TW201247595A - Manufacture of at least one ethylene derivative compound - Google Patents

Manufacture of at least one ethylene derivative compound Download PDF

Info

Publication number
TW201247595A
TW201247595A TW101104737A TW101104737A TW201247595A TW 201247595 A TW201247595 A TW 201247595A TW 101104737 A TW101104737 A TW 101104737A TW 101104737 A TW101104737 A TW 101104737A TW 201247595 A TW201247595 A TW 201247595A
Authority
TW
Taiwan
Prior art keywords
ethylene
distillation column
fraction
containing composition
separated
Prior art date
Application number
TW101104737A
Other languages
Chinese (zh)
Inventor
Dominique Balthasart
Michel Lempereur
Original Assignee
Solvay
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay filed Critical Solvay
Publication of TW201247595A publication Critical patent/TW201247595A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Ethylene-containing composition comprising (a) between 75 and 99.9 % by volume of hydrocarbon compounds containing 2 carbon atoms; and (b) a quantity of ethylene such that the ratio of this quantity to the total quantity of hydrocarbon compounds containing 2 carbon atoms is comprised between 97 and 99.5 %. Process for the manufacture of such ethylene-containing composition. Process for the manufacture of at least one ethylene derivative compound starting from such ethylene-containing composition. Process for the manufacture of ethylene dichloride according to which the ethylene-containing composition is subjected to a chlorination and/or an oxychlorination in order to produce ethylene dichloride, further pyrolyzed in order to produce vinyl chloride, further polymerized in order to produce polyvinyl chloride.

Description

201247595 六、發明說明: 本申請要求於2011年2月15日提交的歐洲申請號 11154555.4的優先權,出於所有的目的該申請的全部內容 藉由引用結合在此。 【發明所屬之技術領域】 本發明涉及一種含乙嫌的組合物。具體地,本發明涉 及一種適合於製造至少一種乙儲衍生物,更特別是製造二 氯乙院(EDC)的一種含乙烯的組合物。它還涉及—種用 於製造此種含乙烯的組合物的方法並且涉及用於製造至少 一種乙烯衍生物化合物,較佳的是EDC/氯乙烯(VC )以 及聚氯乙烯(PVC)的一種方法。 【先前技術】 烯烴傳統上是從石油原料藉由催化或蒸汽裂解過程生 產的。該等裂解過程,尤其是蒸汽裂解從多種烴原料產生 了基本烯烴’例如乙烯和/或丙烯。乙烯和丙烯係在許多 用於製造塑膠和其他化合物的過程中有用的大宗商品石油 化學品。乙烯被用來製造多種聚乙烯塑膠,並且用於製造 其他的化學品’例如EDC/VC/PVC '氧化乙烯、乙苯以及 醇類。丙烯被用來製造多種聚丙烯塑膠,並且用於製造其 他的化學品,例如丙烯腈以及環氧丙烷。 在石油化學工業已有~段時間已知:氧合物,尤其是 醇’可以轉化成基本烯烴,例如乙烯以及丙烯。這個過程 -5- 201247595 被稱爲氧合物至烯烴的過程或OTO過程。用於基本烯烴 的生產的較佳的是氧合物係甲醇。這種甲醇到烯烴的轉化 過程被稱爲甲醇到烯烴的過程或MTO過程。 這種來自OTO (較佳的是MTO反應器)的流出流包 含令人希望的烯烴,例如乙烯和丙烯,連同不希望的高濃 度的副產物,該等副產物的量値會使乙烯以及丙烯對於它 們的較佳的處置(例如聚合反應)而言不合格並且之後應 將其去除以製造具有高純度的烯烴產品流。 副產物的去除因此意味著一些對從OTO/MTO反應器 流出的流出流進行處理以生產非常高純度的烯烴(稱爲聚 合反應等級的烯烴),特別是特徵爲大於按體積計99.8% 、經常是至少按體積計99.9%的純度的聚合反應等級的乙 烯。 提供了用於從來自甲醇到烯烴的反應系統的一初始的 流出流中分離出聚合反應等級的乙烯以及丙烯的高效的分 離方法和系統的這種過程的例子可以在US 709497 1中找 到。 對於提供聚合反應等級的烯烴並且特別是對於提供聚 合反應等級的乙烯所必需的設備計算以及資源(材料以及 能量)會實質性地增加運行成本。 因此,對於以低成本提供一含乙烯的組合物存在一種 需要,這種組合物可以含有不同類型的雜質並且處於對其 將來的應用不會被禁止的水平》 201247595 【發明內容】 於是本發明的目的部分地是提供一含乙稀的組合物’ 這種組合物較佳的是適合於製造具有低於聚合反應等級的 乙烯的純度的至少一種乙烯衍生物化合物,特別是EDC。 這種含乙烯的組合物較佳的是從一氧合物原料開始、藉由 一新的氧合物至烯烴的過程獲得。 爲此目的,本發明涉及一含乙烯的組合物’包括 (a) 按體積計75%與99·9%之間的含2個碳原子的烴類 化合物;以及 (b) —量値的乙烧,從而使得該量値與含2個碳原子 的烴類化合物的總量値之比係在97%與99.5%之間。 藉由“含乙烯的組合物”在本說明書中是用來指包括乙 烯作爲主要組分的一組合物。 根據本發明的含乙烯的組合物包括在按體積計7 5 %與 9 9 · 9 %之間,較佳的是在7 7 %與9 9.9 %之間,更佳的是在 96%與99.9%之間並且最佳的是在96.5%與99.9%之間的 含2個碳原子的烴類化合物。最特別佳的是以下一含乙烯 的組合物,它包括在按體積計9 7 %與9 9.9 %之間的含2個 碳原子的烴類化合物。 表述“含2個碳原子的烴”爲了本發明的目的應理解爲 意思係至少含有碳和氫原子並且含有2個碳原子的任何有 機化合物。 較佳的是,在根據本發明的含乙烯的組合物中所包含 的含2個碳原子的烴類化合物係乙烯、乙烷以及乙炔。 201247595 根據本發明的含乙烯的組合物包括一量値的乙烯,從 而使得這個量値與該含2個碳原子的烴類化合物(較佳的 是,乙烯、乙烷以及乙炔)的總量値之比包含在9 7 %與 99.5%之間,較佳的是在97.5%與99.5%之間,更佳的是 在98%與99.2%之間,並且最佳的是在98·5%與99.2%之 間。包含以下量値的乙烯的含乙烯的組合物係最特別佳的 ,該量値係使得該量値與含2個碳原子的烴類化合物(較 佳的是,乙烯、乙烷以及乙炔)的總量値之比係在9 8.8 % 與9 9 · 2 %之間。 因此,根據本發明的含乙烯的組合物包括有利地在按 體積計7 2.8 %與9 9.4 %之間,較佳的是在7 5.1 %與9 9.4 % 之間,更佳的是在94.1%與99.1%之間並且最佳的是在 95.1 %與99.1 %之間的一量値的乙烯。具體地,最佳的是 以下一含乙烯的組合物,其包括在按體積計 9 5 · 8 %與 9 9 . 1 %之間的乙烯。 因此該含乙烯的組合物有利地不是一聚合等級的乙烯 ,即,其特徵爲大於按體積計99.8%,經常是最多按體積 計9 9.9 %的一純度。 根據本發明的含乙烯的組合物有利地包括小於按體積 計1 00 ppm的含至少3個碳原子的烴類化合物以及小於按 體積計100 ppm的氧合物以及水。 表述“含至少3個碳原子的烴”爲了本發明的目的應理 解爲意思係至少含有碳和氫原子並且包含至少3個碳原子 的任何有機化合物”。此種包含至少3個碳原子的烴類化 -8 - 201247595 合物的例子係丙烷、丙烯、丁烷以及它們的不飽和 連同所有飽和或不飽和的更重的化合物。 表述“氧合物”爲了本發明的目的應理解爲意思 —種以下的有機化合物’該化合物包括至少碳和氫 及至少一個氧原子,例如脂肪族醇、醚、羰基化合 、酮、羧酸、碳酸酯、酯以及類似物)。氧合物的 括但不限於甲醇、乙醇、正丙醇、異丙醇、C4-C20 甲醚、二乙醚、甲基乙基醚、二異丙基醚、二丙基 基甲基醚、異丙基甲基醚、丙基乙基醚、異丙基乙 甲醛、乙醛、丙醛、二甲基碳酸酯、二甲基酮、甲 酯、乙酸及其酯、丙酸及其酯、以及它們的混合物 的是,該等氧合物係選自以下一或多種:甲醇、乙 甲醚、二乙醚、甲醛、乙醛、乙酸及其酯或它們的 物。更佳的是,該等氧合物係選自:甲醇、二甲醚 、乙酸及其酯或它們的一混合物。 根據本發明的含乙烯的組合物有利地包括按體 於1 00、較佳的是小於5 0、更佳的是小於2 5、最 小於1 0並且特別最佳的是小於5 p p m的含至少3 子的烴類化合.物。 根據本發明的含乙烯的組合物有利地包括按體 於1〇〇 ppm的氧合物以及水。 根據本發明的含乙烯的組合物有利地包括按體 於1 〇〇、較佳的是小於50、更佳的是小於20 '並 的是小於1 0 ppm的氧合物以及水。 衍生物 係至少 原子以 物(醛 例子包 醇、二 醚、丙 基醚、 酸及其 。較佳 醇、二 —混合 、乙酸 積計小 佳的是 個碳原 積計小 積計小 且最佳 -9 - 201247595 於 小佳 計更 積別 體特 按、 括20 包 地 利 有 物 合 組、 的 ο 烯5 乙於 含小 的曰疋 明的 發佳 本較 據、 根00 於 \ 是 的 佳 更 的是小於1 0、最佳的是小於5 p p m並且特別最佳的是小 於2 ppm的氧合物。 根據本發明的含乙烯的組合物有利地包括按體積計小 於1 0 0、較佳的是小於5 0、更佳的是小於2 0、並且最佳 的是小於1 0 ppm的水。 根據本發明的含乙烯的組合物進一步包括按體積計小 於2500 ppm、較佳的是小於1800、更佳的是小於100、 並且最佳的是小於50 ppm的水。具體地,最特別佳的是 以下一含乙烯的組合物,其包括按體積計小於20 Ppm的 乙炔。 根據本發明的含乙烯的組合物有利地包括按體積計大 於0.1、較佳的是大於0.3、並且更佳的是大於0.5 ppm的 乙炔。 本發明還涉及一用於製造含乙烯的組合物的方法,根 據該方法: a) 使一含有來自一氧合物至烯烴的過程的乙烯以及 其他成分並且已經經受了 一常規處理的流出流E經受一預 Μ 調節處理以獲得一壓縮的流出流Ε ’;並且 b) 將該壓縮的流出流E’在一至三個蒸餾塔內進行 分離以獲得一根據本發明的含乙烯的組合物。 根據本發明的方法係用於從含有來自一氧合物至烯烴 的過程的乙烯以及其他成分的流出流E開始製造含乙烯的 -10- 201247595 組合物的一方法。 表述“氧合物至烯烴的過程(OTO過程),,應理解爲是 指爲了本發明的目的從一氧合物原料開始並且生產一含乙 嫌以及其他成分的流出流E的一方法。 表述“氧合物原料”爲了本發明的目的應理解爲是一原 料’該原料係一或多種脂肪族醇或醚。 氧合物原料的例子包括但不限於甲醇、乙醇、正丙醇 、異丙醇、C4-C2〇醇 '二甲醚、二乙醚、甲基乙基醚、二 異丙基醚、二丙基醚、丙基甲基醚 '異丙基甲基醚、丙基 乙基酸、異丙基乙基醚或它們的混合物。較佳的是,該等 氧合物原料係選自:甲醇、乙醇、二甲醚、甲基乙基醚、 二乙酸或它們的一混合物。更佳的是,該等氧合物原料係 選自:甲醇、二甲醚、或它們的一混合物。 根據本發明的用於製造一含乙烯的組合物的方法較佳 的疋使fgp該含乙嫌以及其他成分的流出流E係來自一甲醇 到烯烴的過程。在此種甲醇到烯烴的過程中,該等氧合物 原料較佳的是:甲醇、二甲醚、或它們的—混合物。 這種氧合物原料可以藉由本領域已知的任何過程生產 ,包括將衍生自天然氣、石油液體、含碳材料(例如煤) 、再循環的塑膠、城市廢料或任何其他有機材料的合成氣 體(合成氣)發酵或反應。較佳的是,這種氧合物原料藉 由合成氣的反應生產。 合成氣生產過程係熟知的並且包括常規的蒸汽轉化、 自熱轉化、或它們的一組合。 -11 - 201247595 較佳的是’合成氣藉由天然氣的蒸汽轉化來生產。總 體上’合成氣的生產包括:天然氣(大多數是甲院)與一 氧來源生成氫氣、一氧化碳和/或二氧化碳的燃燒反應。 總體上’然後將一非均相催化劑(典型地一基於銅的 催化劑)與一合成氣體的流(典型地二氧化碳以及一氧化 碳與氫)接觸來生產一含氧合物的流。 可以將一或多種稀釋劑,像氮氣、氬氣、氮氣、一氧 化碳、二氧化碳、水,基本上不反應的烷烴(尤其是烷烴 ’例如甲院、乙院和丙院),基本上不反應的稀烴,基本 上不反應的芳香族化合物以及它們的混合物加入該氧合物 原料中’典型地用來減小該進料流中的活性成分的濃度。 最佳的稀釋劑係水。 還可以包括烴作爲該氧合物原料的一部分,即作爲共 進料。作爲共進料較佳的烴包括丙烯、丁烯、戊烯、C4 + 烴類混合物、cs +烴類混合物、以及它們的混合物。更佳 的是Co烴類混合物,其中最佳的是從分離中獲得並且再 循環到反應器中的c4 +烴類混合物。 從隨後的分離(步驟b))中獲得的其他氧合物可以 再循環到該反應器中。 根據依照本發明用於製造一含乙烯的組合物的方法, 較佳的是該含乙烯以及其他成分的流出流E係來自—氧合 物到烯烴,較佳的是甲醇到烯烴的過程。 此種生產較佳的是在一催化劑的存在下進行,較佳的 是一分子飾催化劑或一分子舗催化劑組合物。該分子舖催 -12- 201247595 化劑組合物有利地包括分子篩以及黏合劑和/或基質材料 〇 較佳的分子篩催化劑係沸石的或沸石類型的分子篩。 可替代地,該較佳的分子篩係一鋁磷酸鹽(A L Ρ Ο )分子 篩和/或一矽鋁磷酸鹽(SAPO )分子篩以及取代的、較佳 的是金屬取代的ALPO和/或SAPO分子篩,包括在一分 子篩組合物中具有兩個或更多個不同的相或晶體結構的共 生材料的分子篩。黏合劑材料可以包括不同類型的水合的 氧化鋁、矽石和/或其他無機氧化物溶膠。基質材料可以 包括一或多種稀土金屬、金屬氧化物以及天然黏土 > 所使用的反應器可以是一固定床反應器、一流化床反 應器(連續的流化床反應器或連續的高速度流化床反應器 )、一具有連接在一起的多個緻密床或固定床區域和/或 快速流化床反應區域的混合反應器、一循環的流化床反應 器、一提升管反應器以及類似物。 所生產的包含乙烯以及其他成分的流出流E有利地包 括所希望的烯烴產物,像乙烯和丙烯連同副產物,像,氫 、甲院、一氧化碳 '二氧化碳、水、乙院、丙院、丙烯連 同比丙烷和丙烯更重的組分,例如C4 +組分(烯屬的和脂 肪族的)、多重不飽和的組分,例如乙炔、甲基乙炔以及 丙二烯以及以上定義的氧合物。 在經受分離之前,使一含有來自氧合物至烯烴的過程 (較佳的是甲烷到烯烴的過程)的乙烯以及其他成分並且 已經經受了 一常規處理的流出流E經受一預調節處理以獲 -13- 201247595 得一壓縮的流出流E。 有利的是,常規處理包括將該流出流] 冷,並且較佳的是包括除去產.生的冷凝物。 規處理包括將該流出流E冷卻和急冷’並且 除去產生的冷凝物。 有利的是,該預調節處理包括:i)將言 縮同時除去產生的冷凝物;ii)除去酸性氣 氧化碳和類似物)並且iii)進行吸附處理 的氧合物(應理解爲爲了本發明的目的係指 、氧和氫原子並且具有高於〇°C的標準沸點 )以及水。 除去酸性氣體(其中是二氧化碳和類似 任何已知的方法(適當的方法包括在鹼性水 性溶液或甲醇蒸汽中吸收)進行。 吸附處理可以使用任何已知的吸附劑進 附劑包括氧化鋁、活化的氧化鋁、鋁矽酸鹽 如3A和4A分子篩、石灰、氫氧化鎂以及類 較佳.的是,該預調節處理包括i)使用 的級間冷卻器對該流出流E進行多級壓縮, 凝物;ii)除去酸性氣體(其中是二氧化碳 及iii)進行吸附處理以除去不希望的氧合物 更佳的是,該預調節處理包括:在每個 冷卻器對該流出流E進行多級壓縮,除去產 並且用一城洗滌除去該壓縮機的倒數第二與 E冷卻和/或急 較佳的是,常 較佳的是包括 突流出流E壓 體(其中是二 以除去不希望 ,包括至少碳 的有機化合物 物)可以藉由 溶液、胺的水 行(適當的吸 、分子篩,例 似物)。 在每個級之間 除去產生的冷 以及類物)以 以及水。 級之間的級間 生的冷凝物: 倒數第一級之 •14· 201247595 間的酸性氣體並且在一合適的吸附劑上進行吸附處理 去水以及不希望的氧合物。 該壓縮的流出流E’有利地包括按體積計最多 PPm的氧合物以及按體積計最多10〇 ppm的水。 該壓縮的流出流E ’有利地包括按體積計最多 ppm、較佳的是最多800 ppm,更佳的是最多6〇〇並 佳的是最多400 ppm的氧合物。 該壓縮的流出流E’有利地包括按體積計最多1〇〇 、較佳的是最多50 ppm,更佳的是最多20並且最 是最多10 ppm的水。 該壓縮的流出流E ’有利地包括按體積計最多 ppm的氧合物以及按體積計最多1 〇〇 ppm的水。 隨著該流出流E的組成的變化,在流出流E’中 物的最大量値以及水的最大量値可以獨立於以上提及 佳程度而結合考慮的以上獨立提及的値。 在步驟a)之後,將該壓縮的流出流E’在一至三 餾塔內進行分離以獲得一根據本發明的(即如以上所 的)含乙烯的組合物。 在將其引入蒸餾塔之前,可以使得自a)的壓縮 出流E’經受一熱調節步驟。表述熱調節步驟應理解 指優化能量使用的一系列熱交換,例如在一套交換器 該流出流E ’進行逐級冷卻,首先用未處理的水冷卻 且然後用冰冷的水,並且然後用漸冷的流體加上交叉 器回收所產生的流的顯熱。 以除 1000 1000 且最 ppm 佳的 1000 氧合 的較 個蒸 定義 的流 爲是 內對 ,並 交換 -15- 201247595 所述流出流E’可以作爲一個單一的飽分或者作爲幾 個子餾分被引入該蒸餾塔中。它較佳的是作爲一個單一的 餾分引入。 每個蒸餾塔有利地是包含一提餾段和/或一精餾段的 塔。如果兩種段都存在’該精餾段較佳的是位於該提餾段 之上。 每個蒸餾塔有利的是選自包含上述這兩種段的蒸餾塔 以及僅包括這兩種段之一的塔。較佳的是,每個蒸餾塔包 括上述的兩種段。 每個蒸餾塔有利的是配有相關的輔助設備,例如像至 少一個再沸器以及至少一個冷凝器。允許中間撤出的裝置 以及一中間熱交換可以加至該蒸餾塔中。 當該蒸餾塔配備有一冷凝器並且如以下提及的,一組 合物或餾分在該蒸餾塔的頂部被分離時,爲了本發明的目 的應理解的是這種組合物或餾分在該冷凝器的出口處被分 離。 根據本發明的方法的一第一實施方式,在步驟a)之 後,將該壓縮的流出流E’在一蒸餾塔T1內分離成在該蒸 餾塔T1頂部的一含乙烯的組合物C1並且分離成在該蒸 餾塔T1底部的富集了含至少3個碳原子的化合物的一餾 分H1。 根據本發明的方法的這個第一實施方式,上述步驟 b)有利的是在至少8巴,較佳的是至少12巴並且在一特 別佳的方式中至少1 5巴的壓力下進行。步驟b)有利的 -16- 201247595 是在最多45巴’較佳的是最多4〇巴並且在一特別佳的方 式中最多35巴的壓力下進行。 根據這個第一實施方式’步驟b)進行時的溫度在該 蒸餾塔T1頂部有利地爲至少-60°C,較佳的是至少-55°C 並且在一特別佳的方式中至少-5 0 ° C。 在蒸餾塔T 1頂部有利地爲最多1 〇°C,較佳的是最多 5°C並且在一特別佳的方式中爲最多0°C。根據這個第一 實施方式,步驟b)進行時的溫度在該蒸餾塔T1底部有 利地爲至少〇,較佳的是至少1 〇 ° C並且在一特別佳的方 式中至少20°C。在蒸餾塔T1底部有利地爲最多120°C, 較佳的是最多11 〇°C並且在一特別佳的方式中爲最多 1oooc 。 根據本發明的方法的一第二實施方式,在步驟a)之 後,將該壓縮的流出流E’在兩個蒸餾塔內藉由以下步驟 分離: b 1) —第一分離步驟,該步驟在於將該壓縮的流出流 E在一第一蒸餾塔T2內分離成一在該蒸餾塔T2頂部的餾 分F2並且分離成在該蒸餾塔T2底部的富集了含至少4個 碳原子的化合物的餾分Η 2 ;以及 b2) —第二分離步驟,該步驟在於將該餾分F2在一 第二蒸餾塔T2’內分離成在該蒸餾塔T2’頂部的一含乙烯 的組合物C2並且分離成在該蒸餾塔T2’底部的富集了含 至少3個碳原子的化合物的一餾分η 2,。 根據本發明的方法的這個第二實施方式,上述步驟 -17- 201247595 bl)(第一分離步驟)以及步驟b2)(第二分離步驟)有利 的是在至少8巴,較佳的是至少1 2巴並且在一特別佳的 方式中至少15巴的壓力下進行。步驟bl)有利的是在最 多45巴,較佳的是最多40巴並且在一特別佳的方式中最 多35巴的壓力下進行。一壓縮可以在這兩個分離步驟之 間施加。 根據這個第二實施方式,步驟b 1 )進行時的溫度在 該蒸餾塔T2頂部有利地爲至少-20°C,較佳的是至少 -15°C並且在一特別佳的方式中至少- l〇°C。在蒸餾塔T2 頂部有利地爲最多50°C,較佳的是最多45 °C並且在一特 別佳的方式中爲最多40°C。 根據這個第二實施方式,步驟bl)進行時的溫度在 該蒸餾塔T2底部有利地爲至少50°C,較佳的是至少 60°C並且在一特別佳的方式中至少7〇°C。在蒸餾塔T2 底部有利地爲最多160。(:,較佳的是最多l5〇°C並且在一 特別佳的方式中爲最多140°C。 根據這個第二實施方式,步驟b2)進行時的溫度在 該蒸餾塔T2’頂部有利地爲至少-7〇°C,較佳的是至少 -60°C並且在一特別佳的方式中至少_5〇°C。在蒸餾塔T2’ 頂部有利地爲最多0,較佳的是最多-5 °c並且在一特別佳 的方式中爲最多l〇°C。 根據這個第二實施方式,步驟b2)進行時的溫度在 該蒸餾塔T2 ’頂部有利地爲至少〇並且在一特別佳的方式 中至少20。C。在蒸餾塔T2,底部有利地爲最多120 〇C,較 -18 - 201247595 佳的是最多110°C並且在一特別佳的方式中爲最多100°C 〇 根據本發明的方法的一第三實施方式,在步驟a)之 後,將該壓縮的流出流E’在三個蒸餾塔內藉由以下步驟 分離: bl)—第一分離步驟,該步驟在於將該壓縮的流出流 E’在一第一蒸餾塔T3內分離成在該蒸餾塔T3頂部的一餾 分F3並且分離成在該蒸餾塔T3底部的一餾分F3’’ b2)—第二分離步驟,該步驟在於將該餾分F3’在一 第二蒸餾塔T3’內分離成在該蒸餾塔T3’頂部的一餾分 F3”並且分離成在該蒸餾塔T3’底部的富集了含至少4個 碳原子的化合物的一餾分H3 ;以及 b3)—第三分離步驟,該步驟在於將該餾分F3和 F3”在一第三蒸餾塔T3”內分離成在該蒸餾塔T3”頂部的一 含乙烯的組合物C3並且分離成在該蒸餾塔T3”底部的富 集了含至少3個碳原子的化合物的一餾分H3’。 根據本發明的方法的這個第三實施方式’上述步驟 bl)(第一分離步驟)、步驟b2)(第二分離步驟)以及步 驟b3)(第三分離步驟)有利的是在至少8巴’較佳的是 至少1 2巴並且在一特別佳的方式中至少1 5巴的壓力下進 行。步驟bl)有利的是在最多45巴’較佳的是最多40 巴並且在一特別佳的方式中最多35巴的壓力下進行。一 壓縮可以在這三個分離步驟中每個與每個之間施加。 根據這個第三實施方式,步驟bl)進行時的溫度在 -19- 201247595 該蒸餾塔T3頂部有利地爲至少-70°c ’較佳的是至少 _60。(:並且在一特別佳的方式中至少-50°C°在蒸餾塔T3 頂部有利地爲最多0,較佳的是最多-5 ° c並且在~特別佳 的方式中爲最多-10°c。 根據這個第三實施方式’步驟bl)進行時的溫度在 該蒸餾塔T3底部有利地爲至少0’較佳的是至少i〇°c並 且在一特別佳的方式中至少20°c。在蒸餾塔T3底部有利 地爲最多120°C,較佳的是最多110°c並且在一特別佳的 方式中爲最多l〇〇°C。 根據這個第三實施方式’步驟b2)進行時的溫度在 該蒸餾塔T 3,頂部有利地爲至少〇,較佳的是至少1 0 ° C並 且在一特別佳的方式中至少2 0。C。在蒸餾塔T 3 ’頂部有利 地爲最多100。C,較佳的是最多90°C並且在一特別佳的 方式中爲最多80°C。 根據這個第三實施方式,步驟b2)進行時的溫度在 該蒸餾塔T3’底部有利地爲至少20°c,較佳的是至少 3〇°C並且在一特別佳的方式中至少40°C。在蒸餾塔T3’ 底部有利地爲最多160。(:,較佳的是最多〗5〇c>C並且在— 特別佳的方式中爲最多140°C。 根據這個第三實施方式’步驟b3)進行時的溫度在 該蒸餾塔T3”頂部有利地爲至少-7〇°c ’較佳的是至少 -60°C並且在一特別佳的方式中至少-5〇〇c。在蒸鋪塔T3’’ 頂部有利地爲最多〇,較佳的是最多-5 °C並且在一特別佳 的方式中爲最多1 0°C。 -20- 201247595 根據這個第三實施方式,步驟b 3 )進行時的溫度在 該蒸餾塔T3”底部有利地爲至少〇,較佳的是至少10°C並 且在一特別佳的方式中至少20。C»在蒸餾塔T3”底部有利 地爲最多120°C,較佳的是最多110。C並且在一特別佳的 方式中爲最多1 〇〇°C。 富集了含至少3個碳原子的化合物的餾分HI、H2’和 H3 ’可以原樣使用或者可以進一步純化成非常高純度的丙 烯(稱爲聚合反應等級的丙烯)以用於製造丙烯衍生物化 合物。 表述“含至少3個碳原子的化合物”爲了本發明的目的 應理解爲意思係如以上定義的、含有至少3個碳原子的烴 類化合物。 作爲丙烯衍生物化合物的例子,除其他之外可以提及 丙烯腈及其衍生物連同由其製造的聚合物,環氧丙烷及其 衍生物、以及丙烯的均聚物和共聚物(以下稱爲聚丙烯) 。聚丙烯係較佳的丙烯衍生化合物。 富集了含至少4個碳原子的化合物的餾分H2和H3 可以原樣使用或者可以進一步純化成非常高純度的等級以 便用作有價値的烴類等級或用作燃料。 表述“含至少4個碳原子的化合物”爲了本發明的目的 應理解爲意思係至少含有碳和氫原子並且包含至少4個碳 原子的任何有機化合物。此類包含至少4個碳原子的化合 物的例子係丁烷、丁烯連同所有飽和或不飽和的更重的化 合物。 -21 - 201247595 根據本發明的方法其特徵還在於:在步驟b)之後, 使該含乙烯的組合物經受一乙炔飽和。 爲了本發明的目的,乙炔飽和應理解爲係允許將乙炔 的三鍵部分地飽和的任何操作。在該等操作中,可以提及 的一係氫化作用(它係較佳的)。 上述乙炔氫化步驟可以藉由任何已知的氫化催化劑進 行,例如基於鈀、鉑、鍺、釕或銥的催化劑,該催化劑置 於一載體上,例如氧化鋁、矽石、矽石/氧化鋁、碳、碳 酸鈣或硫酸鋇,然而還有基於鎳的催化劑以及那些基於 鈷-鉬錯合物的催化劑。較佳的是,該氫化作用步驟藉由 一基於鈀或鉑的催化劑進行。在一特別佳的方式中,它藉 由一基於鈀的催化劑進行。 關於該載體,該氫化作用步驟藉由一基於上述化合物 (較佳的是鈀或鉑,在特別佳的方式中是鈀)的催化劑進 行,較佳的是沉積到氧化鋁、碳、碳酸鈣或硫酸鋇上。 鈀在該催化劑中的量有利的是處於按重量計1 %的等 級。 於是該乙炔氫化作用步驟進行時的溫度有利地是至少 5 較佳的是至少20。0,在一特別佳的方式中是至少 25 °C,在一最特別佳的方式中是至少40 °C並且在一真實 地最特別佳的方式中是至少50°C。它有利的是最多150°C ,較佳的是最多120。(:,並且在一特別佳的方式中最多 ioo°c 。 關於該壓力,它有利地是大於或等於1 ’較佳的是大 -22- 201247595 於或等於5,在一特別佳的方式中是大於或等於1〇並且 在一最特別佳的方式中是大於或等於1 5巴。它有利地是 小於或等於50,較佳的是小於或等於45’在一特別佳的 方式中是小於或等於4 0並且在一最特別佳的方式中是小 於或等於3 0巴。 有利的是,該乙炔的氫化步驟使用大量的氫氣進行從 而使其氫化完全進行,也就是說較佳的是至少99%。該氫 氣的量値有利地是使得氫:乙炔的莫耳比是等於或大於 1,較佳的是等於或大於1.5,在一特別佳的方式中是等於 或大於2,並且在一最特別佳的方式中是等於或大於3並 且在一真實地最特別佳的方式中是等於或大於4。 在該乙炔飽和之後可以可隨意地進行乾燥。 根據本發明的方法其特徵還在於:在步驟b)之後, 使該含乙烯的組合物更佳的是經受一補充的分離步驟(稱 爲脫甲烷化)以由此分離出富集了比乙烯輕的化合物的一 餾分。 比乙烯輕的化合物有利地是甲烷、氫、一氧化碳、氮 氣以及其他惰性氣體。 這個補充分離步驟有利地是在至少8巴,較佳的是至 少1 2巴並且在一特別佳的方式中至少1 5巴的壓力下進行 。它有利的是在最多45巴,較佳的是最多40巴並且在一 特別佳的方式中最多35巴的壓力下進行。可以在這個補 充分離步驟之前施加一壓縮。 這個補充分離步驟進行時的溫度在該脫甲烷化蒸餾塔 -23- 201247595 D Μ頂部有利地爲至少_ 1 3 〇。C,較佳的是至少_】2 5。C並且 在一特別佳的方式中至少-120 〇C。在該脫甲烷化的蒸餾塔 DM頂部有利地爲最多_50。€,較佳的是最多_60cC並且在 一特別佳的方式中爲最多- 70。C» 這個補充分離步驟進行時的溫度在該脫甲烷化蒸餾塔 DM底部有利地爲至少_50。(:,較佳的是至少-47。<:並且在 —特別佳的方式中至少-45。(:。在該脫甲烷化的蒸餾塔DM 頂部有利地爲最多〗0°C,較佳的是最多5 〇C並且在一特 別佳的方式中爲最多0 ° C。 更佳的是’根據本發明的方法,連同這種方法的第一 、第二以及第三實施方式其特徵在於:在步驟b)之後, 使該含乙烯的組合物首先經受一乙炔飽和作用並且然後經 受一補充的分離步驟(稱爲脫甲烷化)以由此分離出富集 了比乙烯輕的化合物的一餾分。 根據本發明的方法的最佳的第一實施方式現在參考本 說明所附的圖1進行說明。 將含有來自一氧合物至烯烴(較佳的是MTO )的過 程的乙烯以及其他成分並且已經經受了一常規處理(冷卻 、急冷並且除去所產生的冷凝物)的流出流E藉由在一壓 縮機中壓縮而經受一預調節處理PCT,同時除去產生的冷 凝物,並且進行城洗滌以除去其中爲co2和類似物的酸性 氣體。在將該壓縮的流出流E’加入到裝備有一再沸器以 及一冷凝器的蒸餾塔T1中之前,將殘留的水和不希望的 氧合物最後在一吸附劑上去除。一含乙烯的組合物C 1在 -24- 201247595 該蒸餾塔T1的頂部分離出並且一富集了含至少3個碳原 子的化合物的餾分Η1在該蒸餾塔Τ1的底部分離出。然 後將該含乙烯的組合物C 1在加入到裝備有一再沸器以及 一冷凝器的脫甲烷化的蒸餾塔DM1之前經受一乙炔飽和 AS 1。一富集了比乙烯輕的化合物的餾分L 1在該脫甲烷 化的蒸餾塔DM1的頂部分離出並且該含乙烯的組合物 C1”在該脫甲烷化的蒸餾塔底部分離出。 根據本發明的方法的最佳的第二實施方式現在參考本 說明所附的圖2進行說明。 將含有來自一氧合物至烯烴(較佳的是MTO )的過 程的乙烯以及其他成分並且已經經受了一常規處理(冷卻 、急冷並且除去產生的冷凝物)的流出流E藉由在一壓縮 機中壓縮經受一預調節處理PCT,同時除去產生的冷凝物 ,並且進行城洗滌以除去其中爲C02和類似物的酸性氣體 。在將該壓縮的流出流E ’加入到裝備有一再沸器以及一 冷凝器的蒸餾塔T2之前,將殘留的水和不希望的氧合物 最後在一吸附劑上去除。一餾分F2在該蒸餾塔T2的頂部 分離出並且一富集了含至少4個碳原子的化合物的餾分 H2在該蒸餾塔T2的底部分離出。將餾分F2送往配備有 一再沸器以及一冷凝器的一蒸餾塔T2’。~含乙烯的組合 物C2在該蒸餾塔T2’的頂部分離出並且一富集了含至少3 個碳原子的化合物的餾分H2’在該蒸餾塔T2’的底部分離 出。然後將該含乙烯的組合物C2在加入到裝備有一再沸 器以及一冷凝器的脫甲烷化的蒸餾塔DM2之前經受一乙 -25- 201247595 炔飽和AS2。一富集了比乙烯輕的化合物的餾分L2在該 脫甲烷化的蒸餾塔DM2的頂部分離出並且該含乙烯的組 合物C2”在該脫甲烷化的蒸餾塔底部分離出。 根據本發明的方法的最佳的第三實施方式現在參考本 說明所附的圖3進行說明。 將含有來自一氧合物至烯烴(較佳的是MTO )的過 程的乙烯以及其他成分並且已經經受了一常規處理(冷卻 、急冷並且除去產生的冷凝物)的流出流E藉由在一壓縮 機中壓縮經受一預調節處理PCT,同時除去產生的冷凝物 ,並且進行城洗滌以除去其中爲C 02和類似物的酸性氣體 。在將該壓縮的流出流E ’加入到裝備有一再沸器以及一 冷凝器的蒸餾塔T3之前,將殘留的水和不希望的氧合物 最後在一吸附劑上去除。一餾分F3在該蒸餾塔T3的頂部 分離出並且一餾分F3’在該蒸餾塔T3的底部分離出。將 餾分F3’送往配備有一再沸器以及一冷凝器的一蒸餾塔 T3’。一餾分F3”在該蒸餾塔T3’的頂部分離出並且一富集 了含至少4個碳原子的化合物的餾分H3在該蒸餾塔T3’ 的底部分離出。將餾分F3和F3”送往配備有一再沸器以 及一冷凝器的一蒸餾塔T3”。一含乙烯的組合物C3在該 蒸餾塔T3”的頂部分離出並且一富集了含至少3個碳原子 的化合物的餾分H3’在該蒸餾塔T3’的底部分離出。然後 將該含乙烯的組合物C3在加入到裝備有一再沸器以及一 冷凝器的脫甲烷化的蒸餾塔DM3之前經受一乙炔飽和 AS3。一富集了比乙烯輕的化合物的餾分L3在該脫甲烷 -26- 201247595 化的蒸餾塔DM3的頂部分離出並且該含乙烯的組合物 C3”在該脫甲烷化的蒸餾塔底部分離出。 本發明還涉及一用於從根據本發明的一含乙烯的組合 物開始製造至少一種乙烯衍生物化合物的方法。 爲了本發明的目的,表述“至少一種乙烯衍生物化合 物”應理解爲可以製造一或多於一的乙烯衍生物化合物: 較佳的是製造一乙烯衍生物化合物。 表述“乙烯衍生物化合物”,以單數或複數形式在本文 中使用,應理解爲係指爲了本發明的目的,直接從乙烯開 始製造的任何乙烯衍生物化合物連同任何由其衍生的化合 物。 表述“直接從乙烯開始製造的乙烯衍生物化合物”,以 單數或複數形式在本文中使用,應理解爲係指爲了本發明 的目的,直接由乙烯製造的任何化合物。 表述“由其衍生的化合物”,以單數或複數形式在本文 中使用,應理解爲係指爲了本發明的目的,從一本身由乙 烯製造的化合物製造的任何化合物連同由其衍生的任何化 合物。 作爲此類直接從乙烯開始製造的乙烯衍生物化合物的 實例,除其他之外可以提及:環氧乙烷、線性α_烯烴、 線性伯醇 '乙烯的均聚物和共聚物、乙苯、乙酸乙烯酯、 乙醛、乙醇、丙醛和EDC。 作爲此種由其衍生的化合物的實例,除其他之外可以 提及 -27- 201247595 - 由環氧乙烷製造的乙二醇類以及醚類’ - 由乙苯製造的苯乙烯以及衍生自苯乙烯的苯乙烯 聚合物, - 由EDC製造的VC, - 衍生自VC的偏二氯乙烯、氟化烴、以及PVC, 以及衍生自氟化烴類的氟化聚合物,以及 - 衍生自偏二氯乙烯的聚偏二氯乙烯以及氟化的烴 類(以及氟化的聚合物)。 從根據本發明的含乙烯的組合物開始製造至少一種乙 烯衍生物化合物的方法較佳的是一用於製造環氧乙烯、乙 苯和/或EDC(作爲直接從乙烯開始製造的乙烯衍生物化 合物)連同由此衍生的任何化合物的方法。表述“和/或” 意思係該方法可以是用於製造以上提及的衍生物化合物中 僅一種的方法或用於製造兩種或三種上述乙烯衍生物化合 物的一組合的方法。 更佳的是,從根據本發明的含乙烯的組合物開始製造 至少一種乙烯衍生物化合物的方法較佳的是一用於製造乙 苯和/或EDC (作爲直接從乙烯開始製造的乙烯衍生物化 合物)連同由此衍生的任何化合物的方法。 最佳的是,從根據本發明的含乙烯的組合物開始製造 至少一種乙烯衍生物化合物的方法較佳的是一用於製造 E D C (作爲直接從乙烯開始製造的乙烯衍生物化合物)連 同由此衍生的任何化合物的方法,較佳的是V C並且然後 是 PVC » •28- 201247595 因此,本發明的一目的係一用於製造二氯乙烷的方法 ,根據該方法使根據本發明的含乙烯的組合物(如上所定 義的)經受一氯化作用和/或一氧氯化作用以生產二氯乙 烷。 該氯化反應(通常稱爲直接氯化作用)有利地是在含 有一溶解的催化劑(例如FeCl3或者其他路易士酸)的一 液相(較佳的是主要爲EDC )中進行。有可能有利地將這 種催化劑與助催化劑(例如鹼金屬氯化物)進行組合。已 經給出良好結果的--配對係FeCl3與LiCl的錯合物(四 氯高鐵酸鋰-如專利申請NL 690 1 3 98中所描述的那樣 )° 所使用的FeCl3的量有利地是每kg液體母料大約 〇.〇3 g至30 g的FeCl3。FeCl3與LiCl的莫耳比有利地爲 0.5至2的級別。 此外,該氯化反應較佳的是在一氯化的有機液體介質 中進行。更佳的是,這種氯化的有機液體介質,也稱作液 體母料,主要由EDC構成。 根據本發明的氯化反應有利地是在30°C和150°C之 間的溫度下進行。不管壓力如何,在低於沸點(在低溫冷 卻條件下的氯化過程)和在沸點本身(在沸點時氯化的過 程)的溫度下都已經獲得了良好的結果。 當根據本發明的氯化過程係一過冷卻條件下的氯化過 程時,藉由在以下溫度和在氣相下的一壓力下操作得到了 良好的結果,該溫度有利地高於或者等於5 0°C並且較佳 -29- 201247595 的是高於或者等於60。(:,但是有利地低於或者等於8〇〇C 並且較佳的是低於或者等於7〇。(:,以及該壓力有利地高 於或者等於1並且較佳的是高於或者等於巴絕對壓力 ’但是有利地低於或者等於20,較佳的是低於或者等於 1 〇並且特別佳的是低於或者等於6巴絕對壓力。 在沸點下氯化的方法可以較佳的是有效地回收該反應 熱。在這種情況下,該反應有利地在高於或者等於60。C 的溫度下發生’較佳的是高於或者等於7〇。(:並且特別佳 的是高於或者等於85〇C,但是有利地低於或者等於i50°C 並且較佳的是低於或者等於135。(:,並且在該氣相中的壓 力有利地高於或者等於〇.2,較佳的是高於或者等於0.5 ’特別佳的是高於或者等於1.1並且更特別佳的是高於或 者等於1 .3巴絕對壓力,但是有利地低於或者等於1 〇並 且較佳的是低於或者等於6巴絕對壓力。 該氯化過程也可以是一在沸點下氯化的混合回路冷卻 (hybrid loop-cooled )過程。表述“在沸點下氯化的混合 回路冷卻過程”應理解爲係指一過程,其中例如藉由浸入 在該反應介質內的一交換器或者藉由在一交換器內循環的 一回路對該反應介質進行冷卻,同時在氣相中產生至少爲 所形成的量的EDC。有利地,調節該反應溫度和壓力來使 所產生的EDC在氣相中離開並且藉由交換表面積除去來 自該反應介質的剩餘熱量。 可以用任何已知的設備將進行氯化的含乙烯的組合物 以及還有分子氯(本身純淨或稀釋的)一起或單獨地引入 -30- 201247595 該反應介質。單獨引入經受了氯化作用的含乙烯的組合物 可能是有利的,以增加其分壓並且促進其溶解’這通常構 成該方法的一限制步驟。 乙烯以足夠的量加入來轉化大部分氯’並且不要求添 加過量的的氯。所用的乙烯/氯的比率較佳的是在1.2 mol/mol和 0.8 mo丨/ mol之間,並且特別佳的是在1.05 mol/mol 和 0.95 mol/mol 之間。 所獲得的氯化的產物主要含有EDC以及還有少量副 產物,例如1,1,2-三氯乙烷或少量的乙烷或甲烷的氯化產 物。 從得自該氯化反應器的產品流中分離所獲得的EDC 係根據已知的方式進行的,並且總體上使之有可能利用該 氯化反應的熱量。然後,它較佳的是藉由冷凝作用和氣/ 液分離來進行。 然後有利地是使未轉化的產物(甲烷、乙烷、一氧化 碳、氮氣、氧氣和氣氣)經受比分離起始於該最初混合物 的純乙烯所必需的更容易的一分離。 該氧氯化反應有利地是在包括活性元素的一催化劑的 存在下進行的,該活性元素包括沉積於一惰性載體上的銅 。該惰性載體有利地選自氧化鋁、矽膠、混合氧化物、黏 土以及其他天然來源的載體。氧化鋁構成一較佳的惰性載 體。 較佳的是包括活性元素的催化劑,該活性元素的數目 有利地爲至少兩個,其中之一係銅。在除了銅以外的該等 -31 - 201247595 活性元素中’可以提及鹼金屬、鹼土金屬、稀土金屬以及 選自由以下各項組成的群組的金屬:釘、铑、鈀、餓、銥 、鉑和金。包含下列活性元素的催化劑係特別有利的:銅 /鎂/鉀,銅/鎂/鈉;銅/鎂/鋰,銅/鎂/鉋,銅/鎂/鈉/鋰,銅 /鎂/鉀/鋰和銅/鎂/鉋/鋰,銅/鎂/鈉/鉀,銅/鎂/鈉/鉋和銅/ 鎂/鉀/鉋。最特別佳的是在專利申請E P - A 2 5 5 1 5 6、 ΕΡ·Α 494 474、 EP-A 657 212 和 EP-A 657 213 中所描述 的催化劑,該等專利申請藉由引用結合在此》 銅的含量,以金屬形式計算,有利地是在3 0 g/kg和 90 g/kg之間,較佳的是在40 g/kg和80 g/kg之間並且特 別佳的是在50 g/kg和70 g/kg催化劑之間。 鎂的含量,以金屬形式計算,有利地是在1 〇 g/kg和 3 0 g/kg之間,較佳的是在12 g/kg和25 g/kg之間並且特 別佳的是在15 g/kg和20 g/kg催化劑之間。 鹼金屬的含量,以金屬形式計算’有利地是在〇.1 g/kg和30 g/kg之間,較佳的是在〇.5 g/kg和20 g/kg之 間並且特別佳的是在1 g/kg和1 5 g/kg催化劑之間。 銅:鎂:一或多種驗金屬的原子比有利地是1 : 0·1·2 : 0 .05-2,較佳的是1 : 0.2-1 .5 : 0.1-1 .5並且特別佳的是1 :0.5-1 : 0.15-1° 催化劑具有的一比表面積有利地是在25 m2/g和300 m2/g之間’較佳的是在50 m2/S和200 m2/g之間並且特 別佳的是在75 m2/g和175 m2/g之間(根據BET方法以 氮測得)是特別有利的° -32- 201247595 該催化劑可以在一固定床或一流化床 選擇係較佳的。該氧氯化過程在該反應所 範圍內進行操作。溫度有利地是在150° C 較佳的是在200°C和275 °C之間並且最 到25 5 °C。壓力有利地是在大氣壓以上。 1 〇巴絕對値之間的値給出了良好的結果 至7巴絕對値之間的範圍係較佳的。該壓 調節,以得到在該反應器內的一最佳停留 於不同操作速度而言恒定的通過率。通常 係從1秒至60秒,並且較佳的是從1 〇秒 這種氧氯化作用的氧源可以是空氣、 混合物,較佳的是純氧。 該等反應物可以藉由任何已知的裝置 了安全因素,將氧氣與其他反應物分開引 的。該等安全因素還要求在離開或再循環 體混合物在所討論的壓力和溫度下保持爲 之外。較佳的是保持一所謂的富集混合物 於將引燃的燃料來說含有過少的氧氣。在 化合物具有寬的可燃性範圍的條件下,氫 佳的是 > 5 vol% )的充足存在將構成一缺 所使用的氯化氫/氧氣的比率有利地是 6 mol/mol之間。該乙烯/氯化氫的比率 mol/mol 和 0.6 mol/mol 之間。 所得到的氯化產物主要包含EDC以 內使用。第二種 通常建議的條件 和300°C之間, 佳的是從215°C 在2巴絕對値和 ,在4巴絕對値 力可以被有效地 時間並且保持對 的停留時間範圍 至40秒。 純氧或它們的一 引入該床層。爲 入總體上是有利 至該反應器的氣 在可燃性的限度 ,也就是說相對 這方面,在這種 (> 2 vol%,較 i點。 在 3 mol/mol 和 有利地是在0.4 及還有少量副產 -33- 201247595 物,例如1 , 1,2 -三氯乙烷。 從得自氯化反應器的產品流中分離出的EDC可以在 EDC裂解步驟之前與從氧氯化反應器的產品流中分離出的 EDC混合或不混合。當兩種EDC混合時,可以將它們完 全地或部分地混合。 因此,用於製造二氯乙烷的方法(根據該方法使根據 本發明的含乙烯的組合物(如上所定義的)經受一氯化作 用和/或一氧氯化作用以生產二氯乙烷)其特徵還在於: 它較佳的是包括將二氯乙烷熱解以生產氯乙烯。 EDC然後可以經受一 EDC熱解(也稱爲裂解)由此 生產氯乙烯(VC )以及氯化氫。 EDC裂解步驟可以進行的條件係熟習該項技術者已知 的。EDC裂解可以在第三化合物存在或不存在時進行,在 該等第三化合物中可以提及的有催化劑;EDC裂解在這種 情況下是一催化性EDC裂解。然而EDC裂解較佳的是在 第三化合物的存在下並且僅在熱的作用下進行;EDC裂解 在這種情況下經常稱爲熱解。 該熱解有利地是在一管式爐內藉由一在氣相內的反應 獲得的。通常的熱解溫度係在400°C和600 °C之間,較佳 的是在4 8 0°C和540。(3之間的範圍。停留時間有利的是在 1秒和60秒之間,較佳的是從5秒至25秒的範圍。爲了 限制副產物的形成以及爐管道的沾汙,該EDC的轉化率 有利地是限制在4 5 %至7 5 %。 分離從得自熱解的產品流中所獲得的VC和氯化氫係 -34- 201247595 根據已知的方式使用任何已知的裝置進行的,以收集純化 的VC和氯化氫。純化之後,有利地將未轉化的EDC送至 該熱解爐。 因此,用於製造二氯乙烷的方法(根據該方法使根據 本發明的含乙烯的組合物(如上所定義的)經受一氯化作 用和/或一氧氯化作用以生產二氯乙烷)其特徵還在於: 它較佳的是包括將二氯乙烷熱解以生產氯乙烯,更佳的是 其特徵在於:它進一步包括氯乙烯的聚合反應以生產聚氯 乙烯。 PVC的製造可以是一本體 '溶液或水性分散體聚合法 ,它較佳的是一水性分散體聚合法。 表述水性分散體聚合應理解爲係指在水性懸浮液中的 自由基聚合和在水性乳液中的自由基聚合,以及在水性微 懸浮液中的聚合。 表述水性懸浮液中的自由基聚合應理解爲係指在水性 介質中、在分散劑和油溶性自由基引發劑存在下的任何自 由基聚合過程。 表述水性乳液中的自由基聚合應理解爲係指在水性介 質中、在乳化劑和水溶性自由基引發劑存在下的任何自由 基聚合過程。 表述水性微懸浮聚合(也稱爲在均勻化的水性分散體 中的聚合)應理解爲係指在使用了油溶性引發劑、並且由 於強有力的機械攪拌以及在乳化劑的存在下製備單體小滴 的乳液的條件下的任何自由莛聚合過程。 -35- 201247595 本發明的一優點係它允許以減低的成本獲得一含乙烯 的組合物。 本發明的另一優點係獲得了具有低於聚合等級的乙烯 的純度的含乙烯的組合物。 有意義的是,獲得了以下一含乙烯的組合物,這種組 合物可以包括不同類型的雜質並且是處於對其將來的應用 不被禁止的水平6 此外,對於獲得根據本發明的含乙烯的組合物所要求 的熱功率與獲得聚合反應等級的乙烯相比顯著地降低了。 最後,對於根據本發明的含乙烯的組合物所獲得的的 總乙烯回收率與對於聚合反應等級所獲得的相比顯著更高 〇 如果任何藉由引用結合在此的專利案、專利申請案以 及公開物中的揭露內容與本申請案的說明相衝突的程度至 使它可能使一術語不清楚,則本說明應該優先。 【實施方式】 以下的β例旨在說明本發明,但無意限制其範圍》201247595 VI. INSTRUCTIONS: This application claims the priority of the European Application No. 11154555.4, filed on Feb. 15, 2011, the entire content of TECHNICAL FIELD OF THE INVENTION The present invention relates to a composition containing B. In particular, the invention relates to an ethylene-containing composition suitable for the manufacture of at least one ethyl storage derivative, more particularly to the manufacture of ethylene dichloride (EDC). It also relates to a process for the manufacture of such an ethylene-containing composition and to a process for the manufacture of at least one ethylene derivative compound, preferably EDC/vinyl chloride (VC) and polyvinyl chloride (PVC). . [Prior Art] Olefins have traditionally been produced from petroleum feedstocks by catalytic or steam cracking processes. Such cracking processes, particularly steam cracking, produce basic olefins such as ethylene and/or propylene from a variety of hydrocarbon feedstocks. Ethylene and propylene are commodity commodity petrochemicals that are useful in many processes for making plastics and other compounds. Ethylene is used to make a variety of polyethylene plastics and is used in the manufacture of other chemicals such as EDC/VC/PVC 'ethylene oxide, ethylbenzene and alcohols. Propylene is used in the manufacture of a variety of polypropylene plastics and is used in the manufacture of other chemicals such as acrylonitrile and propylene oxide. It has been known for some time in the petrochemical industry that oxygenates, especially alcohols, can be converted to basic olefins such as ethylene and propylene. This process -5- 201247595 is known as the oxygenate to olefin process or OTO process. Preferred for the production of basic olefins is an oxygenate-based methanol. This methanol to olefin conversion process is known as the methanol to olefin process or the MTO process. This effluent stream from OTO (preferably an MTO reactor) contains desirable olefins, such as ethylene and propylene, together with undesirable high concentrations of by-products, the amount of which produces ethylene and propylene. They are unacceptable for their preferred disposal (e.g., polymerization) and should be removed thereafter to produce a stream of olefin product having high purity. The removal of by-products therefore means that some of the effluent stream exiting the OTO/MTO reactor is treated to produce very high purity olefins (called olefins of polymerization grade), in particular characterized by greater than 99.8% by volume, often It is a polymerization grade of ethylene having a purity of at least 99.9% by volume. An example of such a process for separating a polymerization grade of ethylene and propylene from an initial effluent stream from a methanol to olefins reaction system can be found in U.S. Patent No. 7,091,497. Equipment calculations and resources (materials and energy) necessary to provide polymerization grade olefins and, in particular, to provide a polymerization grade of ethylene, can substantially increase operating costs. Therefore, there is a need to provide an ethylene-containing composition at a low cost, such a composition may contain different types of impurities and be in a level that will not be inhibited for its future use. 201247595 [Invention] The object is in part to provide an ethylene-containing composition. Such a composition is preferably suitable for the manufacture of at least one ethylene derivative compound, in particular EDC, having a purity lower than the polymerization grade of ethylene. Such an ethylene-containing composition is preferably obtained from a mono-oxygen starting material by a process of a new oxygenate to olefin. To this end, the invention relates to an ethylene-containing composition 'comprising (a) between 75% and 99.9% by volume of a hydrocarbon compound having 2 carbon atoms; and (b) - measuring bismuth B The calcination is such that the ratio of the amount of rhodium to the total amount of the hydrocarbon compound having 2 carbon atoms is between 97% and 99.5%. The "ethylene-containing composition" is used in this specification to mean a composition comprising ethylene as a main component. The ethylene-containing composition according to the invention is comprised between 7 5 % and 9 9 % by volume, preferably between 7 7 % and 9 9.9%, more preferably 96% and 99.9 %. Between and preferably between 96.5% and 99.9% of a hydrocarbon compound having 2 carbon atoms. Most particularly preferred is an ethylene-containing composition comprising between 79% and 99.9% by volume of a hydrocarbon compound having 2 carbon atoms. The expression "hydrocarbon having 2 carbon atoms" is understood to mean, for the purposes of the present invention, any organic compound containing at least carbon and hydrogen atoms and containing 2 carbon atoms. Preferably, the hydrocarbon compound having 2 carbon atoms contained in the ethylene-containing composition according to the present invention is ethylene, ethane and acetylene. 201247595 The ethylene-containing composition according to the present invention comprises an amount of ruthenium ethylene such that the amount is 値 with the total amount of the hydrocarbon compound having 2 carbon atoms (preferably, ethylene, ethane and acetylene). The ratio is comprised between 9 7 and 99.5%, preferably between 97.5% and 99.5%, more preferably between 98% and 99.2%, and most preferably at 98.5%. Between 99.2%. The most preferred ethylene-containing composition comprising ethylene in an amount such that the amount is between hydrazine and a hydrocarbon compound having 2 carbon atoms (preferably ethylene, ethane and acetylene) The ratio of total 値 is between 98.8% and 99.2%. Accordingly, the ethylene-containing composition according to the invention comprises advantageously between 7.8% and 99.4% by volume, preferably between 75.1% and 99.4%, more preferably 94.1%. Between 99.1% and optimal is a quantity of ruthenium ethylene between 95.1% and 99.1%. Specifically, the most preferred is an ethylene-containing composition comprising ethylene in an amount of between 9 5 · 8 % and 99.1 % by volume. The ethylene-containing composition is therefore advantageously not a grade of ethylene, i.e. characterized by greater than 99.8% by volume, often a purity of up to 99.9% by volume. The ethylene-containing composition according to the present invention advantageously comprises less than 100 ppm by volume of a hydrocarbon compound containing at least 3 carbon atoms and less than 100 ppm by volume of oxygenate and water. The expression "hydrocarbon containing at least 3 carbon atoms" is understood to mean, for the purposes of the present invention, any organic compound containing at least carbon and hydrogen atoms and comprising at least 3 carbon atoms." Such a hydrocarbon comprising at least 3 carbon atoms Examples of the like -201247595 are propane, propylene, butane and their unsaturation together with all the more saturated or unsaturated compounds. The expression "oxygenate" is to be understood as meaning for the purposes of the present invention - The following organic compounds 'the compound includes at least carbon and hydrogen and at least one oxygen atom, such as an aliphatic alcohol, an ether, a carbonyl compound, a ketone, a carboxylic acid, a carbonate, an ester, and the like.) Limited to methanol, ethanol, n-propanol, isopropanol, C4-C20 methyl ether, diethyl ether, methyl ethyl ether, diisopropyl ether, dipropyl methyl ether, isopropyl methyl ether, C Ethyl ethyl ether, isopropylacetaldehyde, acetaldehyde, propionaldehyde, dimethyl carbonate, dimethyl ketone, methyl ester, acetic acid and ester thereof, propionic acid and ester thereof, and mixtures thereof, The oxygenate is selected from the following one or Species: methanol, diethyl ether, diethyl ether, formaldehyde, acetaldehyde, acetic acid and esters thereof or their products. More preferably, the oxygenates are selected from the group consisting of methanol, dimethyl ether, acetic acid and esters thereof or A mixture thereof. The ethylene-containing composition according to the invention advantageously comprises, by weight, preferably less than 50, more preferably less than 2 5, less than 10 and most preferably less than 5 ppm of a hydrocarbon compound containing at least 3. The ethylene-containing composition according to the present invention advantageously comprises an oxygen compound in an amount of 1 〇〇 ppm and water. The ethylene-containing composition according to the present invention is advantageous. The composition includes an oxygen compound and water in an amount of less than 50, more preferably less than 20', and less than 10 ppm. The derivative is at least atomic (the aldehyde is an alcohol, Diether, propyl ether, acid and its preferred alcohol, di-mixed, acetic acid product is a small carbon original product small sample and small best - 9 - 201247595 According to the inclusion of 20 packs of aliquots, the equenes 5 Preferably, the 00 is more than 10, most preferably less than 5 ppm and particularly preferably less than 2 ppm of the oxygenate. The ethylene-containing composition according to the present invention. Advantageously, comprising less than 100, preferably less than 50, more preferably less than 20, and most preferably less than 10 ppm water by volume. The ethylene-containing composition according to the invention further comprises Less than 2500 ppm by volume, preferably less than 1800, more preferably less than 100, and most preferably less than 50 ppm of water. Specifically, most particularly preferred is an ethylene-containing composition, including Less than 20 Ppm of acetylene by volume. The ethylene-containing composition according to the present invention advantageously comprises acetylene greater than 0.1, preferably greater than 0.3, and more preferably greater than 0.5 ppm by volume. The invention further relates to a process for the manufacture of an ethylene-containing composition according to the process: a) an effluent stream E which contains ethylene and other constituents from the process of the monooxygen to the olefin and which has been subjected to a conventional treatment Subject to a pre-treatment process to obtain a compressed effluent stream '; and b) the compressed effluent stream E' is separated in one to three distillation columns to obtain an ethylene-containing composition according to the present invention. The process according to the present invention is a process for the manufacture of an ethylene-containing -10-201247595 composition starting from the effluent stream E of ethylene and other constituents from a process from monooxygen to olefin. The expression "oxygen to olefins process (OTO process)" is understood to mean a process for starting from a mono-oxygen starting material for the purposes of the present invention and producing an effluent stream E containing bismuth and other constituents. "Oxygenate starting material" is understood to be a starting material for the purposes of the present invention. The starting material is one or more aliphatic alcohols or ethers. Examples of oxygenate starting materials include, but are not limited to, methanol, ethanol, n-propanol, and isopropyl. Alcohol, C4-C2 sterol 'dimethyl ether, diethyl ether, methyl ethyl ether, diisopropyl ether, dipropyl ether, propyl methyl ether 'isopropyl methyl ether, propyl ethyl acid Or isopropyl ethyl ether or a mixture thereof. Preferably, the oxygenate starting materials are selected from the group consisting of methanol, ethanol, dimethyl ether, methyl ethyl ether, diacetic acid or a mixture thereof. Preferably, the oxygenate starting material is selected from the group consisting of: methanol, dimethyl ether, or a mixture thereof. The method for making an ethylene-containing composition according to the present invention preferably comprises fgp containing B The effluent stream E of suspicion and other components is derived from a process from methanol to olefin. In the methanol to olefin process, the oxygenate materials are preferably: methanol, dimethyl ether, or a mixture thereof. The oxygenate starting material can be produced by any process known in the art, including Fermentation or reaction of synthesis gas (synthesis gas) derived from natural gas, petroleum liquids, carbonaceous materials (such as coal), recycled plastics, municipal waste or any other organic material. Preferably, such oxygenate materials are borrowed. Produced by the reaction of syngas. Syngas production processes are well known and include conventional steam reforming, autothermal conversion, or a combination thereof. -11 - 201247595 Preferably, 'syngas is produced by steam reforming of natural gas. In general, the production of syngas includes: natural gas (mostly a courtyard) and a combustion reaction of hydrogen, carbon monoxide and/or carbon dioxide from an oxygen source. Overall, then a heterogeneous catalyst (typically a copper based) Catalyst) is contacted with a stream of synthesis gas (typically carbon dioxide and carbon monoxide with hydrogen) to produce an oxygenate-containing stream. One or more diluents, such as nitrogen, argon, nitrogen, carbon monoxide, carbon dioxide, water, substantially unreacted alkanes (especially alkanes such as A, E, and B), substantially unreacted, A substantially unreacted aromatic compound and mixtures thereof are added to the oxygenate feedstock' typically used to reduce the concentration of active ingredient in the feed stream. The preferred diluent is water. It may also include hydrocarbons. A portion of the oxygenate feedstock, i.e., as a co-feed. Preferred hydrocarbons for co-feed include propylene, butene, pentene, C4 + hydrocarbon mixtures, cs + hydrocarbon mixtures, and mixtures thereof. More preferably, a Co hydrocarbon mixture, the most preferred of which is a mixture of c4 + hydrocarbons obtained from the separation and recycled to the reactor. Other oxygenates obtained from the subsequent separation (step b)) can be recycled to the reaction. In the device. According to the process for producing an ethylene-containing composition according to the present invention, it is preferred that the effluent stream E containing ethylene and other components is derived from the process of -oxygen to olefin, preferably methanol to olefin. Such production is preferably carried out in the presence of a catalyst, preferably a one-molecular catalyst or one molecule of catalyst composition. The molecular sieve -12-201247595 chemical composition advantageously comprises molecular sieves and binders and/or matrix materials 较佳 preferred molecular sieve catalysts of zeolite or zeolite type molecular sieves. Alternatively, the preferred molecular sieve is an aluminophosphate (AL Ρ Ο ) molecular sieve and/or a bismuth aluminophosphate (SAPO ) molecular sieve and a substituted, preferably metal-substituted ALPO and/or SAPO molecular sieve, A molecular sieve comprising a symbiotic material having two or more different phases or crystal structures in a molecular sieve composition. The binder material can include different types of hydrated alumina, vermiculite, and/or other inorganic oxide sols. The matrix material may comprise one or more rare earth metals, metal oxides and natural clays> The reactor used may be a fixed bed reactor, a fluidized bed reactor (continuous fluidized bed reactor or continuous high speed) a fluidized bed reactor), a mixed reactor having a plurality of dense or fixed bed zones and/or a fast fluidized bed reaction zone connected together, a circulating fluidized bed reactor, a riser reactor, and analog. The produced effluent stream E comprising ethylene and other constituents advantageously comprises the desired olefin product, such as ethylene and propylene together with by-products, such as hydrogen, aqua, carbon monoxide 'carbon dioxide, water, keyuan, propylene, propylene. Heavier components of propane and propylene, such as C4 + components (olefinic and aliphatic), multiple unsaturated components, such as acetylene, methyl acetylene, and propadiene, and oxygenates as defined above. The effluent stream E containing ethylene and other components from the oxygenate to olefin process (preferably methane to olefins) and having undergone a conventional treatment is subjected to a preconditioning treatment to obtain a preconditioning process prior to being subjected to separation. -13- 201247595 A compressed outflow stream E is obtained. Advantageously, the conventional treatment comprises cooling the effluent stream, and preferably comprises removing the produced condensate. The treatment includes cooling and quenching the effluent stream E and removing the resulting condensate. Advantageously, the preconditioning treatment comprises: i) reversing the simultaneous removal of the produced condensate; ii) removing the acid gas oxidized carbon and the like) and iii) performing the adsorption treatment of the oxygenate (which is understood to be for the present invention) The purpose is to refer to oxygen and hydrogen atoms and have a normal boiling point above 〇 ° C) as well as water. Removal of acid gases (which are carbon dioxide and similar to any known method (appropriate methods include absorption in an alkaline aqueous solution or methanol vapor). Adsorption treatment can use any known adsorbent admixture including alumina, activation Alumina, aluminosilicates such as 3A and 4A molecular sieves, lime, magnesium hydroxide, and the like. Preferably, the preconditioning process comprises i) using an interstage cooler for multistage compression of the effluent stream E, Condensate; ii) removing acid gases (wherein carbon dioxide and iii) for adsorption treatment to remove undesired oxygenates. Preferably, the preconditioning treatment comprises: multistage the effluent stream E at each cooler Compressing, removing the product and removing it by a city wash to remove the compressor from the penultimate and E cooling and/or it is preferred that it is preferred to include a spur stream E (which is two to remove unwanted, An organic compound comprising at least carbon can be passed through a solution, an aqueous amine (appropriate suction, molecular sieve, analog). The resulting cold and species are removed between each stage and water. Interstage condensate between stages: acid gas between the first and last steps of •14·201247595 and adsorption treatment on a suitable adsorbent to remove water and undesired oxygenates. The compressed effluent stream E' advantageously comprises up to PPm of oxygenate by volume and up to 10 ppm by volume of water by volume. The compressed effluent stream E' advantageously comprises up to ppm by volume, preferably up to 800 ppm, more preferably up to 6 Torr and most preferably up to 400 ppm of oxygenate. The compressed effluent stream E' advantageously comprises up to 1 Torr, preferably up to 50 ppm, more preferably up to 20 and most up to 10 ppm by volume of water. The compressed effluent stream E' advantageously comprises up to ppm of oxygenate by volume and up to 1% by volume of water by volume. As the composition of the effluent stream E changes, the maximum amount of enthalpy in the effluent stream E' and the maximum amount 水 of water can be independent of the above mentioned enthalpy of consideration as discussed above. After step a), the compressed effluent stream E' is separated in a to three distillation column to obtain an ethylene-containing composition according to the invention (i.e., as described above). The compressed outflow E' from a) can be subjected to a thermal conditioning step prior to introduction into the distillation column. The expression heat regulation step is understood to mean a series of heat exchanges that optimize energy usage, such as stepwise cooling of the effluent stream E' in a set of exchangers, first cooling with untreated water and then using ice-cold water, and then using The cold fluid plus the crossover recovers the sensible heat of the stream produced. The flow defined by the more steam than 1000 1000 and the most ppm of 1000 oxygen is internally paired, and the effluent stream E' can be exchanged as a single saturation or as several subfractions as described in -15-201247595. In the distillation column. It is preferably introduced as a single fraction. Each distillation column is advantageously a column comprising a stripping section and/or a rectifying section. If both segments are present, the rectifying section is preferably located above the stripping section. Each distillation column is advantageously selected from the group consisting of a distillation column comprising the above two stages and a column comprising only one of the two sections. Preferably, each distillation column comprises the two sections described above. Each distillation column is advantageously equipped with associated auxiliary equipment such as, for example, at least one reboiler and at least one condenser. A means for allowing intermediate withdrawal and an intermediate heat exchange can be added to the distillation column. When the distillation column is equipped with a condenser and as mentioned below, the composition or fraction is separated at the top of the distillation column, it is understood for the purposes of the present invention that such a composition or fraction is in the condenser. The exit is separated. According to a first embodiment of the process of the invention, after step a), the compressed effluent stream E' is separated in a distillation column T1 into an ethylene-containing composition C1 at the top of the distillation column T1 and separated A fraction H1 enriched in a compound containing at least 3 carbon atoms at the bottom of the distillation column T1. According to this first embodiment of the process according to the invention, the above step b) is advantageously carried out at a pressure of at least 8 bar, preferably at least 12 bar and at least 15 bar in a particularly preferred manner. Step b) Advantageously -16-201247595 is carried out at a pressure of at most 45 bar', preferably at most 4 bar, and at a maximum of 35 bar in a particularly preferred manner. The temperature at which the 'step b) according to this first embodiment is carried out is advantageously at least -60 ° C, preferably at least -55 ° C at the top of the distillation column T1 and at least - 5 0 in a particularly preferred manner. ° C. The top of the distillation column T 1 is advantageously at most 1 ° C, preferably at most 5 ° C and in a particularly preferred manner at most 0 ° C. According to this first embodiment, the temperature at which step b) is carried out is advantageously at least 〇 at the bottom of the distillation column T1, preferably at least 1 ° C and at least 20 ° C in a particularly preferred manner. The bottom of the distillation column T1 is advantageously at most 120 ° C, preferably at most 11 ° C and in a particularly preferred manner at most 1oooc. According to a second embodiment of the method of the invention, after step a), the compressed effluent stream E' is separated in two distillation columns by the following steps: b 1) - a first separation step, the step consisting in The compressed effluent stream E is separated into a fraction F2 at the top of the distillation column T2 in a first distillation column T2 and separated into fractions enriched with a compound having at least 4 carbon atoms at the bottom of the distillation column T2. 2; and b2) - a second separation step in which the fraction F2 is separated in a second distillation column T2' into an ethylene-containing composition C2 at the top of the distillation column T2' and separated into the distillation At the bottom of column T2' is a fraction η 2 enriched in a compound containing at least 3 carbon atoms. According to this second embodiment of the method of the invention, the above steps -17-201247595 bl) (first separation step) and step b2) (second separation step) are advantageously at least 8 bar, preferably at least 1 2 bar and carried out under a pressure of at least 15 bar in a particularly preferred manner. Step bl) is advantageously carried out at a maximum of 45 bar, preferably at most 40 bar and at a pressure of up to 35 bar in a particularly preferred manner. A compression can be applied between the two separation steps. According to this second embodiment, the temperature at which step b 1 ) is carried out is advantageously at least -20 ° C, preferably at least -15 ° C at the top of the distillation column T2 and at least - l in a particularly preferred manner 〇°C. Advantageously at the top of the distillation column T2 is at most 50 ° C, preferably at most 45 ° C and in a particularly preferred manner at most 40 ° C. According to this second embodiment, the temperature at which step bl) is carried out is advantageously at least 50 ° C at the bottom of the distillation column T2, preferably at least 60 ° C and in a particularly preferred manner at least 7 ° C. Advantageously at the bottom of the distillation column T2 is at most 160. (:, preferably at most l5 〇 ° C and in a particularly preferred manner is at most 140 ° C. According to this second embodiment, the temperature at which step b2) is carried out is advantageously at the top of the distillation column T2 ′ At least -7 ° C, preferably at least -60 ° C and in a particularly preferred manner at least _ 5 ° ° C. Advantageously at the top of the distillation column T2' is at most 0, preferably at most -5 °c and in a particularly preferred manner at most 10 °C. According to this second embodiment, the temperature at which step b2) is carried out is advantageously at least 〇 at the top of the distillation column T2' and at least 20 in a particularly preferred manner. C. In the distillation column T2, the bottom is advantageously at most 120 〇C, preferably at most 110 ° C compared to -18 - 201247595 and at most 100 ° C in a particularly preferred manner 〇 a third embodiment of the method according to the invention By way of step a), the compressed effluent stream E' is separated in three distillation columns by the following steps: bl) - a first separation step consisting in the compression of the effluent stream E' A distillation column T3 is separated into a fraction F3 at the top of the distillation column T3 and separated into a fraction F3'' b2) at the bottom of the distillation column T3 - a second separation step in which the fraction F3' is The second distillation column T3' is separated into a fraction F3" at the top of the distillation column T3' and separated into a fraction H3 enriched with a compound having at least 4 carbon atoms at the bottom of the distillation column T3'; and b3 a third separation step in which the fractions F3 and F3" are separated in a third distillation column T3" into an ethylene-containing composition C3 at the top of the distillation column T3" and separated into the distillation column. The bottom of T3" is enriched with a compound containing at least 3 carbon atoms. a fraction H3'. This third embodiment of the method according to the invention 'step bl) (first separation step), step b2) (second separation step) and step b3) (third separation step) are advantageously It is carried out at a pressure of at least 8 bar', preferably at least 12 bar, and at least 15 bar in a particularly preferred manner. Step bl) is advantageously at most 45 bar', preferably at most 40 bar and at In a particularly preferred manner, a pressure of up to 35 bar is carried out. A compression can be applied between each of the three separation steps. According to this third embodiment, the temperature at which step bl) is carried out is -19 - 201247595 The top of the distillation column T3 is advantageously at least -70 ° C ', preferably at least _ 60. (: and in a particularly preferred manner at least -50 ° C ° at the top of the distillation column T3 is advantageously at most 0 Preferably, it is at most -5 ° c and in a particularly preferred manner is at most -10 ° C. The temperature at which the 'step bl' is carried out according to this third embodiment is advantageously at least 0 at the bottom of the distillation column T3 'It is preferably at least i 〇 °c and at least 20 ° in a particularly preferred manner c. advantageously at the bottom of the distillation column T3 is at most 120 ° C, preferably at most 110 ° C and in a particularly preferred manner is at most 10 ° C. According to this third embodiment 'step b2) The temperature at the time of the distillation column T 3 is advantageously at least 〇, preferably at least 10 ° C and in a particularly preferred manner at least 20 ° C. advantageously at the top of the distillation column T 3 ' Up to 100 ° C, preferably up to 90 ° C and in a particularly preferred manner up to 80 ° C. According to this third embodiment, the temperature at which step b2) is carried out advantageously at the bottom of the distillation column T3' It is at least 20 ° C, preferably at least 3 ° C and in a particularly preferred manner at least 40 ° C. Advantageously at the bottom of the distillation column T3' is at most 160. (:, preferably at most 5 〇 c > C and in a particularly preferred manner is at most 140 ° C. The temperature at the time of proceeding according to this third embodiment 'step b3) is advantageous at the top of the distillation column T3" The ground is at least -7 ° C. Preferably, it is at least -60 ° C and in a particularly preferred manner at least -5 ° C. The top of the steaming tower T3" is advantageously at most 〇, preferably Is at most -5 ° C and in a particularly preferred manner is at most 10 ° C. -20- 201247595 According to this third embodiment, the temperature at which step b 3 ) is carried out is advantageously at the bottom of the distillation column T3" At least 〇, preferably at least 10 ° C and at least 20 in a particularly preferred manner. C» is advantageously at most 120 ° C at the bottom of the distillation column T3", preferably at most 110 ° C and in a particularly preferred manner at most 1 ° C. Enriched with at least 3 carbon atoms The fractions HI, H2' and H3' of the compound may be used as such or may be further purified into very high purity propylene (referred to as polymerization grade propylene) for use in the manufacture of propylene derivative compounds. The expression "containing at least 3 carbon atoms "Compound" is understood to mean a hydrocarbon compound having at least 3 carbon atoms as defined above for the purposes of the present invention. As an example of a propylene derivative compound, acrylonitrile and its derivatives may be mentioned, among others, together with a polymer produced therefrom, propylene oxide and its derivatives, and homopolymers and copolymers of propylene (hereinafter referred to as polypropylene). Polypropylene is a preferred propylene-derived compound. It is enriched with at least 4 carbons. The fractions H2 and H3 of the atomic compound can be used as such or can be further purified to a very high purity grade for use as a valuable hydrocarbon grade or as a fuel. "A compound having 4 carbon atoms" is understood to mean any organic compound containing at least carbon and hydrogen atoms and comprising at least 4 carbon atoms for the purposes of the present invention. Examples of such compounds containing at least 4 carbon atoms are Alkene, butene together with all saturated or unsaturated heavier compounds. -21 - 201247595 The process according to the invention is further characterized in that after step b), the ethylene-containing composition is subjected to an acetylene saturation. For the purposes of the invention, acetylene saturation is understood to be any operation which permits partial saturation of the triple bond of acetylene. In such operations, a series of hydrogenation (which is preferred) may be mentioned. The above acetylene hydrogenation step may By any known hydrogenation catalyst, such as a catalyst based on palladium, platinum, rhodium, ruthenium or iridium, the catalyst is placed on a support such as alumina, vermiculite, vermiculite/alumina, carbon, calcium carbonate or Barium sulphate, but also nickel-based catalysts and those based on cobalt-molybdenum complexes. Preferably, the hydrogenation step is carried out by a palladium-based or The catalyst is carried out. In a particularly preferred manner, it is carried out by means of a palladium-based catalyst. With regard to the support, the hydrogenation step is carried out in a particularly preferred manner by means of a compound based on the above, preferably palladium or platinum. The catalyst is palladium), preferably deposited on alumina, carbon, calcium carbonate or barium sulfate. The amount of palladium in the catalyst is advantageously at a level of 1% by weight. The temperature at which the step is carried out is advantageously at least 5, preferably at least 20.0, in a particularly preferred manner at least 25 ° C, in a most particularly preferred manner at least 40 ° C and in a true The most particularly preferred mode is at least 50 C. It is advantageously at most 150 C, preferably at most 120. (:, and in a particularly preferred manner at most ioo °c. With respect to this pressure, it is advantageously greater than or equal to 1 '. Preferably, the large -22-201247595 is at or equal to 5, in a particularly preferred manner is greater than or equal to 1 〇 and in a most particularly preferred manner Greater than or equal to 15 bar. It is advantageously less than or equal to 50, preferably less than or equal to 45' in a particularly preferred manner is less than or equal to 40 and in a most particularly preferred manner is less than or equal to 30 bar. Advantageously, the hydrogenation step of the acetylene is carried out using a large amount of hydrogen to complete the hydrogenation completely, that is, preferably at least 99%. The amount of hydrogen is advantageously such that the molar ratio of hydrogen:acetylene is equal to or greater than 1, preferably equal to or greater than 1.5, equal to or greater than 2 in a particularly preferred manner, and most preferably The mode is equal to or greater than 3 and is equal to or greater than 4 in a truly most particularly preferred manner. Drying can be optionally carried out after the acetylene is saturated. The process according to the invention is further characterized in that after step b), the ethylene-containing composition is more preferably subjected to a supplementary separation step (referred to as demethanization) to thereby separate the enriched specific ethylene A fraction of a light compound. Compounds lighter than ethylene are advantageously methane, hydrogen, carbon monoxide, nitrogen and other inert gases. This supplementary separation step is advantageously carried out at a pressure of at least 8 bar, preferably at least 12 bar and at a pressure of at least 15 bar in a particularly preferred manner. It is advantageously carried out at a pressure of at most 45 bar, preferably at most 40 bar and at a maximum of 35 bar in a particularly preferred manner. A compression can be applied before this step is fully removed. The temperature at which this additional separation step is carried out is advantageously at least _ 1 3 Μ at the top of the demethanization distillation column -23-201247595 D Μ. C, preferably at least _] 2 5 . C and at least -120 〇C in a particularly good way. The top of the demethanized distillation column DM is advantageously at most _50. €, preferably up to _60 cC and in a particularly good way up to -70. The temperature at which this supplementary separation step is carried out is advantageously at least _50 at the bottom of the demethanization distillation column DM. (:, preferably at least -47. <: and at least -45 in a particularly good manner. (:. at the top of the demethanized distillation column DM advantageously advantageously at most 0 ° C, preferably at most 5 ° C and in a particularly preferred manner at most 0 ° C. More preferably based on The method of the invention, together with the first, second and third embodiments of the method, is characterized in that after step b), the ethylene-containing composition is first subjected to an acetylene saturation and then subjected to a complementary separation. The step (referred to as demethanization) is thereby separated from a fraction enriched in a compound lighter than ethylene. The preferred first embodiment of the method according to the invention will now be described with reference to Figure 1 attached to the present description. The effluent stream E containing ethylene and other constituents from the process of the monooxygenate to the olefin (preferably MTO) and having undergone a conventional treatment (cooling, quenching and removal of the produced condensate) is carried out in one The compressor is compressed to undergo a preconditioning process PCT while removing the resulting condensate and subjected to a municipal wash to remove acid gases which are co2 and the like. The residual water and the undesired oxygenate are finally removed on a sorbent before the compressed effluent stream E' is fed to a distillation column T1 equipped with a reboiler and a condenser. An ethylene-containing composition C 1 is separated at the top of the distillation column T1 from -24 to 201247595 and a fraction 富1 enriched in a compound containing at least 3 carbon atoms is separated at the bottom of the distillation column. The ethylene-containing composition C 1 is then subjected to an acetylene-saturated AS 1 before being fed to a demethanized distillation column DM1 equipped with a reboiler and a condenser. A fraction L 1 enriched with a compound lighter than ethylene is separated at the top of the demethanized distillation column DM1 and the ethylene-containing composition C1" is separated at the bottom of the demethanized distillation column. According to the invention The preferred second embodiment of the method will now be described with reference to Figure 2 attached to the present description. Ethylene and other components containing the process from monooxygenate to olefin (preferably MTO) will have been subjected to one The effluent stream E of the conventional treatment (cooling, quenching and removal of the produced condensate) is subjected to a pre-conditioning treatment PCT by compression in a compressor while removing the produced condensate, and performing a city washing to remove CO 2 and the like therein. Acid gas of the product. The residual water and the undesired oxygenate are finally removed on a sorbent before the compressed effluent stream E' is fed to a distillation column T2 equipped with a reboiler and a condenser. A fraction F2 is separated at the top of the distillation column T2 and a fraction H2 enriched with a compound containing at least 4 carbon atoms is separated at the bottom of the distillation column T2. The fraction F2 is sent to the fraction a distillation column T2' having a reboiler and a condenser. The ethylene-containing composition C2 is separated at the top of the distillation column T2' and a fraction H2' rich in a compound containing at least 3 carbon atoms is The bottom of the distillation column T2' is separated. The ethylene-containing composition C2 is then subjected to a B-25-201247595 alkyne saturation AS2 before being fed to a demethanization distillation column DM2 equipped with a reboiler and a condenser. A fraction L2 enriched in a compound lighter than ethylene is separated at the top of the demethanized distillation column DM2 and the ethylene-containing composition C2" is separated at the bottom of the demethanized distillation column. A preferred third embodiment of the method according to the invention will now be described with reference to Figure 3 attached to the present description. The effluent stream E containing the ethylene and other components from the process of the monooxygenate to the olefin (preferably MTO) and which has been subjected to a conventional treatment (cooling, quenching and removal of the produced condensate) is subjected to a compression The compression in the machine is subjected to a preconditioning treatment PCT while removing the produced condensate, and performing a city washing to remove the acid gas which is C 02 and the like. The residual water and the undesired oxygenate are finally removed on a sorbent before the compressed effluent stream E' is fed to a distillation column T3 equipped with a reboiler and a condenser. A fraction F3 is separated at the top of the distillation column T3 and a fraction F3' is separated at the bottom of the distillation column T3. The fraction F3' is sent to a distillation column T3' equipped with a reboiler and a condenser. A fraction F3" is separated at the top of the distillation column T3' and a fraction H3 enriched with a compound containing at least 4 carbon atoms is separated at the bottom of the distillation column T3'. The fractions F3 and F3 are sent to the equilibration a distillation column T3" having a reboiler and a condenser. An ethylene-containing composition C3 is separated at the top of the distillation column T3" and a fraction H3' is enriched in a compound containing at least 3 carbon atoms. The bottom of the distillation column T3' is separated. The ethylene-containing composition C3 is then subjected to an acetylene-saturated AS3 before being fed to a demethanization distillation column DM3 equipped with a reboiler and a condenser. A fraction L3 enriched in a compound lighter than ethylene is separated at the top of the demethanization -26-201247595 distillation column DM3 and the ethylene-containing composition C3" is separated at the bottom of the demethanization distillation column. The invention further relates to a process for the production of at least one ethylene derivative compound starting from an ethylene-containing composition according to the invention. For the purposes of the present invention, the expression "at least one ethylene derivative compound" is understood to mean that one can be produced. Or more than one ethylene derivative compound: It is preferred to produce an ethylene derivative compound. The expression "ethylene derivative compound", used in the singular or plural form, is understood to mean, for the purposes of the present invention, Any ethylene derivative compound produced directly from ethylene together with any compound derived therefrom. The expression "ethylene derivative compound produced directly from ethylene", used herein in the singular or plural, is understood to mean For the purpose of the invention, any compound made directly from ethylene. The expression "a compound derived therefrom" As used herein, in the singular or plural, it is understood to mean any compound made from a compound made of ethylene itself for the purposes of the present invention, together with any compound derived therefrom. Examples of ethylene derivative compounds may, inter alia, mention: ethylene oxide, linear alpha olefins, homopolymers and copolymers of linear primary alcohols 'ethylene, ethylbenzene, vinyl acetate, acetaldehyde, ethanol Propionaldehyde and EDC. As examples of such compounds derived therefrom, mention may be made, inter alia, of -27-201247595 - ethylene glycols and ethers made from ethylene oxide - - made of ethylbenzene Styrene and styrene polymers derived from styrene, - VC manufactured by EDC, - vinylidene chloride derived from VC, fluorinated hydrocarbons, and PVC, and fluorinated polymers derived from fluorinated hydrocarbons, And - polyvinylidene chloride derived from vinylidene chloride and fluorinated hydrocarbons (and fluorinated polymers). Production of at least one ethylene derivative starting from the ethylene-containing composition according to the invention The method of the compound is preferably a process for producing ethylene oxide, ethylbenzene and/or EDC (as an ethylene derivative compound which is directly produced from ethylene) together with any compound derived therefrom. The expression "and/or" The method may be a method for producing only one of the above-mentioned derivative compounds or a method for producing a combination of two or three of the above ethylene derivative compounds. More preferably, according to the present invention The ethylene-containing composition begins to produce at least one ethylene derivative compound. Preferably, the method for producing ethylbenzene and/or EDC (as an ethylene derivative compound produced directly from ethylene) together with any compound derived therefrom Preferably, the method of producing at least one ethylene derivative compound from the ethylene-containing composition according to the present invention is preferably a process for producing EDC (as an ethylene derivative compound which is directly produced from ethylene). Along with the method of any compound derived therefrom, preferably VC and then PVC » 28-201247595 Accordingly, the present invention One object is a process for the manufacture of dichloroethane, according to which the ethylene-containing composition according to the invention (as defined above) is subjected to monochlorination and/or monooxychlorination to produce dichlorochloride. Ethane. The chlorination reaction (commonly referred to as direct chlorination) is advantageously carried out in a liquid phase (preferably predominantly EDC) containing a dissolved catalyst (e.g., FeCl3 or other Lewis acid). It is possible to advantageously combine this catalyst with a cocatalyst such as an alkali metal chloride. Good results have been given - a complex of FeCl3 and LiCl (lithium tetrachloroferrate - as described in patent application NL 690 1 3 98) ° The amount of FeCl3 used is advantageously per kg The liquid masterbatch is approximately g3 g to 30 g of FeCl3. The molar ratio of FeCl3 to LiCl is advantageously in the order of 0.5 to 2. Further, the chlorination reaction is preferably carried out in a chlorinated organic liquid medium. More preferably, the chlorinated organic liquid medium, also referred to as liquid masterbatch, consists essentially of EDC. The chlorination reaction according to the present invention is advantageously carried out at a temperature between 30 ° C and 150 ° C. Regardless of the pressure, good results have been obtained at temperatures below the boiling point (chlorination process under low temperature cooling conditions) and at the boiling point itself (the process of chlorination at the boiling point). When the chlorination process according to the invention is a chlorination process under supercooling conditions, good results are obtained by operating at a temperature below and at a pressure in the gas phase, which temperature is advantageously higher than or equal to 5 0 ° C and preferably -29 - 201247595 is higher than or equal to 60. (:, but advantageously lower than or equal to 8 〇〇 C and preferably lower than or equal to 7 〇. (:, and the pressure is advantageously higher than or equal to 1 and preferably higher or equal to absolute The pressure 'but advantageously less than or equal to 20, preferably less than or equal to 1 Torr and particularly preferably less than or equal to 6 bar absolute. The method of chlorination at the boiling point may preferably be effectively recovered. The heat of reaction. In this case, the reaction advantageously occurs at a temperature higher than or equal to 60 ° C. Preferably, it is higher than or equal to 7 〇. (: and particularly preferably higher than or equal to 85 〇C, but advantageously lower than or equal to i50 ° C and preferably lower than or equal to 135. (:, and the pressure in the gas phase is advantageously higher than or equal to 〇.2, preferably high Particularly preferred at or equal to 0.5' is greater than or equal to 1.1 and more particularly preferably greater than or equal to 1.3 bar absolute, but advantageously less than or equal to 1 〇 and preferably less than or equal to 6 Bar absolute pressure. The chlorination process can also be a hybrid loop-cooled process of chlorination at the boiling point. The expression "mixing loop cooling process of chlorination at boiling point" is understood to mean a process in which, for example, by immersing in the reaction medium An exchanger either cools the reaction medium by a circuit circulating in an exchanger while producing at least the amount of EDC formed in the gas phase. Advantageously, the reaction temperature and pressure are adjusted to produce The EDC exits in the gas phase and removes residual heat from the reaction medium by exchanging the surface area. The chlorinated ethylene-containing composition and also the molecular chlorine (either pure or diluted) can be used by any known equipment. The reaction medium is introduced -30-201247595 together or separately. It may be advantageous to separately introduce an ethylene-containing composition subjected to chlorination to increase its partial pressure and promote its dissolution' which usually constitutes a limiting step of the process. Ethylene is added in a sufficient amount to convert most of the chlorine 'and does not require the addition of excess chlorine. The ethylene/chlorine ratio used is preferably at 1 Between .2 mol/mol and 0.8 mo丨/mol, and particularly preferably between 1.05 mol/mol and 0.95 mol/mol. The chlorinated product obtained mainly contains EDC and also a small amount of by-products, for example 1,1,2-trichloroethane or a small amount of chlorinated product of ethane or methane. The EDC obtained by separating the product stream from the chlorination reactor is carried out according to known methods, and overall It is possible to utilize the heat of the chlorination reaction. It is then preferably carried out by condensation and gas/liquid separation. Then advantageously the unconverted product (methane, ethane, carbon monoxide, nitrogen, Oxygen and gas) are subjected to an easier separation than is necessary to separate pure ethylene starting from the initial mixture. The oxychlorination reaction is advantageously carried out in the presence of a catalyst comprising an active element comprising copper deposited on an inert support. The inert carrier is advantageously selected from the group consisting of alumina, silicone, mixed oxides, clays, and other carriers of natural origin. Alumina constitutes a preferred inert carrier. Preferred are catalysts comprising an active element, the number of active elements being advantageously at least two, one of which is copper. In the above -31 - 201247595 active elements other than copper, 'alkali metal, alkaline earth metal, rare earth metal and metals selected from the group consisting of nails, rhodium, palladium, starvation, rhodium, platinum may be mentioned. And gold. Catalysts comprising the following active elements are particularly advantageous: copper/magnesium/potassium, copper/magnesium/sodium; copper/magnesium/lithium, copper/magnesium/planing, copper/magnesium/sodium/lithium, copper/magnesium/potassium/lithium And copper / magnesium / planer / lithium, copper / magnesium / sodium / potassium, copper / magnesium / sodium / planing and copper / magnesium / potassium / planing. Most particularly preferred are the catalysts described in the patent applications EP-A 2 5 5 1 5 6 , ΕΡ Α 494 474, EP-A 657 212 and EP-A 657 213, the disclosures of which are incorporated by reference. The content of copper, calculated in the form of metal, is advantageously between 30 g/kg and 90 g/kg, preferably between 40 g/kg and 80 g/kg and particularly preferably Between 50 g/kg and 70 g/kg of catalyst. The magnesium content, calculated as metal, is advantageously between 1 〇g/kg and 30 g/kg, preferably between 12 g/kg and 25 g/kg and particularly preferably at 15 Between g/kg and 20 g/kg of catalyst. The content of alkali metal, calculated as metal' is advantageously between 0.1 g/kg and 30 g/kg, preferably between 〇5 g/kg and 20 g/kg and particularly preferably It is between 1 g/kg and 15 g/kg of catalyst. Copper: Magnesium: The atomic ratio of one or more metal is advantageously 1:0·1·2: 0.05-2, preferably 1:0.2-1.5: 0.1-1.5 and particularly good Is 1:0.5-1: 0.15-1° The catalyst has a specific surface area advantageously between 25 m2/g and 300 m2/g, preferably between 50 m2/s and 200 m2/g and It is particularly preferred to be between 75 m2/g and 175 m2/g (measured by nitrogen according to the BET method). -32-201247595 The catalyst can be selected in a fixed bed or a fluidized bed. of. The oxychlorination process operates within the scope of the reaction. The temperature is advantageously at 150 ° C, preferably between 200 ° C and 275 ° C and up to 25 5 ° C. The pressure is advantageously above atmospheric pressure. 1 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値 値This pressure is adjusted to obtain a constant pass rate in the reactor that is optimally maintained at different operating speeds. Typically from 1 second to 60 seconds, and preferably from 1 sec., the source of oxygen for oxychlorination may be air, a mixture, preferably pure oxygen. These reactants can be separated from other reactants by any known means of safety. These safety factors also require that the leaving or recirculating body mixture be maintained at the pressures and temperatures in question. It is preferred to maintain a so-called enriched mixture which contains too little oxygen for the fuel to be ignited. In the case where the compound has a wide range of flammability, the sufficient presence of hydrogen > 5 vol%) will constitute a deficiency in the ratio of hydrogen chloride/oxygen used advantageously between 6 mol/mol. The ethylene/hydrogen chloride ratio is between mol/mol and 0.6 mol/mol. The obtained chlorinated product mainly contains EDC and is used. The second usually recommended condition and between 300 ° C, preferably from 215 ° C at 2 bar absolute 値 , at 4 bar absolute 可以 force can be effectively timed and maintained for a residence time range of up to 40 seconds. Pure oxygen or one of them is introduced into the bed. It is generally advantageous to limit the flammability of the gas to the reactor, that is to say in this respect (> 2 vol%, compared to i. at 3 mol/mol and advantageously at 0.4) There is also a small amount of by-product -33-201247595, such as 1, 1,2-trichloroethane. EDC separated from the product stream from the chlorination reactor can be chlorinated from the oxychlorination before the EDC cracking step. The EDC separated in the product stream of the reactor is mixed or unmixed. When the two EDCs are mixed, they may be mixed completely or partially. Therefore, a method for producing dichloroethane (according to the method according to the method) The inventive ethylene-containing composition (as defined above) is subjected to monochlorination and/or monooxychlorination to produce dichloroethane. It is further characterized in that it preferably comprises heat of dichloroethane. The solution can be used to produce vinyl chloride. The EDC can then undergo an EDC pyrolysis (also known as cracking) to produce vinyl chloride (VC) and hydrogen chloride. The conditions under which the EDC cracking step can be carried out are known to those skilled in the art. EDC cracking May be in the presence or absence of a third compound It is possible to carry out the catalysts mentioned in the third compounds; EDC cleavage in this case is a catalytic EDC cleavage. However, EDC cleavage is preferably in the presence of a third compound and only in the action of heat. The EDC cracking is often referred to as pyrolysis in this case. The pyrolysis is advantageously obtained by a reaction in the gas phase in a tube furnace. The usual pyrolysis temperature is 400 ° C. And between 600 ° C, preferably between 480 ° C and 540 ° (range between 3). The residence time is advantageously between 1 second and 60 seconds, preferably from 5 seconds to 25 The range of seconds. In order to limit the formation of by-products and the contamination of the furnace tubes, the conversion of the EDC is advantageously limited to between 45% and 75%. Separation of VC and from the product stream obtained from pyrolysis Hydrogen chloride system - 34 - 201247595 is carried out according to known means using any known means to collect purified VC and hydrogen chloride. After purification, unconverted EDC is advantageously sent to the pyrolysis furnace. Method of dichloroethane (according to the method, the ethylene-containing combination according to the invention (as defined above) subjected to monochlorination and/or monooxychlorination to produce dichloroethane) is further characterized in that it preferably comprises pyrolysis of dichloroethane to produce vinyl chloride, more Preferably, it is characterized in that it further comprises a polymerization reaction of vinyl chloride to produce polyvinyl chloride. The manufacture of PVC may be a bulk 'solution or aqueous dispersion polymerization method, which is preferably an aqueous dispersion polymerization method. Aqueous dispersion polymerization is understood to mean free-radical polymerization in aqueous suspensions and free-radical polymerization in aqueous emulsions, as well as in aqueous microsuspensions. The expression of free-radical polymerization in aqueous suspensions is understood to mean Refers to any free radical polymerization process in an aqueous medium in the presence of a dispersant and an oil soluble free radical initiator. The expression of free radical polymerization in an aqueous emulsion is understood to mean any free radical polymerization process in the presence of an emulsifier and a water soluble free radical initiator in an aqueous medium. The expression of aqueous microsuspension polymerization (also referred to as polymerization in a homogenized aqueous dispersion) is understood to mean the use of oil-soluble initiators and the preparation of monomers in the presence of emulsifiers due to strong mechanical agitation and in the presence of emulsifiers. Any free hydrazine polymerization process under the conditions of droplets of the emulsion. -35- 201247595 An advantage of the present invention is that it allows an ethylene-containing composition to be obtained at a reduced cost. Another advantage of the present invention is that an ethylene-containing composition having a purity lower than that of the polymerization grade is obtained. It is of interest to obtain an ethylene-containing composition which can comprise different types of impurities and which is at a level which is not prohibited for its future use. Furthermore, for obtaining an ethylene-containing combination according to the invention The thermal power required for the material is significantly reduced compared to the ethylene obtained to achieve the polymerization grade. Finally, the total ethylene recovery obtained for the ethylene-containing composition according to the present invention is significantly higher than that obtained for the polymerization grade, if any of the patents, patent applications, and The disclosure of the disclosure conflicts with the description of the present application to the extent that it may make a term unclear, and the description should be preferred. [Embodiment] The following β examples are intended to illustrate the invention, but are not intended to limit the scope thereof.

該等實例在來自美國麻塞諸塞州的伯靈頓市惠勒路( Wheeler Road ) 200 的艾斯本技術公司 (ASPEN TECHNOLOGY INC )的 ASPEN PLUS® ASPENONE® V7.2 軟體的説明下基於對於純組分以及混合物的ASPENONE® V7.2數據庫進行計算。 -36- 201247595 實例1 (根據本發明) 使一含有來自--甲醇至烯烴的過程的乙烯以及其他成 分並且已經經受了一常規處理(冷卻、急冷並且除去產生 的冷凝物)的流出流E具有在以下表1 a中給出的詳細組 成。 使該流出流 E經受以下描述的 ASPEN PLUS® ASPENONE® V7.2軟體類比的方法並且在圖1中圖形化。 莫耳流速係 29.1 56 kmol/h,其中 1 3.476 kmol 乙烯/h。 該流出流E的溫度在該過程的入口處爲40°C並且其絕對 壓力係2.5巴。 然後將該流出流E藉由首先在一每個級之間配備有級 間冷卻器的3級壓縮機中壓縮到20巴的絕對壓力以將該 流出流冷卻至在出口處40°C的溫度,同時除去產生的冷 凝物。然後將用於除去其中爲C02以及類似物的酸性氣體 的一城洗滌液引入到該壓縮機的第二與第三級之間。在將 該產生的壓縮的流出流E加入到裝備有一再沸器以及一冷 凝器並且包括20個理論級(包括該再沸器以及冷凝器) 的蒸餾塔T1之前,將殘留的水和不希望的氧合物最後在 一吸附劑上去除。將流出流E’引入到第1 4級上,第1級 係冷凝器並且第20級係再沸器。該塔的質量回流比固定 在3。444.68 kg/h的一含乙烯的組合物C1在蒸餾塔T1 的頂部(冷凝器的出口)分離出並且一富集了含至少3個 碳原子的化合物的餾分H1在蒸餾塔T1的底部分離出^ 在蒸餾塔T1的頂部以及底部的絕對壓力固定在2 0巴。在 -37- 201247595 蒸飽塔T1的頂部(冷凝器的出口)的溫度估計是_37.6°C 並且蒸餾塔T1的底部的溫度計算爲57.3 〇c。 然後將該含乙嫌的組合物Cl加熱到50 °C,與q〇474 kmol/h純的H2在50°C並且20巴的絕對壓力下混合並且 加入到一脫乙醯化反應器中’以使其經受絕熱地進行的一 乙炔飽和作用A S 1。乙炔的轉化率估計是9 9 %,乙稀的選 擇性估計是6 0.1 %並且乙院的選擇性估計是3 9 · 9 %。脫乙 醯化作用之後,將產生的含乙烯的組合物C 1,冷卻到 -30.7°C並且加入到配備有一再沸器以及一冷凝器並且包 括20個理論級(包括該再沸器以及冷凝器)的—脫甲烷 化蒸餾塔DM1中。將該含乙烯的組合物C1’引入到第15 級上,第1級係冷凝器並且第20級係再沸器。該脫甲烷 化的蒸餾塔的質量回流比固定在10。一富集了 63 kg/h比 乙烯輕的化合物的餾分L1在該脫.甲烷化的蒸餾塔DM1的 頂部(冷凝器的出口)分離出並且該含乙烯的組合物C1” 在該脫甲烷化的蒸餾塔底部分離出》在該脫甲烷化蒸餾塔 的頂部以及底部的絕對壓力固定在20巴。在該脫甲烷化 蒸餾塔的頂部(冷凝器的出口)的溫度估計是- l〇7.6°C並 且該脫甲烷化蒸餾塔底部的溫度計算爲-29.2°C。 含有組合物Cl、Cl’以及Cl”連同餾分HI以及L1的 含乙烯的組合物的流出流E和E’的特徵在表la中給出。 惰性氣體、氫氣、甲烷、C02、乙炔、乙烯、乙烷、丙烯、 其他C3、C4、C5、H20、氧合物的量値以及總量表達爲按 體積計的%,除了括弧中的那些,它們係按體積計的PPm。 -38- 201247595 rum 0.67 0.42 98.91 S 1—^ /-**V Ο r—N o /^-*S 'n o /—V 〇 /—»N 1—H r-H /—N /·*—v T—H 100.00 3.921 63.00 -107.6 20.0 5 /*—V o /^S Ο /**~Ν Ο /—Ν Co" 〇\ 's—^ I 0.13 0.02 79.33 vq 14.07 4.60 /*—N 0.17 100.00 10.472 475.08 57.3 20.0 U /«—s o χ—V ο 0.30 cK I 98.68 p /—N o /-v r—^ /*—v 100.00 13.617 381.79 -29.2 20.0 99.69 98.99 u 0.15 0.09 22.35 /*—S •o 76.62 0.79 /—N o /-V 1—H /-—S /—N 1—^ 100.00 17.538 444.79 -30.7 20.0 77.41 98.98 1—» 0.15 0.00 22.37 0.15 76.60 0.73 s o /—V V 1— H /—*s 1—^ ιοο.οοΠ 17.522 444.68 -37.6 20.0 77.48 98.86 w 0.09 0.00 14.00 /—Ν 1—Η 0.10 47.99 0.46 29.68 0.62 5.27 1.72 V 0.06 100.00 27.994 919.76 40.0 20.0 w 0.09 0.00 13.45 0.03 0.09 46.22 0.45 28.80 0.61 5.22 1.66 2.87 0.50 100.00 29.156 947.29 40.0 in 惰性氣體(作爲N2計算) 氫氣 甲烷 C〇2 乙炔 乙烯 乙烷 丙烯 其他C3(作爲丙烷計算) C4(作爲正丁烯計算) C5(作爲正戊烯計算) H20 氧合物(作爲甲醇計算) 總計 i 莫耳流速(km〇l/h) 質量流速(kg/h) 溫度(°c) 絕對壓力(巴) 總計乙烯、乙烷、乙炔(%按體積計) 容 S N3 遯 K] f 裝 K1 ϋΐΐπ 繫 i N3 -39- 201247595 該含乙烯的組合物Cl”的莫耳流速達到13.617 kmol/h ,其中13.437 kmol乙烯/h。總的乙烯(Cl ”中的乙烯/流 出流E中的乙烯)回收率達到9 9.71%。該含乙烯的組合 物C1”中的乙烯含量達到了按體積計98.68 %並且乙烯與 總的乙烯、乙烷、乙炔之比係98 ·99%。該含乙烯的組合 物C1”中的乙炔含量達到了按體積計19.4 ppm並且該含 乙烯的組合物C1”中的丙烯含量達到了按體積計0.3 ppm 。計算出的在蒸餾塔T1的再沸器中的熱功率,以及在該 脫甲院器(demethaniser) DM1的再沸器中的功率在表2 中給出。該含乙烯的組合物C1”中的熱耗率達到了 0.264 kWh/kg。 實例2 (對比實例) 將與實例1相同的流出流E以與實例1相同的方式進 行處理。這之後’將該含乙烯的組合物C1”送往一裝備有 40個理論級(包括再沸器以及冷凝器)的乙烯分裂器S1 。將該含乙烯的組合物C 1 ”引入到第1 〇級上,第1級係 冷凝器並且第40級係再沸器。該塔的質量回流比固定在 5。含乙烯並且富集了比乙烯輕的化合物的36〇 〇〇 kg/h的 餾分在該乙烯分裂器S1的頂部(冷凝器的出口)分離出 並且仍然含乙烧的富乙院的飽分H1,在該乙嫌分裂器si 底部分離出。在該乙烯分裂器S1的頂部以及底部的絕對 壓力固定在20巴。在該乙烯分裂器s〗的頂部(冷凝器的 出口)的溫度估計是- 28.9。(:並且該乙烯分裂器Si底部的 -40- 201247595 溫度計算爲-25.4 〇C:。然後將含乙烯並且富集了比乙烯輕 的化合物的餾分送往配備有2 〇個理論級的—塔D L丨(以 進步從乙儲中分離比乙嫌輕的化合物)以生產一聚合反 應等級的乙嫌。將該進料引入到該塔的底部。質量回流比 固定在100。4 kg/h的餾分L1,在該塔的頂部(冷凝器的 出口)分離出並且一聚合反應等級的乙烯C1”,在該塔底 部分離出。在該塔的頂部以及底部的絕對壓力固定在2〇 巴。在該蒸餾塔DL1的頂部(冷凝器的出口)的溫度估 計係-37.5°C並且該蒸餾塔DL1底部的溫度計算爲_28.9°C 〇 該聚合等級的乙烯C 1 ”’連同餾分Η 1 ’和L 1 ’的特徵在 以表1 b中給出。惰性氣體、氫氣、甲院、C〇2 '乙炔、 乙烯、乙烷、丙烯、其他匚3、〇4'〇5、仏0、氧合物的 量値以及總量表達爲按體積計的% ’除了括弧中的那些’ 它們係按體積計的PPm。 -41 - 201247595 表lb C1,,, ΗΓ L1, 惰性氣體(作爲N2計算) (<〇·!) (<〇·〇 (<〇·!) 氣氣 (<〇·!) (<〇·〇 (<〇·!) 甲烷 0.06 (<〇!) 21.48 C〇2 (<1) (<1) (<1) 乙炔 (0.3) 0.03 (<〇·!) 乙烯 99.93 82.23 78.52 乙烷 0.02 17.73 (<〇·!) 丙烯 (<〇.1) (5.52) (<〇." 其他C3(作爲丙烷計算) (<0.1) (<〇·!) (<〇.1) C4(作爲正丁烯計算) (<1) (<1) (<1) C5(作爲正戊烯計算) (<1) (<1) (<1) h2o (<1) (<1) (<1) 氧合物(作爲甲醇計算) (<1) (<1) (<1) 總計 100.00 100.00 100.00 莫耳流速 (kmol/h) 12.693 0.767 0.157 質量流速 (kg/h) 356.00 21.79 4.00 溫度 (°C) -28.9 -25.4 -37.5 絕對壓力 (巴) 20.0 20.0 20.0 總計乙烯、乙烷、乙炔 (%按體積計) 82.26 乙嫌/總計乙烯、乙烷、乙炔 (%) 99.98 該聚合反應等級的乙烯Cl”’的莫耳流速達到12.693 kmol/h,其中1 2.684 kmol乙烯/h。總的乙烯(C 1” ’中的 乙烯/流出流E中的乙烯)回收率達到94.1 2%。該聚合反 -42- 201247595 應等級的乙烯Cl”’的乙烯含量達到了按體積計99 93%並 且乙烯與總的乙烯、乙烷、乙炔之比係9 9 9 8 %。該聚合 反應等級的乙烯C1”’中的乙炔含量達到了按體積計ο」 ppm並且C1”’中的丙烯含量係按體積計小於〇」ppm。計 算出的在蒸餾塔T1的再沸器中的熱功率,以及在該脫甲 烷器DM1的再沸器中的功率,在乙烯分裂器Si的再沸器 以及在該塔DL1的再沸器中的熱功率在表2中給出。該 聚合反應等級的乙烯C1”’的熱耗率達到了 0.855 kWh/kg 表2 塔 再沸器熱功率kW 實例1 實例2 T1 77.309 77.309 DM1 23.628 23.628 S1 • 197.865 DLr 5.622 Total 100.937 304.424 從實例1和2的數據來看,獲得聚合等級的乙烯 C1”’所要求的熱功率似乎是獲得含乙烯的組合物ci”所要 求的熱功率的大於:}. 2倍。此外,從上述總的乙烯回收率 來看似乎是,與對含乙烯的組合物C 1”進行分離相比,當 對聚合等級的乙烯C 1 ” ’進行乙烯從流出流E中的分離時 ,損失了約5.59%的乙烯。這種損失的乙烯在花費更多的 投資以及能量後可以被回收。 -43- 201247595 實例3 (根據本發明) 使與實例1的相同的流出流E (組成在以下表3 a中 給出)經受以下描述的 ASPEN PLUS® ASPENONE® V7.2 軟體類比的方法並且在圖2中圖形化。莫耳流速係29.156 kmol/h,其中13.476 kmol乙嫌/h。該流出流E的溫度在 該過程的入口處爲40°C並且其絕對壓力係2.5巴。 在實例1中詳述的一預調節處理PCT之後,將產生 的壓縮的流出流E ’加入到裝備有一再沸器以及一冷凝器 並且包括20個理論等級(包括該再沸器以及冷凝器)的 蒸餾塔T2中。將流出流E ’引入到第1 〇級上,第1級係 冷凝器並且第20級係再沸器。該塔的質量回流比固定在 2。794.76 kg/h的一餾分F2在蒸餾塔T2的頂部(冷凝器 的出口)分離出並且一富集了含至少4個碳原子的化合物 的餾分H2在蒸餾塔T2的底部分離出。在蒸餾塔T2的頂 部以及底部的絕對壓力固定在2 0巴。在蒸餾塔τ 2的頂部 (冷凝器的出口)的溫度估計是- 8.5°C並且蒸餾塔T2底 部的溫度計算爲l〇7.5°C。 將餾分F2送往配備有一再沸器以及—冷凝器並且包 括20個理論級(包括該再沸器以及冷凝器)的一蒸飽塔 T2 ’。將餾分F2引入到第1 0級上,第i級係冷凝器並且 第20級係再沸器。該塔的質量回流比固定在3。445.00 kg/h的一含乙燃的組合物C2在蒸飽塔T2’的頂部(冷凝 器的出口)分離出並且一富集了含至少3個碳原子的化合 -44 - 201247595 物的餾分H2’在蒸餾塔T2’的底部分離出。在蒸餾塔T2的 頂部以及底部的絕對壓力固定在20巴。在蒸餾塔Τ2’的 頂部(冷凝器的出口)的溫度估計是- 37.6°C並且蒸餾塔 T2’底部的溫度計算爲48.6°C。 然後將該含乙烯的組合物C2加熱到50°C,與0.0528 kmol/h純的H2在50°C並且20巴的絕對壓力下混合並且 加入到一脫乙醯化反應器中,以使其經受絕熱地進行的一 乙炔飽和作用AS2。乙炔的轉化率估計是99%,乙烯的選 擇性估計是60.1%並且乙烷的選擇性估計是39.9%。脫乙 醯化作用之後,將產生的含乙烯的組合物C 2冷卻到 -30.7°C並且加入到配備有一再沸器以及一冷凝器並且包 括20個理論級(包括該再沸器以及冷凝器)的一脫甲烷 化蒸餾塔DM2中。將該含乙烯的組合物C2’引入到第15 級上,第1級係冷凝器並且第20級係再沸器。該脫甲烷 化的蒸餾塔的質量回流比固定在1 〇。一富集了 63 kg/h比 乙烯輕的化合物的餾分L2在該脫甲烷化的蒸餾塔DM2的 頂部(冷凝器的出口)分離出並且該含乙烯的組合物C2” 在該脫甲烷化的蒸餾塔底部分離出。在該脫甲烷化蒸餾塔 的頂部以及底部的絕對壓力固定在20巴。在該脫甲烷化 蒸餾塔的頂部(冷凝器的出口)的溫度估計是-107.6 °C並 且該脫甲烷化蒸餾塔底部的溫度計算爲-2 9.2°C。 含乙烯的組合物C2、C2’以及C2”連同餾分F2、H2 、H2’以及L2的流出流E和E’的特徵在表3a中給出。惰 性氣體、氫氣、甲烷、C02、乙炔、乙烯、乙烷、丙烯、 -45- 201247595 其他 按體ppm C3 、 C4 、 積計的% C5、H20、氧合物的量値以及總量表達爲 ,除了括弧中的那些,它們係按體積計的 -46- 201247595These examples are based on the description of ASPEN PLUS® ASPENONE® V7.2 software from ASPEN TECHNOLOGY INC, Wheeler Road 200, Burlington, MA, USA. The ASPENONE® V7.2 database of pure components and mixtures is calculated. -36- 201247595 Example 1 (according to the invention) An effluent stream E having an ethylene and other constituents containing a process from methanol to olefin and having undergone a conventional treatment (cooling, quenching and removal of condensate produced) has The detailed composition given in Table 1 a below. The effluent stream E was subjected to the ASPEN PLUS® ASPENONE® V7.2 software analogy described below and graphically depicted in FIG. The molar flow rate is 29.1 56 kmol/h, of which 1 3.476 kmol ethylene/h. The temperature of the effluent stream E was 40 ° C at the inlet of the process and its absolute pressure was 2.5 bar. The effluent stream E is then cooled to a temperature of 40 ° C at the outlet by first compressing to an absolute pressure of 20 bar in a 3-stage compressor equipped with an interstage cooler between each stage. At the same time, the condensate produced is removed. A city washing liquid for removing acid gases in which CO 2 and the like are introduced is then introduced between the second and third stages of the compressor. The residual water and unwanted are added before the resulting compressed effluent stream E is fed to a distillation column T1 equipped with a reboiler and a condenser and comprising 20 theoretical stages including the reboiler and condenser. The oxygenate is finally removed on an adsorbent. The effluent stream E' is introduced to the 14th stage, the first stage is a condenser and the 20th stage is a reboiler. The ethylene-containing composition C1 having a mass reflux ratio fixed at 3.444.68 kg/h is separated at the top of the distillation column T1 (the outlet of the condenser) and is enriched with a compound having at least 3 carbon atoms. Fraction H1 is separated at the bottom of distillation column T1. The absolute pressure at the top and bottom of distillation column T1 is fixed at 20 bar. The temperature at the top of the steaming tower T1 (outlet of the condenser) at -37-201247595 is estimated to be _37.6 °C and the temperature at the bottom of the distillation column T1 is calculated to be 57.3 〇c. The mixture containing Cl was then heated to 50 ° C, mixed with q 474 kmol / h pure H 2 at 50 ° C and an absolute pressure of 20 bar and added to a deacetylation reactor ' It is subjected to an acetylene saturation AS 1 which is subjected to adiabatic action. The conversion rate of acetylene is estimated to be 99%, the selectivity of ethylene is estimated to be 6 0.1%, and the selectivity of hospital is estimated to be 39.9%. After deacetylation, the resulting ethylene-containing composition C1 is cooled to -30.7 ° C and added to a reboiler and a condenser and includes 20 theoretical stages (including the reboiler and condensation) - in the demethanization distillation column DM1. The ethylene-containing composition C1' was introduced to the 15th stage, the first stage was a condenser and the 20th stage was a reboiler. The mass reflux ratio of the demethanized distillation column was fixed at 10. A fraction L1 enriched in 63 kg/h of ethylene lighter compound is separated at the top of the demethanation distillation column DM1 (outlet of the condenser) and the ethylene-containing composition C1" is demethanized. The bottom of the distillation column is separated. The absolute pressure at the top and bottom of the demethanization distillation column is fixed at 20 bar. The temperature at the top of the demethanization distillation column (the outlet of the condenser) is estimated to be -1〇7.6°. C and the temperature at the bottom of the demethanization distillation column is calculated to be -29.2 ° C. The characteristics of the effluent streams E and E' of the ethylene-containing composition containing the compositions Cl, Cl' and Cl" along with the fractions HI and L1 are shown in the table. Given in la. The amount of inert gas, hydrogen, methane, CO 2 , acetylene, ethylene, ethane, propylene, other C 3 , C 4 , C 5 , H 20 , oxygenates and the total amount expressed as % by volume, except those in brackets, They are PPm by volume. -38- 201247595 rum 0.67 0.42 98.91 S 1—^ /-**V Ο r—N o /^-*S 'no /—V 〇/—»N 1—H rH /—N /·*—v T —H 100.00 3.921 63.00 -107.6 20.0 5 /*—V o /^S Ο /**~Ν Ο /—Ν Co" 〇\ 's—^ I 0.13 0.02 79.33 vq 14.07 4.60 /*—N 0.17 100.00 10.472 475.08 57.3 20.0 U /«—so χ—V ο 0.30 cK I 98.68 p /—N o /-vr—^ /*—v 100.00 13.617 381.79 -29.2 20.0 99.69 98.99 u 0.15 0.09 22.35 /*—S •o 76.62 0.79 / —N o /-V 1—H /-—S /—N 1—^ 100.00 17.538 444.79 -30.7 20.0 77.41 98.98 1—» 0.15 0.00 22.37 0.15 76.60 0.73 so /—VV 1— H /—*s 1—^ ιοο.οοΠ 17.522 444.68 -37.6 20.0 77.48 98.86 w 0.09 0.00 14.00 /—Ν 1—Η 0.10 47.99 0.46 29.68 0.62 5.27 1.72 V 0.06 100.00 27.994 919.76 40.0 20.0 w 0.09 0.00 13.45 0.03 0.09 46.22 0.45 28.80 0.61 5.22 1.66 2.87 0.50 100.00 29.156 947.29 40.0 in inert gas (calculated as N2) hydrogen methane C〇2 acetylene ethyleneethane propylene other C3 (calculated as propane) C4 (calculated as n-butene) C5 (calculated as n-pentene) H20 Oxygenate (calculated as methanol) Total i Molar flow rate (km〇l/h) Mass flow rate (kg/h) Temperature (°c) Absolute pressure (bar) Total ethylene, Ethane, acetylene (% by volume) capacity S N3 遁K] f loaded K1 ϋΐΐπ system i N3 -39- 201247595 The molar flow rate of the ethylene-containing composition Cl" reaches 13.617 kmol / h, of which 13.437 kmol ethylene / h. The total ethylene (ethylene in Cl / effluent E) recovery was 9 9.71%. The ethylene content of the ethylene-containing composition C1" reached 98.68% by volume and ethylene and total ethylene, The ratio of ethane to acetylene is 98.99%. The acetylene content in the ethylene-containing composition C1" reached 19.4 ppm by volume and the propylene content in the ethylene-containing composition C1" reached 0.3 ppm by volume. The calculated heat power in the reboiler of distillation column T1, and the power in the reboiler of the demethaniser DM1 are given in Table 2. The heat consumption rate in the ethylene-containing composition C1" reached 0.264 kWh/kg. Example 2 (Comparative Example) The same effluent stream E as in Example 1 was treated in the same manner as in Example 1. After that The ethylene-containing composition C1" was sent to an ethylene splitter S1 equipped with 40 theoretical stages including a reboiler and a condenser. The ethylene-containing composition C 1 " is introduced onto the first stage, the first stage is a condenser and the 40th stage is a reboiler. The mass reflux ratio of the column is fixed at 5. Ethylene-containing and enriched ratio The 36 〇〇〇kg/h fraction of the ethylene light compound is separated at the top of the ethylene splitter S1 (the outlet of the condenser) and still contains the saturated H1 of the B-boiled Fuyuan, in the B-disruptor The bottom of the si is separated. The absolute pressure at the top and bottom of the ethylene splitter S1 is fixed at 20 bar. The temperature at the top of the ethylene splitter s (the outlet of the condenser) is estimated to be -28.9. (: and the ethylene The temperature at the bottom of the splitter Si -40 - 201247595 is calculated as -25.4 〇C:. The fraction containing ethylene and enriched with lighter than ethylene is then sent to the tower DL 配备 equipped with 2 theoretical stages (to improve Separating a compound that is lighter than B) from the storage to produce a polymerization grade of B. The feed is introduced to the bottom of the column. The mass reflux ratio is fixed at 100. 4 kg/h of fraction L1. The top of the column (the outlet of the condenser) is separated and polymerized The graded ethylene C1" is separated at the bottom of the column. The absolute pressure at the top and bottom of the column is fixed at 2 bar. The temperature at the top of the distillation column DL1 (the outlet of the condenser) is estimated to be -37.5°. C and the temperature at the bottom of the distillation column DL1 is calculated to be _28.9 ° C. The characteristics of the polymerization grade of ethylene C 1 "' along with the fractions ' 1 ' and L 1 ' are given in Table 1 b. Inert gas, hydrogen, A hospital, C〇2 'acetylene, ethylene, ethane, propylene, other 匚3, 〇4'〇5, 仏0, the amount of oxan and the total amount expressed as % by volume 'except in brackets Those 'they are PPm by volume. -41 - 201247595 Table lb C1,,, ΗΓ L1, inert gas (calculated as N2) (<〇·!) (<〇·〇(<〇·!) Air (<〇·!) (<〇·〇(<〇·!) Methane 0.06 (<〇!) 21.48 C〇2 (<1) (<1) (<1) Acetylene (0.3) 0.03 (<〇·!) Ethylene 99.93 82.23 78.52 Ethane 0.02 17.73 (<〇·!) Propylene (<〇.1) (5.52) (<〇." Other C3 (as propane calculation ) (<0.1) (<〇·!) ( <〇.1) C4 (calculated as n-butene) (<1) (<1) (<1) C5 (calculated as n-pentene) (<1) (<1) (< 1) h2o (<1) (<1) (<1) Oxygenate (calculated as methanol) (<1) (<1) (<1) Total 100.00 100.00 100.00 Mohr flow rate (kmol /h) 12.693 0.767 0.157 Mass flow rate (kg/h) 356.00 21.79 4.00 Temperature (°C) -28.9 -25.4 -37.5 Absolute pressure (bar) 20.0 20.0 20.0 Total ethylene, ethane, acetylene (% by volume) 82.26 B Suspected/total ethylene, ethane, acetylene (%) 99.98 The molar flow rate of the polymerization grade of ethylene Cl"' reached 12.693 kmol/h, of which 1.684 kmolol ethylene/h. The total ethylene (E1 in ethylene / effluent E) recovery was 94.1 2%. The ethylene content of the polymerized anti-42-201247595 graded ethylene Cl"' reached 99 93 by volume. % and the ratio of ethylene to total ethylene, ethane, acetylene is 9 9 9 %. The acetylene content in the ethylene grade C1"' of the polymerization grade reached ο ppm by volume and the propylene content in C1"' was less than 〇 ppm by volume. Calculated thermal power in the reboiler of distillation column T1, and power in the reboiler of the demethanizer DM1, in the reboiler of the ethylene splitter Si and in the reboiler of the column DL1 The thermal power is given in Table 2. The heat rate of the polymerization grade of ethylene C1"' reached 0.855 kWh/kg. Table 2 Tower reboiler thermal power kW Example 1 Example 2 T1 77.309 77.309 DM1 23.628 23.628 S1 • 197.865 DLr 5.622 Total 100.937 304.424 From example 1 and According to the data of 2, the thermal power required to obtain the polymerization grade of ethylene C1"' seems to be greater than: 2. 2 times the heat power required to obtain the ethylene-containing composition ci". In addition, the total ethylene recovery from the above It appears that the ratio of ethylene to about 5.59% of ethylene is lost when the separation of ethylene from the effluent stream E is carried out on the polymerization grade of ethylene C1"' compared to the separation of the ethylene-containing composition C1". This lost ethylene can be recovered after spending more investment and energy. -43- 201247595 Example 3 (according to the invention) The same effluent stream E as in Example 1 (composition is given in Table 3a below) Subject to the ASPEN PLUS® ASPENONE® V7.2 software analogy described below and graphically in Figure 2. The Mohr flow rate is 29.156 kmol/h, of which 13.476 kmol is suspected/h. The temperature of the effluent stream E is in the process of The mouth is 40 ° C and its absolute pressure is 2.5 bar. After a pre-conditioning process PCT detailed in Example 1, the resulting compressed effluent stream E ' is added to a reboiler and a condenser and includes In a distillation column T2 of 20 theoretical grades (including the reboiler and condenser), the effluent stream E' is introduced to the first stage, the first stage is a condenser and the 20th stage is a reboiler. a fraction R2 of a mass reflux ratio fixed at 2.794.76 kg/h is separated at the top of the distillation column T2 (the outlet of the condenser) and a fraction H2 enriched with a compound having at least 4 carbon atoms in the distillation column T2 The bottom of the distillation column T2 is fixed at 20 bar. The temperature at the top of the distillation column τ 2 (the outlet of the condenser) is estimated to be - 8.5 ° C and the temperature at the bottom of the distillation column T2 Calculated as l 〇 7.5 ° C. Fraction F2 is sent to a replenishing column T2 ' equipped with a reboiler and a condenser and comprising 20 theoretical stages (including the reboiler and condenser). To level 10, the i-th system is condenser and the 20th a reboiler. The mass reflux ratio of the column is fixed at 3.445.00 kg / h of an ethylene-containing composition C2 separated at the top of the steaming tower T2' (the outlet of the condenser) and is enriched The fraction H2' of the compound - 44 - 201247595 of at least 3 carbon atoms is separated at the bottom of the distillation column T2'. The absolute pressure at the top and bottom of the distillation column T2 is fixed at 20 bar. The temperature at the top of the distillation column 2' (the outlet of the condenser) was estimated to be -37.6 °C and the temperature at the bottom of the distillation column T2' was calculated to be 48.6 °C. The ethylene-containing composition C2 is then heated to 50 ° C, mixed with 0.0528 kmol / h of pure H 2 at 50 ° C and an absolute pressure of 20 bar and added to a deacetylation reactor to Acetylene saturation AS2 undergoes adiabatic operation. The conversion of acetylene is estimated to be 99%, the selectivity of ethylene is estimated to be 60.1% and the selectivity of ethane is estimated to be 39.9%. After deacetylation, the resulting ethylene-containing composition C 2 is cooled to -30.7 ° C and added to a reboiler and a condenser and includes 20 theoretical stages (including the reboiler and condenser) ) in a demethanization distillation column DM2. The ethylene-containing composition C2' was introduced to the 15th stage, the first stage was a condenser and the 20th stage was a reboiler. The mass reflux ratio of the demethanized distillation column was fixed at 1 Torr. A fraction L2 enriched in 63 kg/h of ethylene lighter compound is separated at the top of the demethanized distillation column DM2 (outlet of the condenser) and the ethylene-containing composition C2" is demethanized The bottom of the distillation column is separated. The absolute pressure at the top and bottom of the demethanization distillation column is fixed at 20 bar. The temperature at the top of the demethanation distillation column (the outlet of the condenser) is estimated to be -107.6 °C and The temperature at the bottom of the demethanization distillation column was calculated to be -2 9.2 ° C. The characteristics of the ethylene-containing compositions C2, C2' and C2" along with the fractions F2, H2, H2' and L2 of the effluent streams E and E' are shown in Table 3a. Given in . Inert gas, hydrogen, methane, CO 2 , acetylene, ethylene, ethane, propylene, -45- 201247595 Others in terms of ppm C3, C4, % C5, H20, the amount of oxygenate and the total amount expressed as Except those in brackets, they are by volume -46- 201247595

Cj 0.67 0.41 98.91 /—N r-H /-~N o /<—*s o 、-〆 —s o \ o /-*s T—( /—Ν < /^-*N T—< Τ-Ή /—s 1—^ 100.00 3.921 63.00 -107.6 20.0 Η2, s ο /—Ν 〇 /--N 〇 /*—N d 0.04 98.12 00 Ν. r-^ /*—Ν s 1—Η 0.01 100.00 8.306 丨 349.76 48.6 20.0 (Ν ffi /-Ν ο /—S r-H Ο /-—N o /—N y-—S o kl3_ 0.06 7.33 o 68.39 22.38 /—S 1—^ 0.80 100.00 2.155 丨 125.00 107.5 20.0 <Ν Uh 0.10 /^―Ν d 15.17 S 0.10 52.00 0.50 31.54 0.58 /—Ν Ν /—Ν /—s ι·*Η 100.00 25.839 丨 794.76 od 20.0 d r-H o 0.30 /*—S 5 s^/ 98.69 1.00 〇 /—Ν ^•Η /—Ν 1—^ /—N /—N 100.00 13.628 丨 382.11 -29.2 20.0 98.69 99.00 0.15 0.09 22.34 /-—s -N 76.64 0.78 /—s s o /-Ν r-H /—Ν /-*-v 100.00 17.550 445.11 -30.7 20.0 77.42 98.99 <Ν U 0.15 o 22.36 /—N 1—H 0.15 76.62 0.72 r—N o /-s /"ν /*—S i—H /—*S 1—H 100.00 17.534 445.00 -37.6 20.0 1 77.49 98.88 w 0.09 /—N T—H o 14.00 /—S T—· 0.10 47.99 0.46 29.68 0.62 5.27 1.72 /*—N 0.06 100.00 27.994 919.76 40.0 20.0 ω 0.09 /—N »—H o 13.45 0.03 0.09 46.22 0.45 28.80 0.61 5.22 1.66 2.87 0.50 100.00 29.156 947.29 40.0 oi 惰性氣體(作爲N2計算) 氫氣 甲烷 C02 乙炔 乙烯 乙烷 丙烯 其他C3(作爲丙烷計算) C4(作爲正丁烯計算) C5(作爲正戊烯計算) H2〇 氧合鞠(作爲甲醇計算) 總計 莫耳流速(kmol/h) 1 |rv| a !» 溫度(°c) 絕對壓力(巴) 總計乙烯、乙烷、乙炔(%按體積計) 乙烯/總計乙烯、乙烷、乙炔(%) -47- 201247595 該含乙烯的組合物C2”的莫耳流速達到i 3 628 km〇i/h ,其中13.449 kmol乙烯几。總的乙烯(C2”中的乙烯/流 出流E中的乙烯)回收率達到99.80%。該含乙烯的組合 物C 2 ”的乙烯含量達到了按體積計9 8.6 9 %並且乙烯與總 的乙烯、乙烷、乙炔之比係99.00%。該含乙烯的組合物 C2”中的乙炔含量達到了按體積計19 4 ppm並且該含乙烯 的組合物C2”中的丙烯含量係小於按體積計〇」ppm。計 算出的在蒸餾塔T2和T2’的再沸器中的熱功率,以及在 該脫甲烷器DM2的再沸器中的功率在表4中給出。該含 乙烯的組合物C2”的熱耗率達到了 0.674 kwh/kg。 實例4 (對比贲例) 將與贲例3相同的流出流E以與實例3相同的方式進 行處理。這之後,將該含乙烯的組合物C2”送往一裝備有 40個理論級的乙烯分裂器S2 (包括再沸器以及冷凝器) 。將該含乙烯的組合物C2”引入到第1 〇級上,第丨級係 冷凝器並且第40級係再沸器。該塔的質量回流比固定在 5。含乙烯並且富集了比乙烯輕的化合物的360.00 kg/h的 一餾分在乙烯分裂器S2的頂部(冷凝器的出口)分離出 並且仍然含乙烯的富乙烷的餾分H2”在乙烯分裂器S2底 部分離出。在乙烯分裂器S2的頂部以及底部的絕對壓力 固定在2〇巴。在乙烯分裂器S2的頂部(冷凝器的出口) 的溫度估計係-28.9° C並且乙烯分裂器S2底部的溫度計算 爲-25.5 °C。然後將含乙烯並且富集了比乙烯輕的化合物 -48- 201247595 的餾分送往配備有20個理論級的―塔dl2(以進一步從 乙烯中分離比乙烯輕的化合物)以生產一聚合反應等級的 乙烯。將該進料引入到該塔的底部。質量回流比固定在 100。4 kg/h的餾分L2’在該塔的頂部(冷凝器的出口) 分離出並且一聚合反應等級的乙烯C2,,’在該塔底部分離 出。在該塔的頂部以及底部的絕對壓力固定在20巴。在 蒸餾塔DL2的頂部(冷凝器的出口)的溫度估計係 -37.5°C並且蒸餾塔DL2底部的溫度計算爲- 28.9°C。 該聚合等級的乙烯C2”連同餾分H2”和L2’的特徵在 以下表3b中給出。惰性氣體、氫氣、甲烷、C02、乙炔 、乙烯、乙烷、丙烯、其他C3、C4、C5、H20、氧合物 的量値以及總量表達爲按體積計的%,除了括弧中的那些 ,它們係按體積計的Ppm。 -49- 201247595 表3b C2’” H2” L2, 惰性氣體(作爲N2計算) (<〇·!) (<0.1) (<〇.1) 氫氣 (<〇·!) (<〇·!) (<0.1) 甲烷 0.06 (<0.1) 21.48 C〇2 (<1) (<1) (<1) 乙炔 (03) 0.03 (<0.1) 乙烯 99.93 82.62 78.52 乙烷 0.02 17.35 (<0.1) 丙烯 (<0.1) (5.4) (<0.1) 其他C3(作爲丙烷計算) (<0.1) (<0.1) (<0.1) C4(作爲正丁烯計算) (<1) (<1) (<1) C5(作爲正戊烯計算) (<1) (<1) (<1) h2o (<1) (<1) (<1) 氧合物(作爲甲醇計算) (<1) (<1) (<1) 總計 100.00 100.00 100.00 莫耳流速(kmol/h) 12.693 0.778 0.157 質量流速(kg/h) 356.00 22.11 4.00 溫度(〇C) -28.9 -25.5 -37.5 絕對壓力(巴) 20.0 20.0 20.0 總計乙烯、乙烷、乙炔 (%按體積計) 99.95 乙烯/總計乙烯、乙烷、乙炔(%) 99.98 該聚合反應等級的乙烯C2”’的莫耳流速達到12.693 kmol/h,其中12.684 kmol乙烯/ h。總的乙烯(C2,,,中的 乙烯/流出流E中的乙烯)回收率達到94.12%。聚合反應 等級的乙烯C2”’的乙烯含量達到了按體積計99.93%並且 乙烯與總的乙烯、乙烷、乙炔之比係9 9 · 9 8 %。該聚合反 應等級的乙烯C2”’的乙炔含量達到了按體積計0.3 ppm並 且餾分C2”’中的丙烯含量係按體積計小於0.1 ppm。計算 -50- 201247595 出的在蒸餾塔T2和T2’的再沸器中的熱功率,在該脫甲 烷器DM2的再沸器中的功率,在分裂器S2的再沸器以及 在該塔DL2的再沸器中的熱功率在表4中給出。該聚合 反應等級的乙烯C 2 ” ’的熱耗率達到了 1.2 9 6 k Wh/k g。 表4 塔 洱沸器熱功率kW 實例3 實例4 T2 138.051 138.051 T25 95.967 95.967 DM2 23.601 23.601 S2 - 198.046 DL2 - 5.622 Total 257.619 461.287 從實例3和4的數據看出,獲得該聚合等級的乙烯 C2”’所要求的熱功率似乎是獲得含乙烯的組合物C2”所要 求的熱功率的大於1 . 9倍。此外,從上述總的乙烯回收率 來看似乎是,與對含乙烯的組合物C2”進行分離相比,當 對聚合等級的乙烯C2”’進行乙烯從流出流E中的分離時 ,損失了約5.68 %的乙烯。這種損失的乙烯在花費更多的 投資以及能量後可以被回收。 實例5 (根據本發明) 使與實例1的相同的流出流E (組成在以下表5 a中 給出)經受以下描述的ASPEN PLUS® AS PEN ONE® V7.2 軟體類比的方法並且在圖3中圖形化。莫耳流速係29.〗56 -51 - 201247595 kmol/h,其中13.476 kmol乙烯/h。該流出流E的溫度在 該過程的入口處爲40°C並且其絕對壓力係2.5巴。 在實例1中詳述的一預調節處理PCT之後,將產生 的壓縮的流出流E’加入到裝備有一再沸器以及一冷凝器 並且包括20個理論等級(包括該再沸器以及冷凝器)的 蒸餾塔T3中》將流出流E ’引入到第1 〇級上,第1級係 冷凝器並且第20級係再沸器。該塔的質量回流比固定在 2。一個419.76让8/11的餾分?3在蒸餾塔丁3的頂部(冷凝 器出口)分離出並且一餾分F3’在蒸餾塔T3的底部分離 出。在蒸餾塔T3的頂部以及底部的絕對壓力固定在20巴 。在蒸餾塔T3的頂部(冷凝器的出口)的溫度估計是 -38.2°C並且蒸餾塔T3底部的溫度計算爲45.7。C。 將餾分F3送往配備有一再沸器以及一冷凝器並且包 括20個理論級(包括該再沸器以及冷凝器)的一蒸餾塔 T3’。將餾分F3’引入到第10級上,第1級係冷凝器並且 第20級係再沸器。該塔的質量回流比固定在2。375.00 kg/h的一餾分F3”在蒸餾塔T3’的頂部(冷凝器的出口) 分離出並且一富集了含至少4個碳原子的化合物的餾分 H3在蒸餾塔T3’的底部分離出。在蒸餾塔T3,的頂部以及 底部的絕對壓力固定在20巴。在蒸餾塔T3’的頂部(冷 凝器的出口)的溫度估計是44.3。(:並且蒸餾塔T3’底部的 溫度計算爲1 0 7.3。C。 將罐分F3和F3”送往配備有一再沸器以及一冷凝器 並且包括20個理論級(包括該再沸器以及冷凝器)的一 -52- 201247595 蒸餾塔Τ 3 ”。將餾分F 3和F 3 ”引入到第1 0級上,第 係冷凝器並且第2 0級係再沸器。該塔的質量回流比 在3。445.00 kg/h的一含乙烯的組合物C3在蒸餾培 的頂部分離出(冷凝器的出口)並且一富集了含至少 碳原子的化合物的餾分H3’在蒸餾塔T3”的底部分離 在蒸餾塔T3”的頂部以及底部的絕對壓力固定在20 在蒸餾塔T3”的頂部(冷凝器的出口)的溫度估計是 -37.6°C並且蒸餾塔T3”底部的溫度計算爲48.6°C。 然後將該含乙烯的組合物C3加熱到50°C,與0 kmol/h純的H2在50°C並且20巴的絕對壓力下混合 加入到一脫乙醯化反應器中,以使其經受絕熱地進行 乙炔飽和作用AS3。乙炔的轉化率估計是99%,乙Μ 擇性估計是60.1 %並且乙烷的選擇性估計是39.9%。 醯化作用之後,將產生的含乙烯的組合物C 3冷卻到 -30.7°C並且加入到配備有一再沸器以及一冷凝器並 括20個理論級(包括該再沸器以及冷凝器)的一脫 化蒸餾塔DM3中。將該含乙烯的組合物C3’引入到彳 級上,第1級係冷凝器並且第20級係再沸器。該脫 化的蒸餾塔的質量回流比固定在10。一富集了比乙 的化合物的63 kg/h的餾分L3在該脫甲烷化的蒸 DM3的頂部(冷凝器的出口)分離出並且該含乙烯 合物C3”在該脫甲烷化的蒸餾塔底部分離出。在該脫 化蒸餾塔的頂部以及底部的絕對壓力固定在2 0巴。 脫甲烷化蒸餾塔的頂部(冷凝器的出口)的溫度估計 1級 固定 T3,, 3個 出。 巴。 • 0528 並且 的一 的選 脫乙 且包 甲烷 第15 甲烷 烯輕 餾塔 的組 甲烷 在該 是 -53- 201247595 -l〇7.6〇C並且該脫甲烷化蒸餾塔底部的溫度計算爲 -29.2°C 。 含乙烯的組合物C3、C3,以及C3”連同餾分F3、F3’ 、F3,,、H3、H3’和L3的流出流E和E’的特徵在表5a中 給出。惰性氣體、氫氣、甲烷、C02、乙炔、乙烯、乙烷 、丙烯、其他C3、C4、C5、H20、氧合物的量値以及總 量表達爲按體積計的% ’除了括弧中的那些’它們係按體 積計的PPm » -54- 201247595 2 0.67 0.41 98.91 /—s /—N t /—·s c> »«—V Ο /—Ν Ο χ-ν /«—N /«—s τ— ,·*—s 100.00 29.156 947.29 40.0 (N cn κ d V, d /—s o oo 〇{ CN^ /—N 1 /—N Ο 97.99 1.90 0.02 /-—N /*—N r—^ 0.04 100.00 8.305 349.76 48.6 20.0 m X /—*s d /—N o /-—N o \ r—^ o V 严、 ο v^. Ο 7.88 0.79 68.30 22.37 N 0.67 100.00 2.156 125.00 107.3 20.0 rn /—S o /—N o /—s o 0.10 9.13 0.56 88.44 1.71 0.02 0.00 r-^ 0.04 100.00 9.202 375.00 44.3 20.0 rn y^—s o /—*N r·^ o o N 1-^ 0.08 7.40 0.45 _I 73.15 1.54 12.98 4.25 /—N 0.16 100.00 11.358 500.00 45.7 20.0 CO (X( 0.16 /—V »—H o 23.56 /—S »—< 0.10 75.70 0.47 Ci />-~Ν τ—^ /—S /—、 r—H 100.00 16.637 419.76 -38.2 20.0 G /—N o /-N o 0.30 /—s T-^ 5 '<·«·✓ 98.69 1.00 /—S /-**Ν 1—Η ο /·—s r-^ /—N 100.00 13.628 382.11 -29.2 20.0 99.69 99.00 rn 0.15 0.09 22.34 /·<—N F—< /-s *r! N—✓ 76.64 0.78 /-*Ν Ν 1—^ ο /*—s T—H r-^ /-*s /—N 100.00 17.550 445.11 -30.7 20.0 77.42 98.99 G 015 1 /—s 22.36 /—s 1—< 0.15 76.62 0.72 ο /—Ν Ο r~H /—N /—S /«—N 100.00 17.534 445.00 -37.6 20.0 77.49 98.88 ω 0.09 1_ /—N 14.00 r·^ 0.10 47.99 0.46 29.68 0.62 5.27 1.72 0.00 _1 0.06 100.00 27.994 919.76 40.0 20.0 W 0.09 /—N 13.45 0.03 0.09 46.22 0.45 28.80 0.61 5.22 1.66 2.87 0.50 100.00 29.156 947.29 40.0 CN 惰性氣體(作爲n2計算) 氫氣 甲烷 C02 乙炔 乙烯 乙垸 丙烯 其他C3(作爲丙烷計算) C4(作爲正丁烯計算) C5(作爲正戊烯計算) h2〇 氧合物(作爲甲醇計算) 總計 莫耳流速(kmol/h) 質量流速(kg/h) 溫度(°c) 絕對壓力(巴) K) Θ :p ,mm 线舾 κι m life增 m t 乙烯/總計乙烯、乙烷、乙炔(%) -55- 201247595 該含乙烯的組合物C3”的莫耳流速達到13628 km〇l/h ,其中1 3.449 kmol乙烯/h。總的乙烯(c3’,中的乙烯/流 出流E中的乙烯)回收率達到99.8 0%。該含乙烯的組合 物C3”的乙烯含量達到了按體積計98.69 %並且乙烯與總 的乙烯、乙烷、乙炔之比係9 9 %。該含乙烯的組合物C 3 ’, 的乙炔含II達到了按體積計19.4 ppm並且該含乙燃的組 合物C3”的丙烯含量係小於按體積計〇」ppm。計算出的 在蒸餾塔T3、T3’和T3”的再沸器中的熱功率,以及在該 脫甲烷器DM3的再沸器中的功率在表6中給出。該含乙 烯的組合物C3”的熱耗率達到了 0.642 kWh/kg。 實例6 (對比實例) 將與實例3相同的流出流E以與實例5相同的方式進 行處理。這之後,將該含乙烯的組合物C3”送往一裝備有 4〇個理論級的乙烯分裂器S3 (包括再沸器以及冷凝器) 。將該含乙烯的組合物C3”引入到第10級上,第1級係 冷凝器並且第40級係再沸器。該塔的質量回流比固定在 5。含有乙烯並且富集了比乙烯輕的化合物的3 60.00 kg/h 的一餾分在乙烯分裂器S3的頂部(冷凝器的出口)分離 出並且仍然含乙烯的富乙烷的餾分H3”在乙烯分裂器S3 底部分離出。在乙烯分裂器S3的頂部以及底部的絕對壓 力固定在20巴。在乙烯分裂器S3的頂部(冷凝器的出口 )的溫度估計是-28.9°C並且乙烯分裂器S3底部的溫度計 算爲-25.5 °C »然後將含乙烯並且富集了比乙烯輕的化合 -56- 201247595 物的餾分送往配備有20個理論級的—塔DL3 (以進〜步 從乙烯中分離比乙烯輕的化合物)以生產一聚合反應等級 的乙烯。將該進料引入到該塔的底部。質量回流比固定在 100。4 kg/h的餾分L3’在該塔的頂部(冷凝器的出口) 分離出並且一聚合反應等級的乙烯C3’’’在該塔底部分離 出。在該塔的頂部以及底部的絕對壓力固定在20巴。在 該蒸餾塔DL3的頂部(冷凝器的出口)的溫度估計是 -3 7.5°C並且該蒸餾塔DL3底部的溫度計算爲-28.9°C。 該聚合等級的乙烯C3”’連同餾分H3”和L3’的特徵在 以下表5b中給出。惰性氣體、氫氣、甲烷、C02、乙炔 、乙烯、乙烷、丙烯、其他C3、C4、C5、H20、氧合物 的量値以及總量表達爲按體積計的% ’除了括弧中的那些 ,它們係按體積計的PPm ° -57- 201247595 表5b C3,” H3” L3, 惰性氣體(作爲N2計算) (<n (<D 0.03 氫氣 P 、_ —ί—·· (<ΐ) (<1) 0 00 甲烷 0.06 (<l) 21 48 C〇2 (<D 1 V 1 ^ (<n (<\Λ 乙炔 (0.3) (<〇 l) (<〇 n 乙烯 99.93 82.62 78 52 乙烷 0.02 17.35 (<〇.l) 丙烯 (<〇.η (4.9) (<0.1) (<〇.” (<0·1) 其他C3(作爲丙烷計算) (<〇.n C4(作爲正丁烯計算) (<n (<D (<1) C5(作爲正戊烯計算) _ (<l) (<n (<]) h2o (<1) r<n 氧合物(作爲甲醇計算) (<D L V A / (<l) (<n 總計 100.00 100 00 100 00 莫耳流速(kmol/h) 12.693 0 778 0 157 質S流速(kg/h) 356.00 22.11 4.00 溫度(0C) -28.9 -25.5 -37 5 絕對壓力(巴) 20.0 20.0 20.0 總計乙烯'乙烷、乙炔 (%按體積計) 99.95 乙嫌/總計乙烯、乙烷、乙炔(%) 99.98 該聚合反應等級的乙稀C3”’的莫耳流速達到12.693 kmol/h,其中12.684 kmol乙烯/h»總的乙稀(C3’’,中的 乙烯/流出流E中的乙烯)回收率達到9412 %。該聚合反 應等級的乙烯C3”’的乙烯含量達到了按體積計99.93 %並 且乙烯與總的乙烯、乙烷、乙炔之比係9 9.9 8 %。該聚合 反應等級的乙烯C3”’的乙炔含量達到了按體積計0.3 ppm 並且該餾分C3”’中的丙烯含量係小於按體積計0.1 ppm。 -58- 201247595 計算出的在蒸餾塔Τ3、Τ3’和T3”的再沸器中的熱攻 在該脫甲烷器DM3的再沸器中的功率,在分裂器S3 沸器以及在該塔DL3的再沸器中的熱功率在表6中 。該聚合反應等級的乙烯C 3 ” ’的熱耗率達到了 kWh/kg。 表6 塔 再沸器熱功率kW 實例5 實例6 T3 25.297 25.297 T3· 96.211 96.211 T3" 100.033 100.033 DM3 23.602 23.602 S3 . 197.865 DM3’ - 5.622 Total 245.143 448.63 從實例5和6的數據來看,獲得該聚合等級的 C3’’’所要求的熱功率係獲得含乙嫌的組合物C3”所要 熱功率的大於1.9倍。此外,從上述總的乙烯回收率 似乎是’與對含乙烯的組合物C3”進行分離相比,當 合等級的乙烯C3”’進行乙烯從流出流E中的分離時 失了約5.68 %的乙烯。這種損失的乙烯在花費更多的 以及能量後可以被回收。 【圖式簡單說明】 圖1示出本發明之第一種最佳具體實施方式。 丨率, 的再 給出 1.260 乙烯 求的 來看 對聚 ,損 投資 -59- 201247595 圖2示出本發明之第二種最佳具體實施方式。 圖3示出本發明之第三種最佳具體實施方式。 【主要元件符號說明】 E :流出流 E ’ :壓縮的流出流 C 1 :含乙烯的組合物 C 1 ’ :含乙烯的組合物 C 1” :含乙烯的組合物 H1 :餾分 L1 :餾分 T1 :蒸餾塔 PCT :預調節處理 DM1 :脫甲烷化蒸餾塔 A S 1 :乙炔飽和 T2 :蒸餾塔 T2’ :蒸餾塔 H2 :餾分 H2’ :餾分 A S 2 :乙炔飽和 DM2 :脫甲烷化蒸餾塔 C2 :含乙烯的組合物 C2’ :含乙烯的組合物 C 2 ” :含乙烯的組合物 -60- 201247595 L2 :餾分 F2 :餾分 F3 :餾分 F3 ’ :餾分 F 3 ” :餾分 H3 :餾分 H3 ’ :餾分 C 3 :含乙烯的組合物 C 3 ’ :含乙烯的組合物 C 3 ” :含乙烯的組合物 L3 :餾分 T3 :蒸餾塔 T3’ :蒸餾塔 T3” :蒸餾塔 A S 3 :乙炔飽和 DM3 :脫甲烷化蒸餾塔 -61 -Cj 0.67 0.41 98.91 /—N rH /-~N o /<—*so 、,〆—so \ o /-*s T—( /—Ν </^-*NT—< Τ-Ή / —s 1—^ 100.00 3.921 63.00 -107.6 20.0 Η2, s ο /—Ν 〇/--N 〇/*—N d 0.04 98.12 00 Ν. r-^ /*—Ν s 1—Η 0.01 100.00 8.306 丨349.76 48.6 20.0 (Ν ffi /-Ν ο / -S rH Ο /--N o /—N y-—S o kl3_ 0.06 7.33 o 68.39 22.38 /—S 1—^ 0.80 100.00 2.155 丨125.00 107.5 20.0 <Ν Uh 0.10 /^―Ν d 15.17 S 0.10 52.00 0.50 31.54 0.58 /—Ν Ν /—Ν /—s ι·*Η 100.00 25.839 丨794.76 od 20.0 d rH o 0.30 /*—S 5 s^/ 98.69 1.00 〇/— Ν ^•Η /—Ν 1—^ /—N /—N 100.00 13.628 丨382.11 -29.2 20.0 98.69 99.00 0.15 0.09 22.34 /--s -N 76.64 0.78 /—sso /-Ν rH /—Ν /-*- v 100.00 17.550 445.11 -30.7 20.0 77.42 98.99 <Ν U 0.15 o 22.36 /—N 1—H 0.15 76.62 0.72 r—N o /-s /"ν /*—S i—H /—*S 1—H 100.00 17.534 445.00 -37.6 20.0 1 77.49 98.88 w 0.09 /—NT—H o 14.00 /—ST—· 0.10 47.99 0.46 29.68 0.62 5.27 1.72 /*—N 0.06 100.00 27.994 919.76 40.0 20.0 ω 0.09 /—N »—H o 13.45 0.03 0.09 46.22 0.45 28.80 0.61 5.22 1.66 2.87 0.50 100.00 29.156 947.29 40.0 oi Inert gas (calculated as N2) Hydrogen methane C02 Acetylene Ethane propylene Other C3 (calculated as propane) C4 (calculated as n-butene) C5 (calculated as n-pentene) H2 oxime oxime (calculated as methanol) Total molar flow rate (kmol/h) 1 |rv| a !» Temperature (°c) Absolute pressure (bar) Total ethylene, ethane, acetylene (% by volume) Ethylene/total ethylene, ethane, acetylene (%) -47- 201247595 The ethylene-containing composition C2" The molar flow rate reaches i 3 628 km 〇i/h, of which 13.449 kmol is ethylene. The total ethylene (ethylene in the C2" / ethylene in the effluent stream E) has a recovery of 99.80%. The ethylene content of the ethylene-containing composition C 2 " reaches 98.69% by volume and ethylene and total ethylene The ratio of ethane to acetylene is 99.00%. The acetylene content in the ethylene-containing composition C2" reached 19 4 ppm by volume and the propylene content in the ethylene-containing composition C2" was less than 5% by volume. The calculated thermal power in the reboilers of distillation columns T2 and T2', and the power in the reboiler of the demethanizer DM2 are given in Table 4. The heat loss rate of the ethylene-containing composition C2" reached 0.674 kwh/kg. Example 4 (Comparative Example) The same effluent stream E as in Example 3 was treated in the same manner as in Example 3. After that, The ethylene-containing composition C2" was sent to an ethylene splitter S2 (including a reboiler and a condenser) equipped with 40 theoretical stages. The ethylene-containing composition C2" is introduced to the first stage, the second stage is a condenser and the 40th stage is a reboiler. The mass reflux ratio of the column is fixed at 5. The ethylene is contained and the specific ethylene is enriched. A fraction of 360.00 kg/h of the light compound is separated at the top of the ethylene splitter S2 (the outlet of the condenser) and the ethylene-rich fraction H2" still separated at the bottom of the ethylene splitter S2. The absolute pressure at the top and bottom of the ethylene splitter S2 is fixed at 2 bar. The temperature at the top of the ethylene splitter S2 (the outlet of the condenser) was estimated to be -28.9 ° C and the temperature at the bottom of the ethylene splitter S2 was calculated to be -25.5 °C. The fraction containing ethylene and enriched in lighter than ethylene, -48-201247595, is then sent to a 20-theoretical "column dl2 (to further separate compounds lighter than ethylene) to produce a polymerization grade. Ethylene. This feed is introduced to the bottom of the column. The mass reflux ratio fixed at 100. 4 kg/h of fraction L2' was separated at the top of the column (the outlet of the condenser) and a polymerization grade of ethylene C2, ' was separated at the bottom of the column. The absolute pressure at the top and bottom of the tower is fixed at 20 bar. The temperature at the top of the distillation column DL2 (the outlet of the condenser) was estimated to be -37.5 °C and the temperature at the bottom of the distillation column DL2 was calculated to be -28.9 °C. The characteristics of this polymerization grade of ethylene C2" along with fractions H2" and L2' are given in Table 3b below. The amount of inert gas, hydrogen, methane, CO 2 , acetylene, ethylene, ethane, propylene, other C 3 , C 4 , C 5 , H 20 , oxygenates and the total amount expressed as % by volume, except those in brackets, They are Ppm by volume. -49- 201247595 Table 3b C2'" H2" L2, inert gas (calculated as N2) (<〇·!) (<0.1) (<〇.1) Hydrogen (<〇·!) (< 〇·!) (<0.1) Methane 0.06 (<0.1) 21.48 C〇2 (<1) (<1) (<1) Acetylene (03) 0.03 (<0.1) Ethylene 99.93 82.62 78.52 B Alkane 0.02 17.35 (<0.1) Propylene (<0.1) (5.4) (<0.1) Other C3 (calculated as propane) (<0.1) (<0.1) (<0.1) C4 (as n-butene) Calculation) (<1) (<1) (<1) C5 (calculated as n-pentene) (<1) (<1) (<1) h2o (<1) (<1 (<1) Oxygenate (calculated as methanol) (<1) (<1) (<1) Total 100.00 100.00 100.00 Molar flow rate (kmol/h) 12.693 0.778 0.157 Mass flow rate (kg/h) 356.00 22.11 4.00 Temperature (〇C) -28.9 -25.5 -37.5 Absolute pressure (bar) 20.0 20.0 20.0 Total ethylene, ethane, acetylene (% by volume) 99.95 Ethylene / total ethylene, ethane, acetylene (%) 99.98 The polymerization rate of the ethylene C2"' molar flow rate reached 12.693 kmol / h, of which 12.684 kmol ethylene / h. total ethylene (C2,,, The ethylene in the ethylene/outflow stream E) recovery rate reached 94.12%. The ethylene content of the polymerization grade of ethylene C2"' reached 99.93% by volume and the ratio of ethylene to total ethylene, ethane, acetylene was 9 9 · 9 8 %. The acetylene content of the polymerization reaction grade ethylene C2"' reached 0.3 ppm by volume and the propylene content in the fraction C2"' was less than 0.1 ppm by volume. Calculate the thermal power in the reboiler of distillation column T2 and T2' from -50 to 201247595, the power in the reboiler of the demethanizer DM2, the reboiler in splitter S2 and the DL2 in the column The thermal power in the reboiler is given in Table 4. The heat rate of ethylene C 2 ′′ of this polymerization grade reached 1.2 9 6 k Wh/kg. Table 4 Tower boiling heat power kW Example 3 Example 4 T2 138.051 138.051 T25 95.967 95.967 DM2 23.601 23.601 S2 - 198.046 DL2 - 5.622 Total 257.619 461.287 It can be seen from the data of Examples 3 and 4 that the thermal power required to obtain the ethylene grade C2"' of the polymerization grade appears to be greater than 1.9 times the thermal power required to obtain the ethylene-containing composition C2" Furthermore, from the above-mentioned total ethylene recovery rate, it seems that the loss of ethylene from the effluent stream E is carried out when the polymerization grade ethylene C2"' is separated from the ethylene-containing composition C2". About 5.68% of ethylene. This lost ethylene can be recovered after spending more investment and energy. Example 5 (according to the invention) The same effluent stream E as in Example 1 (composed in Table 5a below) The method of the ASPEN PLUS® AS PEN ONE® V7.2 software analogy described below is shown and graphically depicted in Figure 3. The Mohr flow rate is 29. 56 -51 - 201247595 kmol/h, of which 13.476 kmol ethylene / h. The flow The temperature of stream E is 40 ° C at the inlet of the process and its absolute pressure is 2.5 bar. After a pre-conditioning process PCT detailed in Example 1, the resulting compressed effluent stream E' is added to the equipment. a boiling vessel and a condenser and including 20 theoretical stages (including the reboiler and condenser) in the distillation column T3" introduces the effluent stream E' to the first stage, the first stage is the condenser and the 20th The stage reboiler. The mass reflux ratio of the column is fixed at 2. One 419.76 allows the 8/11 fraction 3 to be separated at the top of the distillation column 3 (condenser outlet) and a fraction F3' in the distillation column T3 The bottom is separated. The absolute pressure at the top and bottom of the distillation column T3 is fixed at 20 bar. The temperature at the top of the distillation column T3 (the outlet of the condenser) is estimated to be -38.2 ° C and the temperature at the bottom of the distillation column T3 is calculated to be 45.7. C. The fraction F3 is sent to a distillation column T3' equipped with a reboiler and a condenser and comprising 20 theoretical stages including the reboiler and condenser. The fraction F3' is introduced to the 10th stage. , the first level is the condenser and the 20th level is The mass reflux ratio of the column is fixed at 2.375.00 kg/h of a fraction F3" separated at the top of the distillation column T3' (the outlet of the condenser) and enriched with a compound containing at least 4 carbon atoms. Fraction H3 is separated at the bottom of distillation column T3'. The absolute pressure at the top and bottom of the distillation column T3 is fixed at 20 bar. The temperature at the top of the distillation column T3' (the outlet of the condenser) was estimated to be 44.3. (: and the temperature at the bottom of the distillation column T3' is calculated as 10 7.3 C. The tanks F3 and F3 are sent to a reboiler and a condenser and include 20 theoretical stages (including the reboiler and condensation) 1-52-201247595 distillation column Τ 3 ". The fractions F 3 and F 3 " are introduced to the 10th stage, the first system condenser and the 20th stage reboiler. The mass reflux ratio of the column An ethylene-containing composition C3 at 3.445.00 kg/h is separated off at the top of the distillation column (outlet of the condenser) and a fraction H3' enriched with a compound containing at least carbon atoms is at the bottom of the distillation column T3" The absolute pressure at the top and bottom of the distillation column T3" is fixed at 20 at the top of the distillation column T3" (the outlet of the condenser). The temperature is estimated to be -37.6 ° C and the temperature at the bottom of the distillation column T3" is calculated to be 48.6 ° C. The ethylene-containing composition C3 is then heated to 50 ° C and mixed with 0 kmol / h of pure H 2 at 50 ° C and an absolute pressure of 20 bar to a deacetylation reactor to Acetylene saturation is attenuated AS3. The conversion of acetylene is estimated to be 99%. It is estimated to be 60.1% and the selectivity of ethane is estimated to be 39.9%. After deuteration, the resulting ethylene-containing composition C3 is cooled to -30.7 ° C and added to a reboiler and a condenser. 20 derivatization distillation column DM3 of the theoretical stage (including the reboiler and condenser). The ethylene-containing composition C3' is introduced to the crucible stage, the first stage is a condenser and the 20th stage is Boiling. The mass reflux ratio of the deuterated distillation column is fixed at 10. A fraction L3 enriched with 63 kg/h of the compound of B is separated at the top of the demethanated steamed DM3 (the outlet of the condenser). And the vinylate-containing C3" is separated at the bottom of the demethanization distillation column. The absolute pressure at the top and bottom of the deuteration distillation column is fixed at 20 bar. The top of the demethanization distillation column (condenser) The temperature of the outlet) is estimated to be 1 fixed T3, 3 out. Bar. • 0528 and one of the selected group of methane and methane 15 methaneene light ends of the group methane is -53- 201247595 -l〇 7.6 〇C and the thermometer at the bottom of the demethanization distillation column Calculated as -29.2 ° C. The characteristics of the ethylene-containing compositions C3, C3, and C3" along with the effluent streams E and E' of the fractions F3, F3', F3,, H3, H3' and L3 are given in Table 5a. Exhaust gas, hydrogen, methane, CO 2 , acetylene, ethylene, ethane, propylene, other C 3 , C 4 , C 5 , H 20 , the amount of oxygenate and the total amount expressed as % by volume 'except in brackets Those 'they are PPm by volume» -54- 201247595 2 0.67 0.41 98.91 /—s /—N t /—·s c> »«—V Ο /—Ν Ο χ-ν /«—N /«— s τ— ,·*—s 100.00 29.156 947.29 40.0 (N cn κ d V, d /—so oo 〇{ CN^ /—N 1 /—N Ο 97.99 1.90 0.02 /-—N /*—N r—^ 0.04 100.00 8.305 349.76 48.6 20.0 m X /—*sd /—N o /-—N o \ r—^ o V 严, ο v^. Ο 7.88 0.79 68.30 22.37 N 0.67 100.00 2.156 125.00 107.3 20.0 rn /—S o /—N o /—so 0.10 9.13 0.56 88.44 1.71 0.02 0.00 r-^ 0.04 100.00 9.202 375.00 44.3 20.0 rn y^—so /—*N r·^ oo N 1-^ 0.08 7.40 0.45 _I 73.15 1.54 12.98 4.25 /— N 0.16 100.00 11.358 500.00 4 5.7 20.0 CO (X( 0.16 /—V »—H o 23.56 /—S »—< 0.10 75.70 0.47 Ci />-~Ν τ—^ /—S /—, r—H 100.00 16.637 419.76 -38.2 20.0 G /—N o /-N o 0.30 /—s T-^ 5 '<·«·✓ 98.69 1.00 /—S /-**Ν 1—Η ο /·—s r-^ /—N 100.00 13.628 382.11 -29.2 20.0 99.69 99.00 rn 0.15 0.09 22.34 /·<-NF-< /-s *r! N—✓ 76.64 0.78 /-*Ν Ν 1—^ ο /*—s T—H r-^ / -*s /—N 100.00 17.550 445.11 -30.7 20.0 77.42 98.99 G 015 1 /—s 22.36 /—s 1—< 0.15 76.62 0.72 ο /—Ν Ο r~H /—N /—S /«—N 100.00 17.534 445.00 -37.6 20.0 77.49 98.88 ω 0.09 1_ /—N 14.00 r·^ 0.10 47.99 0.46 29.68 0.62 5.27 1.72 0.00 _1 0.06 100.00 27.994 919.76 40.0 20.0 W 0.09 /—N 13.45 0.03 0.09 46.22 0.45 28.80 0.61 5.22 1.66 2.87 0.50 100.00 29.156 947.29 40.0 CN Inert gas (calculated as n2) Hydrogen methane C02 Acetylene ethylene Ethylene propylene Other C3 (calculated as propane) C4 (calculated as n-butene) C5 (calculated as n-pentene) h2 〇 oxygenate (as methanol Calculate) Total molar flow rate (kmol/h) Mass flow rate (kg/h) Temperature (°c) Absolute pressure (bar) K) Θ :p ,mm Line 舾κι m life increase mt Ethylene/total ethylene, ethane, Acetylene (%) -55- 201247595 The molar flow rate of the ethylene-containing composition C3" reached 13628 km〇l/h, of which 1.449 kmol ethylene/h. The recovery of total ethylene (c3', ethylene in ethylene / outflow E) was 99.8 0%. The ethylene-containing composition C3" has an ethylene content of 98.69% by volume and a ratio of ethylene to total ethylene, ethane, acetylene of 99%. The ethylene-containing composition C 3 ', acetylene contains II The 19.4 ppm by volume and the propylene content of the flammable composition C3" was less than 5% by volume. The calculated thermal power in the reboilers of distillation columns T3, T3' and T3", and the power in the reboiler of the demethanizer DM3 are given in Table 6. The ethylene-containing composition C3 The heat rate has reached 0.642 kWh/kg. Example 6 (Comparative Example) The same effluent stream E as in Example 3 was treated in the same manner as in Example 5. Thereafter, the ethylene-containing composition C3" is sent to an ethylene splitter S3 (including a reboiler and a condenser) equipped with 4 theoretical stages. The ethylene-containing composition C3" is introduced to the 10th In the first stage, the first stage is a condenser and the 40th stage is a reboiler. The mass reflux ratio of the column is fixed at 5. A fraction of 3 60.00 kg/h containing ethylene and enriched with a compound lighter than ethylene is separated at the top of the ethylene splitter S3 (outlet of the condenser) and still contains ethylene-rich ethane-rich fraction H3" in ethylene splitting The bottom of the S3 is separated at the bottom. The absolute pressure at the top and bottom of the ethylene splitter S3 is fixed at 20 bar. The temperature at the top of the ethylene splitter S3 (the outlet of the condenser) is estimated to be -28.9 ° C and the bottom of the ethylene splitter S3 The temperature is calculated to be -25.5 °C »The fraction containing ethylene and enriched with ethylene lighter than -56-201247595 is then sent to a tower equipped with 20 theoretical grades - column DL3 (to separate from the ethylene step) a compound lighter than ethylene) to produce a polymerization grade of ethylene. The feed is introduced to the bottom of the column. The mass reflux ratio is fixed at 100. 4 kg/h of the fraction L3' at the top of the column (condenser Evaporation and separation of a polymerization grade of ethylene C3"" at the bottom of the column. The absolute pressure at the top and bottom of the column is fixed at 20 bar. At the top of the distillation column DL3 (outlet of the condenser) of The temperature is estimated to be -3 7.5 ° C and the temperature at the bottom of the distillation column DL3 is calculated to be -28.9 ° C. The characteristics of the polymerization grade of ethylene C3"' along with the fractions H3" and L3' are given in Table 5b below. , hydrogen, methane, CO 2 , acetylene, ethylene, ethane, propylene, other C 3 , C 4 , C 5 , H 20 , the amount of oxime and the total amount expressed as % by volume 'except those in brackets, they are PPm ° -57- 201247595 by volume Table 5b C3, "H3" L3, inert gas (calculated as N2) (<n (<D 0.03 hydrogen P, __ί—·· (<ΐ) ( <1) 0 00 methane 0.06 (<l) 21 48 C〇2 (<D 1 V 1 ^ (<n (<\Λ acetylene (0.3) (<〇l) (<〇n Ethylene 99.93 82.62 78 52 Ethane 0.02 17.35 (<〇.l) Propylene (<〇.η (4.9) (<0.1) (<〇." (<0·1) Other C3 (calculated as propane (<〇.n C4 (calculated as n-butene) (<n (<D (<1) C5 (calculated as n-pentene) _ (<l) (<n (<] ) h2o (<1) r<n oxygenate (calculated as methanol) (<DLVA / (<l) (<n total 100.00 100 00 100 00 Mohr flow rate (kmol/h) 12.693 0 778 0 157 Mass S flow rate (kg/h) 356.00 22.11 4.00 Temperature (0C) -28.9 -25.5 -37 5 Absolute pressure (bar) 20.0 20.0 20.0 Total ethylene 'Ethane, acetylene (% by volume) 99.95 B / total ethylene, ethane, acetylene (%) 99.98 The polymerization rate of ethylene C3" 'mole flow rate reached 12.693 kmol / h, of which 12.684 kmol ethylene /h»Total ethylene (C3'', ethylene in the ethylene/outflow stream E) recovery rate reached 9412%. The ethylene content of the polymerization grade of ethylene C3"' reached 99.93% by volume and the ratio of ethylene to total ethylene, ethane, acetylene was 99.98%. The acetylene content of the polymerization grade of ethylene C3"' The 0.3 ppm by volume and the propylene content in the fraction C3"' is less than 0.1 ppm by volume. -58- 201247595 Calculated thermal attack in the reboilers of distillation columns 3, 3' and T3" The power in the reboiler of the demethanizer DM3, the heat power in the separator S3 boiler and in the reboiler of the column DL3 are shown in Table 6. The heat rate of the polymerization grade of ethylene C 3 ′′ reached kWh/kg. Table 6 Tower reboiler thermal power kW Example 5 Example 6 T3 25.297 25.297 T3· 96.211 96.211 T3" 100.033 100.033 DM3 23.602 23.602 S3 . DM3' - 5.622 Total 245.143 448.63 From the data of Examples 5 and 6, the thermal power required to obtain the C3"' of the polymerization grade is greater than 1.9 times the heat power required to obtain the composition C3". In addition, from the above total ethylene recovery rate appears to be 'as opposed to the ethylene-containing composition C3', when the graded ethylene C3"' is separated from the effluent stream E by about 5.68% Ethylene. This lost ethylene can be recovered after spending more and energy. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 shows a first preferred embodiment of the present invention. The rate of recurrence is given by 1.260 Ethylene Seeking for Aggregation and Loss Investment - 59 - 201247595 Figure 2 shows a second preferred embodiment of the present invention. Figure 3 shows a third preferred embodiment of the invention. [Description of main component symbols] E: effluent stream E': compressed effluent stream C1: ethylene-containing composition C1': ethylene-containing composition C1": ethylene-containing composition H1: fraction L1: fraction T1 Distillation column PCT: Preconditioning treatment DM1: Demethanation distillation column AS 1 : Acetylene saturation T2: Distillation column T2': Distillation column H2: Fraction H2': Fraction AS 2: Acetylene saturated DM2: Demethanation distillation column C2: Ethylene-containing composition C2': ethylene-containing composition C 2 ′′: ethylene-containing composition-60-201247595 L2: fraction F2: fraction F3: fraction F3': fraction F 3 ′′: fraction H3: fraction H3′: Fraction C 3 : Ethylene-containing composition C 3 ' : Ethylene-containing composition C 3 ′′: Ethylene-containing composition L3: Fraction T3: Distillation column T3′: Distillation column T3”: Distillation column AS 3 : Acetylene saturated DM3 : Demethanation Distillation Tower -61 -

Claims (1)

201247595 七、申請專利範圍: 1. 一種含乙烯的組合物,包括: (a) 按體積計75%與99.9%之間的含2個碳原子的 烴類化合物:以及 (b) —量値的乙烯,從而使得該量値與含2個碳原 子的烴類化合物的總量値之比係在97%與99.5%之間。 2. 如申請專利範圍第1項之含乙烯的組合物,其中 該含2個碳原子的烴類化合物係乙烯、乙烷以及乙炔。 3. 如申請專利範圍第1或2項中任一項之含乙烯的 組合物,其中它包括小於按體積計100 ppm的含至少3個 碳原子的烴類化合物以及小於按體積計100 ppm的氧合物 以及水。 4- 一種用於製造含乙烯的組合物之方法,根據該方 法: a) 使一含有來自一氧合物至烯烴的過程的乙烯以及 其他成分並且已經經受了 一常規處理的流出流E經受一預 調節處理以獲得一壓縮的流出流E’ ;並且 b) 將該壓縮的流出流E’在一至三個蒸餾塔內進行分 離以獲得一如申請專利範圍第1至3項中任一項之含乙烯 的組合物。 5. 如申請專利範圍第4項之方法,其中該含乙烯以 及其他成分的流出流E來自一甲醇至烯烴的過程。 6. 如申請專利範圍第4項之方法,其中該壓縮的流 出流E’包括按體積計最多1〇〇〇 ppm的氧合物以及按體積 -62- 201247595 計最多100 ppm的水。 7. 如申請專利範圍第4項之方法’其中在步驟a ) 之後’將該壓縮的流出流E ’在—蒸餾塔Τ 1內分離成在該 蒸餾塔T1頂部的一含乙烯的組合物C1並且分離成在該 蒸餾塔T1底部的一富集了含至少3個碳原子的化合物的 —餾分H1。 8. 如申請專利範圍第項第4項之方法’其中在步驟 a )之後,將該壓縮的流出流E ’在兩個蒸餾塔內藉由以下 步驟分離: bl) —第一分離步驟,該步驟在於將該壓縮的流出流 E’在一第一蒸餾塔T2內分離成一在該蒸餾塔T2頂部的餾 分F2並且分離成在該蒸餾塔T2底部的富集了含至少4個 碳原子的化合物的餾分H2 ;以及 b2) —第二分離步驟,該步驟在於將該餾分F2在一 第二蒸餾塔T2’內分離成在該蒸餾塔T2’頂部的一含乙烯 的組合物C2並且分離成在該蒸餾塔T2’底部的富集了含 至少3個碳原子的化合物的一餾分H2’。 9. 如申請專利範圍第4項之方法,其中在步驟a) 之後,將該壓縮的流出流E ’在三個蒸餾塔內藉由以下步 驟分離: b 1 ) —第一分離步驟,該步驟在於將該壓縮的流出流 E’在一第一蒸餾塔T3內分離成在該蒸餾塔T3頂部的一餾 分F3並且分離成在該蒸餾塔T3底部的一餾分F3’, b2)—第二分離步驟,該步驟在於將該餾分F3’在一 -63- 201247595 第二蒸餾塔T3’內分離成在該蒸餾塔T3’頂部的一餾分 F3”並且分離成在該蒸餾塔Τ3’底部的富集了含至少4個 碳原子的化合物的一餾分Η3 ;以及 b3 )—第三分離步驟,該步驟在於將該餾分F3和 F3”在一第三蒸餾塔T3”內分離成在該蒸餾塔T3”頂部的一 含乙烯的組合物C3並且分離成在該蒸餾塔T3”底部的富 集了含至少3個碳原子的化合物的一餾分H3,》 10. 如申請專利範圍第4至9項中任一項之方法,其 中,在步驟b )之後,使該含乙烯的組合物經受一乙炔飽 和。 11. 如申請專利範圍第1 〇項之方法,其中,在步驟 b)之後,使該含乙烯的組合物經受一補充的分離步驟( 稱爲脫甲烷化)以由此分離出富集了比乙烯輕的化合物的 一飽分。 12. —種從如申請專利範圍第1至3項中任一項之含 乙烯的組合物開始製造至少一種乙烯衍生物化合物之方法 0 13. —種用於製造二氯乙烷之方法,根據該方法使如 申請專利範圍第1至3項中任一項之含乙烯的組合物經受 一氯化作用和/或一氧氯化作用以生產二氯乙烷。 1 4 ·如申請專利範圍第1 3項之方法,進一步包括將 二氯乙烷熱解以生產氯乙烯。 1 5 ·如申請專利範圍第1 4項之方法,進一步包括使 氯乙烯聚合以生產聚氯乙烯。 -64 -201247595 VII. Scope of application: 1. A composition containing ethylene comprising: (a) between 75% and 99.9% by volume of a hydrocarbon compound containing 2 carbon atoms: and (b) Ethylene, such that the ratio of the amount of ruthenium to the total amount of hydrocarbon compounds containing 2 carbon atoms is between 97% and 99.5%. 2. The ethylene-containing composition of claim 1, wherein the hydrocarbon compound having 2 carbon atoms is ethylene, ethane and acetylene. 3. The ethylene-containing composition according to any one of claims 1 to 2, wherein the composition comprises less than 100 ppm by volume of a hydrocarbon compound having at least 3 carbon atoms and less than 100 ppm by volume. Oxygenate and water. 4- A method for producing an ethylene-containing composition according to the method: a) subjecting an effluent stream E containing ethylene and other constituents from a monooxygenate to an olefin and having undergone a conventional treatment to a Pre-conditioning to obtain a compressed effluent stream E'; and b) separating the compressed effluent stream E' in one to three distillation columns to obtain one of claims 1 to 3 A composition containing ethylene. 5. The method of claim 4, wherein the effluent stream E comprising ethylene and other components is from a methanol to olefin. 6. The method of claim 4, wherein the compressed outflow E' comprises up to 1 〇〇〇 ppm of oxygenate by volume and up to 100 ppm of water by volume -62 to 201247595. 7. The method of claim 4, wherein after the step a), the compressed effluent stream E is separated in the distillation column 1 into an ethylene-containing composition C1 at the top of the distillation column T1. And is separated into a fraction H1 enriched in a compound containing at least 3 carbon atoms at the bottom of the distillation column T1. 8. The method of claim 4, wherein after step a), the compressed effluent stream E' is separated in two distillation columns by the following steps: bl) - a first separation step, The step consists in separating the compressed effluent stream E' into a fraction F2 at the top of the distillation column T2 in a first distillation column T2 and separating into a compound having at least 4 carbon atoms enriched at the bottom of the distillation column T2. Fraction H2; and b2) - a second separation step in which the fraction F2 is separated in a second distillation column T2' into an ethylene-containing composition C2 at the top of the distillation column T2' and separated into A fraction H2' of the compound containing at least 3 carbon atoms is enriched at the bottom of the distillation column T2'. 9. The method of claim 4, wherein after step a), the compressed effluent stream E' is separated in three distillation columns by the following steps: b 1 ) - a first separation step, the step The separated effluent stream E' is separated into a fraction F3 at the top of the distillation column T3 in a first distillation column T3 and separated into a fraction F3' at the bottom of the distillation column T3, b2) - a second separation a step of separating the fraction F3' into a fraction F3" at the top of the distillation column T3' in a second distillation column T3' of -63-201247595 and separating into an enrichment at the bottom of the distillation column 3' a fraction Η3 of a compound containing at least 4 carbon atoms; and b3) a third separation step in which the fractions F3 and F3" are separated into a distillation column T3" in a third distillation column T3" An ethylene-containing composition C3 at the top and separated into a fraction H3 enriched with a compound having at least 3 carbon atoms at the bottom of the distillation column T3", 10. As in the fourth to ninth application of the patent application a method in which, after step b), The composition of ethylene is subjected to a acetylene saturation. 11. The method of claim 1 wherein after the step b), the ethylene-containing composition is subjected to a separate separation step (referred to as demethanization). To thereby isolate a saturated product which is enriched with a compound lighter than ethylene. 12. A process for producing at least one ethylene derivative compound from the ethylene-containing composition according to any one of claims 1 to 3. Method 0. 13. A method for producing dichloroethane, according to which the ethylene-containing composition according to any one of claims 1 to 3 is subjected to monochlorination and/or oxygen. Chlorination to produce dichloroethane. 1 4 · The method of claim 13 of the patent scope further comprises pyrolyzing dichloroethane to produce vinyl chloride. 1 5 · as claimed in claim 14 The method further comprises polymerizing vinyl chloride to produce polyvinyl chloride.
TW101104737A 2011-02-15 2012-02-14 Manufacture of at least one ethylene derivative compound TW201247595A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11015455 2011-02-15

Publications (1)

Publication Number Publication Date
TW201247595A true TW201247595A (en) 2012-12-01

Family

ID=48138508

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101104737A TW201247595A (en) 2011-02-15 2012-02-14 Manufacture of at least one ethylene derivative compound

Country Status (1)

Country Link
TW (1) TW201247595A (en)

Similar Documents

Publication Publication Date Title
AU2005318151B2 (en) Process for the manufacture of 1,2-dichloroethane
US20190024971A1 (en) Process for Removing Light Components from an Ethylene Stream
JP2008525380A (en) Process for producing 1,2-dichloroethane
EA010364B1 (en) Process for the manufacture of 1.2-dichloroethane
JP2009541425A (en) Process for producing 1,2-dichloroethane
JP2011521998A (en) Method for producing at least one ethylene derivative compound
JP2011513270A (en) Method for producing at least one ethylene derivative compound
AU2005228847A1 (en) Processes for making methanol streams and uses for the streams
TW200827325A (en) Process for the manufacture of 1,2-dichloroethane
US9963409B2 (en) Process for removing oxygenated contaminates from an ethylene stream
KR20110037960A (en) Process for the manufacture of 1,2-dichloroethane and of at least one ethylene derivative compound different from 1,2-dichloroethane
TW201016632A (en) Absorber demethanizer for methanol to olefins process
US9045385B2 (en) Conversion of propane to propylene
TW201012778A (en) Process for the manufacture of at least one ethylene derivative compound
US9604888B2 (en) Process and apparatus for producing olefins with heat transfer from steam cracking to alcohol dehydration process
WO2006061554A1 (en) Process for the production of methanol
TW201247595A (en) Manufacture of at least one ethylene derivative compound
WO2012110371A1 (en) Manufacture of at least one ethylene derivative compound
EP2594547A1 (en) Process for the manufacture of at least one ethylene derivative compound from bioethanol
TW201139333A (en) Process for the manufacture of at least one ethylene derivative compound
WO2011067231A1 (en) Process for the manufacture of at least one ethylene derivative compound