07 Mitsui Eng & Shipbuild Co Ltd Device for growing atomic layer
JP4854794B2 (en) * 2010-03-18 2012-01-18 三井造船株式会社 Thin film forming equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI788098B (en) * 2021-11-12 2022-12-21 天虹科技股份有限公司 Atomic layer deposition equipment

Also Published As

Publication number Publication date
WO2012111295A1 (en) 2012-08-23
JP2012167317A (en) 2012-09-06
KR20130079526A (en) 2013-07-10
EP2677060A1 (en) 2013-12-25
US20130309401A1 (en) 2013-11-21

Similar Documents

Publication Publication Date Title
TW201247928A (en) Atomic layer deposition apparatus and atomic layer deposition method
JP5063344B2 (en) Atomic layer deposition method of hafnium-containing high dielectric constant dielectric materials
KR101788440B1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and program
TW201247925A (en) Atomic layer deposition using radicals of gas mixture
KR101740616B1 (en) Method for manufacturing semiconductor device, substrate processing device, and recording medium
JP5852151B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, program, and recording medium
JP4189394B2 (en) CVD method using vertical CVD apparatus
TW201629253A (en) Selective inhibition in atomic layer deposition of silicon-containing films
KR101509453B1 (en) Method for manufacturing semiconductor device, substrate processing method, and substrate processing apparatus
KR101163054B1 (en) Method of manufacturing semiconductor device, method of processing substrate, and substrate processing apparatus
TW201700786A (en) Ultrathin atomic layer deposition film accuracy thickness control
TW201144475A (en) Plasma activated conformal film deposition
JPWO2012066977A1 (en) Semiconductor device manufacturing method, substrate processing method, and substrate processing apparatus
JP2011181681A (en) Atomic layer deposition method and atomic layer deposition device
JP6523080B2 (en) Semiconductor device manufacturing method, substrate processing apparatus and program
JP2015159247A (en) Semiconductor device manufacturing method, substrate processing apparatus and program
JP2016058676A (en) Semiconductor device manufacturing method, substrate processing apparatus and program
JP2013222725A (en) Method for manufacturing semiconductor device, substrate processing method, substrate processing device, and program
JP6470060B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP6604801B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
JP2011198885A (en) Atomic layer deposition method and method therefor
KR20070015958A (en) Apparatuses and methods for atomic layer deposition of hafnium-containing high-? dielectric materials
JP2014210946A (en) Atomic layer deposition apparatus
US10297439B2 (en) Film forming method and film forming system
KR102219786B1 (en) Film forming method and film forming system