TW201246239A - Fluid magnetizer - Google Patents

Fluid magnetizer Download PDF

Info

Publication number
TW201246239A
TW201246239A TW100116527A TW100116527A TW201246239A TW 201246239 A TW201246239 A TW 201246239A TW 100116527 A TW100116527 A TW 100116527A TW 100116527 A TW100116527 A TW 100116527A TW 201246239 A TW201246239 A TW 201246239A
Authority
TW
Taiwan
Prior art keywords
magnetizer
magnets
magnet
fluid
magnetic
Prior art date
Application number
TW100116527A
Other languages
Chinese (zh)
Other versions
TWI434303B (en
Inventor
Chun-Hao Chiu
Sheng-Hsiung Chiu
Ching-Tsung Chen
Yung-Hsiung Hung
Mao-Sung Yeh
Original Assignee
China Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Steel Corp filed Critical China Steel Corp
Priority to TW100116527A priority Critical patent/TWI434303B/en
Publication of TW201246239A publication Critical patent/TW201246239A/en
Application granted granted Critical
Publication of TWI434303B publication Critical patent/TWI434303B/en

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

A fluid magnetizer for magnetizing a fluid in a magnetic and metallic tube is provided and includes a first magnetic body, four magnets, and four other magnetic bodies. The first magnetic body includes first to third portions, and four protruded portions, wherein the third portion is disposed between the first and second portions to form an I-shaped structure, and the four protruded portions are respectively disposed at ending portions of the first and second portions. The four other magnetic bodies are respectively disposed near four sides of the first magnetic body to form four accommodating spaces. The four magnets are respectively disposed in the four accommodating spaces and face the third portion with the same magnetic poles, wherein each of the magnets contacts with the magnetic body and with one of the four other magnetic bodies. Moreover, the outside of the magnetic and metallic tube contacts with each of the magnetic bodies simultaneously.

Description

201246239 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種流體磁化器’且特 種可提供同時具有垂直及平行於管流 =有關於一 的流體磁化ϋ。 之磁場方向 【先前技術】 在工業生產製造上,常需使用到管路來 之流體(例如冷卻循環水管路中之在 ^後’管路之管壁容易產生碳酸㉖或碳久= 致無法正常提供流體至所需 p垢’導 能降低。 ⑼使得設備之效 -體t了?ΐ上述之缺點,目前有一種做法係對管路中之 μ體進灯處理。而在習知技術中 理方式主要有下列幾種。第一種為添加 種方式只能減緩結垢與腐餘之所^然而此 藥劑對作業人員有害,並容易造成環境===化學 以化學藥劑進行酸洗。但此料容易^第3則係 理水衷置。但在安裝上述二第用管内式之處 路之壓降或茂漏。第四種為逆,參=之t點為谷易造成管 中之流體加1,藉此使nl' : 4用上必須對管路 缺點為當流體中二㈣膜。此種方式之 時雨更換相。如此除了造成設備使用率降低 201246239 之外么更必須耗費許多額外的水資源對薄膜進行清洗。 為了解決或避免上述四種習知技術之缺點, 採使用設置於管路夕卜之磁化& 理。相關之實驗鐵明“中之流體進行處 少管壁的積垢現Γ。 ’右以磁場將管内之流體磁化,可減 然而’在-般常見之設置於管外的磁化器中,其磁力 堇垂ΐ於管内之水流方向’且其磁場強度較弱, J中華民國專利申請案號第8820_號及第川2⑻7 =所揭示之技術。若將此磁化器應用於—般塑膠水管或非 導磁材之金屬管’管壁之厚度較不受限制,其中主要之限 ,僅在於磁化器的迴路設計。然而,若上述磁化器應用於 純鐵或低翻(勤SUS3〇4)的金屬管巾,職磁化器僅適 用於管壁厚度約在2毫米(mm)以下的金屬管。當管壁越厚 時,則能夠穿料管之管壁而進人水管當中之磁場強度越 小’故管内之流體受到磁化的強度越低。 因此,需要一種新式之流體磁化器來克服上述習知技 術的缺點。 【發明内容】 因此,本發明之目的係在提供一種流體磁化器,利用 多極之设计、以及以特定之材料來製造導磁體,藉此提供 同時具有垂直及平行於管内流體流向之磁場方向,並提供 相較於習知磁化器更強的磁場強度。 根據本發明之一實施例,提供一種用以磁化導磁性金 屬官内之流體之流體磁化器。此流體磁化器包含第一導磁 201246239 體、二第二導磁體、第三導磁體與 鐵、以及二第二磁鐵。上述第磁體、二第一磁 二部分、第三部分以及四&出部==第-部分、第 分別與第-與第二部分接合,藉以开三部分之二端 上述四凸出部分’其分別設置在第結構。至於 部分之二端部。此外,第二導 ^之二端部與第二 對之二第-側面,每個第二導磁體斑:设:第-導磁體相 第-導磁體相對之二第二側:與; :第4=第:鐵同時與第珊及二 接觸此外,二個第二磁鐵係分別 中二去η:第一與第二容置空間中,其中二個第二磁鐵其 鐵去si 5 Β、與第—部分及第三導磁體接觸,而另一第二磁 =者則同時與第二部分及第四導磁體接觸。在上述第一與 =一磁鐵中’每個磁鐵均以相同之磁極面對第三部分。再 接口於第部分之凸出部朝第三導磁體延伸,而接合 j第二部分之凸出部則朝第四導磁體延伸。當導磁性金屬 官水平置放於此流體磁化器之上時,導磁性金屬管之外側 面係同時與第一導磁體、二個第二導磁體、第三導磁體以 及第四導磁體接觸。 >根據本發明之另一實施例,在上述之流體磁化器中, 母個第一磁鐵以及每個第二磁鐵之磁能積(Magnetic Energy pr〇duct)為3〇至4〇百萬高斯厄司特⑽糾G細 201246239201246239 VI. Description of the Invention: [Technical Field] The present invention relates to a fluid magnetizer' and is characterized in that it has both a vertical and a parallel flow of a tube = a fluid magnetization of one. The direction of the magnetic field [Prior Art] In industrial production, it is often necessary to use the fluid from the pipeline (for example, in the cooling circulating water pipeline, the pipe wall of the pipeline is prone to carbonation 26 or carbon for a long time. Providing fluid to the required p-scale 'conductivity is reduced. (9) making the device effective - body t?? The above shortcomings, there is currently a practice for the body in the pipeline to enter the lamp treatment. In the prior art There are mainly the following methods: The first one is to add the seeding method to only reduce the scale and the residue. However, this agent is harmful to the workers and easily causes the environment ===Chemical pickling with chemicals. It is easy to make ^The third is the principle of water, but the pressure drop or leakage of the road where the above two tubes are installed. The fourth type is reverse, and the point t is the flow of the tube in the valley. Add 1 to make nl': 4 use must be the disadvantage of the pipeline is the second (four) membrane in the fluid. In this way, the rain changes phase. So in addition to causing the equipment usage to decrease 201246239, it must cost a lot of extra Water is used to clean the film. Except for the shortcomings of the above four conventional techniques, the magnetization & ampere set in the pipeline is used. The related experiment is that the fluid in the middle of the tube is exposed to the surface of the pipe. The fluid magnetization can be reduced, however, in the magnetizer that is commonly installed outside the tube, its magnetic force is entangled in the direction of the water flow in the tube and its magnetic field strength is weak. J. Republic of China Patent Application No. 8820_ No. and No. 2 (8) 7 = the disclosed technology. If the magnetizer is applied to a metal pipe of a plastic water pipe or a non-magnetic material, the thickness of the pipe wall is not limited, and the main limitation is only the magnetizer. Circuit design. However, if the above magnetizer is applied to a pure iron or a low-turn metal burr (SUS3〇4), the magnetizer is only suitable for metal pipes with a wall thickness of less than 2 mm (mm). The thicker the wall, the smaller the strength of the magnetic field that can enter the pipe wall and enter the water pipe. Therefore, the fluid in the pipe is less magnetized. Therefore, a new type of fluid magnetizer is needed to overcome the above-mentioned conventional technology. Disadvantages. [Summary of the Invention] Accordingly, it is an object of the present invention to provide a fluid magnetizer that utilizes a multi-pole design and manufactures a magnetizer in a particular material, thereby providing a direction of magnetic field that is both perpendicular and parallel to the direction of fluid flow within the tube, and provides a comparison A stronger magnetic field strength of a conventional magnetizer. According to an embodiment of the invention, a fluid magnetizer for magnetizing a fluid within a magnetically conductive metal body is provided. The fluid magnetizer includes a first magnetic permeability 201246239 body, a second a second magnet, a third magnet and iron, and two second magnets. The first magnet, the second first magnetic part, the third part, and the fourth & out part == part-part, the first and the first-and-first The two parts are joined, so that the four protruding portions of the three ends are respectively disposed in the first structure. As for the two ends of the portion. In addition, the second end portion of the second guide and the second side of the second pair, each of the second magnetism spots: the first magnet guide phase of the first magnet guide body opposite to the second side: and; 4 = the first: the iron is in contact with the second and the second, in addition, the two second magnets respectively go to η: in the first and second accommodating spaces, wherein the two second magnets have their irons go to Si 5 Β, and The first portion and the third magnet are in contact, and the other second magnet is in contact with the second portion and the fourth magnet. In the above first and = magnets, each of the magnets faces the third portion with the same magnetic pole. The projections of the second portion extend toward the third magnetizer, and the projections of the second portion of the joint j extend toward the fourth magnetizer. When the magnetically permeable metal member is placed horizontally on the fluid magnetizer, the outer side of the magnetically permeable metal tube is simultaneously in contact with the first magnetizer, the second second magnetizer, the third magnetizer, and the fourth magnetizer. > According to another embodiment of the present invention, in the fluid magnetizer described above, the magnetic energy product (Magnetic Energy pr〇duct) of the first first magnet and each of the second magnets is 3 〇 to 4 高 million Gauss Si Te (10) Correction G Fine 201246239

Oersteds ; MG〇e)且本質矯頑磁力(c_ 特(l4k〇e至黯),或磁能積為4〇至心 同斯厄司特且本質橋頑磁力為厄司特。 备個Ϊ據ί發明之又一實施例,在上述之流體磁化器中, 母個第-磁鐵以及每個第二磁鐵為敍鐵硼類磁鐵。 望一發明之又一實施例,在上述之流體磁化器中, =-體、每個第二導磁體、第三導磁體以及 體之材料可為純鐵、低碳鋼、以原子百分比計計算時為65: 35之鐵縣金或以原子百分比計計算時為8G: 17: 3之錦 鐵鉬合金。 碼 根據本發明之又一實施例,在上述之流體磁化器中, 第導磁體、每個第二導磁體、第三導磁體以及第四導礙 體之材料為純鐵或低碳鋼時’第一導磁體、每個第二導礤 體以及每個第三導磁體之表面覆蓋有薄膜,此薄膜之材料 為上述之鐵鈷合金或鎳鐵鉬合金。此外,根據本發明之又 一實施例’上述薄膜之厚度小於0.1 mm。 根據本發明之再一實施例,在上述之流體磁化器中, 其中面對上述第三部分之第一磁鐵與第二磁鐵之磁極均為 N極。 本發明之優點為:由於本發明之流體磁化器可提供較 強之磁場強度’故本發明之流體磁化器可應用於各種材質 水管’例如不導磁之塑膠管及不銹鋼管,或具高導磁性之 鐵管與不錄鋼管。再者,本發明之流體磁化器更可應用於 官壁厚度較厚(大於2mm)之高導磁性金屬管,避免金屬管 内之流體受到管壁之屏壁效果的影響,而大幅降低其磁化 201246239 • 的強度。 .此外,本發明之另一優點為:藉由採用本專利發明之 流體磁化器’可改善水垢沈積問題,進而可降低管路維護 所需之成本。 【實施方式】 請參照第1A與1B圖,其中第ία圖係繪示根據本發 明之一實施例之流體磁化器的立體示意圖,而第1B圖係繪 示第1A圖中流體磁化器的侧視示意圖。流體磁化器100 主要功能係用來磁化導磁性金屬管102(參見第1B圖)内之 流體,其中上述導磁性金屬管102之材料包含具有導磁性 的鐵材料,或是具有導磁性的不銹鋼材料。在實際應用上, 係將導磁性金屬管102水平置放於流體磁化器1〇〇之上, 形成如第1B圖所示之架構,使得流體磁化器1〇〇產生之磁 場(參見第1A圖之箭號)能夠進入導磁性金屬管1〇2之内, 進而磁化導磁性金屬管102内之流體。在本實施例中,僅 繪示一個流體磁化器100與導磁性金屬管1〇2的相對關 係。然而’在特定之實施例中,可將多個流體磁化器1〇〇 沿著一直線排列’接著將導磁性金屬管102水平置放於這 些流體磁化器之上’藉此磁化導磁性金屬管102内不 同部位的流體。 上述流體磁化器100包含第一導磁體104、二個第二 導磁體110、第三導磁體111與第四導磁體112、二個第一 磁鐵106、以及二個第二磁鐵108。如第1A圖所示,在第 一導磁體104中,其更包含沿著第一方向D1延伸之第一 201246239 部分114與第二部分116、沿著第三方向⑴延 分m、四個凸出部分120。在第1A與1B圖所示 中,第一導磁體104之第三部* 118之二端分別一; 分m與第二料116接合。當由上向下俯視時 =、。第二部分116與第三部分118則形成實質二: 此外,在第1A與1B圖所示實施例中,第 之四個凸出部分120 ’係以-對-方式分別對應地:置1 上述之第-部分U4的二端部,以及上述第二部 一端部。再者,每個凸出部分120係沿著第二方向D 伸’且遠離上述第-導磁體1〇4之第三部分ιΐ8。、 楚一道^ 知’每個第二導磁體與 導體104之間形成第—容置空間122。此外:、 導:體'11與第四導磁體m則分別鄰設於第一導磁體】〇: 二之二第二側面104b,其令第三導磁體111與第一導磁 體104之間形成筮—六苗办 導磁 第一導磁-ΙίΜ 一合置1 且第四導磁體112與 f署㈣體 之間形成第三容置空間126。上述之第- 二置工^22、第二容置空間124與第三容置空間J之 1〇Γ。要係用來容設二個第一磁鐵與二個第二磁鐵 二個St第一磁鐵_係分別容設在上述 磁性,故每個i 為了強化傳遞至導磁體中之Oersteds; MG〇e) and the intrinsic coercive force (c_ special (l4k〇e to 黯), or the magnetic energy product is 4〇 to the heart with the Sistel and the intrinsic bridge coercive force is the Öster. According to still another embodiment of the invention, in the fluid magnetizer described above, the parent magnet and the second magnet are magnets of the iron-boron type boron. In still another embodiment of the invention, in the fluid magnetizer described above, The material of the =-body, each of the second magnetizers, the third magnetizer, and the body may be pure iron or low carbon steel, which is 65:35 in atomic percentage, calculated as atomic percentage. 8G: 17: 3 of the bromo-molybdenum alloy. Code According to still another embodiment of the present invention, in the fluid magnetizer described above, the first magnet, each of the second magnet, the third magnet, and the fourth block When the material is pure iron or low carbon steel, the surfaces of the first conductive magnet, each of the second conductive bodies and each of the third magnetic conductive bodies are covered with a film, and the material of the film is the above-mentioned iron-cobalt alloy or nickel-iron-molybdenum. Further, according to still another embodiment of the present invention, the thickness of the above film is less than 0.1 mm. In still another embodiment, in the fluid magnetizer described above, wherein the magnetic poles of the first magnet and the second magnet facing the third portion are both N poles. The advantage of the present invention is that the fluid magnetizer of the present invention can Providing a strong magnetic field strength', the fluid magnetizer of the present invention can be applied to water pipes of various materials, such as non-magnetic plastic tubes and stainless steel tubes, or high-conductivity iron tubes and non-recorded steel tubes. Furthermore, the present invention The fluid magnetizer can be applied to a high-conductivity metal tube with a thick thickness of the official wall (greater than 2 mm), so as to prevent the fluid in the metal tube from being affected by the wall effect of the tube wall, and greatly reduce the strength of the magnetization 201246239. In addition, another advantage of the present invention is that the problem of scale deposition can be improved by using the fluid magnetizer of the present invention, thereby reducing the cost required for pipeline maintenance. [Embodiment] Please refer to Figures 1A and 1B. FIG. 1B is a schematic perspective view showing a fluid magnetizer according to an embodiment of the present invention, and FIG. 1B is a side view showing a fluid magnetizer in FIG. 1A. The primary function of the chemist 100 is to magnetize the fluid within the magnetically permeable metal tube 102 (see FIG. 1B), wherein the material of the permeable metal tube 102 comprises a magnetically permeable iron material or a magnetically permeable stainless steel material. In practical application, the magnetic conductive metal tube 102 is placed horizontally on the fluid magnetizer 1〇〇 to form a structure as shown in FIG. 1B, so that the magnetic field generated by the fluid magnetizer 1 (see FIG. 1A). The arrow can enter the magnetic conductive metal tube 1〇2, thereby magnetizing the fluid in the magnetic conductive metal tube 102. In the present embodiment, only one fluid magnetizer 100 and the magnetic conductive metal tube 1〇2 are shown. Relative relationship. However, 'in a particular embodiment, a plurality of fluid magnetizers 1 can be arranged along a straight line' and then the magnetically permeable metal tube 102 is placed horizontally on top of these fluid magnetizers. Fluid in different parts of the metal tube 102. The fluid magnetizer 100 includes a first magnetizer 104, two second magnets 110, third and fourth magnets 111 and 112, two first magnets 106, and two second magnets 108. As shown in FIG. 1A, in the first magnetizer 104, it further includes a first portion 201246239 portion 114 and a second portion 116 extending along the first direction D1, and an extension of m, four protrusions along the third direction (1). Part 120 is output. In the Figs. 1A and 1B, the two ends of the third portion *118 of the first magnetizer 104 are respectively one; the minute m is joined to the second material 116. When looking down from top to bottom =,. The second portion 116 and the third portion 118 form a substantial two: In addition, in the embodiment shown in FIGS. 1A and 1B, the fourth protruding portion 120' is correspondingly set to -1. The two ends of the first portion U4 and the one end portion of the second portion. Further, each of the convex portions 120 is extended along the second direction D and away from the third portion ι 8 of the first-conductive magnet 1〇4. A plurality of accommodating spaces 122 are formed between each of the second magnets and the conductors 104. In addition, the body '11 and the fourth magnetizer m are respectively disposed adjacent to the first magnetizer 〇: two of the second side faces 104b, which form the third magnetizer 111 and the first magnetizer 104. The first magnetic field of the first magnetic field 112 and the fourth magnetic body 112 form a third accommodating space 126. The first and second working spaces 22, the second accommodating space 124 and the third accommodating space J are 1 〇Γ. It is used to accommodate two first magnets and two second magnets. Two St first magnets are respectively accommodated in the above magnetic properties, so each i is fortified and transferred to the magnetizer.

邱八ne 第一磁鐵106同時與第一導磁體104之第三 〇刀及二個第二導磁體11〇其中-者接觸。另外,I 201246239 個第一磁鐵108係分別容設在上述之第二容置空間124與 第二容置空間126巾,其中這些第二磁鐵1〇8其中一者同 時與第一導磁體1〇4之第一部分114及第三導磁體⑴接 觸,而二個第二磁鐵⑽其中另—者則同時與第一導磁體 104之第二部分116及第四導磁體112接觸,藉此強化傳遞 至導磁體中之磁性。 在第1A與1B圖所示實施例中,上述二個第一磁鐵ι〇6 與二個第二磁鐵108係以相同之磁極(例如N極)面對第一 導磁體104之第三部分118。此設計主要目的在於,可藉 此使得流體磁化器1()〇整體產生之磁場係由第一導磁體 1〇4射向四周所環繞之二個第二導磁體11〇、第 :::例如’在本實施例中,二個第-磁鐵丨06 二劫磁鐵108係以N極面對第一導磁體104之第三 二:?生如第則中箭號所表示,由第-導磁The first magnet 106 is simultaneously in contact with the third file of the first magnetizer 104 and the two second magnetizers 11 . In addition, the I 201246239 first magnets 108 are respectively disposed in the second accommodating space 124 and the second accommodating space 126, wherein one of the second magnets 1 〇 8 is simultaneously connected to the first permeable magnet 1 . The first portion 114 of the fourth portion 4 and the third magnetizer (1) are in contact, and the other two of the two second magnets (10) are simultaneously in contact with the second portion 116 of the first magnetizer 104 and the fourth magnetizer 112, thereby enhancing transmission to Magnetic in the magnetizer. In the embodiment shown in FIGS. 1A and 1B, the two first magnets ι 6 and the second magnets 108 face the third portion 118 of the first magnet 104 with the same magnetic pole (for example, the N pole). . The main purpose of this design is to thereby cause the magnetic field generated by the fluid magnetizer 1() to be entirely emitted by the first magnetizer 1〇4 to the two second magnetizers 11 surrounded by the circumference, ::: In the present embodiment, the two first-magnet 丨06 robbing magnets 108 are facing the third two of the first magnets 104 with N poles: As indicated by the arrow in the first, by the first - magnetic

=中藉周:多:=磁場。因此,在流體磁 稭由夕極(第一導磁體104為N ::=?二第三導磁體⑴與第四導磁體m則; 有垂直及平行得整體之磁場分材提供同時具 及十仃於官内流體流向的磁場方向。 合於Γ部:=四㈣!部分〗20’更具體來說,接 延伸,而接a於第;出部】20係朝第三導磁體⑴ 導磁體112°延伸之二個凸出部120則朝第四 的幾何形狀之不n 例中,因應第二磁鐵⑽ 不8,上述之四個凸出部分120可具有不同 201246239 之幾何形狀、然而’當四個凸出部分l2 形狀時’每個凸出部分12()大致上仍 、有^门之4何 延伸。 1乃化者上述第二方向D2 山在本實施例中,由第1A與1B圖所示之結構中可以看 出,一個第二導磁體no、第三導磁體ni :12係實質為一柱狀體結構’且二個第二導磁體二幾= 狀一致,第三導磁體m之幾何形狀相同於第四導磁體⑴ 之幾何形狀。•然而,第二導磁體11G、第三導磁體lu以及 第四導磁體112之幾何形狀並不以本實施例為限,在其他 之實施例中,第二導磁體11〇、第三導磁體lu以及第四導 磁體112可根據設計需求來調整其幾何形狀。 在第1A與1B圖之實施例中,為了確保流體磁化器1〇〇 整體能夠對設置於其上之導磁性金屬管1〇2產生一定強度 之磁場。因此’上述流體磁化器1〇〇中之第一導磁體1〇4、 母個第一導磁體110、第二導磁體111以及第四導磁體ip 之材料’可為純鐵、低碳鋼、以at%計算時為65 : 35之鐵 録合金(FeHCo35)或以at%計算時為80 : 17 : 3之鎳鐵鉬合 金(Nis〇Fe丨 7M〇3)。 在特定之實施例中’基於成本的考量,第一導磁體 104、每個第二導磁體11〇、第三導磁體lu以及第四導磁 體112之材料可選擇成本較低的純鐵或低碳鋼。而在特定 之實施例中,為增強磁場強度,故第一導磁體104、每個 第二導磁體110、第三導磁體111以及第四導磁體112之材 料可改用飽和磁化量更高之Fe65Co35合金或導磁率更佳之 Ni8〇Fe17Mo3 合金。 201246239 相較於上述之純鐵或低碳鋼,採用Fe^c%5人金戋 NisoFepMo3合金來做為第一導磁體1〇4、每個第二^磁^ 110、第三導磁體111以及第四導磁體112之材料,傕θ 導磁體增加約12%之磁場強度。 侍 、此外,若第一導磁體104、每個第二導磁體11〇、第一 ,磁體⑴以及第四導磁體112之材料為上述之純鐵或= 呶鋼,為了增強磁場強度,可在第一導磁體1〇4、每個 二導磁體110、第三導磁體1U以及第四導磁體112之表面 ,蓋-薄膜。其中,上述薄膜之材料可為Fe65CG35合金或 WFenMo3合金。相較於沒有覆蓋薄膜之導磁體,覆蓋上 述之薄膜可使得導磁體增加約5°/。之磁場強度。再者,上述 =薄膜可採用真线鍍或電錄製程來製造。然而,若上述 j厚度太厚,則容易有附著性不佳而剝落之缺點。另外, =臈厚度太厚更可能造成屏壁效果,使得磁場不容易進 口第1B圖所示之導磁性金屬管1〇2之内部,故在特定之 霄施例中’上述之薄膜厚度小於〇lmm。 水平ΐ實際顧上’當將第1B ®所示之導磁性金屬管102 外伽Ϊ放在流體磁化器100之上時’導磁性金屬管102之 三t係同時與第-導磁體刚、二個第二導磁體110、第 =體m以及第四導磁體112接觸。更具體來說,在 =金屬管1G2與第—導磁體1G4之間的相對關係中, 部八,金屬管102主要係以側面與第一導磁體辦之第三 磁二=接觸。此外,如上所述,第二導磁體ιι〇、第三導 為:Γί第:導磁體112之幾何形狀並不以本實施例 第一導磁體m、第三導磁體lu以及第四導磁體 201246239 112之幾何形狀僅需使得導磁性金屬管i〇2能夠同時接觸 第一導磁體104、二個第一導磁體110'第三導磁體hi以 及第四導磁體112即可。 在特定之實施例中,上述流體磁化器1〇〇中所採用之 每個第一磁鐵106以及每個第二磁鐵108的磁能積為30至 40百萬高斯厄司特’且每個第一磁鐵1〇6以及每個第二磁 鐵108的本質矯頑磁力為14000至17000厄司特。在一般 市售之磁鐵的分類中’上述之磁鐵規格即為3〇h至40H。 而在另一實施例中’上述流體磁化器1 〇〇中所採用之 每個第一磁鐵106以及每個第二磁鐵1〇8的磁能積為40至 50百萬高斯厄司特,且每個第一磁鐵1〇6以及每個第二磁 鐵108的本質橋頑磁力為11000至14000厄司特。在一般 市售之磁鐵的分類中’上述之磁鐵規格即為4〇M至5〇M。 另外,在特定之實施例中,流體磁化器1〇〇之每個第 一磁鐵106以及母個第二磁鐵1〇8可為鉞鐵侧類(Nd-Fe-B) 磁鐵。 在貫際之測量中,當採用美國貝爾公司之高斯計(518〇= In the middle of the week: more: = magnetic field. Therefore, in the fluid magnetic stalk, the first magnetic conductor 104 is N::= two third magnetic conductive magnets (1) and the fourth magnetic conductive material m; the vertical and parallel magnetic field components are provided simultaneously with ten The direction of the magnetic field flowing in the official fluid. In the ankle: = four (four)! Part of the 20' more specifically, the extension, and then a; the outlet] 20 series toward the third magnet (1) The two projections 120 of the 112° extension are oriented toward the fourth geometry. The second projections 120 may have different geometry of 201246239, however, When the four convex portions l2 are in shape, each of the convex portions 12() is substantially still extending, and the second direction D2 is in the present embodiment, by the first and second portions. As can be seen from the structure shown in the figure, one second magnetizer no, the third magnetizer ni:12 is substantially a columnar structure' and the two second magnetizers are identical in shape, and the third magnetizer The geometry of m is the same as the geometry of the fourth magnetizer (1). • However, the second magnetizer 11G, the third magnetizer lu and the The geometry of the magnetizer 112 is not limited to this embodiment. In other embodiments, the second magnetizer 11〇, the third magnetizer lu, and the fourth magnetizer 112 can be adjusted in geometry according to design requirements. In the embodiment of Figs. 1A and 1B, in order to ensure that the fluid magnetizer 1 〇〇 can generate a magnetic field of a certain intensity to the magnetic conductive metal tube 1 〇 2 provided thereon, the above-mentioned fluid magnetizer 1 〇〇 The material of the first conductive magnet 1〇4, the mother first magnetizer 110, the second magnetizer 111, and the fourth magnetizer ip can be pure iron or low carbon steel, and is 65:35 in at%. Ferroalloy (FeHCo35) or a nickel-iron-molybdenum alloy (Nis〇Fe丨7M〇3) of 80:17:3 in at%. In a particular embodiment, 'based on cost considerations, first magnet 104 The material of each of the second and second magnets 11 and 11 may be selected from low-cost pure iron or low carbon steel. In a specific embodiment, to enhance the magnetic field strength, First conductive magnet 104, each second conductive magnet 110, third conductive magnet 111, and fourth magnetically conductive body The material of 112 can be changed to Fe65Co35 alloy with higher saturation magnetization or Ni8〇Fe17Mo3 alloy with better magnetic permeability. 201246239 Compared with the above-mentioned pure iron or low carbon steel, Fe^c%5 metal niobium NisoFepMo3 alloy is used. For the materials of the first conductive magnets 1〇4, each of the second magnets 110, the third magnetizers 111, and the fourth magnetizers 112, the 傕θ-guide magnets increase the magnetic field strength by about 12%. The material of the first magnet, the first magnet, the first magnet, the second magnet, and the fourth magnet 112 are the above-mentioned pure iron or steel. In order to enhance the magnetic field strength, the first magnet may be in the first magnet. 4. The surface of each of the two-conducting magnets 110, the third and second magnets 1U, and the fourth magnetizer 112, a cover-film. Wherein, the material of the above film may be Fe65CG35 alloy or WFenMo3 alloy. Overlaying the film described above can increase the magnetizer by about 5° compared to a magnetizer without a cover film. The strength of the magnetic field. Furthermore, the above film can be manufactured by a true wire plating or an electrical recording process. However, if the thickness of the above j is too thick, there is a disadvantage that the adhesion is poor and peeling off. In addition, if the thickness of the crucible is too thick, it is more likely to cause a screen wall effect, so that the magnetic field is not easily imported into the inside of the magnetic conductive metal tube 1〇2 shown in FIG. 1B, so in the specific embodiment, the film thickness is less than 〇. Lmm. The horizontal ΐ actually considers that when the magnetic susceptor of the magnetic conductive metal tube 102 shown in the 1B® is placed on the fluid magnetizer 100, the three t-types of the magnetic conductive metal tube 102 are simultaneously and the first and second magnetic guides. The second magnetizer 110, the body m and the fourth magnetizer 112 are in contact. More specifically, in the relative relationship between the metal pipe 1G2 and the first magnetizer 1G4, the metal pipe 102 is mainly in contact with the third magnetic field of the first magnetizer. In addition, as described above, the second conductive magnet, the third derivative is: Γί: the geometry of the magnetic conductor 112 is not the first conductive magnet m, the third magnetic conductor lu, and the fourth magnetic conductor 201246239 of the present embodiment. The geometry of 112 is only required to enable the magnetically conductive metal tube i〇2 to simultaneously contact the first magnetizer 104, the two first magnetizers 110', the third magnetizer hi, and the fourth magnetizer 112. In a particular embodiment, each of the first magnets 106 and each of the second magnets 108 employed in the fluid magnetizer 1 has a magnetic energy product of 30 to 40 million Gaussian's and each first The magnets 1〇6 and each of the second magnets 108 have an intrinsic coercive force of 14,000 to 17,000 testers. In the classification of a commercially available magnet, the above-mentioned magnet specifications are 3 〇h to 40H. In another embodiment, the magnetic energy product of each of the first magnets 106 and each of the second magnets 1 〇8 employed in the fluid magnetizer 1 is 40 to 50 million Gaussian, and each The first bridge magnets 1〇6 and each of the second magnets 108 have an intrinsic bridge coercive force of 11,000 to 14,000 testers. In the classification of magnets which are generally commercially available, the above-mentioned magnet specifications are 4 〇M to 5 〇M. Further, in a specific embodiment, each of the first magnets 106 and the second magnets 1 to 8 of the fluid magnetizer 1 may be Nd-Fe-B magnets. In the continuous measurement, when using the American Bell Company's Gauss meter (518〇)

Gauss/Tesla Meter,SYPRis,F.W.BELL)於上述第一導磁體 104、二個第二導磁體11〇、第三導磁體lu以及第四導磁 體112之表一面進行测量,其中之最強之磁場強度為78〇〇高 斯至8200尚斯。而針對一般市售之流體磁化器的測量中, 其導磁體之表面最強的磁場強度為6500高斯。故本發明之 抓體磁化$ 1GG之罐場強度約高出市售之流體磁化器之磁 場強度的20%。 請再參照第1八及⑺圖,其中流體磁化器刚之每個 201246239 第二導磁體110具有頂面ll〇a、鄰接於頂面110a之傾斜面 110b與側面110c。每個第二導磁體110係以上述側面ii〇c 接合在二個第一磁鐵106的其中一者,且上述導磁性金屬 管102之外側面係與傾斜面ll〇b接觸。上述傾斜面110b 之設計主要在於增加第二導磁體110與導磁性金屬管102 的接觸面積,藉此更穩固地將導磁性金屬管102承接於流 體磁化器100上。 此外,在本實施例中,每個第二導磁體110之傾斜面 110b、第三導磁體111之頂面111a以及第四導磁體U2之 頂面112a均為彎曲弧面,藉此穩固地將導磁性金屬管1 〇2 承接於流體磁化器100上。 在特定之實施例中,當第一導磁體104之第—部分 114、第二部分116與第三部分118之厚度太小,使得二個 第一磁鐵106與二個第二磁鐵1〇8太過靠近時,為了避免 上述四個磁鐵彼此之間的相斥力造成難以組裝的狀況,可 在四個磁鐵與第一導磁體104之間追加如膠水之黏二 惟在其他實施例中,若第一導磁體丨04之尺寸較大者1 四個磁鐵彼此之間的相斥力小於上述四個磁鐵‘第丄土= 體104之間的吸引力,則並不需要追加如上所述之黏著劑。 雖然本發明已以實施方式揭露如上,然其並 定本發明’任何熟習此技藝者’在*脫離本發 '" 範圍内,當可作各種之更動與㈣,因此本發明之保° 圍當視後附之申請專利範圍所界定者為準。 ,、°巳 【圖式簡單說明】 201246239 ;、為了能夠對本發明之觀點有較佳之理解,請參照上述 ,詳:說明並配合相應之圖式。要強調的是,根據工業之 標準常規’附时之各種特徵並未依比例繪示。事實上, 為π楚說明上述貫施例,可任意地放大或縮小各種特徵之 尺寸。相關圖式内容說明如下。 第1Α圖係繪示根據本發明之一實施例之流體磁化器 的立體示意圖。 第1Β圖係繪示沿著第1Α圖中之流體磁化器的側視示 意圖。 【主要元件符號說明】 100 : 流體磁化器 102 導磁性金屬管 104 : 第一導磁體 104a :第· 一側面 104b :第二側面 106 第一 ‘磁鐵 108 : 第一·磁鐵 110 够 一 9p 一 -導磁體 110a :頂面 110b :傾斜面 110c :側面 111 第三 .導磁體 111a :頂面 112 第四 |導磁體 112a :頂面 114 第一 •部分 116 : 第二部分 118 第三部分 120 : 凸出部分 122 第- •容置空間 124 : 第二容置空間 126 第三 -容置空間 D1 : 第一方向 D2 : 第二 方向 15Gauss/Tesla Meter, SYPRis, FWBELL) is measured on one side of the first magnet 104, the second second magnet 11〇, the third magnet lu and the fourth magnet 112, and the strongest magnetic field strength It is 78 〇〇 Gauss to 8200 尚s. For the measurement of a commercially available fluid magnetizer, the strongest magnetic field strength of the surface of the magnetizer is 6,500 gauss. Therefore, the can field magnetization of the present invention has a tank field strength of about 20% higher than that of a commercially available fluid magnetizer. Referring again to Figures 1-8 and (7), wherein each of the fluid magnetizers 201246239 second magnetizer 110 has a top surface 11a, an inclined surface 110b adjacent to the top surface 110a, and a side surface 110c. Each of the second magnets 110 is joined to one of the two first magnets 106 by the side surface ii 〇 c, and the outer surface of the magnetic conductive metal tube 102 is in contact with the inclined surface 11b. The inclined surface 110b is mainly designed to increase the contact area of the second magnetizer 110 with the magnetic conductive metal tube 102, thereby more stably holding the magnetic conductive metal tube 102 on the fluid magnetizer 100. In addition, in the embodiment, the inclined surface 110b of each of the second magnetrons 110, the top surface 111a of the third magnetizer 111, and the top surface 112a of the fourth magnetizer U2 are curved curved surfaces, thereby firmly The magnetically conductive metal tube 1 〇2 is received on the fluid magnetizer 100. In a particular embodiment, when the thickness of the first portion 114, the second portion 116, and the third portion 118 of the first magnet 104 is too small, the two first magnets 106 and the two second magnets 1 〇 8 are too When it is too close, in order to avoid the situation that the repulsive force between the four magnets is difficult to assemble, a glue such as glue may be added between the four magnets and the first magnet 104. In other embodiments, The larger the size of one of the magnets 丨041 The repulsive force between the four magnets is less than the attraction between the four magnets 'the third soil=the body 104, and it is not necessary to add the above-mentioned adhesive. Although the present invention has been disclosed in the above embodiments, it is to be understood that the invention of the present invention is within the scope of the present invention, and that various modifications and (4) can be made. This is subject to the definition of the scope of the patent application. , ° ° [Simplified description of the drawings] 201246239; , in order to be able to better understand the point of view of the present invention, please refer to the above, detailed: explain and match the corresponding drawings. It is emphasized that, according to industry standards, the various features of the time-of-date are not drawn to scale. In fact, the above embodiments can be arbitrarily enlarged or reduced in size for various features. The relevant schema description is as follows. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a perspective view showing a fluid magnetizer according to an embodiment of the present invention. The first drawing shows a side view of the fluid magnetizer along the first drawing. [Description of main component symbols] 100: Fluid magnetizer 102 Magnetic metal tube 104: First magnetizer 104a: First side 104b: Second side 106 First 'Magnet 108: First magnet 110 enough 9p One- Ferrite magnet 110a: top surface 110b: inclined surface 110c: side surface 111 third. magnetizer 111a: top surface 112 fourth | magnetizer 112a: top surface 114 first portion 116: second portion 118 third portion 120: convex Output portion 122 - • accommodation space 124 : second accommodation space 126 third - accommodation space D1 : first direction D2 : second direction 15

Claims (1)

201246239 七、申請專利範圍: 1.一種流體磁化器,用以磁化一導磁性金屬管内之流 體,其中該流體磁化器包含: 一第一導磁體,包含: 一第一部分與一第二部分; 一第三部分,其中該第三部分之二端分別與該第 一部分及該第二部分接合,藉以形成一 I字型結構; 以及 四凸出部分’分別設置在該第一部分之二端部與 該第二部分之二端部; 一第'一導磁體,鄰設於該第· ~~導磁體相對之二第一侧 面,每一該些第二導磁體與該第一導磁體之間形成一第一 容置空間; 一第三導磁體與一第四導磁體,分別鄰設於該第一導 磁體相對之二第二側面,該第三導磁體與該第一導磁體之 間形成一第一谷置空間’而該第四導磁體與該第一導磁體 之間形成一第三容置空間; 一第一磁鐵,分別容設於該些第一容置空間中,其中 每一該些第一磁鐵係同時與該第三部分及該些第二導^體 其中一者接觸;以及 二第二磁鐵,分別容設於該第二容置空間與該第三容 置空間中,其中該些第二磁鐵一者同時與該第一部分及2 第三導磁體接觸,而該些第二磁鐵另一者同時盥該第二部 分及該第四導磁體接觸,該些第一磁鐵與該“ 以相同之一磁極面對該第三部分; 201246239 其中接合於該第一部分之該些凸出部朝該第三導磁體 延伸,而接合於該第二部分之該些凸出部朝該第四導磁體 延伸; 其中當該導磁性金屬管水平置放於該流體磁化器之上 時,該導磁性金屬管之外側面同時與該第一導磁體、該些 第二導磁體、該第三導磁體以及該第四導磁體接觸。 2.如請求項1所述之流體磁化器,其中每一該些第一 磁鐵以及每一該些第二磁鐵之磁能積為30至40百萬高斯 厄司特且本質矯頑磁力為14000至17000厄司特。 3. 如請求項1所述之流體磁化器,其中每一該些第一 磁鐵以及每一該些第二磁鐵之磁能積為磁能積為40至50 百萬高斯厄司特且本質矯頑磁力為11000至14000厄司特。 4. 如請求項1所述之流體磁化器,其中每一該些第一 磁鐵以及每一該些第二磁鐵為鈥鐵硼類磁鐵。 5. 如請求項1所述之流體磁化器,其中該第一導磁體、 每,一該些第二導磁體、該第二導磁體以及該第四導磁體之 材料係選自於由一純鐵、一低碳鋼、以原子百分比計計算 時為65 : 35之一鐵鈷合金以及以子百分比計計算時為80 : 17 : 3之一鎳鐵鉬合金所組成之群組。 6. 如請求項5所述之流體磁化器,其中該第一導磁體、 17 201246239 每-該些第二導磁體、該第三導磁體以及該第四導磁體之 材料為該純鐵或該低碳鋼時,該第—導磁體、每一該些 广導磁體以及每-該些第三導磁體之表面覆蓋有一薄^, 该薄膜之材料為該鐵鈷合金或該鎳鐵鉬合金。 6所述之流體磁化器’其中該薄膜之厚度 .如請求項1所述之流體磁化 Ο 導磁體且右· 5 母一 §亥些第二 磁^、有1面、鄰接於該頂面之—傾斜面以及 2豸些第二導磁體以該側面接合在該 中—者’料金屬管之外側面係與該傾斜面接觸第。磁鐵其 分之^^^^述之流體磁化11,其巾面對該第三部 鐵與該些第二磁鐵之該磁極為N極。 之幾:二2項1所述之流體磁化器,其中該第:導磁㈣ 7升遗係相同於該第四導磁體之幾何形狀導磁體201246239 VII. Patent application scope: 1. A fluid magnetizer for magnetizing a fluid in a magnetic conductive metal tube, wherein the fluid magnetizer comprises: a first magnetizer comprising: a first portion and a second portion; a third part, wherein the two ends of the third portion are respectively engaged with the first portion and the second portion to form an I-shaped structure; and the four protruding portions are respectively disposed at the two ends of the first portion and the a second end portion of the second portion; a first conductive magnet disposed adjacent to the opposite first side of the first and second magnets, and a second between each of the second magnets and the first magnet a first accommodating space; a third magnetizer and a fourth magnetizer are respectively disposed adjacent to the second second side of the first magnet, and the third magnet and the first magnet form a first a first space is formed in the first accommodating space, and each of the first magnets is respectively disposed in the first accommodating space. The first magnet is simultaneously with the third And the second magnets are respectively disposed in the second accommodating space and the third accommodating space, wherein the second magnets are simultaneously The first portion and the second third magnet are in contact with each other, and the other of the second magnets simultaneously contacts the second portion and the fourth magnetic conductor, and the first magnets face the same magnetic pole a three-part; 201246239, wherein the protrusions joined to the first portion extend toward the third magnetizer, and the protrusions joined to the second portion extend toward the fourth magnetizer; wherein the magnetic permeability When the metal tube is placed horizontally on the fluid magnetizer, the outer side of the magnetic conductive metal tube is simultaneously in contact with the first magnetizer, the second magnetizer, the third magnetizer, and the fourth magnetizer. 2. The fluid magnetizer of claim 1, wherein each of the first magnets and each of the second magnets has a magnetic energy product of 30 to 40 million Gaussian and an intrinsic coercive force of 14,000 to 17000 Östers 3. Fluid as claimed in claim 1 The magnetic energy product of each of the first magnets and each of the second magnets has a magnetic energy product of 40 to 50 million Gaussian and an intrinsic coercive force of 11,000 to 14,000 testers. The fluid magnetizer of claim 1, wherein each of the first magnets and each of the second magnets are neodymium iron boron-based magnets. 5. The fluid magnetizer of claim 1, wherein the first The materials of a conductive magnet, each of the second conductive magnet, the second magnetic conductor, and the fourth magnetic conductive body are selected from a pure iron, a low carbon steel, and 65 in atomic percentage: And a fluid magnetizer according to claim 5, wherein the first magnetizer is , 2012 201246 39, each of the second magnet, the third magnet, and the fourth magnet is made of the pure iron or the low carbon steel, the first magnet, each of the broad magnets, and The surface of each of the third magnetizers is covered with a thin film, and the material of the film is the iron-cobalt alloy The nickel-iron-molybdenum alloy. The fluid magnetizer of claim 6 wherein the thickness of the film is as described in claim 1 wherein the fluid is magnetized to the magnet and the right side of the second magnet has a side, adjacent to the top surface. - the inclined surface and the two second conductive magnets are joined to the inclined surface by the side surface of the metal tube. The magnet is magnetized 11 of the fluid, and the magnetic surface of the third iron and the second magnet is N pole. The fluid magnetizer according to the item 2, wherein the first: magnetically conductive (four) 7-liter remains is the same as the geometrical magnetizer of the fourth magnetically conductive body
TW100116527A 2011-05-11 2011-05-11 Fluid magnetizer TWI434303B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100116527A TWI434303B (en) 2011-05-11 2011-05-11 Fluid magnetizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100116527A TWI434303B (en) 2011-05-11 2011-05-11 Fluid magnetizer

Publications (2)

Publication Number Publication Date
TW201246239A true TW201246239A (en) 2012-11-16
TWI434303B TWI434303B (en) 2014-04-11

Family

ID=48094524

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100116527A TWI434303B (en) 2011-05-11 2011-05-11 Fluid magnetizer

Country Status (1)

Country Link
TW (1) TWI434303B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI666171B (en) * 2018-08-31 2019-07-21 游清河 Fluid magnetizer

Also Published As

Publication number Publication date
TWI434303B (en) 2014-04-11

Similar Documents

Publication Publication Date Title
TW543046B (en) Inductor component having a permanent magnet in the vicinity of magnetic gap
JP2014525142A5 (en)
IN2012DE00125A (en)
JP2005217392A5 (en)
CN104810139A (en) Reactor
EP2284981A3 (en) Superconducting magnetiser
RU2014104595A (en) SHORT CURRENT LIMITER
TW201246239A (en) Fluid magnetizer
JP2007305824A (en) Inductance component
RU2009148479A (en) ELECTROMAGNETIC FLOW METER OF LIQUID METAL
CN110444364A (en) A kind of laminated magnetic thin film and preparation method thereof
CN202201921U (en) Amorphous alloy transverse-magnetic heat treating and magnetizing device
JP6083725B2 (en) Annular wire structure using high temperature superconductor flat tape wire
JP7140357B2 (en) Water activation device and manufacturing method thereof
MX2018015695A (en) Inductor.
EP2541564A1 (en) Wireless energy transfer
CN110189884B (en) Planar micro-polar-distance multi-pole magnetizing method
CN202657991U (en) Strong-penetrating environment-friendly magnetizer for thick iron wall
CN105742005B (en) A kind of three-dimensional inductance coil and preparation method thereof
JP3055498U (en) Water magnetic treatment equipment
TWI310196B (en) Magnetism-gathering and intensify device
JP2003197436A (en) Core for magnetic element, magnetic element using the same, manufacturing method of the magnetic element and switching power supply using the magnetic element
TW201010150A (en) System and method to fabricate magnetic random access memory
CN108172396B (en) Magnetic thin film deposition chamber and thin film deposition equipment
RU2007134485A (en) METHOD FOR MAGNETIZATION AND CREATION OF MAGNETIC FLOW IN A FERROMAGNETIC CORE OF ELECTRICAL DEVICE