201246767 六、發明說明: 【發明所屬之技術領域】 本發明係有關於-種單開關E類並聯負载共振式轉換 器,特別係設有主要係設有輸入電源連接儲能電感串聯功 率開關,再於功率開關上並聯分流電容及一組共振槽,共 振槽係由共振電感串聯共振電容所組成,該共振槽^接& 式整流器,最後並聯低通濾波器及負載;如此,利用單一 個功率開關來做高頻的切換,可達到減少功率開關的切換 損失,並具有柔性切換的特性,同時提高轉換器的操作效 率。 【先前技術】 按,目前直流對直流轉換器是結構變化最豐富與最多 樣,-類轉換器’常被應用在充電器的充放電系統、電源 電壓控制、電子類產品等,都需要使用直流對直流轉換器, 此種轉換n的主要特色為輸人電源和負載都必須是直流的 形式i其電流都是從輸入端流向輸出端負載,因此所用的 開關元件都是屬於單方向性,從輸入與輸出是否共地,直 流對直流轉換器可分為非隔離型和隔離型,非隔離型就是 只輸入端和輸出端並未做隔離,是屬於共地的形式,非隔 離型的轉換器有升壓式(Boost)、降壓式(Buck)、降升壓式 (BucbBoost)、邱克式(/(:uk )等,而隔離型的轉換器因 為有隔離變壓器’可以任意調整一、二次侧之圈數比,以 達,,壓或降壓,此外隔離變壓器可以將一、二次側的接 地讯唬隔離開來,還可以有電器隔離,減少漏電流以符合 安全規範,隔離型的轉換器有返馳式(Flyback)、順向式 (Forward)、推挽式(push-puii)等,直流對直流轉換器還 =以前後串捿,以提高升壓的比率,由於非隔離轉換器理 論上可以升壓無窮大比率,但是實際上僅能升壓最高約5 201246767 因此,-般傳’則會使❹級串接,· 頻率的切換,但類共振式轉換器來做 改良,遂得以首Sii:"叙缺失,乃潛心研究、 【發明内容】 本發明之主要目的,係在提供—麵料—個功率開 關來做高_切換,可達到減少功率__換損失,並 具有柔性切換的特性’同時提高轉換_操作效率之單開 關E類並聯負載共振式轉換器。 本發明之特徵係在:輸入電源連接儲能電感串聯功率 開關’再於功率卩·上並聯分流電容及—組共振槽,並振 槽係由共振f❹熟振餘所組成,該共振槽連接橋式 整流器,最後並聯低通濾波器及負載。 【實施方式】 ' 有關本發明為達上述之使用目的與功效,所採用之技 術手段,茲舉出較佳可行之實施例,並配合圖式所示,詳 述如下: 本發明之實施例,請參閱第一、二圖所示,主要係設 有輸入電源L連接儲能電感z串聯功率開關0,再於功率開 關e上並聯分流電容c及一組共振槽丨,共振槽丨係由共振 電感々串聯共振電容〇5所組成’該共振槽1連接橋式整流 器2’橋式整流器2係設有數二極體(D1〜D4)所連接組成, 最後並聯低通濾波器3及負載R,低通濾波器3係設有遽波 4 201246767 電感Α»與濾、波電容所連接組成。 使用時’請參閱第一、二圖所示,首先在輸入電源匕(電 源側)輸入一個穩定的直流電壓,經過儲能電感^穩定電流 後由功率關2來㈣娜賴式,而分流電以則儲存能 量以及釋放能量給共振槽丨,該功率開關0是採用m〇sfet 電晶體開關作為主動剛,_FET開_的寄生二極體可 以用來配合電路工作模式的動作’共振槽丨由共振電感A與 共振電谷q所組成,其輸入端是由分流電容〔提供能量,其 輸出端是利用橋式整流器2並聯於共振槽丨,將高頻交流電 轉成直流電,負載R輸人端的低通滤波H 3是诚波電感4 與濾波電容c。組成,其低通濾波器3電路參數值的大小可 經由電路的計算出來’通常這兩個元件的值越大,電路的 特性越_ ’經過低通濾波H 3將高__除後,可以 得到更穩定的直流電流/。與電壓r。給負載r。 本發明之工作模式分別為: —、工作模式一(' — <ωί/) ’如第三圖所示: 驅動電壓^為高電位時,功率開關2導通,分流電容c 上的電流,c為零,由於電流小於零,所以反向流經功率 開關ρ,功率開關0上的電流~從負值開始上升,共振電流^ 加上共振電容電^等於共振槽1輸出電流,_6,由於共振電 壓〜大於零’電壓跨在橋式整流器2上的二極體a、a上, 所以一極體仏、q截止,另一组二極體A、a並無跨壓, 201246767 此時共振槽1輸出電流^為正值’電流流過二極體A、^形 成順向偏壓而導通,電流流回共振槽丨,當功率開關吐的 電流^上升至零時進入工作模式二。 一工作模式一⑽<%),如第四圖所示: 驅動電壓L為高電位時,功率開關e導通,電流流 過功率開關e,所以分流電容CJl的電‘為零,功率開關^ 上的電流/,由零開始上升,H經由功率開_流回輪入 電源L,共振電‘加上共振電容電^等於胁槽(輸出 電流々,由於共振電壓Vs大於零,電壓跨在橋式整流器2上 的二極體&、&上’所以二極體&、&截止,另一组二極 體a、a並無跨壓,此時共振槽j輸出電流&為正值,所以 電流/,流過二極體A與仏形成順向偏壓而導通,電流流回共 振槽1 ’當共振電容電流/c由正值下降至零時進入工作模式 一 Ο 二、工作模式三(奴“⑽%),如第五圖所示: 驅動電壓L持續為尚電位,功率開關0繼續導通,電 流大於零,所以流經功率開關ρ的電流^持續上升,電 流/c為零,所以分流電容^:上並無電流,由於共振電壓〜大 於零,電壓跨在橋式整流器2上的二極體a、上,所以 二極體a、仏截止,另一組二極體乃,、仏並無跨壓,此時 共振電容電流小於零’加上共振電流(等於共振槽!的輸 出電流/,,所以電流流過二極體0/、A形成順向偏壓而導 6 201246767 通電流流回共振槽l ’當共振電流(共振至零時進入工作模 式四。 四、工作模式四(叫^%),如第六圖所示: 驅動電壓^持續為高電位,功率開關ρ導通,電流:―, 大於零,所電流以流經功相_,t流Θ零,分流電容 c上並無電流,由於共振電壓於零,電壓跨在橋式整流 器2上的二極體&、仏上,所以二極體a、&截止,另一 組二極體A、A並無跨壓,此時共振電小於零,共振電 流(為反峽過神開_,加上共振電容共振 槽1輸出電流々,電流々流過二極體^⑽成順向偏壓而 導通流回共絲1 ’當共振電U正值下料零時,進入 工作模式五。 五、 工作模式五(W%),如第七圖所示: 驅動電壓d續為高電位,功率開關e導通,電流卜 持續流經過功率開_’分流電容c上並無電流,由於錄 電壓v5小於零,所以電壓跨在橋式整流器2上的二極體、 A上’二極體D/、⑽止,由另_组二極體A、^導通, 共振槽1輸出電^轉為負值,電流流過二極軌、順向 偏壓而導職鳴槽1,純〇上電U於共振輸 反向流經功率開關e ’當驅動電⑸由高電位轉為低電位 時’功率開關e截止,進入工作模式六。 _ 六、 工作模式六(WJ,如第八圖所示: 201246767 .騎電壓&為低電位,功率開關2戴止,電流k為零, 由於功率開關减止形成 電容__電過分流 、、& 充電’分流電谷電>lve由零開始上 * 等於共振電u小於零,電流流過分流電 、振電壓6小於零,電壓跨在橋式整流器2的二極體 上’所以二極私4截止,另-組二極體心導 f ’電柄過二極體以流回細t i,t共振電容電 X、上升至树m作模式七。 七、工作模式七(w叫),如第九圖所示: 、駆動電队仍為低電位,功率鳴截止,功率開關Q 並‘,,、電机,電流w持續流過分流電容c,對分流電容〔 充電’分流電容電壓姻上升,共振電壓Vs為小於零,電 壓跨在橋式整流器2的二極·、A上,所以二極私、β 截止’㈣-組:極私、⑽通,此時共振電容電心大 於零’加上電流(等於電‘,電^流經過二極體ZVA流 回共振槽1,當電流t共振至零時,進入工作模式八。 八、工作模式八u,如第十圖所示: 驅動電壓L為低電位’功率開_止,功率_上 並無電流,電流h大於零,所以持續對分流電容0充電, 共振電‘為小於零,電壓跨在橋式整流器2的二極動、 社’二極動'、减止,而另-組二極體以導通, 此時共振她大於零,槽丨輸出喊為貞值,電流 8 201246767 =二咖共振槽卜加上喊等於共振電容 正向触财振们触縣私,#分流電容 上升到最向值時,電流㈠下降至零時,進入工作 模式九。 t運八工作 九工作模式九(^奴<6〇,如第十一圖所示·· 驅動電屢L為低電位率 並無電流,電流<.•他 截力率開關社 紳M W 小於零,電流Η反向流過共 電容電軸始下降,開始對共振槽i放電, ”振電壓4於零,電壓跨在橋式整流器2的:極體^ 上丘所以二極一、域止’電流_二極體〜流 回共振槽丨,此時共振狄加上·等於紙,當丘 振電壓V5上升至零時,進人讀赋十。 ' 作模式十(奴⑼“〜),如第十二圖所示: 上並= 二,"率開_止’功率開, 诗下降_ κ下降至小於零,分流電容電壓々持 ' I對共振槽1放電’此時共振電U於零, =跨在橋式整流器2的二紐心〜所以二極體A、D ’此時共振電流,為電軚加上電流《,電流 =7 4回共振槽丨,當分流電容電‘下降至鄉 =電&域物位,_晴通,驅動紙切 作:^位後回取作模式4成工作模式的循環;此工 、式中只需要—個雙向的導通開關,在此電路中是使用 201246767 T的電晶體開關作為切換開關,由於醜τ内部就有 寄生的二極體,所以不須要再另外並聯-個二極體, Ζ以減J電路仙的碰,因為當_在切換 ,二分流電容電‘都是由零開始上升或是下降至零截二 疋ν的時候才做切換的動作,所以開關在截止與導通時 並無跨有電堡,達到了零電壓切換,降低了開關在切換上 的切換知失,具有柔性切換的特性。 而驅動電壓L與分流電容電壓〜實測波形圖,如第十 一圖所示其 CH1:X轴:5"s/div、Υ軸:i〇v/div; CH2 : X轴:Sys/div、γ軸·· 5〇V/div ; 而分流電容電麗〜與電流~實測波形圖,如第十四圖所 示,其CH1.X轴:5#s/div、Y軸:50V/div; CH2 : X軸:已以以❻、γ軸:2A/div ; 而分流電容電壓〜與電流~實測波形圖,如第十五圖所 示’其 CH1 : X 輛:5/zs/div、Y 軸:50V/div ; CH2.X轴:5//s/div、Y軸:2A/div; 而共振電壓Vs與共振電流實測波形圖,如第十六圖所 示’其 CH1 : X軸:5/zs/div、Y軸:50V/div ; CH2 : X軸:5//s/div、Y軸:2A/div ; 而共振電容電壓Vs與電流ic、實測波形圖,如第十七圖所 示’其CH1:X軸:5/zs/div、Y軸:50V/div; CH2 : X轴:5#s/div、 Y軸:2A/div; 201246767 而共振槽1前端電壓'與輸出電壓vA實測波形圖,如第 十八圖所示,其 CHI : X 軸:5//s/div、Y 軸:50V/div ; CH2 : X 軸:5 // s/div、Y 軸:50V/div ; 而共振槽1輸出電壓&與輸出電流實測波形圖,如第 十九圖所示,其 CHI : X 軸:5//s/div、Y 軸:50V/div ; CH2 : X 軸:5 // s/div、Y 轴:lA/div ; 而二極體A、A上之電壓vD/,vw與電流實測波形 圖,如第二十圖所示,其CHI:X軸:5#s/div、Y軸:50V/div; CH2: X 軸:5 μ s/div、Y 軸:lA/div ; 而二極體A、A上之電壓1^〜與電流以„實測波形 圖,如第二十一圖所示,其CHI : X軸:5#s/div、Y軸: 50V/div ; CH2:X軸:5//s/div、 Y軸:lA/div; 而儲能電感電壓〜與電流&實測波形圖,如第二十二 圖所示,其 CHI : X 轴:5//s/div、Y軸:50V/div ; □12 1軸:5//3/(^、丫軸:2八/(^; 而共振電感電壓v is與電流^實測波形圖,如第二十三圖 所示,其 CHI : X 軸:5#s/div、Y 軸:50V/div ; CH2 : X 軸:5//s/div、Y 軸:2A/div ; 而濾波電感電壓%與電流、實測波形圖,如第二十四 圖所示,其 CHI : X 軸:5/zs/div、Y 軸:50V/div ; CH2 : X 軸:5 // s/div、Y 軸:lA/div ; 而負載R並聯濾波電容電壓vC(;與電流/C(j實測波形圖, 11 201246767 如第二十五圖所示,其CH〗·Y缸.c /·,. -tH1^^-5/zs/div^Y|lii:5〇v/div; ®:Χ 軸:5/zs/div、Y 軸:1A/div. ,輸出電壓%與電‘實 : Ρ ^:Ϊ5_ν、Υ^5^ΐν 、圖所 I CH2:X軸:5"s/div、Y軸:1A/div; 由選擇適當的s件參數、切 頻率,使功率開,可以操作於零電壓或零電共振 =優:為r:共 ΪΙΞΪ—般的共振電路還要有更高的效率,而且以ί 切換的過程中術以 失,而零電流切換為開關上的導通;流:、須以 ’這樣才不會和開關上的輸 ^發明所係由Ε類換流器電路的負載R端增加一 振槽1輸出端的經過橋式整流器2將會‘ 且可以错由健切軸率來控織出電流與輸出電麼,此 12 201246767 電路不僅電路構造簡單且控制電路設計容易,由於電路僅 須單一個功率開關2 ’有別於一般傳統的D類共振式轉換器 的雙開關’所以可以降低開關的切換損失,並且有柔性& 換的特性,因此可以有效的降低切換損失以及提高轉換器 操作效率。 ' ° 綜上所述,本發明實施例確實已能達到所預期之目的 及使用功效,且未見有相同結構特徵公知、公用在先者, 故本發明當能符合發明專利之申請要件,爰依法提出申 請’懇請早曰審結,並核賜專利,實深任感荷。 【圖式簡單說明】 ~ 第一圖所示係為本發明實施例之電路圖。 苐一圖所示係為本發明實施例之方塊圖。 第五圖所示係為本發明實施例工作模式 第六圖所示係為本發明實施例工作握々 第三圖所示係為本㈣實施例工作模式—之等效電路圖。 第四圖所示係為本發明實猶江作模式二之等效電路圖。201246767 VI. Description of the Invention: [Technical Field] The present invention relates to a single-switch E-type parallel load resonant converter, in particular, a main system is provided with an input power supply connected to an energy storage inductor series power switch, and then The shunt capacitor and a set of resonant tanks are connected in parallel with the power switch, and the resonant tank is composed of a resonant inductor series resonant capacitor, the resonant tank is connected to the & rectifier, and finally the parallel low pass filter and the load; thus, using a single power The switch is used for high frequency switching, which can reduce the switching loss of the power switch, and has the characteristics of flexible switching, and at the same time improve the operating efficiency of the converter. [Prior Art] According to the current DC-to-DC converter, the structure change is the most abundant and the most diverse. The class-type converter is often used in charger charging and discharging systems, power supply voltage control, electronic products, etc. For DC converters, the main feature of this conversion n is that the input power supply and the load must be in the form of DC. The current flows from the input to the output, so the switching components used are all unidirectional. Whether the input and output are common ground, the DC-to-DC converter can be divided into non-isolated and isolated, non-isolated type is only the input and output are not isolated, is a common ground form, non-isolated converter There are Boost, Buck, BucbBoost, Qiuk (/(:uk), etc., and the isolated converter can be arbitrarily adjusted because of the isolation transformer. The ratio of the number of turns on the secondary side can be up to, pressure or step-down. In addition, the isolation transformer can isolate the grounding signal on the primary and secondary sides, and can also be isolated by electrical appliances to reduce leakage current to meet safety regulations. Isolated converters include Flyback, Forward, Push-puii, etc. DC-to-DC converters are also used to increase the boost ratio due to Non-isolated converters can theoretically boost the infinity ratio, but in fact can only boost up to about 5 201246767. Therefore, the general-pass will make the 串 cascade, · frequency switching, but the resonance-like converter does Improvement, 遂 遂 首 S ii & & 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙 叙The utility model has the characteristics of flexible switching, and the single-switch E-type parallel load resonant converter which simultaneously improves the conversion_operation efficiency. The invention is characterized in that: the input power is connected to the energy storage inductor series power switch 'and then the power 卩 · parallel shunt The capacitor and the set of resonant tanks, and the vibration tank is composed of a resonant frequency, the resonant tank is connected to the bridge rectifier, and finally the low-pass filter and the load are connected in parallel. [Embodiment] The preferred embodiments of the invention are described in the following detailed description of the embodiments of the present invention. Referring to the first and second embodiments, Mainly with input power supply L connected energy storage inductor z series power switch 0, and then parallel shunt capacitor c and a set of resonant tanks on power switch e, the resonant tank is composed of resonant inductor 々 series resonant capacitor 〇5' The resonant tank 1 is connected to the bridge rectifier 2'. The bridge rectifier 2 is provided with a plurality of diodes (D1 to D4) connected to each other, and finally the parallel low-pass filter 3 and the load R, and the low-pass filter 3 is provided with 遽Wave 4 201246767 Inductor Α» is connected with filter and wave capacitor. When used, please refer to the first and second figures. First, input a stable DC voltage on the input power supply 电源 (power supply side), and stabilize the energy storage inductor. After the current is turned off by power (4) Nalai, and the shunt is used to store energy and release energy to the resonant tank. The power switch 0 uses the m〇sfet transistor switch as the active rigid, _FET open_ parasitic diode Body can be used The operation of the circuit operation mode 'resonance slot 丨 is composed of the resonance inductor A and the resonance electric valley q, and the input end thereof is composed of a shunt capacitor (the energy is supplied, and the output end thereof is connected to the resonance tank by the bridge rectifier 2, which will be high The frequency alternating current is converted into direct current, and the low-pass filtering H 3 of the load R input terminal is the honest wave inductor 4 and the filter capacitor c. The composition, the size of the circuit parameter value of the low-pass filter 3 can be calculated through the circuit 'usually the larger the value of the two components, the more the characteristic of the circuit _ 'after the high-pass filter H 3 is divided by the high __, Get a more stable DC current /. With voltage r. Give load r. The working modes of the present invention are: -, working mode one ('- <ωί/)' as shown in the third figure: When the driving voltage ^ is high, the power switch 2 is turned on, and the current on the shunt capacitor c, c Zero, because the current is less than zero, the reverse flow through the power switch ρ, the current on the power switch 0 rises from a negative value, the resonant current ^ plus the resonant capacitor is equal to the output current of the resonant tank 1, _6, due to resonance The voltage ~ is greater than zero' voltage across the diodes a, a on the bridge rectifier 2, so one pole 仏, q is cut off, the other set of diodes A, a is not across the voltage, 201246767 resonant tank at this time 1 The output current ^ is a positive value. 'The current flows through the diode A, and the forward bias is turned on. The current flows back to the resonant tank. When the current of the power switch is raised to zero, it enters the working mode 2. A working mode one (10) <%), as shown in the fourth figure: When the driving voltage L is high, the power switch e is turned on, and the current flows through the power switch e, so the electric power of the shunt capacitor CJ1 is zero, and the power switch ^ The current /, rising from zero, H is turned back to the power supply L via power, and the resonant power 'plus the resonant capacitor' is equal to the flank (output current 々, since the resonant voltage Vs is greater than zero, the voltage straddles the bridge On the rectifier 2, the diodes &, & upper 'so the diodes &, & off, the other set of diodes a, a are not across the voltage, at this time the resonant tank j output current & Value, so the current /, flowing through the diode A and the 仏 form a forward bias and conduct, the current flows back to the resonant tank 1 'When the resonant capacitor current /c drops from a positive value to zero, enters the working mode. Mode 3 (slave "(10)%), as shown in the fifth figure: The driving voltage L continues to be still potential, the power switch 0 continues to conduct, the current is greater than zero, so the current flowing through the power switch ρ continues to rise, the current / c is Zero, so there is no current on the shunt capacitor ^: because the resonance voltage ~ is greater than zero, The voltage across the diode a on the bridge rectifier 2, so that the diode a, 仏 cut off, the other set of diodes, 仏 does not cross the pressure, the resonant capacitor current is less than zero 'plus resonance Current (equal to the output current of the resonant tank!, so the current flows through the diode 0/, A forms a forward bias and leads 6 201246767 through current flows back to the resonant tank l 'when the resonant current (resonance to zero enters the work Mode 4. 4. Working mode 4 (called ^%), as shown in the sixth figure: The driving voltage ^ continues to be high, the power switch ρ is turned on, the current: ―, greater than zero, the current flows through the power phase _, t is zero, there is no current on the shunt capacitor c. Since the resonance voltage is at zero, the voltage is across the diodes & 仏 on the bridge rectifier 2, so the diodes a, & cut off, the other group The diodes A and A have no cross-over voltage. At this time, the resonant power is less than zero, and the resonant current (for the anti-gorge over-opening _, plus the resonant capacitor resonant tank 1 output current 々, the current 々 flows through the diode ^ (10) into Forward biased and turned back to the common wire 1 'When the resonant power U is positively zeroed, it enters the working mode five. Mode 5 (W%), as shown in the seventh figure: The driving voltage d continues to be high, the power switch e is turned on, and the current continues to flow through the power. _'The shunt capacitor c has no current, because the recording voltage v5 is less than Zero, so the voltage across the diode on the bridge rectifier 2, A 'diode D /, (10), the other group of diodes A, ^ conduction, the resonant tank 1 output is turned into a negative value The current flows through the two-pole rail, and the forward bias is used to guide the semaphore 1. The pure 〇 power-on U flows through the power switch e in the resonant input. When the drive power (5) changes from high potential to low potential, the power switch e cutoff, enter working mode six. _ six, working mode six (WJ, as shown in the eighth figure: 201246767. riding voltage & low voltage, power switch 2 wear, current k is zero, due to power switch reduction Forming capacitance __ electric over-current, & charging 'split electric valley electric power> lve starting from zero * equaling resonance electric u is less than zero, current flowing through shunt, vibrating voltage 6 is less than zero, voltage across bridge rectifier 2 on the diode's so the two poles are privately cut off, and the other-group diodes are guided by the f' electric handle over the diodes. Press fine t i, t resonant capacitor electrode X, m up to the tree mode of seven. Seventh, working mode seven (w call), as shown in the ninth figure: The swaying power station is still low, the power is turned off, the power switch Q and ',, the motor, the current w continues to flow through the shunt capacitor c, For the shunt capacitor [charge] shunt capacitor voltage rises, the resonance voltage Vs is less than zero, the voltage crosses the diodes of the bridge rectifier 2, A, so the two poles private, β cut off (four) - group: extremely private, (10) Pass, at this time, the resonant capacitor core is greater than zero' plus current (equal to electric', the electric current flows back to the resonant tank 1 through the diode ZVA, and when the current t resonates to zero, it enters the working mode eight. Eight u, as shown in the tenth figure: The driving voltage L is low potential 'power on_stop, there is no current on the power_, the current h is greater than zero, so the shunt capacitor 0 is continuously charged, the resonance electric 'is less than zero, the voltage Between the two poles of the bridge rectifier 2, the two-pole movement, the reduction, and the other-group diode to conduct, at this time, the resonance is greater than zero, the output of the tank is shouted as a depreciation, current 8 201246767 = The second coffee resonance trough plus shouting equals the resonance capacitor positively touches the vibrating to touch the county private, #分When the capacitance rises to the most value, when the current (1) drops to zero, it enters the working mode 9. t Yun eight works nine working mode nine (^ slave <6〇, as shown in the eleventh figure · · drive electric repeatedly L There is no current at the low potential rate, and the current <.• his intercept rate switch 绅 MW is less than zero, the current Η reverse flow through the common capacitor electric axis begins to fall, and begins to discharge the resonant cavity i, "the vibration voltage 4 is zero, The voltage across the bridge rectifier 2: the pole body ^ upper hill so the two poles one, the domain stop 'current _ diode body ~ flow back to the resonance tank 丨, at this time the resonance Di plus · equal to the paper, when the Qiu vibration voltage V5 rises To zero, enter the reading of the ten. 'Working mode ten (slave (9) "~), as shown in the twelfth figure: on the second = two, " rate open_stop' power on, poetry decline _ κ down to Less than zero, the shunt capacitor voltage holds 'I discharges to the resonant tank 1'. At this time, the resonant electric U is at zero, = across the two-center of the bridge rectifier 2 - so the resonant current of the diodes A, D' is Electric 軚 plus current ", current = 7 4 back to the resonant tank 丨, when the shunt capacitor electricity 'falls to the township = electricity & field level, _ clear pass, drive paper cut: ^ The back is taken as the cycle of the mode 4 into the working mode; only one bidirectional conduction switch is needed in this work, in which the transistor switch of 201246767 T is used as the switch, and there is parasitic inside due to the ugly τ The diode, so there is no need to connect another diode in parallel, so as to reduce the touch of the J circuit, because when the switch is switched, the two-divided capacitors are either rising from zero or falling to zero. When ν is switched, the switch does not cross the electric castle when it is turned off and on, and zero voltage switching is achieved, which reduces the switching loss of the switch and has the characteristic of flexible switching. And shunt capacitor voltage ~ measured waveform diagram, as shown in Figure 11 CH1: X axis: 5 " s / div, Υ axis: i 〇 v / div; CH2: X axis: Sys / div, γ axis · · 5〇V/div ; and the shunt capacitor 丽 与 ~ and current ~ measured waveform diagram, as shown in the fourteenth figure, its CH1.X axis: 5 # s / div, Y axis: 50V / div; CH2: X axis : has been ❻, γ axis: 2A / div; and shunt capacitor voltage ~ and current ~ measured waveform diagram, as shown in the fifteenth figure' Its CH1: X vehicles: 5/zs/div, Y-axis: 50V/div; CH2.X axis: 5//s/div, Y-axis: 2A/div; and the resonant voltage Vs and resonant current measured waveforms, such as Figure 16 shows 'CH1: X axis: 5/zs/div, Y axis: 50V/div; CH2: X axis: 5//s/div, Y axis: 2A/div; and resonant capacitor voltage Vs With current ic, measured waveform diagram, as shown in Figure 17, 'CH1: X axis: 5 / zs / div, Y axis: 50V / div; CH2: X axis: 5 # s / div, Y axis: 2A /div; 201246767 and the measured waveform of the front end voltage of the resonant tank 1 and the output voltage vA, as shown in the eighteenth figure, its CHI: X axis: 5 / / s / div, Y axis: 50V / div; CH2 : X Axis: 5 // s/div, Y axis: 50V/div; and the resonant tank 1 output voltage & and output current measured waveform diagram, as shown in the nineteenth figure, its CHI: X axis: 5 / / s / Div, Y axis: 50V/div; CH2: X axis: 5 // s/div, Y axis: lA/div; and the voltage vD/, vw and current measured waveforms on the diodes A and A, as in the first Twenty figures show: CHI: X axis: 5#s/div, Y axis: 50V/div; CH2: X axis: 5 μ s/div, Y axis: lA/div; and diodes A, A The voltage on the 1 ^ ~ and the current to „measured waveform Figure, as shown in the twenty-first figure, its CHI: X axis: 5 # s / div, Y axis: 50V / div; CH2: X axis: 5 / / s / div, Y axis: lA / div; Energy storage inductor voltage ~ and current & measured waveform diagram, as shown in Figure 22, its CHI: X axis: 5 / / s / div, Y axis: 50V / div; □ 12 1 axis: 5 / / 3/(^, 丫 axis: 2 八 / (^; and the resonant inductor voltage vs and current ^ measured waveform diagram, as shown in the twenty-third figure, its CHI: X axis: 5 # s / div, Y axis :50V/div ; CH2 : X axis: 5//s/div, Y axis: 2A/div; and filter inductor voltage % and current, measured waveform diagram, as shown in Figure 24, CHI: X axis :5/zs/div, Y axis: 50V/div; CH2: X axis: 5 // s/div, Y axis: lA/div; and load R parallel filter capacitor voltage vC (; with current / C (j measured Waveform diagram, 11 201246767 As shown in the twenty-fifth figure, its CH〗·Y cylinder.c /·,. -tH1^^-5/zs/div^Y|lii:5〇v/div; ®:Χ Axis: 5/zs/div, Y axis: 1A/div., output voltage % and electricity 'real: Ρ ^: Ϊ5_ν, Υ^5^ΐν, figure I CH2: X axis: 5"s/div, Y Axis: 1A/div; by selecting the appropriate s piece parameters, cutting frequency, making work On, can operate at zero voltage or zero electric resonance = excellent: for r: common resonance circuit, there is still higher efficiency, and in the process of ί switching, the zero current is switched to the switch. Conduction; flow: must be 'in this way and will not be connected to the switch on the switch. The load R end of the 换-type inverter circuit increases the output of the oscillating channel 1 through the bridge rectifier 2 will be The error is controlled by the cutting axis rate to control the current and output power. This 12 201246767 circuit not only has a simple circuit structure and easy control circuit design, because the circuit only needs a single power switch 2 'different from the conventional D-class resonance type. The dual switch of the converter can reduce the switching loss of the switch and has the characteristics of flexible & switching, so it can effectively reduce the switching loss and improve the operating efficiency of the converter. In view of the above, the embodiments of the present invention have indeed achieved the intended purpose and the efficacy of use, and the same structural features are not known and commonly used, so the present invention can meet the application requirements of the invention patent, Applying in accordance with the law 'Please ask for early conclusion and endorse the patent, and I am deeply impressed. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a circuit diagram of an embodiment of the present invention. The figure is a block diagram of an embodiment of the present invention. The fifth figure shows the working mode of the embodiment of the present invention. The sixth figure shows the working mode of the embodiment of the present invention. The third figure shows the equivalent circuit diagram of the working mode of the embodiment (IV). The fourth figure shows the equivalent circuit diagram of the second mode of the invention.
第十一圖所示係為本發明實施例 工作模式十之等效電路 驅動電壓^與分流電容 第十三圖所示係為本發明實施例 電壓VC實測波形圖。 13 201246767 第十四_示係為本發明實施例分流電容電壓^與電流^ 實測波形圖。 第十五圖所示係為本發明實施例分流電容電壓〜與電流^ 實測波形圖。 e 第十六圖所示係為本發明實施例共振龍〜與共振電流, 實測波形圖。 ’ 第十七圖所示係為本發明實_共振電容電壓V,與電流 k實測波形圖。 第十八麟示係為本發明實施例共振槽前端電壓^與輸 出電壓V6實測波形圖。 第十九圖所7F係為本發明實施例共振槽輸出電壓%與輸 出電流z6實測波形圖。 第二十圖所示係為本發明實施例二極體A、&上之電壓 〜,%與電流‘ ί βΐ實測波形圖。 第-十-’示係為本發明實施例二極體&、&上之電壓 vw,vw與電流/w.*w實測波形圖。 第一十一圖所示係為本發明實施例儲能電感電壓^與電 流L實測波形圖。 第-十二圖所不係為本發明實施例共振電感電壓〜與電 流~實測波形圖。 第-十四圖所不係、為本發明實施㈣波電感電壓〜與電 流乂實測波形圖。 ^ 一十五圖所不係為本發明實施例負載R並聯濾波電容電 壓弋與電流、實測波形圖。 201246767 第二十六圖所示係為本發明實施例輸出電壓νσ與電流k實 測波形圖。 【主要元件符號說明】 1 共振槽 2 橋式整流器 3 低通濾波器 4輸入電源 Q 功率開關 Ls共振電感 D1〜Μ 二極體 L0濾、波電感 Z儲能電感 C 分流電容 Cs共振電容 R負載 C0 濾波電容 ’*、’ρ、’C、’V、、ζ·*、’·β/,Ζ·£Μ、’Di/oj、’.i。、Z.c0、/〇 電》力1· VGS ' VC ' V5 ' V« ' ' VD,'VD4 ' VD2>VD3 ' Vi ' VLS ' Vi〇 ' Vc〇 ' V〇 電壓 15The eleventh figure shows an equivalent circuit of the operation mode of the embodiment of the present invention. The driving voltage and the shunt capacitance are shown in the thirteenth embodiment of the present invention. 13 201246767 The fourteenth embodiment is a measured waveform of the shunt capacitor voltage ^ and the current ^ according to the embodiment of the present invention. The fifteenth figure is a waveform diagram of the shunt capacitor voltage ~ and the current ^ measured in the embodiment of the present invention. e Figure 16 is a waveform diagram of the resonance of the resonance dragon and the resonant current in the embodiment of the present invention. The seventeenth figure shows the measured waveform of the real-resonant capacitor voltage V and the current k of the present invention. The eighteenth embodiment is a waveform diagram of the front end voltage of the resonant tank and the output voltage V6 of the embodiment of the present invention. Fig. 19 is a waveform diagram of the output voltage % of the resonant tank and the output current z6 of the embodiment of the present invention. The twenty-fifth figure shows the measured waveforms of the voltages ~, % and currents ' ί β 二 on the diodes A, & The tenth-thth aspect is a measured waveform of voltages vw, vw and current/w.*w on the diodes &, & The eleventh figure is a waveform diagram of the stored energy inductor voltage and the current L of the embodiment of the present invention. The twelfth figure is not the resonant inductor voltage ~ and the current ~ measured waveform diagram of the embodiment of the present invention. The fourteenth figure is not the same as the actual waveform of the wave inductor voltage ~ and current 实施. ^15 is not the load R parallel filter capacitor voltage and current, measured waveform diagram of the embodiment of the present invention. 201246767 The twenty-sixth figure is a waveform diagram of the output voltage νσ and the current k measured in the embodiment of the present invention. [Main component symbol description] 1 Resonant slot 2 Bridge rectifier 3 Low-pass filter 4 Input power supply Q Power switch Ls Resonant inductor D1~Μ Diode L0 filter, wave inductor Z Energy storage inductor C Shunt capacitor Cs Resonant capacitor R load C0 filter capacitors '*, 'ρ, 'C, 'V, ζ·*, '·β/, Ζ·£Μ, 'Di/oj, '.i. , Z.c0, /〇 电力力1· VGS 'VC ' V5 ' V« ' ' VD, 'VD4 ' VD2> VD3 ' Vi ' VLS ' Vi〇 ' Vc〇 ' V〇 Voltage 15