TW201245689A - Biochemical measurement system and lamp module thereof - Google Patents

Biochemical measurement system and lamp module thereof Download PDF

Info

Publication number
TW201245689A
TW201245689A TW100115368A TW100115368A TW201245689A TW 201245689 A TW201245689 A TW 201245689A TW 100115368 A TW100115368 A TW 100115368A TW 100115368 A TW100115368 A TW 100115368A TW 201245689 A TW201245689 A TW 201245689A
Authority
TW
Taiwan
Prior art keywords
light source
beam splitter
light
halogen
ultraviolet
Prior art date
Application number
TW100115368A
Other languages
Chinese (zh)
Other versions
TWI454684B (en
Inventor
Chung-Hsien Tsai
Original Assignee
Protectlife Internat Biomedical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Protectlife Internat Biomedical Inc filed Critical Protectlife Internat Biomedical Inc
Priority to TW100115368A priority Critical patent/TWI454684B/en
Priority to CN201210099393.7A priority patent/CN102768068B/en
Publication of TW201245689A publication Critical patent/TW201245689A/en
Application granted granted Critical
Publication of TWI454684B publication Critical patent/TWI454684B/en

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A lamp module for biochemical measurement system includes a halogen light source, a first beam splitter, a blue-purple light source, an ultraviolet light source and a second beam splitter. The first beam splitter is to reflect the halogen light. The blue-purple light passes through the first beam splitter and goes with the halogen light along a first direction. The second beam splitter is to reflect the blue-purple light and the halogen light along the second direction. The ultraviolet light source pass through the second beam splitter and go with the ultraviolet nm light so as to pass through a biochemical sample to be tested.

Description

201245689 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種生化檢測系統,且特別是有關於 一種光學生化檢測系統。 、 【先前技術】 目前光學生化檢測系統所使用的光源大多為氙氣燈, 其主要原因為氙氣燈能夠於可見光的範圍内提供強度差距 較小的光源,有利於後續分析的執行。然而,氙氣燈的價 格較高,卻不利於光學生化檢測系統的普及化。 雖然,目前光學生化檢測系統亦有使用價格較低的齒 素光源,但執行分析時可能需要針對可見光部份波長的光 源作分析,需要執行多次才能完成可見光全光譜的分析, 而無法-次執行可見光全光譜的分才斤。這對某些可見光全 ^的分析而言是不允許的。«光源於可見光的範圍内 =之間的差距可能會超過20倍’在-次感測可見光全 先-日後’後續分析的執行會難度很高或無法分析。 有鍟於上述的問題,光學生化檢測系 的光源模組解決方案。 裡丁1貝 【發明内容】 檢树H ί發明之r目的是在提供一種改良的光學生化 、、’以取代以氙氣光源的光學生化檢測系統。 據上述目的,提出一種生化檢測系統之光源模 201245689 組,其包含一鹵素光源、一第一分弁 ^ , 刀九鏡、一波長介於380 3: 的藍紫光源、一波長介於320奈米與 源以及一第二分光鏡。第-分光鏡 藍紫光源穿透第〜分光鏡,且與被第 一为光鏡反射之齒素光源大致沿第―方向㈣。第二分光 鏡用以反射藍紫光源與鹵素光源沿第— 、®认步、凑哲、 乐〜方向傳遞。紫外光 t穿透第二分光鏡後與紫外錢1用讀測—待檢測 樣本。 實施例,光源模級更包含-渡光鏡用以 源中波長介於_奈米與_奈米之間的光 源,該濾光鏡位於該齒素光源與該第一分光鏡之間。 依據本發明另一實施例,藍紫光源、光源^一^光二極 體。 依據本發明另-實施例,紫外光源為一發光二極體。 依據本發明另-實施例,紫外光源包含另一齒素光源 以及-波長介於32G奈米與36G奈米之_干涉遽光鏡, 干涉濾光鏡位於另一鹵素光源與第二分光鏡之間。 依據本發明另一實施例,第一分光鏡為一全波段分光 鏡。 依據本發明另一實施例,第二分光鏡為一針對紫外光 源85%穿透及15%反射的分光鏡。 依據之一上述目的,提出一種生化檢測系統之光源模 組,其包含一鹵素光源、一濾光鏡、一波長介於320奈米 與360奈米之間的紫外光源以及一第二分光鏡。鹵素光源 沿第一方向傳遞。濾光鏡用以衰減鹵素光源中波長低於300 201245689 米且高於600奈米的光源。第二分光鏡用以反射鹵素光源 沿第二方向傳遞。紫外光源於穿透分光鏡後與鹵素光源一 起用以檢測* -待檢測樣本。 依據本發明一實施例,紫外光源為一發光二極體。 依據本發明另一實施例,紫外光源包含另一函素光源 以及一波長介於320奈米與360奈米之間的干涉濾光鏡, 干涉濾光鏡位於另一鹵素光源與第二分光鏡之間。 依據本發明另一實施例,第二分光鏡為一針對紫外光 源85%穿透及15%反射的分光鏡。 依據之一上述目的,提出一種生化檢測系統,其包含 一種如上述的光源模組以及一光譜分析儀。光譜分析儀用 以分析穿越待檢測樣本後的光線。 依據本發明一實施例,光譜分析儀包含一入射狹縫、 一聚焦色散元件以及一感光二極體陣列。入射狹縫用以接 收穿越待檢測樣本後的光線。聚焦色散元件用以空間色散 展開穿過入射狹縫的光線。感光二極體陣列用以感測經聚 焦色散元件展開後的光線。 依據本發明另一實施例,光譜分析儀包含一入射狹 縫、一平行光鏡、一色散元件、一聚光鏡以及一感光二極 體陣列。入射狹縫用以接收穿越待檢測樣本後的光線。平 行光鏡用以反射穿越入射狹縫之光線。色散元件用以展開 經平行光鏡反射後的光線。感光二極體陣列用以感測經色 散元件展開後的光線。聚光鏡用以將經該色散元件展開後 的光線聚焦於感光二極體陣列。 由上述可知,應用本發明之生化檢測系統,利用其光 201245689 學模組改善齒素光源的特性,使齒素光源更能符合在可見 光的範圍作全光譜檢測的需求,藉以替代高價的氣氣光 源,而使生化檢測系統的元件成本能進一步降低。 【實施方式】 請參照第1A圖,其繪示依照本發明一實施方式的_ 種生化檢測系統。生化檢測系統100包含一鹵素光源102、 一光學模組104以及一光譜分析儀1〇8,藉以針對—襄載 於樣本承載盤106内的待檢測樣本l〇6a執行光學分析。光 學模組104的功能在於調整齒素光源102的光學特性,使 鹵素光源102能更符合的光學分析的需求。在本實施例 中’光譜分析儀108包含一入射狹縫108b、一平行光鏡 l〇8c、一色散元件i〇8d、一聚光鏡l〇8e以及一感光二極體 陣列108a。入射狹縫1 〇8b用以接收並取樣穿越待檢測樣 本106a後的光線。平行光鏡108c用以反射穿越入射狹縫 WSb之光線,使光線平行的傳遞至色散元件108d。色散元 件l〇8d用以展開經平行光鏡108c反射後的光線,便於感 光二極體陣列108a感測。聚光鏡l〇8e用以將經色散元件 1〇8(!展開後的光線聚焦於感光二極體陣列108a上以利於 感測。 請參照第1B圖,其繪示依照本發明另一實施方式的一 種生化檢測系統。生化檢測系統100,與生化檢測系統100 的主要差異在於平行光鏡l〇8c與色散元件108d整合成單 一聚焦色散元件l〇8f,且省略了非必要的聚光鏡l〇8e。聚 焦色散元件108f用以空間色散展開穿過入射狹縫l〇8b的 201245689 • 光線,並將展開後的光線導向感光二極體陣列 l〇8a。上述 光谱分析儀的結構只是舉例,本案所適用的光譜分析儀並 不偈限於上述例子而已。 請參照第2、3圖’其分別繪示依照本發明的生化檢測 系統之齒素光源經光學模組處理前、後所測得的數據圖(縱 軸為相對強度數值,故沒有絕對單位)。第2圖是齒素光源 經光學模組處理前所測得的數據圖,而第3圖是_素光源 經光學模組處理後所測得的數據圖。參照第2圖,由素光 源所發出的光在未經處理前在可見光的範圍内(波長約介 於400奈米到750奈米之間)的強弱差距會超過2〇倍以上 (例如60000/2946>20) ’若使用感光二極體陣列一次感測 可見光範圍内的所有光譜,將使後續的數據因訊雜比過高 等因素而難以分析。因此’本案之生化檢測系統加入一光 學模組(例如光學模組104”),藉以處理_素光源,處理 後所測得的數據圖如第3圖所示。由第3圖可知,在可見 光的範圍内(波長約介於400奈米到750奈米之間)的光 強度差距會小於5倍(例如60000/12000<5),將使後續的 數據分析容易許多。以下將配合圖式解說各種光學模組的 可能結構。此外,光學模組104因增加生化檢測所需的藍 紫光源,因此波長400奈米附近的光強度會劇增。 請參照第4圖,其繪示依照本發明一實施例的一種光 學模組的示意圖。光學模組104包含一藍紫光源104a、一 第一分光鏡l〇4b、一紫外光源l〇4d以及一第二分光鏡 . 104c。第一分光鏡104b將鹵素光源1〇2所發出的光反射朝 向第二分光鏡l〇4c (沿第一方向1〇1)。藍紫光源l〇4a所 201245689 發出的光穿透第一分光鏡l〇4b,且與被第一分光鏡1〇4b 反射之齒素光源大致沿同方向(第一方向101)傳遞,並 於第二分光鏡104c反射朝向待測檢體樣本。第二分光鏡 104c用以讓紫外光源穿透朝向待檢測樣本(沿第二方向 101’)。在本實施例中,第二方向10Γ大致垂直第一方向 101 ’但並不侷限於此。在本實施例中,藍紫光源1 〇4a為 一波長介於380奈米與420奈米之間的光源,例如一波長 介於380奈米與420奈米之間的發光二極體。紫外光源1〇4d 為一波長介於320奈米與360奈米之間的光源,例如是波 長介於320奈米與360奈米之間的發光二極體。在本實施 例中’第一分光鏡104a為一全波段分光鏡,藉以將入射光 約50%反射(剩下約50%入射光穿透)的功能。此外,第 二分光鏡104c針對紫外光源,具有讓入射光約85%穿透(剩 下約15%反射)的功能^換言之,第二分光鏡1〇4c為一針 對紫外光源85%穿透及15%反射的分光鏡。第二分光鏡 104c也具有將可見光反射的功能。光學模組1 〇4增加紫外 光源與藍紫光源的目的在於補足函素光源於該波長的光強 度不足的問題。 請參照第5圖,其繪示依照本發明另一實施例的一種 光學模組的示意圖。光學模組104,不同於光學模組1〇4的 地方主要在於增加濾光鏡l〇4e。濾光鏡104e位於鹵素光源 102與第一分光鏡i〇4b之間。濾光鏡104e用以衰減鹵素 光源102中波長介於約6〇〇奈米與800奈米之間的光源, 使得光學模組104’的整體效能可以更接近上述第3圖的數 據。此外,光學模組1〇4,中的紫外光源發光二極體被一鹵 201245689 素光源104f以及一波長介於320奈米與360奈米之間的干 涉濾光鏡l〇4g所取代。干涉濾光鏡l〇4g位於鹵素光源104f 與分光鏡l〇4c之間’藉以衰減除了波長介於320奈米與 360奈米之間外的其他光源。鹵素光源104f加上干涉濾光 鏡l〇4g具有和紫外光源發光二極體具有相同功能,但元件 的成本較低。此外,藍紫光源104a也可以用鹵素光源加上 干涉濾光鏡方式實現(未繪示於圖面)。 請參照第6圖’其繪示依照本發明又一實施例的一種 光學模組的示意圖。光學模組104”包含一濾、光鏡1 〇4h、一 紫外光源104d以及一第二分光鏡l〇4c。濾光鏡l〇4h用以 衰減鹵素光源102中波長低於約300奈米且高於約600奈 米的光源。第二分光鏡104c用以反射鹵素光源朝向待檢測 樣本(沿第二方向101,)。第二分光鏡104C針對紫外光源, 具有讓入射光約85%穿透(剩下約15%反射)的功能。換 έ之’第二分光鏡為一針對紫外光源85〇/〇穿透及15〇/。反射 的分光鏡。第二分光鏡104c也具有將紅外光與紫外光反射 衰減的功能。因此,鹵素光源1〇2經濾光鏡1〇411處理後沿 第一方向101,接著被第二分光鏡104c反射後與紫外光源 用以/σ第一方向1 〇 1 ’ 一起檢測一待檢測樣本。在本實施例 中,第二方向101’大致垂直第一方向1〇1,但並不侷限於 此。相較於光學模組104及1〇4,,光學模組104”具有較少 光學元件的優勢,但同樣能使齒素光源102所發出的光經 光學模組104”處理後能近似上述第3圖的數據或在可見光 的範圍内的光強度差距會小於5倍以内。此外,紫外光源 l〇4d也可以用函素光源加上干涉濾光鏡方式實現(未繪示 201245689 於圖面)。 由上述本發明實施方式可知’應用本發明之生化檢測 系統,利用其光學模組改善#素光源的特性,使齒素光源 更能符合在可見光的範圍作全光譜檢測的需求,藉以替代 高價的氙氣光源,而使生化檢測系統的元件成本能進一 + 降低。 ’ 雖然本發明已以實施方式揭露如上,然其並非用以限 定本發明,任何熟習此技藝者,在不脫離本發明之精神和 範圍内,當可作各種之更動與潤飾,因此本發明之保護範 圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之說明如下: 第1A圖係繪示依照本發明一實施方式的一種生化檢 測系統。 第1B圖係繪示依照本發明另一實施方式的一種生化 檢測系統。 第2、3圖係分別繪示依照本發明的生化檢測系統之光 源模組經光學模組處理前、後所測得的數據圖。 第4圖係繪示依照本發明一實施例的一種光學模組的 示意圖。 第5圖係繪示依照本發明另一實施例的一種光學模組 的不意圖。 第6圖係繪示依照本發明又一實施例的一種光學模組 201245689 的示意圖。 【主要元件符號說明】 100 : 生化檢測系統 100, 生化檢測系統 101 : 第一方向 101,: 第二方向 102 : 鹵素光源 104 : 光學模組 104, :光學模組 104” :光學模組 104a :藍紫光源 104b :分光鏡 104c :分光鏡 104d :紫外光源 104e :濾光鏡 104f :鹵素光源 l〇4g :濾光鏡 104h :濾光鏡 106 : 樣本承載盤 106a :待檢測樣本 108 : 光譜分析儀 108a :感光二極體陣列 201245689 108b :入射狹縫 108c :平行光鏡 108d :色散元件 108e :聚光鏡 108f ··聚焦色散元件 12201245689 VI. Description of the Invention: [Technical Field] The present invention relates to a biochemical detection system, and more particularly to an optical biochemical detection system. [Prior Art] At present, most of the light sources used in optical biochemical detection systems are xenon lamps. The main reason is that xenon lamps can provide a light source with a small intensity difference in the visible light range, which is beneficial to the subsequent analysis. However, the high price of xenon lamps is not conducive to the popularization of optical biochemical detection systems. Although the current optical biochemical detection system also uses a lower cost gull source, the analysis may require analysis of the source of the visible light wavelength. It is necessary to perform multiple times to complete the analysis of the visible spectrum. Perform the full spectrum of visible light. This is not allowed for the analysis of some visible light. «The distance between the source and the visible light = the difference between the two may exceed 20 times. The performance of the subsequent analysis of the -first-visible visible light-first-after-the-due is difficult or impossible to analyze. The light source module solution of the optical biochemical detection system is contrary to the above problems.里丁一贝 [Summary of the Invention] The purpose of the invention is to provide an improved optical biochemistry, an optical biochemical detection system that replaces the xenon source. According to the above purpose, a group of light source modules 201245689 of biochemical detection system is proposed, which comprises a halogen light source, a first branching ^, a knife nine mirror, a blue-violet light source with a wavelength of 380 3:, a wavelength of 320 nm. Meter and source as well as a second beam splitter. The first-splitting mirror The blue-violet light source penetrates the first to the dichroic mirror, and is substantially along the first direction (four) with the lenticular light source that is first reflected by the light mirror. The second beam splitter is used to reflect the blue-violet light source and the halogen light source along the direction of the -, ®, step, philosophical, and music. Ultraviolet light t penetrates the second beam splitter and is used with UV 2 to read the sample to be tested. In an embodiment, the light source mode further comprises a galvanic mirror for the light source having a wavelength between _ nanometer and _ nanometer, the filter being located between the pixon light source and the first beam splitter. According to another embodiment of the present invention, a blue-violet light source, a light source, and a light diode are used. According to another embodiment of the invention, the ultraviolet light source is a light emitting diode. According to another embodiment of the invention, the ultraviolet light source comprises another singular source and an interferometric mirror having a wavelength between 32G nanometers and 36G nanometers, and the interference filter is located at the other of the halogen source and the second beam splitter. between. According to another embodiment of the invention, the first beam splitter is a full band beam splitter. According to another embodiment of the invention, the second beam splitter is a beam splitter for 85% penetration and 15% reflection of the ultraviolet light source. According to one of the above objects, a light source module of a biochemical detection system is provided, which comprises a halogen light source, a filter, an ultraviolet light source having a wavelength between 320 nm and 360 nm, and a second beam splitter. The halogen source is transmitted in the first direction. The filter is used to attenuate light sources in halogen sources with wavelengths below 300 201245689 meters and above 600 nm. The second beam splitter is used to reflect the halogen source and is transmitted in the second direction. The ultraviolet light source is used together with the halogen light source to pass through the beam splitter to detect the sample to be detected. According to an embodiment of the invention, the ultraviolet light source is a light emitting diode. According to another embodiment of the present invention, the ultraviolet light source includes another light source and an interference filter having a wavelength between 320 nm and 360 nm, and the interference filter is located at the other halogen light source and the second beam splitter. between. According to another embodiment of the invention, the second beam splitter is a beam splitter for 85% penetration and 15% reflection of the ultraviolet light source. According to one of the above objects, a biochemical detection system comprising a light source module as described above and an optical spectrum analyzer is provided. The spectrum analyzer is used to analyze the light that passes through the sample to be tested. In accordance with an embodiment of the invention, a spectrometer includes an entrance slit, a focus dispersing element, and a photodiode array. The entrance slit is used to receive light that passes through the sample to be detected. The focusing dispersive element is used to spatially disperse the light that passes through the entrance slit. The photodiode array is used to sense the light that has been developed by the focusing dispersive element. In accordance with another embodiment of the present invention, a spectrum analyzer includes an entrance slit, a parallel light mirror, a dispersive element, a concentrating mirror, and a photodiode array. The entrance slit is for receiving light that passes through the sample to be detected. A parallel light mirror reflects light passing through the entrance slit. The dispersive element is used to expand the light reflected by the parallel light mirror. The photodiode array is used to sense the light that has spread through the dispersive element. A concentrating mirror is used to focus the light that has been developed through the dispersive element to the photodiode array. It can be seen from the above that the biochemical detection system of the present invention can improve the characteristics of the tooth source by using the light 201245689 module, so that the tooth source can meet the requirement of full spectrum detection in the visible range, thereby replacing the high-priced gas. The light source enables the component cost of the biochemical detection system to be further reduced. [Embodiment] Please refer to FIG. 1A, which illustrates a biochemical detection system according to an embodiment of the present invention. The biochemical detection system 100 includes a halogen light source 102, an optical module 104, and an optical spectrum analyzer 1〇8 for performing optical analysis on the sample to be detected 〇6a carried in the sample carrier disk 106. The function of the optical module 104 is to adjust the optical characteristics of the lenticular source 102 to provide a more compliant optical analysis of the halogen source 102. In the present embodiment, the optical spectrum analyzer 108 includes an incident slit 108b, a parallel light mirror l8c, a dispersive element i〇8d, a condensing mirror l8e, and a photodiode array 108a. The entrance slits 1 〇 8b are for receiving and sampling light rays that pass through the sample 106a to be detected. The parallel light mirror 108c is for reflecting the light passing through the incident slit WSb so that the light is transmitted in parallel to the dispersing element 108d. The dispersive element l〇8d is used to expand the light reflected by the parallel light mirror 108c to facilitate sensing of the photodiode array 108a. The condensing lens l 〇 8e is used to focus the dispersive element 1 〇 8 (!, the developed light is focused on the photodiode array 108a to facilitate sensing. Please refer to FIG. 1B, which illustrates another embodiment of the present invention. A biochemical detection system. The main difference between the biochemical detection system 100 and the biochemical detection system 100 is that the parallel light mirror l8c and the dispersive element 108d are integrated into a single focus dispersive element l〇8f, and the unnecessary condensing lens l8e is omitted. The focusing dispersive element 108f is used for spatial dispersion to spread through the 201245689 light of the incident slit l8b, and directs the developed light to the photodiode array l8a. The structure of the above spectrum analyzer is only an example, and the present application is applicable. The spectrum analyzer is not limited to the above examples. Please refer to FIGS. 2 and 3', which respectively show the data maps measured before and after the phantom light source of the biochemical detection system according to the present invention is processed by the optical module ( The vertical axis is the relative intensity value, so there is no absolute unit. Figure 2 is the data measured before the tooth source is processed by the optical module, and the third picture is the light source processed by the optical module. The measured data map. Referring to Figure 2, the intensity difference between the light emitted by the prime source and the visible light (with a wavelength between 400 nm and 750 nm) before the treatment will exceed 2 More than 〇 times (for example, 60000/2946>20) 'If you use the photodiode array to sense all the spectra in the visible range at a time, it will make the subsequent data difficult to analyze due to factors such as high signal-to-noise ratio. Therefore, the biochemistry of this case The detection system is added to an optical module (for example, the optical module 104) to process the light source, and the measured data pattern is as shown in Fig. 3. It can be seen from Fig. 3 that it is in the visible range (wavelength) The light intensity difference between about 400 nm and 750 nm is less than 5 times (for example, 60000/12000 < 5), which will make subsequent data analysis much easier. The following will explain the various optical modules with the drawings. In addition, the optical module 104 increases the light intensity near the wavelength of 400 nm due to the increase of the blue-violet light source required for biochemical detection. Please refer to FIG. 4, which illustrates an embodiment of the present invention. Optical module The optical module 104 includes a blue-violet light source 104a, a first beam splitter 104b, an ultraviolet light source 104D, and a second beam splitter 104c. The first beam splitter 104b emits a halogen light source 1〇2. The light reflection is directed toward the second dichroic mirror l〇4c (in the first direction 1〇1). The light emitted by the blue-violet light source l〇4a 201245689 penetrates the first dichroic mirror l〇4b, and is coupled to the first dichroic mirror 1 The 齿4b reflected pixon light source is substantially transmitted in the same direction (first direction 101) and is reflected toward the sample to be tested at the second beam splitter 104c. The second beam splitter 104c is used to allow the ultraviolet light source to penetrate toward the sample to be detected. (101' along the second direction). In the present embodiment, the second direction 10 Γ is substantially perpendicular to the first direction 101 ′ but is not limited thereto. In the present embodiment, the blue-violet light source 1 〇 4a is a light source having a wavelength between 380 nm and 420 nm, such as a light-emitting diode having a wavelength between 380 nm and 420 nm. The ultraviolet light source 1〇4d is a light source having a wavelength between 320 nm and 360 nm, for example, a light-emitting diode having a wavelength between 320 nm and 360 nm. In the present embodiment, the first beam splitter 104a is a full-band beam splitter, whereby the incident light is reflected by about 50% (about 50% of incident light is left). In addition, the second dichroic mirror 104c has a function of allowing the incident light to penetrate by about 85% (remaining about 15% reflection) for the ultraviolet light source. In other words, the second dichroic mirror 1〇4c is an 85% penetration of the ultraviolet light source and 15% reflected spectroscope. The second beam splitter 104c also has a function of reflecting visible light. The purpose of the optical module 1 〇4 to increase the ultraviolet light source and the blue-violet light source is to supplement the problem that the light intensity of the light source at this wavelength is insufficient. Referring to FIG. 5, a schematic diagram of an optical module in accordance with another embodiment of the present invention is shown. The optical module 104, which is different from the optical module 1〇4, mainly consists in adding a filter 104e. The filter 104e is located between the halogen light source 102 and the first beam splitter i〇4b. The filter 104e is used to attenuate the light source of the halogen source 102 having a wavelength between about 6 nanometers and 800 nanometers, so that the overall performance of the optical module 104' can be closer to the data of the third figure. In addition, the ultraviolet light source LED of the optical module 1〇4 is replaced by a halogen 201245689 light source 104f and a interference filter 104g having a wavelength between 320 nm and 360 nm. The interference filter 104g is located between the halogen light source 104f and the beam splitter l4c' to attenuate other light sources except for wavelengths between 320 nm and 360 nm. The halogen light source 104f plus the interference filter l〇4g has the same function as the ultraviolet light source LED, but the cost of the component is low. In addition, the blue-violet light source 104a can also be realized by a halogen light source plus an interference filter (not shown). Please refer to FIG. 6 for a schematic diagram of an optical module according to still another embodiment of the present invention. The optical module 104" includes a filter, a light mirror 1 〇 4h, an ultraviolet light source 104d, and a second beam splitter lens 104c. The filter lens 〇4h is used to attenuate the wavelength of the halogen light source 102 below about 300 nm. a light source higher than about 600 nm. The second beam splitter 104c is for reflecting the halogen light source toward the sample to be detected (in the second direction 101). The second beam splitter 104C is directed to the ultraviolet light source and has about 85% penetration of the incident light. The function of (remaining about 15% reflection). The second beam splitter is a beam splitter for the ultraviolet light source 85〇/〇 penetration and 15〇/. The second beam splitter 104c also has infrared light. The function of the attenuation of the ultraviolet light is reflected. Therefore, the halogen light source 1〇2 is processed in the first direction 101 by the filter 1〇411, then reflected by the second beam splitter 104c and then used in the first direction of the ultraviolet light source. In the present embodiment, the second direction 101' is substantially perpendicular to the first direction 1〇1, but is not limited thereto. Compared to the optical modules 104 and 1〇4, The optical module 104" has the advantage of fewer optical components, but can also enable the tooth source 102 The emitted light can be processed by the optical module 104" to approximate the data of the above figure 3 or the difference of the light intensity in the range of visible light is less than 5 times. In addition, the ultraviolet light source l〇4d can also be added by the light source. The interference filter method is implemented (not shown in 201245689). It can be seen from the above embodiments of the present invention that the biochemical detection system of the present invention is used to improve the characteristics of the light source by using the optical module, so that the tooth source can be more capable. Comply with the requirement of full spectrum detection in the range of visible light, instead of the high-priced xenon light source, the component cost of the biochemical detection system can be further reduced. 'Although the invention has been disclosed in the above embodiments, it is not intended to limit the present. The invention is to be understood as being limited by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more apparent and understood. 1A is a biochemical detection system according to an embodiment of the present invention. FIG. 1B is a biochemical detection system according to another embodiment of the present invention. The data diagram of the light source module of the biochemical detection system is processed by the optical module before and after processing. FIG. 4 is a schematic diagram of an optical module according to an embodiment of the invention. A schematic diagram of an optical module according to another embodiment of the invention. Fig. 6 is a schematic view showing an optical module 201245689 according to still another embodiment of the present invention. [Description of main components] 100: Biochemical detection system 100, biochemistry Detection system 101: first direction 101,: second direction 102: halogen light source 104: optical module 104, optical module 104": optical module 104a: blue-violet light source 104b: beam splitter 104c: beam splitter 104d: ultraviolet Light source 104e: filter 104f: halogen light source l〇4g: filter 104h: filter 106: sample carrier disk 106a: sample to be detected 108: spectrum analyzer 108a: sense Diode array 201245689 108b: entrance slit 108c: parallel light microscopy 108d: dispersive element 108e: condenser lens 108f ·· dispersive focusing element 12

Claims (1)

201245689 七、申請專利範圍 1. 一種生化檢測系統之光源模組,至少包含: 一鹵素光源; 一第一分光鏡,用以反射該鹵素光源; 一波長介於380奈米與420奈米之間的藍紫光源,穿 透該第一分光鏡,且與被該第一分光鏡反射之該鹵素光源 大致沿一第一方向傳遞; 一波長介於320奈米與360奈米之間的紫外光源;以 及 -第二分光鏡’用以反射該藍紫光源與該_素光源沿 其中該紫外光源於穿透該第二分光鏡後 、紫^與該齒素光源—起用以檢測-待檢測樣本。 2. 如晴求項1所述之光源模組,更包含一濟弁错用 以衰減該鹵素光源巾、、&且人 又匕3 ,慮光鏡用 光界,”光介於600奈米與800奈米之間的 原城域位於該峰光源與該第1光鏡之間。 3. 源為一發光二極 如°月求項1所述之光源模組, 其中該藍紫光源光 4. 發光二極體。 求項1所述之光源模組 ,其中該紫外光源為 13 201245689 5. 如請求項1所述之光源模組,其中該紫外光源包 含另一鹵素光源以及一波長介於320奈米與360奈米之間 的干涉濾光鏡,該干涉濾光鏡位於該另一鹵素光源與該第 二分光鏡之間。 6. 如請求項1所述之光源模組,其中該第一分光鏡 為一全波段分光鏡。 7. 如請求項1所述之光源模組,其中該第二分光鏡 為一針對該紫外光源85%穿透及15%反射的分光鏡。 8. —種生化檢測系統之光源模組,至少包含: 一鹵素光源,沿第一方向傳遞; 一濾光鏡,用以衰減該鹵素光源中波長低於300奈米 且高於600奈米的光源; 一波長介於320奈米與360奈米之間的紫外光源;以 及 一第二分光鏡,用以反射該鹵素光源沿一第二方向傳 遞,其中該紫外光源於穿透該第二分光鏡後與該画素光源 一起用以檢測一待檢測樣本。 9. 如請求項8所述之光源模組,其中該紫外光源為 一發光二極體。 14 201245689 ΐ〇·如請求項8所述之光源模組,其中該紫外光源包 含另一鹵素光源以及〆波長介於320奈米與360奈米之間 的干涉濾光鏡,該干涉濾光鏡位於該另一鹵素光源與該第 二分光鏡之間。 為〜11.如請求項8所述之光源模組,其中該第二分光鏡 釺對該紫外光源85%穿透及15%反射的分光鏡。 12 •生化檢測系統,至少包含: 〜種如請求項丨〜11其中之一的光源模組;以及 光譜分析儀,用以分析穿越該待檢測樣本後的光線。 包含13.如請求項12所述之光源模組,其中該光譜分析儀 二:射狹縫’用以接收該穿越該待檢測樣本後的光線; 的光線m件’ μ空間色散展開穿過該入射狹縫 ,以及 後的^光二極體陣列,用以感_該聚焦色散元件展開 14. 杆儀包含如μ求項12所述之光源模組,其中其中該光譜分 二:射:縫’用以接收該穿越該待檢測樣本 切光鏡,用減射穿_入射韻之光線; 15 201245689 一色散元件,用以展開經該平行光鏡反射後的光線; 一感光二極體陣列,用以感測經該色散元件展開後的 光線;以及 一聚光鏡,用以將經該色散元件展開後的光線聚焦於 感光二極體陣列。201245689 VII. Patent application scope 1. A light source module of a biochemical detection system, comprising at least: a halogen light source; a first beam splitter for reflecting the halogen light source; a wavelength between 380 nm and 420 nm a blue-violet light source penetrating the first beam splitter and transmitting the halogen light source reflected by the first beam splitter substantially in a first direction; an ultraviolet light source having a wavelength between 320 nm and 360 nm And a second beam splitter for reflecting the blue-violet light source and the light source along the ultraviolet light source after the second beam splitter, the violet light and the tooth source are used to detect - the sample to be detected . 2. The light source module according to the item 1 of the claim 1 further includes a light source for attenuating the halogen light source, and the person is 匕3, and the light is used for the light field, "the light is between 600 and The original metropolitan area between the meter and the 800 nm is located between the peak light source and the first light mirror. 3. The source is a light-emitting diode, such as the light source module described in Item 1, wherein the blue-violet light source Light source 4. Light-emitting diode. The light source module of claim 1, wherein the ultraviolet light source is 13 201245689. The light source module of claim 1, wherein the ultraviolet light source comprises another halogen light source and a wavelength An interference filter between 320 nm and 360 nm, the interference filter being located between the other halogen light source and the second beam splitter. 6. The light source module according to claim 1, The first beam splitter is a full-band beam splitter. 7. The light source module of claim 1, wherein the second beam splitter is a beam splitter that is 85% penetrating and 15% reflective for the ultraviolet light source. 8. A light source module for a biochemical detection system, comprising: at least: a halogen light source, transmitting in a first direction; a filter for attenuating a light source having a wavelength lower than 300 nm and higher than 600 nm in the halogen light source; an ultraviolet light source having a wavelength between 320 nm and 360 nm; and a second beam splitter, And transmitting the halogen light source in a second direction, wherein the ultraviolet light source is used together with the pixel light source to detect a sample to be detected after penetrating the second beam splitter. 9. The light source module according to claim 8 The light source module of claim 8, wherein the ultraviolet light source comprises another halogen light source and the xenon wavelength is between 320 nm and 360 nm. An interference filter between the other halogen light source and the second beam splitter. The light source module according to claim 8, wherein the second beam splitter 釺a spectroscope that is 85% penetrating and 15% reflective of the ultraviolet light source. 12 • Biochemical detection system, comprising at least: ~ a light source module such as one of the request items 丨 11; and a spectrum analyzer for analyzing the traversing The light after the sample to be tested The light source module of claim 12, wherein the spectrum analyzer 2: the ejection slit is configured to receive the light that passes through the sample to be detected; and the light m piece 'μ spatial dispersion spreads through the An entrance slit, and a rear photodiode array for sensing the focus dispersive element expansion 14. The stick apparatus comprises the light source module according to item 12, wherein the spectrum is divided into two: shot: slit For receiving the illuminating mirror of the sample to be inspected, and reducing the incidence of the incident light; 15 201245689 a dispersive element for expanding the light reflected by the parallel light mirror; a photodiode array, Sensing the light that has been developed through the dispersive element; and a concentrating mirror for focusing the light that has been developed through the dispersive element to the photodiode array.
TW100115368A 2011-05-02 2011-05-02 Biochemical measurement system and lamp module thereof TWI454684B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW100115368A TWI454684B (en) 2011-05-02 2011-05-02 Biochemical measurement system and lamp module thereof
CN201210099393.7A CN102768068B (en) 2011-05-02 2012-04-05 Biochemical detection system and light source module thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100115368A TWI454684B (en) 2011-05-02 2011-05-02 Biochemical measurement system and lamp module thereof

Publications (2)

Publication Number Publication Date
TW201245689A true TW201245689A (en) 2012-11-16
TWI454684B TWI454684B (en) 2014-10-01

Family

ID=47095552

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100115368A TWI454684B (en) 2011-05-02 2011-05-02 Biochemical measurement system and lamp module thereof

Country Status (2)

Country Link
CN (1) CN102768068B (en)
TW (1) TWI454684B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103728018A (en) * 2014-01-15 2014-04-16 武汉科晟华科技有限公司 Waveband-selectable deuterium-halide combined light source

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6582363B2 (en) * 2000-08-25 2003-06-24 Pentax Corporation Video endoscope system and illumination optical system
US7149033B2 (en) * 2004-10-28 2006-12-12 Ocean Optics, Inc. UV visual light beam combiner
KR100798486B1 (en) * 2006-03-29 2008-01-28 한국전기연구원 Light source for Fluorescence Diagnosis and Photodynamic Therapy
CN101055245A (en) * 2007-05-24 2007-10-17 吉林大学 Portable near infrared spectrometer for soybean quality detection
JP5260903B2 (en) * 2007-07-06 2013-08-14 株式会社東芝 Automatic analyzer
CN101275908B (en) * 2008-03-10 2010-07-28 重庆大学 Food safe monitoring instrument based on space light modulator

Also Published As

Publication number Publication date
CN102768068B (en) 2014-10-01
CN102768068A (en) 2012-11-07
TWI454684B (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP2018105871A (en) System and method for defect detection and photoluminescence measurement of sample
JP6501714B2 (en) Optical survey device
CN104020153B (en) Raman spectrum detection system and method
US20060134775A1 (en) Systems, illumination subsystems, and methods for increasing fluorescence emitted by a fluorophore
BRPI0714458A2 (en) detection system for detecting luminescence locations on a substrate, optical compensator, method for detecting radiation locations on a substrate, computer based method for designing an optical compensator, computer program product, machine readable data storage device, e, transmission of computer program product
TW201221938A (en) Defect inspection and photoluminescence measurement system
CN103196879A (en) Laser-induced fluorescence spectrum detection device
CN111024658A (en) Fluorescent molecule directional positioning method and device
CN203164121U (en) Laser-induced fluorescence spectrum detection device
CN103234950A (en) Parallel dual optical path laser-induced fluorescence spectrograph
CN113109314A (en) Multiple fluorescence signal detection system and method
CN100543460C (en) A kind of high flux real-time minimum multifunctional fluorescent detector
CN106198951B (en) A kind of bio-sensing scaling method, calibration system and disease detecting system
CN204028004U (en) A kind of substance detecting apparatus based on Raman filtering
TW201245689A (en) Biochemical measurement system and lamp module thereof
TWI470202B (en) Biochemical measurement system
JP2016501369A (en) Optical system, apparatus and method for flow cytometry
TW200946954A (en) Light module, apparatus of providing optical tweezers and dark field microscope
JP2005524069A5 (en)
JP2019506610A (en) Method and apparatus for measuring the absorbance of a substance in at least one solution
CN105510296B (en) The portable fluorescence Raman spectrum detection system that disappears
JP2016114532A (en) Photothermal conversion spectroscopic analyzer
CN215066171U (en) Confocal micro-Raman spectrometer
US20080100839A1 (en) Method and system for measuring light propagating at multiple wavelengths
WO2022024368A1 (en) Capillary electrophoresis device